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LECTURE 4

EXISTENCE THEORY FOR THE BOLTZMANN EQUATION



Notion of renormalized solution

•A nonnegative function F ∈ C(R+;L1(R3 × R3)) is a renormalized

solution of the Boltzmann equation iff B(F,F )√
1+F

∈ L1
loc(dtdxdv) and for each

β ∈ C1(R+) s.t. β′(Z) ≤ C√
1+Z

for all Z ≥ 0, one has

(∂t + v · ∇x)β(F ) = β′(F )B(F, F )

in the sense of distributions on R∗
+ × R3 × R3.

Theorem. (DiPerna-Lions, Ann. Math. 1990) Let F in ≥ 0 a.e. satisfy
∫∫

(1 + |x|2 + |v|2 + | lnF in|)F indxdv < +∞

Then, there exists a renormalized solution of the Boltzmann equation such
that F

∣

∣

∣

t=0
= F in.



Remark: For F ∈ C(R+;L1(R3×R3)) such that B±(F,F )
1+F

∈ L1
loc(dtdxdv)

the following conditions are equivalent

•F is a renormalized solution of the Boltzmann equation; and

•F is a mild solution of the Boltzmann equation, i.e. for a.e. x, v ∈ R3,
B(F, F )♯(t, x, v) ∈ L1

loc(dt) and, denoting f ♯(t, x, v) = f(t, x + tv, v)

F ♯(t) = F ♯(0) +
∫ t

0
B(F, F )♯(s)ds for all t > 0

•likewise, for a.e. x, v ∈ R3

F ♯(t) = e−A♯(t)F ♯(0)+
∫ t

0
e−(A♯(t)−A♯(s))B+(F, F )♯(s)ds for all t > 0

where A♯(t, x, v) =
∫ t

0

(

B−(F, F )

F

)♯

(s, x, v)ds



Properties of renormalized solutions

•Continuity equation + global conservation of momentum

∂t

∫

Fdv + divx

∫

vFdv = 0 ,

∫∫

vF (t)dxdv = Cst

•Energy inequality
∫∫

1
2|v|

2F (t, x, v)dxdv ≤
∫∫

1
2|v|

2F indxdv

•Entropy inequality
∫∫

F lnF (t)dxdv + 1
4

∫ t

0
ds

∫

dx

∫∫∫

(F ′F ′
∗ − FF∗) ln

(

F ′F ′∗
FF∗

)

bdωdvdv∗

≤
∫∫

F in lnF indxdv



The approximation scheme

•Bounded collision kernel: 0 ≤ b ∈ L∞, b ≥ 0 a.e. and B = B+ − B−

where B+(F, F ) =
∫∫

F ′F ′
∗b(v − v∗, ω)dv∗dω ,

B−(F, F ) =
∫∫

FF∗b(v − v∗, ω)dv∗dω

•Let Fn be the solution to the truncated Boltzmann equation on R3 × R3:

∂tFn +v ·∇xFn =
B(Fn, Fn)

1 + 1
n

∫

Fndv
=: Bn(Fn, Fn) ; Fn

∣

∣

∣

t=0
= F in

under the condition
∫∫

(1 + |x|2 + |v|2 + | lnF in|)F indxdv < +∞.

•Exercise: Prove existence+uniqueness of the solution to the TBE



A priori bounds and weak L1 compactness

•The truncation by the macroscopic density does not affect (i) the symme-
tries of the Boltzmann collision integral leading to the local conservation
laws, and (ii) the H Theorem:

∫∫

(1 + |x|2 + |v|2 + | lnFn(t)|)Fn(t)dxdv ≤ C(1 + t2)

where C is independent of n.

Proposition. For each δ > 0, the sequences

Bn
−(Fn, Fn)

1 + δFn
and

Bn
+(Fn, Fn)

1 + δFn

are both bounded in L1
loc(R+;L1(R3 × R3)) and relatively compact in

L1
loc(R+ × R3 × R3) weak.



Proof: L1 bound and uniform integrability obvious for Bn
−, since

Bn
−(Fn, Fn)

1 + δFn
= Ln(Fn)

Fn

1 + δFn

where

Ln(F ) =
b ⋆v F

1 + 1
n

∫

Fdv
, b(z) =

∫

b(z, ω)dω

— in other words

Ln(F ) =

∫∫

F∗b(v − v∗, ω)dωdv∗

1 + 1
n

∫

Fdv
=

∫

F∗b(v − v∗)dv∗

1 + 1
n

∫

Fdv

so that

0 ≤ Ln(F ) ≤ ‖b‖L∞
∫

Fdv



As for Bn
+, pick R >> 1 and write

Bn(Fn, Fn)

1 + δFn
=

1

1 + δFn

∫∫

F ′
nF ′

n∗ − FnFn∗
1 + 1

n

∫

Fndv
1F ′

nF ′
n∗≤RFnFn∗bdv∗dω

+
1

1 + δFn

∫∫

F ′
nF ′

n∗ − FnFn∗
1 + 1

n

∫

Fndv
1F ′

nF ′
n∗>RFnFn∗bdv∗dω

The first term is bounded pointwise by

(R − 1)
Bn
−(Fn, Fn)

1 + δFn

while the L1([0, t] × R3 × R3) norm of the second is bounded by the
entropy production

1

lnR

∫ t

0

∫

dx

∫∫∫

F ′
nF ′

n∗ − FnFn∗
1 + 1

n

∫

Fndv
ln

(

F ′
nF ′

n∗
FnFn∗

)

bdvdv∗dω = O

(

1

lnR

)



CONCLUSION: hence, for each R >> 1,

Bn(Fn, Fn)

1 + δFn
∈ B

(

0, 1
lnR

)

L1
+ KR

where KR is locally uniformly integrable on R+ × R3 × R3 for each R.

Therefore

Bn(Fn, Fn)

1 + δFn
is locally uniformly integrable on R+ × R

3 × R
3

Finally

Bn
+(Fn, Fn)

1 + δFn
=

Bn
−(Fn, Fn)

1 + δFn
+

Bn(Fn, Fn)

1 + δFn

is the sum of two locally uniformly integrable sequences.



Applying Velocity Averaging

•We know that

(∂t + v · ∇x)
1
δ
ln(1 + δFn) =

Bn(Fn, Fn)

1 + δFn
= O(1)L1([0,T ]×R3×R3)

∫∫

(1 + |x|2 + |v|2 + | lnFn(t)|)Fn(t)dxdv ≤ C(1 + t2)

The 2nd bound implies Fn is uniformly integrable on [0, T ]×R3×R3 and
tight; for each δ > 0, this is also true of 1

δ
ln(1 + δFn), since

0 ≤ 1
δ
ln(1 + δFn) ≤ Fn

hence, by Velocity Averaging in L1

∫

1
δ
ln(1 + δFn)dv is strongly relatively compact in L1([0, T ] × R

3)



•In fact

0 ≤ Fn − 1
δ
ln(1 + δFn) ≤ δF2

n1Fn≤R + Fn1Fn>R

so that

‖Fn − 1
δ
ln(1 + δFn)‖L1

x,v
≤ Rδ‖Fn‖L1

x,v
+ 1

lnR

∫∫

Fn lnFndxdv

Hence

Fn − 1
δ
ln(1 + δFn) → 0 in L∞([0, T ];L1

x,v) as δ → 0 uniformly in n

•Therefore, one can remove the nonlinear normalizing function, so that
∫

Fndv is strongly relatively compact in L1([0, T ] × R
3)



•Therefore, modulo extracting subsequences, for each T > 0:

Fn ⇀ F in L1([0, T ] × R
3 × R

3) , while
∫

Fnφdv →
∫

Fφdv in L1
loc(R+ × R

3) and a.e.

for each φ ∈ L∞(R+ × R3 × R3); likewise

Ln(Fn) → L(F ) = b ⋆v F =
∫∫

F∗b(v − v∗, ω)dωdv∗

in L1
loc(R+ × R3) and a.e..

Proposition. For each φ ∈ L∞(R+ × R3 × R3)

∫ Bn
±(Fn, Fn)

1 +
∫

Fndv
φdv →

∫ B±(F, F )

1 +
∫

Fdv
φdv in L1

loc(R+ × R
3)



Product Limit Theorems

We recall Egorov’s Theorem: Assume that vn → v a.e. on K ⊂⊂ RN .
Then, for each ǫ > 0, there exists a measurable E ⊂ K such that

|K \ E| < ǫ , and vn → v UNIFORMLY on E

Lemma. Assume that un⇀u in L1, that sup ‖vn‖L∞ < +∞, and that
vn → v a.e.. Then unvn⇀uv in L1. (If v = 0, unvn → 0 in L1).

Lemma. Assume that, for each φ ∈ L∞(RN × RN)

un⇀u in L1(RN × R
N) ,

∫

unφdv →
∫

uφdv in L1
loc(R

N × R
N)

that sup ‖vn‖L∞(RN×RN) < +∞, and that vn → v a.e.. Then
∫

unvnφdv →
∫

uvφdv in L1
loc(R

N) for each φ ∈ L∞(RN × R
N)



•Proof of the first lemma: Write unvn − uv = un(vn − v) + v(un − u);
since v ∈ L∞ and un⇀u in L1, the second term ⇀0 in L1.

WLOG, one can assume that supp(un) ⊂ K compact; indeed, since
un⇀u in L1, the sequence un is tight. By Egorov’s Theorem

un(vn − v) = un1K\E(vn − v) + un1E(vn − v)

the second term → 0 in L1, while the first term can be made arbitrarily
small with ǫ, since un is uniformly integrable.

Proof of the second lemma: left as an exercise, following the same pattern.



Proof: One has

Fn⇀F in L1
loc(dt;L1

x,v) ,

∫

Fnφdv →
∫

Fφdv in L1
loc(dtdx) and a.e.

on the other hand

Ln(Fn)

1 +
∫

Fndv
→ L(F )

1 +
∫

Fdv
a.e.

where

L(F ) =
∫∫

F∗b(v − v∗, ω)dωdv∗ , and Ln(F ) =
L(F )

1 + 1
n

∫

Fdv

while
∥

∥

∥

∥

∥

Ln(Fn)

1 +
∫

Fndv

∥

∥

∥

∥

∥

L∞
≤ ‖b‖L∞



•Applying the second lemma above shows that
∫

FnLn(Fn)

1 +
∫

Fndv
φdv →

∫

FL(F )

1 +
∫

Fdv
φdv in L1

loc(R+ × R
3)

•In other words
∫ Bn

−(Fn, Fn)

1 +
∫

Fndv
φdv →

∫ B−(F, F )

1 +
∫

Fdv
φdv in L1

loc(R+ × R
3)

•The case of Bn
+(Fn, Fn) is easily reduced to the case of Bn

−(Fn, Fn) by
exchanging (v, v∗) and (v′, v′∗).



Supersolution

•Write the truncated Boltzmann equation along characteristics:

d

dt
F ♯

n +





L(Fn)

1 + 1
n

∫

Fndv





♯

F ♯
n =





B+(Fn, Fn)

1 + 1
n

∫

Fndv





♯

with the notation f ♯(t, x, v) = f(t, x + tv, v). Setting

A♯
n(t, x, v) =

∫ t

0





L(Fn)

1 + 1
n

∫

Fndv





♯

(s, x, v)ds

we see that (modulo extraction of a subsequence)

A♯
n → A♯ ≡

∫ t

0
L(F )♯(s, x, v)ds in C([0, T ], L1

loc(dxdv)) and a.e.



Pick βR to be a mollified version of z 7→ sup(z, R); then

F ♯
n(t) ≥ F ♯(0)e−A

♯
n(t)

+
∫ t

0
e−(A

♯
n(t)−A

♯
n(s))





B+(βR(Fn), βR(Fn))

1 + 1
n

∫

Fndv





♯

(s)ds

By Velocity Averaging applied to βR(Fn), one sees that

βR(Fn)⇀FR , B+(βR(Fn), βR(Fn))⇀B+(FR, FR) in L1
loc(dtdx;L1

v)

Passing to the limit in the inequality above leads to

F ♯(t) ≥ F ♯(0)e−A♯(t) +
∫ t

0
e−(A♯(t)−A♯(s))B+(FR, FR)♯(s)ds

It follows from the entropy bound that

FR ↑ F in L1
loc(dt;L1

x,v) as R → +∞



•Therefore, by monotone convergence, one eventually finds that

F ♯(t) ≥ F ♯(0)e−A♯(t) +
∫ t

0
e−(A♯(t)−A♯(s))B+(F, F )♯(s)ds

•Remark: This implies in particular that, for each t > 0, the function

(s, x, v) 7→ e−(A♯(t,x,v)−A♯(s,x,v))B+(F, F )♯(s, x, v)

belongs to L1([0, t] × R3 × R3). Because of the inequality

B−(F, F ) ≤ RB+(F, F ) +
1

lnR

∫∫

(F ′F ′
∗ − FF∗) ln

(

F ′F ′∗
FF∗

)

bdωdv∗

the function

(s, x, v) 7→ e−(A♯(t,x,v)−A♯(s,x,v))B−(F, F )♯(s, x, v)

also belongs to L1([0, t] × R3 × R3).



Subsolution

•Write the truncated Boltzmann equation for βδ(Fn) = 1
δ
ln(1 + δFn):

(∂t + v · ∇x)βδ(Fn) +
L(Fn)

1 + 1
n

∫

Fndv
βδ(Fn) =

B+(Fn, Fn)

(1 + δFn)(1 + 1
n

∫

Fndv)

+
L(Fn)

1 + 1
n

∫

Fndv

(

βδ(Fn) −
Fn

1 + δFn

)

and integrate along characteristics:

βδ(Fn)
♯(t) = e−A

♯
n(t)βδ(F (0))

+
∫ t

0
e−(A

♯
n(t)−A

♯
n(s))





B+(Fn, Fn)

(1 + δFn)(1 + 1
n

∫

Fndv)





♯

(s)ds

+
∫ t

0
e−(A

♯
n(t)−A

♯
n(s))





L(Fn)

1 + 1
n

∫

Fndv





♯

(s)



βδ(Fn)
♯(s) − F

♯
n(s)

1 + δF
♯
n(s)



 ds



Next, we let n → +∞, keeping δ > 0 fixed, and recall that

βδ(Fn)⇀Fδ in L1
loc(dt;L1

x,v) , A♯
n → A♯ in C([0, T ];L1

loc(dxdv))

while
∫

Fndv →
∫

Fdv a.e. and
B+(Fn, Fn)

1 + δFn
⇀B+

δ in L1
loc(dtdxdv)

Hence, by the product limit theorem, the second integral above satisfies

∫ t

0
e−(A

♯
n(t)−A

♯
n(s))





B+(Fn, Fn)

(1 + δFn)(1 + 1
n

∫

Fndv)





♯

(s)ds

⇀

∫ t

0
e−(A♯(t)−A♯(s))B+

δ

♯
(s)ds



Notice the inequality

B+(Fn, Fn)

(1 + δFn)(1 +
∫

Fndv)
≤ B+(Fn, Fn)

1 +
∫

Fndv

passing to the limit as n → +∞ in weak L1
loc leads to

B+
δ

1 +
∫

Fdv
≤ B+(F, F )

1 +
∫

Fdv
, and hence B+

δ ≤ B+(F, F )

Hence

F
♯
δ(t) ≤ e−A♯(t)βδ(F (0)) +

∫ t

0
e−(A♯(t)−A♯(s))B+(F, F )

♯
(s)ds

+REMAINDER



In the limit as δ → 0, Fδ ↑ F in L1
loc(dt, L1

x,v), while the remainder term is
disposed of by a combination of arguments that involve the entropy bound,
monotone convergence, and the fact that

∫ t

0
e−(A♯(t)−A♯(s))L(F )♯(s)F ♯(s)ds < +∞

Finally, we arrive at the inequality

F ♯(t) ≤ F ♯(0)e−A♯(t) +
∫ t

0
e−(A♯(t)−A♯(s))B+(F, F )♯(s)ds


