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LECTURE 4

EXISTENCE THEORY FOR THE BOLTZMANN EQUATION




Notion of renormalized solution

oA nonnegative function ' € C(Ry; L1(R3 x R3)) is a renormalized
solution of the Boltzmann equation iff lf/(fTF; € Lloc(dtdxdv) and for each

BeCl(Ry)st B'(Z) < mfor all Z > 0, one has

(O 4+ v-Vz)B(F) = B'(F)B(F, F)

in the sense of distributions on RY_ x R3 x R3.

Theorem. (DiPerna-Lions, Ann. Math. 1990) Let F'*® > 0 a.e. satisfy

//(1 + |z 4 [v]2 4+ | In F™|) Fdadv < o0

Then, there exists a renormalized solution of the Boltzmann equation such
that F|,_ = F™.



Remark: For ' € C(Roy; Ll(R.?’xR3)) such that % € L (dtdzdv)
the following conditions are equivalent

e[ Is a renormalized solution of the Boltzmann equation; and

e F' is a mild solution of the Boltzmann equation, i.e. for a.e. z,v € R3,
B(F, F)!(t, z,v) € Llloc(dt) and, denoting f#(¢t,z,v) = f(t,x + tv,v)

Fi) = FH0) + /O tB(F, )i(s)dsforallt >0

elikewise, for a.e. z,v € R3

t
Fi(t) = e A O Ft(0) + /O e~ (WWO=AENp (F, F)i(s)ds forall t > 0

t (B_(F,F)
(=

i
where Af(t, z,v) =/ ) (s,z,v)ds

0



Properties of renormalized solutions

eContinuity equation + global conservation of momentum

at/de + divx/qudv —0, // vF(t)dady = Cist
eEnergy inequality

//%|v|2F(t,a:,v)da?dv < //%|v|2Fmdwdv

eEntropy inequality

//FlnF(t)da:dv—l— /ds/da:///(FF’ FF*)In<

/ FY n F%xdy

) bdwdvdvx



The approximation scheme

eBounded collision kernel: 0 < b€ L, b > 0ae.and B= B, — B_
where B (F, F) = / / F'Eb(v — vy, w)dvsdw
B_(F,F) = // FFb(v — vy, w)dvsdw

elLet F}, be the solution to the truncated Boltzmann equation on R3 x R3:

141 [ Fudo

= B"(Fn, Fn);  Fn|,_ = F"

under the condition //(1 + |z|? + |v]? + | In F?) Fdxdv < +oo.

eEXxercise: Prove existence+uniqueness of the solution to the TBE




A priori bounds and weak L1 compactness

eThe truncation by the macroscopic density does not affect (i) the symme-
tries of the Boltzmann collision integral leading to the local conservation
laws, and (ii) the H Theorem:

//(1 F 22 4 |02 4 |10 B (8)]) Fu(8)dadv < C(1 + £2)

where C' is independent of n.

Proposition. For each § > 0, the sequences

BE(Fn,Fn) and ?'.(FTL)FTL)
1+ 60F, 1+ 0F,
are both bounded in Li (Ry;L'(R3 x R3)) and relatively compact in

loc

L (R4 x R3 x R3) weak.




Proof: L1 bound and uniform integrability obvious for B™, since

B™ (Fy, F; F
“FnFo) _ oy Fo
1+ 0F, 1+ 0F,
where
bxy F _
Ln(F) = hiC : b(z) = /b(z,w)dw
141 [ P

— In other words
// Fib(v — vy, w)dwdvus /F*E(v — vx ) dvux
1+%/F@ 1+%/F®

Lp(F) =

so that
0 < Ln(F) < bl [ Fv



As for B’ , pick R >> 1 and write

"(Fn, F 1 F!'F! — FyF
B ( T, TL) — // n—- nx n n*]_F/F/ I bdv*dw

1 F'F!  — FpF
1+6F, )] 14 L[ Fdo  Fnfm>fEnbn.

The first term is bounded pointwise by
B" (Fy, Fr)
14 0F,

while the L1([0,t] x R3 x R3) norm of the second is bounded by the
entropy production

1 t F/F/ _F F,F, .
—/ /daj/// nn*l nn*ln n+ nx bdvdv*dw:O(_)

(R—1)




CONCLUSION: hence, foreach R >> 1,

BY(Fp, ) .
1+0F, - (O mr) 1t K

where K is locally uniformly integrable on Ry x R3 x R3 for each R.

Therefore

"(Fn, F
B (Fn, Fn) is locally uniformly integrable on R x R> x R>
14 90Fn

Finally

14 0F, 14 0F, 14 0F,
Is the sum of two locally uniformly integrable sequences.




Applying Velocity Averaging

eo\We know that

T+om, - Ci(01]1xR3xR)

//(1 F 2| 4 [0]2 4+ | In Eu(8)]) Fu(t)dadv < C(1 + £2)

The 2nd bound implies F}, is uniformly integrable on [0, 7] x R3 x R3 and
tight; for each § > 0, this is also true of 5 In(1 + 6 Fy), since

(O + v Va)5In(1 + 6Fp) =

0<iin(1+46F,) < Fy

hence, by Velocity Averaging in L1

/% In(1 4 6Fy)dv is strongly relatively compactin L ([0, 7] x R3)



eln fact
0 < Fp—3In(14+6F,) <6F21p <p+ Falp, >R
so that
|Fn— 2In(1 4 6F)ll 1 < RS|IFullpn + ﬁ/ Fp In Fpdady

Hence

Fn —#In(1 4 6F,) — 0in L>([0,T]; L} ,) as § — O uniformly in n

eTherefore, one can remove the nonlinear normalizing function, so that

/Fndv is strongly relatively compact in L1 ([0, T] x R3)




e Therefore, modulo extracting subsequences, for each 7" > O:
Fn, — Fin L1([0,T] x R® x R3), while
/anbdv — /ngdv in L (R4 x R®) and a.e.

for each ¢ € L°(R4 x R3 x R3); likewise

Lin(Fpn) — L(F) = bxy F = // Fub(v — vs, w)dwdvs

: 1
IN Lloc

(Ry x R3) and a.e..

Proposition. Foreach ¢ € L®(Ry x R3 x R3)

Bi(F’nnFn) dv —s Bﬂ:(Fa F)
1+ [ Fpdv 1+ [ Fdv

¢dvin L (Ry x R3)



Product Limit Theorems

We recall Egorov’s Theorem: Assume that v, — v a.e. on K cC R¥.
Then, for each € > 0, there exists a measurable ¥ C K such that

|IK\ FE| <e, andwvy, — v UNIFORMLY on E

Lemma. Assume that up,—u in L1, that sup ||up||zec < 400, and that
vy, — v a.e.. Then upvp—uw in L1 (If v =0, upvp, — 0in Ll).

Lemma. Assume that, for each ¢ € L°(RY x RY)

up—u in LY(RY x RNY), /unqﬁdv o /uqﬁdv in LZIOC(RN x RV)

that sup ||’Un||L<><>(RN><RN) < 400, and that v,, — v a.e.. Then

/ unnddy — / wopdv in L2 (RN) for each ¢ € L°(RY x RY)



eProof of the first lemma: Write unpvn, — uv = unp(vn — v) + v(up — w);
since v € L™>® and u,—u in L1, the second term —0 in L1.

WLOG, one can assume that supp(un) C K compact; indeed, since
un—u in L1, the sequence wu, is tight. By Egorov’s Theorem

un(vp —v) = uan\E(vn —v) +uplg(vn —v)

the second term — 0 in L1, while the first term can be made arbitrarily
small with ¢, since uy, is uniformly integrable.

Proof of the second lemma.: left as an exercise, following the same pattern.




Proof. One has
Fo—Fin Lj, (dt; Lz )., /FnQde — /ngdv in L} (dtdz) and a.e.

on the other hand

Ln(Fn) —_ LOF)
1+ [Fpdv 1+ [Fdv
where
L(F)
LF=/Fb — ve, w)dwdvs, and Lp(F) =
(F) wb(V — vk, w)dwdvx n(F) 1—|—%de1}
while
Ln(Fp)
—— < |Ib]| oo
1+ [ Fpdv 700




eApplying the second lemma above shows that

FnLn(Fn) FL(F> - 1 3
dv — dvin L R R
1+ [ Fpdn®™ 1t [ Py N Lioe(Ry X R7)
eln other words
B (Fp, F _(F,F .
= n)gbdv [ B )qbdv in L} (R4 x R3)
1+ [ Fpdv 1+ [ Fdv

eThe case of B?I_(Fn, Fy,) is easily reduced to the case of B"™ (Fy,, Fr,) by
exchanging (v, v«) and (v', v)).



Supersolution

e\Write the truncated Boltzmann equation along characteristics:

f f
ing + ( Ll(Fn) ) Fvﬁz — (B+(fn»Fn) )
dt 14 = [ Fpdv 14 = [ Fpdu

with the notation f4(¢, z,v) = F(¢,z + tv,v). Setting

b L(F%)
1+ 1 [ Fudv

A?z(t,:c,v) = /

0

f
) (s,z,v)ds

we see that (modulo extraction of a subsequence)

t
Ab oAb = /O L(F)!(s,z,v)ds in C([0,T], L}, (dzdv)) and a.e.



Pick Bp to be a mollified version of z — sup(z, R); then
i
Ff(t) > FH(0)e4n(®)

ﬁ
( n(t) n(S))
T /O © ( 1+ _7%& | Fndv ) (85

By Velocity Averaging applied to 8r(Fy,), one sees that
Br(Fn)—F", By (Br(Fn), Br(Fa) =By (FR, FR)in Lj, (dtdz; L)
Passing to the limit in the inequality above leads to
Fi() > FHo)e HO 4 [ L (DA DB (PR FRY(s)ds
It follows from the entropy bound that

F%1 Fin Lj, (dt; L; ) as R — 400



eTherefore, by monotone convergence, one eventually finds that

Fi(t) > Fi(0)e= 4 ® 4 /O L (AO-AO) B () (s)ds

eRemark: This implies in particular that, for each ¢ > 0, the function

(5,2,0) > e~ W)= B | (7 F)(s,,0)
belongs to L1([0,t] x R3 x R3). Because of the inequality

1 L F'F!
B_(F,F) < RB4(F,F) + ﬁ//(F F! — FF)In (F

*

) bdwduvx

the function
(s,2,v) — e—(Aﬂ(t,x,v)—Aﬁ(s,:v,v))B_(F, )i(s, z,v)
also belongs to L1([0,¢] x R3 x R3).



Subsolution

e\Write the truncated Boltzmann equation for Gs(Fy,) = Lin(1 4 6F,):
L(F B (Fp, Fp)
) () = Y
1‘|‘ﬁand’U (1+5Fn)(1+ﬁandU)

L(Fn) Fy,
A L[ Fndv (55@“) 1+ 6Fn)

(at + v - Vx)ﬁé(Fn) +

and integrate along characteristics:
i
Bs(Fa)i(t) = e~ M1 35(F(0))
i
+ /t 6_(A£L(t)_A7ﬂ”L(S)) ( By (Fn, Fr) ) (s)ds
0

(1 + 6F) (1 + L [ Frdv)

ﬁ :
to—(Ah0—ak(s)) [ L) . sy — 1l
+ | (Handv) ()(mmu et )




Next, we let n — 400, keeping § > 0O fixed, and recall that

Bs(Fn)—Fsin L} .(dt; LY ), Al — A%in C([0,T]; L}, (dzdv))
while

1+ 6F,
Hence, by the product limit theorem, the second integral above satisfies

:
[ -4 B (Fn. ) (s)ds
0 (14 6Fn)(1 4 L [ Frdv)

N /Ot e~ (O - ) gH ()4

/Fndv — /de a.e. and \B;_ in Llloc(dtda:dv)




Notice the inequality

B_|_(Fn,Fn) < B_|_(Fn,Fn)
(1 + 5Fn)(1 + andU> 1+ and’U

passing to the limit as n — 400 in weak Llloc leads to

_I_
1+ [Fdv ™~ 14 [ Fdv

and hence Bg" < B4 (F,F)
Hence

t
Fj(t) < e Wps(r(0)) + [ WO BH(5 F) (s)ds
+REMAINDER



In the limitas 6 — O, F5 T Fin L{ (dt, L3 ,), while the remainder term is
disposed of by a combination of arguments that involve the entropy bound,
monotone convergence, and the fact that

t
/O e~ (AW =AEN 1Y (s)Fi(s)ds < 400

Finally, we arrive at the inequality

Fi(t) < Fi(0)e=4*® 4 /O L (AO-A OB, ()i (s)ds




