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LECTURE 2

FORMAL INCOMPRESSIBLE HYDRODYNAMIC LIMITS




Dimensionless form of the Boltzmann equation

eChoose macroscopic scales of time 7' and length L, and a reference
temperature ©; this defines 2 velocity scales:

L
V = T (macroscopic velocity) ,  and ¢ = v/© (thermal speed)

Finally, set \V to be the total number of particles.

eDefine dimensionless time, position, and velocity variables by

. t N T . v
tl==, T=—, UV=-—
T L C
and a dimensionless number density
o L3c3
F(t,z,0) = F(t,z,v)

N




eOne finds that

—E%F—I—v V= F——//(F Fl — FE)|(D — 9%) - w|dwdvs

cT
e The pre-factor multiplying the collision integral is
N2 L 1

L X pm— -
L3 m x mean free path  7wKn

eThe pre-factor multiplying the time derivative is

L v L
T X L.
= St, (kinetic Strouhal number)
C

StopF + v - VzF = —n // 3><82 F, — FE)|(D — %) - w|dwdix




Compressible Euler scaling

eThis limit corresponds to |[St = 1| and |[7Kn =: ¢ < 1|, leading to the
singular perturbation problem

1 1
OtFe+v-VaoFe = —B(Fe, Fe) = —/ (FIF!, — FFe)|(v — vs) - w|dwdvs
€ €

eOne expects that, as ¢ — 0, Fe — F and B(F¢, F¢) — B(F,F) = 0;
hence F (¢, z,-) is a Maxwellian for all (¢,z), i.e.

p(t, aj) _\”;g((fax)NQ
e -
(270 (t, x))3/2

F(t,x,0) = Mot 0) u(te)0(ta) (V) =

In other words, F'is a local Maxwellian equilibrium.

eProblem: to find the governing equations for p(t, ), u(t,x) and 0(¢, x).




Formal Euler limit by the moment method

elLet F'" = M (in yin giny b€ such that H(F'"™|M) < 4o0; let F. be a
renormalized solution relative to M = M o 1) of the Boltzmann equation
In the compressible Euler scaling

St=1, and 7tKn = ¢

eAssume that F; satisfies the local conservation laws of momentum and
energy and the local H Theorem, and that
F. — Fae., in L{ (dtdz; L1 ((1 + |v]3)dv)) as e — 0
andin LIn L;,.(dtdx; L'In L((1 4 |v])dv))




Theorem. (C. Bardos-F.G. C.R. Acad. Sci. 1984)  Then F' = M, g,
where (p, u, 6) is an entropic solution to the compressible Euler system for
perfect gases with (p, u, 9)‘1:—0 = (p", u'™, 0')

Proof:

eStep 1. The H Theorem implies that F' is a local Maxwellian i.e. is of the
form (¢, z,v) = M(,(t.2) u(t.z),0(tz))(v): indeed

00 ;
/O / B(Fe, F.) In Fedvdzdt < eH(F™|M) — 0

as ¢ — 0; hence, by Fatou’s lemma

“+ o0
/O / B(F. F) In Fdvdadt = 0



eStep 2: Passing to the limit in the local conservation laws + the entropy
differential inequality leads to the system of conservation laws for (p, u, 6)

with entropy condition
) /R3 M 0gydv + dive /R3 oM (00900 = O
: 2
) /R3 oM (0090 + dive /R3 vE2M () gydv = O

1, 12 : 1,12 —
Ot /R3 5|0 M, 4.0)dv + dive /R3 v5[v|* M, 0)dv =0

as well as the differential inequality

at /R3 M(p,u,@) In M(p7u79)dv —I_ d|Vaj /R3 UM(pau79) In M(pau79)dv S 0




e The following formulas for the moments of a Maxwellian

| Meuoydv=r. [ oMy gydo = pu,
92 M dv = p(u®? + 01 Liv]P M dv = Lo(|u|? + 36
vEEM(pu,ydv = p(u ) 5T M, 0ydv = 5p(Jul

[ v310PMpuyd0 = Bpujul? + 50)

and for its entropy and entropy flux

_ P 3
| Mgy M Myt = o1 <(27T9)3/2) — 2P

_ P 3
[ M0y 10 My 070 = puin ((%9)3/2) — 5pu

show that (p, u, ) is an admissible (entropic) solution of Euler’s system.



The incompressible Navier-Stokes limit

eThis limit holds under the scaling assumption on the Boltzmann equation

St=m1Kn=€e¢K 1

eMoreover, the number density should correspond to a flow with small
Mach number

Ma = ¢

Example: Fé(t7 L, ’U) — M(l,eu(t,x),l)(v)

eMore generally, the number density should be a fluctuation of order ¢
about a uniform Maxwellian state

Fﬁ(ta SC,’U) — M(]_,O,]_)(,U) _I_ Ef(t, L, U)




Formal derivation of the incompressible Navier-Stokes equati ons

following a moment method due to C. Bardos-F.G.-D. Levermore (C.R.
Acad. Sci. 1988)

eintroduce the relative number density fluctuation ge:

0|2

where M (v) = We_T

Fe(t,z,v) — M(v)
eM (v) ’
eln terms of g¢, the Boltzmann equation becomes

gE(t7 Z, U) —

1
€Otge + v - Vage + Eﬁge = O(ge, ge)

where the linearized collision operator £ and Q are defined by

Lg=—2M"1B(M, Mg), O(g,9) = M~ 1B(Mg, Mg)



Lemma. (Hilbert, Math. Ann. 1912) The operator L is self-adjoint, Fred-
holm, unbounded on L2(R3; Mdv) with domain L2(R3; (1 4+ |v|) Mdv)
and nullspace ker £ = span{1, vy, vo, v3, |[v|?}

1. Asymptotic fluctuations

eMultiplying the Boltzmann equation by € and letting e — O suggests that

ge —¢g WithLg=20

By Hilbert’s lemma, g is an infinitesimal Maxwellian, i.e. is of the form

g(t,z,v) = p(t,x) + u(t,xz) -v+ %G(t, :r;)(|v|2 —3)




Notice that g is parametrized by its own moments, since

p = <g> , U= <'Ug> , and 0 = <(%|'U|2 — 1)g>

oNOTATION:

(@) = [ o@)M@)dv

2. Local conservation laws

eThe continuity equation (local conservation of mass) reads

€0t{ge) + divge(vge) = 0, andthus divy(vg) = divyu =0

which is the incompressibility condition in the Navier-Stokes equations.




e The local conservation of momentum takes the form

€0t (vge) + divy(v ® vge) = 0
Recall the incompressible Navier-Stokes motion equation
ohu+u-Veu —vAQAzu = —Vgp

that involves the term V.p as the Lagrange multiplier associated to the
constraint div, v = 0. Accordingly, split

VR U= (v ® v — %|v|21) + %|v|21
so that the local conservation of momentum is recast as

€0¢(vge) + diva(Age) + Vw<%|v|29€> =0

where
A(w) =v®v — %|v|21 , notice that A1 ker L




ePassing to the limit in the local conservation of momentum above:
divz(Ag) + Vm<%|’0|29> =0
where g is a local Maxwellian:

g(t,z,v) = p(t,z) +u(t, ) - v+ 0(t,2)5([v]*> — 3)
In other words, ¢(t, x,-) € ker £ so that

(Ag) =0, andthus Vz(3[v|?g) = Va(p+6) =0

If g € L®°(Ry; L?(R3; Mdvdz)), this entails the Boussinesq relation

p+60=0, sothatg(t,z,v) =u(t,z)- v+ 0(t,ac)%(|v|2 —5)




elt remains to derive the Navier-Stokes motion equation. Start from the

local conservation of momentum in the form

1 1
O{vge) + dive —(Age) + Va—(3]v[%ge) = 0

€
eFredholm’s alternative = A = LA for some Al ker £: thus

1<AQE> — <A1£96> — <AAQ(96796)> — <AA(€at + v - Vm)ge>

— (AQ(g,9)) — (Av - Vyzg)

eSince g is an infinitesimal Maxwellian, using the incompressibility condi-
tion and Boussinesq’s relation shows that

(Av-Vzg) = 3(A® A) : D(u) + (A® 3(Jv]* — 3)v) - Va0
= 3(A® A) : D(u) since A is even

where D(u) = Vzu 4+ (Vzu)! is the deformation tensor of w.




Lemma. Foreach g € ker £, one has Q(g,g9) = %C(gQ)
Proof: Differentiate twice the relation B(M, ,, gy, M, .,.0)) = O.

eHence one has
(AQ(g,9)) = 3(AL(g?) = 3(Ag?) = 5(A® A) : (u®u— §|ul?T)
eStraightforward computations on Gaussian integrals give
(AijAp) = 81851+ 63851 — 36,50k
(AijAr) = v (0irdj1 + 618k — 50:50k1)
So that

2(Ag)) — (ueu — LjulPr) - vD(w)

€




eSubstituting this relation in the local conservation of momentum

1 1
Or{vge) + dive —(Age) + Va—(3lv[%ge) = O

€
and passing to the limit shows that

oru + divg(u ® u) — vAzu = 0 modulo gradients

which is precisely the Navier-Stokes motion equation (since divy u = O,
one has divy(u ® u) = u - Vzu and divy D(u) = Agu).

eThe relation above for (A;;Ax;) shows that

v =45(A:A)y=75(A: LA) >0

since £ > 0 and AL ker L.




Other limits

eFrom Boltzmann to incompressible Euler: the scaling is

St=Ma=e¢«x1, 7Kn=¢€"witha>1

l.e. one seeks solutions of the scaled Boltzmann equation

1
EatFe _I_ v - VCCFE — E_CLB<F€’ Fe)
In the form
Fe=M,01) Tefe

eFormal argument by C. Bardos-F.G.-D. Levermore (J. Stat. Phys. 1991)

eProof with dissipative solutions of Euler by L. Saint-Raymond (Arch. Rat.
Mech. Anal. 2002)




eFrom Boltzmann to Stokes: the scaling is

St=mKn=€e¢k1, Ma=¢c"witha>1

l.e. one seeks solutions of the scaled Boltzmann equation

1
68{;F€ _I_ U - v:]ng — _B(Fe, Fg)
€
in the form

Fe = M(l,O,l) —I— Eafe
eFormal argument by C. Bardos-F.G.-D. Levermore (J. Stat. Phys. 1991)

eProof by F.G.-D. Levermore (Comm. Pure Appl. Math. 2002)




eFrom Boltzmann to the acoustic system: the scaling is

St=1, 7nKn=¢

l.e. one seeks solutions of the scaled Boltzmann equation

1
atFe + v - ijFe — EB(FG, Fe)
in the form
Fe = M(l,o,l) —I— che, with ¢ > 0

eProof by F.G.-D. Levermore (Comm. Pure Appl. Math. 2002) for ¢ > %




