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LECTURE 2

FORMAL INCOMPRESSIBLE HYDRODYNAMIC LIMITS



Dimensionless form of the Boltzmann equation

•Choose macroscopic scales of time T and length L, and a reference
temperature Θ; this defines 2 velocity scales:

V =
L

T
(macroscopic velocity) , and c =

√
Θ (thermal speed)

Finally, set N to be the total number of particles.

•Define dimensionless time, position, and velocity variables by

t̂ =
t

T
, x̂ =

x

L
, v̂ =

v

c
and a dimensionless number density

F̂ (t̂, x̂, v̂) =
L3c3

N F (t, x, v)



•One finds that

L

cT
∂t̂F̂ + v̂ · ∇x̂F̂ =

N r2

L2

∫∫

(F̂ ′F̂ ′
∗ − F̂ F̂∗)|(v̂ − v̂∗) · ω|dωdv̂∗

•The pre-factor multiplying the collision integral is

L × N r2

L3
=

L

π × mean free path
=

1

πKn

•The pre-factor multiplying the time derivative is

1
T × L

c
= St , (kinetic Strouhal number)

St∂t̂F̂ + v̂ · ∇x̂F̂ =
1

πKn

∫∫

R3×S2
(F̂ ′F̂ ′

∗ − F̂ F̂∗)|(v̂ − v̂∗) · ω|dωdv̂∗



Compressible Euler scaling

•This limit corresponds to St = 1 and πKn =: ǫ ≪ 1 , leading to the
singular perturbation problem

∂tFǫ +v ·∇xFǫ =
1

ǫ
B(Fǫ, Fǫ) =

1

ǫ

∫∫

(F ′
ǫF

′
ǫ∗−FǫFǫ∗)|(v− v∗) ·ω|dωdv∗

•One expects that, as ǫ → 0, Fǫ → F and B(Fǫ, Fǫ) → B(F, F ) = 0;
hence F (t, x, ·) is a Maxwellian for all (t, x), i.e.

F (t, x, v) = M(ρ(t,x),u(t,x),θ(t,x))(v) =
ρ(t, x)

(2πθ(t, x))3/2
e
−|v−u(t,x)|2

2θ(t,x)

In other words, F is a local Maxwellian equilibrium.

•Problem: to find the governing equations for ρ(t, x), u(t, x) and θ(t, x).



Formal Euler limit by the moment method

•Let F in = M(ρin,uin,θin) be such that H(F in|M) < +∞; let Fǫ be a
renormalized solution relative to M = M(1,0,1) of the Boltzmann equation
in the compressible Euler scaling

St = 1 , and πKn = ǫ

•Assume that Fǫ satisfies the local conservation laws of momentum and
energy and the local H Theorem, and that

Fǫ → F a.e., in L1
loc(dtdx;L1((1 + |v|3)dv)) as ǫ → 0

and in L lnLloc(dtdx;L lnL((1 + |v|)dv))



Theorem. (C. Bardos-F.G. C.R. Acad. Sci. 1984) Then F = M(ρ,u,θ),
where (ρ, u, θ) is an entropic solution to the compressible Euler system for
perfect gases with (ρ, u, θ)

∣

∣

∣

t=0
= (ρin, uin, θin)

Proof:

•Step 1: The H Theorem implies that F is a local Maxwellian i.e. is of the
form F (t, x, v) = M(ρ(t,x),u(t,x),θ(t,x))(v): indeed

∫ +∞

0

∫∫

B(Fǫ, Fǫ) lnFǫdvdxdt ≤ ǫH(F in|M) → 0

as ǫ → 0; hence, by Fatou’s lemma
∫ +∞

0

∫∫

B(F, F ) lnFdvdxdt = 0



•Step 2: Passing to the limit in the local conservation laws + the entropy
differential inequality leads to the system of conservation laws for (ρ, u, θ)

with entropy condition

∂t

∫

R3
M(ρ,u,θ)dv + divx

∫

R3
vM(ρ,u,θ)dv = 0

∂t

∫

R3
vM(ρ,u,θ)dv + divx

∫

R3
v⊗2M(ρ,u,θ)dv = 0

∂t

∫

R3

1
2|v|

2M(ρ,u,θ)dv + divx

∫

R3
v1
2|v|

2M(ρ,u,θ)dv = 0

as well as the differential inequality

∂t

∫

R3
M(ρ,u,θ) lnM(ρ,u,θ)dv + divx

∫

R3
vM(ρ,u,θ) lnM(ρ,u,θ)dv ≤ 0



•The following formulas for the moments of a Maxwellian
∫

M(ρ,u,θ)dv = ρ ,
∫

vM(ρ,u,θ)dv = ρu ,
∫

v⊗2M(ρ,u,θ)dv = ρ(u⊗2 + θI) ,
∫

1
2|v|

2M(ρ,u,θ)dv = 1
2ρ(|u|2 + 3θ)

∫

v1
2|v|

2M(ρ,u,θ)dv = 1
2ρu(|u|2 + 5θ)

and for its entropy and entropy flux

∫

M(ρ,u,θ) lnM(ρ,u,θ)dv = ρ ln

(

ρ

(2πθ)3/2

)

− 3
2ρ

∫

vM(ρ,u,θ) lnM(ρ,u,θ)dv = ρu ln

(

ρ

(2πθ)3/2

)

− 3
2ρu

show that (ρ, u, θ) is an admissible (entropic) solution of Euler’s system.



The incompressible Navier-Stokes limit

•This limit holds under the scaling assumption on the Boltzmann equation

St = πKn = ǫ ≪ 1

•Moreover, the number density should correspond to a flow with small
Mach number

Ma = ǫ

Example: Fǫ(t, x, v) = M(1,ǫu(t,x),1)(v)

•More generally, the number density should be a fluctuation of order ǫ
about a uniform Maxwellian state

Fǫ(t, x, v) = M(1,0,1)(v) + ǫf(t, x, v)



Formal derivation of the incompressible Navier-Stokes equati ons

following a moment method due to C. Bardos-F.G.-D. Levermore (C.R.
Acad. Sci. 1988)

•Introduce the relative number density fluctuation gǫ:

gǫ(t, x, v) =
Fǫ(t, x, v) − M(v)

ǫM(v)
, where M(v) = 1

(2π)3/2e−
|v|2
2

•In terms of gǫ, the Boltzmann equation becomes

ǫ∂tgǫ + v · ∇xgǫ +
1

ǫ
Lgǫ = Q(gǫ, gǫ)

where the linearized collision operator L and Q are defined by

Lg = −2M−1B(M, Mg) , Q(g, g) = M−1B(Mg, Mg)



Lemma. (Hilbert, Math. Ann. 1912) The operator L is self-adjoint, Fred-
holm, unbounded on L2(R3;Mdv) with domain L2(R3; (1 + |v|)Mdv)

and nullspace kerL = span{1, v1, v2, v3, |v|2}

1. Asymptotic fluctuations

•Multiplying the Boltzmann equation by ǫ and letting ǫ → 0 suggests that

gǫ → g with Lg = 0

By Hilbert’s lemma, g is an infinitesimal Maxwellian, i.e. is of the form

g(t, x, v) = ρ(t, x) + u(t, x) · v + 1
2θ(t, x)(|v|2 − 3)



Notice that g is parametrized by its own moments, since

ρ = 〈g〉 , u = 〈vg〉 , and θ = 〈(1
3|v|

2 − 1)g〉

•NOTATION:

〈φ〉 =
∫

R3
φ(v)M(v)dv

2. Local conservation laws

•The continuity equation (local conservation of mass) reads

ǫ∂t〈gǫ〉 + divx〈vgǫ〉 = 0 , and thus divx〈vg〉 = divx u = 0

which is the incompressibility condition in the Navier-Stokes equations.



•The local conservation of momentum takes the form

ǫ∂t〈vgǫ〉 + divx〈v ⊗ vgǫ〉 = 0

Recall the incompressible Navier-Stokes motion equation

∂tu + u · ∇xu − ν∆xu = −∇xp

that involves the term ∇xp as the Lagrange multiplier associated to the
constraint divx u = 0. Accordingly, split

v ⊗ v =
(

v ⊗ v − 1
3|v|

2I
)

+ 1
3|v|

2I

so that the local conservation of momentum is recast as

ǫ∂t〈vgǫ〉 + divx〈Agǫ〉 + ∇x〈13|v|
2gǫ〉 = 0

where

A(v) = v ⊗ v − 1
3|v|

2I ; notice that A⊥ kerL



•Passing to the limit in the local conservation of momentum above:

divx〈Ag〉 + ∇x〈13|v|
2g〉 = 0

where g is a local Maxwellian:

g(t, x, v) = ρ(t, x) + u(t, x) · v + θ(t, x)1
2(|v|

2 − 3)

In other words, g(t, x, ·) ∈ kerL so that

〈Ag〉 = 0 , and thus ∇x〈13|v|
2g〉 = ∇x(ρ + θ) = 0

If g ∈ L∞(R+;L2(R3;Mdvdx)), this entails the Boussinesq relation

ρ + θ = 0 , so that g(t, x, v) = u(t, x) · v + θ(t, x)1
2(|v|

2 − 5)



•It remains to derive the Navier-Stokes motion equation. Start from the
local conservation of momentum in the form

∂t〈vgǫ〉 + divx
1

ǫ
〈Agǫ〉 + ∇x

1

ǫ
〈13|v|

2gǫ〉 = 0

•Fredholm’s alternative ⇒ A = LÂ for some Â⊥ kerL; thus

1

ǫ
〈Agǫ〉 =

〈

Â
1

ǫ
Lgǫ

〉

= 〈ÂQ(gǫ, gǫ)〉 − 〈Â(ǫ∂t + v · ∇x)gǫ〉

→ 〈ÂQ(g, g)〉 − 〈Âv · ∇xg〉

•Since g is an infinitesimal Maxwellian, using the incompressibility condi-
tion and Boussinesq’s relation shows that

〈Âv · ∇xg〉 = 1
2〈Â ⊗ A〉 : D(u) + 〈Â ⊗ 1

2(|v|
2 − 3)v〉 · ∇xθ

= 1
2〈Â ⊗ A〉 : D(u) since Â is even

where D(u) = ∇xu + (∇xu)T is the deformation tensor of u.



Lemma. For each g ∈ kerL, one has Q(g, g) = 1
2L(g2)

Proof: Differentiate twice the relation B(M(ρ,u,θ),M(ρ,u,θ)) = 0.

•Hence one has

〈ÂQ(g, g)〉 = 1
2〈ÂL(g2)〉 = 1

2〈Ag2〉 = 1
2〈A ⊗ A〉 :

(

u ⊗ u − 1
3|u|

2I
)

•Straightforward computations on Gaussian integrals give

〈AijAkl〉 = δikδjl + δilδjk − 2
3δijδkl

〈ÂijAkl〉 = ν
(

δikδjl + δilδjk − 2
3δijδkl

)

so that

1

ǫ
〈Agǫ〉 →

(

u ⊗ u − 1
3|u|

2I
)

− νD(u)



•Substituting this relation in the local conservation of momentum

∂t〈vgǫ〉 + divx
1

ǫ
〈Agǫ〉 + ∇x

1

ǫ
〈13|v|

2gǫ〉 = 0

and passing to the limit shows that

∂tu + divx(u ⊗ u) − ν∆xu = 0 modulo gradients

which is precisely the Navier-Stokes motion equation (since divx u = 0,
one has divx(u ⊗ u) = u · ∇xu and divx D(u) = ∆xu).

•The relation above for 〈ÂijAkl〉 shows that

ν = 1
10〈Â : A〉 = 1

10〈Â : LÂ〉 > 0

since L ≥ 0 and Â⊥ kerL.



Other limits

•From Boltzmann to incompressible Euler: the scaling is

St = Ma = ǫ ≪ 1 , πKn = ǫa with a > 1

i.e. one seeks solutions of the scaled Boltzmann equation

ǫ∂tFǫ + v · ∇xFǫ =
1

ǫa
B(Fǫ, Fǫ)

in the form

Fǫ = M(1,0,1) + ǫfǫ

•Formal argument by C. Bardos-F.G.-D. Levermore (J. Stat. Phys. 1991)

•Proof with dissipative solutions of Euler by L. Saint-Raymond (Arch. Rat.
Mech. Anal. 2002)



•From Boltzmann to Stokes: the scaling is

St = πKn = ǫ ≪ 1 , Ma = ǫa with a > 1

i.e. one seeks solutions of the scaled Boltzmann equation

ǫ∂tFǫ + v · ∇xFǫ =
1

ǫ
B(Fǫ, Fǫ)

in the form

Fǫ = M(1,0,1) + ǫafǫ

•Formal argument by C. Bardos-F.G.-D. Levermore (J. Stat. Phys. 1991)

•Proof by F.G.-D. Levermore (Comm. Pure Appl. Math. 2002)



•From Boltzmann to the acoustic system: the scaling is

St = 1 , πKn = ǫ

i.e. one seeks solutions of the scaled Boltzmann equation

∂tFǫ + v · ∇xFǫ =
1

ǫ
B(Fǫ, Fǫ)

in the form

Fǫ = M(1,0,1) + ǫcfǫ , with c > 0

•Proof by F.G.-D. Levermore (Comm. Pure Appl. Math. 2002) for c > 1
2


