Nonresonant Velocity Averaging and the
Vlasov-Maxwell System

Francois Golse
Université Paris 7 & Laboratoire J.-L. Lions,
golse@math.jussieu.fr

Mantova, May 15th —17th 2005



Non resonant wave + transport systems

e\We consider systems of the form

Oteu=1F, (O+v() Vo)f =Df"g, x,6cR", ¢t>0

where g = g(t, z, &) is a data, while (u, ) = (u(t,z,€), f(t,z,£€)) is the
unknown.

eWe call the above system nonresonant iff [v(¢)| < 1 for each ¢ € RN —
here 1 is the speed of propagation associated to the d’Alembert operator
Ot,e = O — A

e The above system is supplemented with the initial conditions

/
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An example: the relativistic Vlasov-Maxwell system

eConsider the relativistic Vlasov equation

(B +v(€) - Va) f) = —dive((BE+v(€) x B)f), ,6€R3, t>0

coupled to the system of Maxwell equations

OF+curly B=—j¢,
osB —curly, E =20

divy; B =0,

where

— § — : —
Q) = i pplta) = [ fde. gp(ta) = [ v(€)fde




eEquivalently, one can represent the electromagnetic field (E, B) in terms
of a distribution of gauge potentials u = u (¢, x, £) (distribution of Liénard-
Wiechert potentials) that satisfies

O pu(t, z, &) = f(t,z,6), =,ECR>, ¢t>0

e Then (modulo fixing the initial conditions)

E=_9, /R3v(§)ud§ —V, /R3 wdé. B =-curl, /R3 (&) ude

e The electromagnetic potential satisfies the Lorentz gauge

o) /R3 udé + divy /R3 v(E)udé =0,
as a consequence of the continuity equation

(9t,0f +divxjf =0.



e Then, the relativistic Vlasov-Maxwell system becomes

Otau=f, (O+v()-Va)f =dive(Flulf), z,¢€R>, t>0

Flu] =0 (AO -+ /R3 v(ﬁl)udfl) + V2 /R3 udg’
— u(&) x curly (AO + /R3 v(g’)ud§’>

e [he initial conditions are
0, fl,_y=1"

— 8tu|

u p—
‘t:O t=0

while
0:2A° =0, Ao\t:O = A;, atAO\t:O — _gn
with
curly Ay = B"™, divaA; =0



e The Vlasov-Maxwell system is nonresonant since

v(&)| = \/%‘5‘2 < lforeach¢ e R3

(the speed of massive particles is less than the speed of light).

eHowever, the Vlasov-Maxwell system is not UNIFORMLY nonresonant as
€] — oo

eThe only a priori bounds are

IF®llyp = Const.

//Rsst \/1 + €12 £ (¢, , €)dade
+/R3<|E|2 + |B|2)(tax)d$ = Const.

(in particular, there is no a priori bound on the support of f.)



The Glassey-Strauss theorem (ARMA, 1986)

Theorem. Let f € C([0,T) x R3 x R3) and E, B € C*([0,T) x R3)
be a solution of the Viasov-Maxwell system with f'* ¢ C1(R3 x R3) and
E™ B™ ¢ C2(R3) s.t.
div, B = /R3 Finde  divg B™ = 0
If
Sim 1D lzip, ¢ + 1B, BYOllpip, = +o
then

t—1T—

where

Re(t) =inf{r > 0| f(t,z,§) =0 foreachz € R3 and €| > r}.



eNeed to gain 1 derivative on the fields, i.e. 2 derivatives on the gauge
potential which is given in terms of momentum-averages of w.

eAssume that

Orau=f, (B+v() Va)f =diveg with f,g € Lj,.(dtdzdg)
eClassical velocity averaging gives, for each ¢ € C1(R3):
1/4

| F(t2,9()ds € Hy' (Re x RY)

eOne gains one more derivative by the energy estimate for the wave equa-
tion, so that

[ ut @, 6()ds € Hyr *(Ry x RY)

One gains 1 —|—% derivatives on momentum-averages of u: NOT ENOUGH



Resonant Velocity Averaging

eln fact one can gain 2 derivatives on momentum-averages of u in the
nonresonant case — without gaining more on momentum-averages of f.

Theorem. (Bouchut-G-Pallard, Revista Mat. Iberoam. 2004) Let f, g in
L? (Ry x RY x Rév ) satisfy

loc
Dppu=f, (@ +v(€)-Va)f =Dl

where v € C°(RN; R™N) is nonresonant, i.e. satisfies |v(¢)| < 1. Then,
for eachm € N and each ¢ € Cgo(RéV ), one has

| ult, e, )8(&)de € B (R x RY).

eThis generalizes the fact that O; , acts as an elliptic operator on the
nullspace of the transport operator whenever |v(£)| < 1.



eSketch of proof: Set Tgi = 0y = v(§) - V; and consider the 2nd order
differential operator

_ -
Q¢ = Dt — NI T}

eFirst, one checks that

Qeu=f—AT; O, , Di'g =f — AD{*0, ;T g — A0, ; [T¢, D'lg
=f - AD{'0, ; T¢ g — )\D DS v(€) Vg

=a+df'b e Lloc(dtda:d@ + D' L}, (dtdzds)

e Then we observe that, for £ € supp ¢ and X such that

sup |v(€)| <A<l
§ESUpp ¢

the operator Q; is elliptic for each £ € supp ¢.



eMore precisely, denoting by g¢(w, k) the symbol of Q, one has
sup

or ()| S
EESUPP @ qg(w, k‘) w< —+ |k‘|
where C;, may depends on m but is uniform in &.

e[ hen

N m o6 \;
Jasods = | "0+ (-1 [ Dy (qg(% k)>bds

withaand b € L2, ¢ has H?-decay in w, k. QED




Remarks:

oFirst, one easily checks that all the assumptions in the Theorem above
cannot be dispensed with.

e That one gains 2 derivatives is special to L2, because DZ@} gains 1 deriva-
tive in (¢, x) by the energy estimate for the wave equation.

In LP with 1 < p < oo, O gains 1 — (N — 1)|5 — *| derivatives in

(t,z) (Peral, JFA 1980) whenever |5 — 1| < +1+. Using this result and
the Mihlin-Hormander theorem on LP muﬂipliers, the same proof as above
shows that

/RN u(t, x,§)Pp(§)dE € Wlloj'%P(R x RY)withy =1 — (IV — 1|3 - %

This result suggests a gain of 1 derivative in L°° — and in any case does
not apply in L°°.



A division lemma

eLet Y be the forward fundamental solution of O; 4, i.e.

Ot Y = 5(070) , SuppY C Ry x RN

— for instance, in space dimension N = 3, one has

6(t—|x|)

Y(t,z) =1 t>0" anf

eRecall that the Lorentz boosts

|
\.I—‘
Z

Lj = CCjat -+ t&cj : 7
commute with the d’Alembertian

[Dt,w,Lj]:O,SOthatLjY:O, 73 =1,...,



Lemma. Let N > 2. Foreach ¢ € RY, there exists bfj = bfj(t,x,g) is
C>° on R1TN\ 0 and homogeneous of degree —k in (t, ) such that

(i) the homogeneous distribution bZ;Y of degree —1 — N on R1+¥'\ 0 has
null residue at the origin, and

(i) there exists an extension of bZ.QjY as a homogeneous distribution of
degree —1 — N on R+ \ 0, still denoted b7, Y, that satisfies

0;; Y =T2(byY) + T(bi;Y) +b5Y, 4,j=0,...,N.

Here T is the advection operator T' = 9; + v(§) - V.



e [ he null residue condition reads

/82 b2(1,y)do(y) =0 if N =3,

ifN=2.

b.2. 1, L:O
/|y|§1 i y)\/l—!yP

eNext we use the above lemma to estimate the derivatives of the fields

2
0ij [ m(©ut,@,)ds = > [m(&) (oY * T (20 (t,,€)) d
k=0

Here, m denotes any C°° function with compact support that coincides
with either 1 or each component of v(£) on the £&-support of f.

The idea is to use the Vlasov equation to compute Tl(ltzof) and integrate
by parts to bring the &-derivatives to bear on bfzj_l and m.



eWorst term is for [ = O:;

[m(© (1Y * (Lm0 (¢, 2,6)) de.

By using the null residue condition, write this term as

da(w)

[m© /t/S2 b2-(1,w,§)f(t—s,:c sw, €) dsdg

+ [m@ [ [ 13w ol e m s O e w)da(w)dsdf

471s

olf the size R(t) of the £-support of f is bounded on [0,T), i.e. fif
lim,_,7— R¢(t) < o0, this term is bounded by

CA+Ing(¢Vafllpe))



eHence, the Lipschitz semi-norm N(t) = ||V, ¢f(%,-,-)| L satisfies a
logarithmic Gronwall inequality

N(t) < N(0) + /Ot(l +1Inp N(s))N(s)ds, te€[0,T).

Therefore N is uniformly bounded on [0, T'], which implies in turn that the
fields (E, B) € L>(0,T; W1>(R3)).



