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Non resonant wave + transport systems

•We consider systems of the form

2t,xu = f , (∂t + v(ξ) · ∇x)f = Dm
ξ g , x, ξ ∈ RN , t > 0

where g ≡ g(t, x, ξ) is a data, while (u, f) ≡ (u(t, x, ξ), f(t, x, ξ)) is the
unknown.

•We call the above system nonresonant iff |v(ξ)| < 1 for each ξ ∈ RN —
here 1 is the speed of propagation associated to the d’Alembert operator
2t,x = ∂tt −∆x.

•The above system is supplemented with the initial conditions

u
∣∣∣
t=0

= u0 , ∂tu
∣∣∣
t=0

= u′0 , f
∣∣∣
t=0

= f0 .



An example: the relativistic Vlasov-Maxwell system

•Consider the relativistic Vlasov equation

(∂t + v(ξ) · ∇x)f) = −divξ((E + v(ξ)×B)f) , x, ξ ∈ R3 , t > 0

coupled to the system of Maxwell equations

∂tE + curlx B = −jf , divx E = ρf ,

∂tB − curlx E = 0 divx B = 0 ,

where

v(ξ) = ξ√
1+|ξ|2

, ρf(t, x) =
∫
R3

fdξ , jf(t, x) =
∫
R3

v(ξ)fdξ



•Equivalently, one can represent the electromagnetic field (E, B) in terms
of a distribution of gauge potentials u ≡ u(t, x, ξ) (distribution of Liénard-
Wiechert potentials) that satisfies

2t,xu(t, x, ξ) = f(t, x, ξ) , x, ξ ∈ R3 , t > 0

•Then (modulo fixing the initial conditions)

E = −∂t

∫
R3

v(ξ)udξ −∇x

∫
R3

udξ , B = curlx

∫
R3

v(ξ)udξ

•The electromagnetic potential satisfies the Lorentz gauge

∂t

∫
R3

udξ + divx

∫
R3

v(ξ)udξ = 0 ,

as a consequence of the continuity equation

∂tρf + divx jf = 0 .



•Then, the relativistic Vlasov-Maxwell system becomes

2t,xu = f , (∂t + v(ξ) · ∇x)f = divξ(F [u]f) , x, ξ ∈ R3 , t > 0

F [u] =∂t

(
A0 +

∫
R3

v(ξ′)udξ′
)

+∇x

∫
R3

udξ′

− v(ξ)× curlx

(
A0 +

∫
R3

v(ξ′)udξ′
)

•The initial conditions are

u
∣∣∣
t=0

= ∂tu
∣∣∣
t=0

= 0 , f
∣∣∣
t=0

= f in ,

while

2t,xA0 = 0 , A0
∣∣∣
t=0

= AI , ∂tA
0
∣∣∣
t=0

= −Ein

with

curlx AI = Bin , divx AI = 0



•The Vlasov-Maxwell system is nonresonant since

|v(ξ)| = |ξ|√
1+|ξ|2

< 1 for each ξ ∈ R3

(the speed of massive particles is less than the speed of light).

•However, the Vlasov-Maxwell system is not UNIFORMLY nonresonant as
|ξ| → +∞.

•The only a priori bounds are

‖f(t)‖L
p
x,ξ

= Const.∫∫
R3×R3

√
1 + |ξ|2f(t, x, ξ)dxdξ

+
∫
R3

(|E|2 + |B|2)(t, x)dx = Const.

(in particular, there is no a priori bound on the support of f .)



The Glassey-Strauss theorem (ARMA, 1986)

Theorem. Let f ∈ C([0, T ) ×R3 ×R3) and E, B ∈ C1([0, T ) ×R3)
be a solution of the Vlasov-Maxwell system with f in ∈ C1

c (R3 ×R3) and
Ein, Bin ∈ C2

c (R3) s.t.

divx Ein =
∫
R3

f indξ , divx Bin = 0

If

lim
t→T−

‖f(t)‖Lipx,ξ
+ ‖(E, B)(t)‖Lipx = +∞

then

lim
t→T−

Rf(t) = +∞

where

Rf(t) = inf{r > 0 | f(t, x, ξ) = 0 for each x ∈ R3 and |ξ| > r} .



•Need to gain 1 derivative on the fields, i.e. 2 derivatives on the gauge
potential which is given in terms of momentum-averages of u.

•Assume that

2t,xu = f , (∂t + v(ξ) · ∇x)f = divξ g with f, g ∈ L2
loc(dtdxdξ)

•Classical velocity averaging gives, for each φ ∈ C1
c (R3):∫

R3
f(t, x, ξ)φ(ξ)dξ ∈ H

1/4
loc (Rt ×R3

x)

•One gains one more derivative by the energy estimate for the wave equa-
tion, so that ∫

R3
u(t, x, ξ)φ(ξ)dξ ∈ H

1+1/4
loc (Rt ×R3

x)

One gains 1+ 1
4 derivatives on momentum-averages of u: NOT ENOUGH



Resonant Velocity Averaging

•In fact one can gain 2 derivatives on momentum-averages of u in the
nonresonant case — without gaining more on momentum-averages of f .

Theorem. (Bouchut-G-Pallard, Revistà Mat. Iberoam. 2004) Let f, g in
L2

loc(Rt ×RN
x ×RN

ξ ) satisfy

2t,xu = f , (∂t + v(ξ) · ∇x)f = Dm
ξ g

where v ∈ C∞(RN ;RN) is nonresonant, i.e. satisfies |v(ξ)| < 1. Then,
for each m ∈ N and each φ ∈ C∞

c (RN
ξ ), one has∫

R3
u(t, x, ξ)φ(ξ)dξ ∈ H2

loc(R×RN) .

•This generalizes the fact that 2t,x acts as an elliptic operator on the
nullspace of the transport operator whenever |v(ξ)| < 1.



•Sketch of proof: Set T±ξ = ∂t ± v(ξ) · ∇x and consider the 2nd order
differential operator

Qξ = 2t,x − λT−ξ T+
ξ

•First, one checks that

Qξu=f−λT−ξ 2−1
t,x Dm

ξ g =f − λDm
ξ 2−1

t,x T−ξ g − λ2−1
t,x [T−ξ , Dm

ξ ]g

=f − λDm
ξ 2−1

t,x T−ξ g − λ2−1
t,x Dm

ξ v(ξ)·∇xg

= a + dm
ξ b ∈ L2

loc(dtdxdξ) + Dm
ξ L2

loc(dtdxdξ)

•Then we observe that, for ξ ∈ suppφ and λ such that

sup
ξ∈suppφ

|v(ξ)| < λ < 1

the operator Qξ is elliptic for each ξ ∈ suppφ.



•More precisely, denoting by qξ(ω, k) the symbol of Qξ, one has

sup
ξ∈suppφ

∣∣∣∣∣Dm
ξ

(
1

qξ(ω, k)

)∣∣∣∣∣ ≤ Cm

ω2 + |k|2

where Cm may depends on m but is uniform in ξ.

•Then∫
ûφ(ξ)dξ =

∫
â

qξ(ω, k)
φ(ξ)dξ + (−1)m

∫
Dm

ξ

(
φ(ξ)

qξ(ω, k)

)
b̂dξ

with â and b̂ ∈ L2
ω,k,ξ has H2-decay in ω, k. QED



Remarks:

•First, one easily checks that all the assumptions in the Theorem above
cannot be dispensed with.

•That one gains 2 derivatives is special to L2, because 2−1
t,x gains 1 deriva-

tive in (t, x) by the energy estimate for the wave equation.

In Lp with 1 < p < ∞, 2−1
t,x gains 1 − (N − 1)|12 −

1
p | derivatives in

(t, x) (Peral, JFA 1980) whenever |12 −
1
p | ≤

1
N−1. Using this result and

the Mihlin-Hörmander theorem on Lp multipliers, the same proof as above
shows that∫
RN

u(t, x, ξ)φ(ξ)dξ ∈ W
1+γ,p
loc (R×RN) with γ = 1− (N − 1)|12 −

1
p |

This result suggests a gain of 1 derivative in L∞ — and in any case does
not apply in L∞.



A division lemma

•Let Y be the forward fundamental solution of 2t,x, i.e.

2t,xY = δ(0,0) , suppY ⊂ R+ ×RN

— for instance, in space dimension N = 3, one has

Y (t, x) = 1t≥0
δ(t−|x|)

4πt

•Recall that the Lorentz boosts

Lj = xj∂t + t∂xj , j = 1, . . . , N

commute with the d’Alembertian

[2t,x, Lj] = 0 , so that LjY = 0 , j = 1, . . . , N .



Lemma. Let N ≥ 2. For each ξ ∈ RN , there exists bk
ij ≡ bk

ij(t, x, ξ) is
C∞ on R1+N \ 0 and homogeneous of degree −k in (t, x) such that

(i) the homogeneous distribution b2ijY of degree −1−N on R1+N \0 has
null residue at the origin, and

(ii) there exists an extension of b2ijY as a homogeneous distribution of
degree −1−N on R1+N \ 0, still denoted b2ijY , that satisfies

∂ijY = T2(b0ijY ) + T (b1ijY ) + b2ijY , i, j = 0, . . . , N .

Here T is the advection operator T = ∂t + v(ξ) · ∇x.



•The null residue condition reads∫
S2

b2ij(1, y)dσ(y) = 0 if N = 3 ,∫
|y|≤1

b2ij(1, y) dy√
1−|y|2

= 0 if N = 2 .

•Next we use the above lemma to estimate the derivatives of the fields

∂ij

∫
m(ξ)u(t, x, ξ)dξ =

2∑
k=0

∫
m(ξ)

(
bk−l
ij Y ? T l(1t≥0f)(t, x, ξ)

)
dξ

Here, m denotes any C∞ function with compact support that coincides
with either 1 or each component of v(ξ) on the ξ-support of f .

The idea is to use the Vlasov equation to compute T l(1t≥0f) and integrate
by parts to bring the ξ-derivatives to bear on bk−l

ij and m.



•Worst term is for l = 0:∫
m(ξ)

(
b2ijY ? (1t≥0f)(t, x, ξ)

)
dξ .

By using the null residue condition, write this term as

∫
m(ξ)

∫ t

ε

∫
S2

b2ij(1, ω, ξ)f(t− s, x− sω, ξ)
dσ(ω)

4πs
dsdξ

+
∫

m(ξ)
∫ ε

0

∫
S2

b2ij(1, ω, ξ)
f(t− s, x− sω, ξ)−f(t, x, ω)

4πs
dσ(ω)dsdξ

•If the size Rf(t) of the ξ-support of f is bounded on [0, T ), i.e. if
limt→T− Rf(t) < +∞, this term is bounded by

C(1 + ln+(t‖∇xf‖L∞))



•Hence, the Lipschitz semi-norm N(t) = ‖∇x,ξf(t, ·, ·)‖L∞ satisfies a
logarithmic Gronwall inequality

N(t) ≤ N(0) +
∫ t

0
(1 + ln+ N(s))N(s)ds , t ∈ [0, T ) .

Therefore N is uniformly bounded on [0, T ], which implies in turn that the
fields (E, B) ∈ L∞(0, T ;W1,∞(R3)).


