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The Lorentz kinetic model

Lorentz (1905) proposed to describe the mo-
tion of electrons in metals by a kinetic model

(O +v-Va+ LF(t2) - Vo) f(t,2,0)
— atTCQLt|’U|C(f(t,CE,'))(’U)
with collision integral

C(H)®) = [y (6(Ruv) — 6(2)) cos(v, w)do

w-v>0

where R, is the specular reflection:

Ro(w) =v—2(v-w)w

eNotation: f = f(¢,z,v) is the unknown elec-
tronic phase-space density;

o' = F'(t,x) is the electric force;
em IS the mass of the electron;
oeN,+ is the density of metallic atoms;

ory,+ IS the radius of metallic atoms.



e[ he Lorentz Kinetic model with FF = 0 has
been rigorously justified by Gallavotti (1972)
as the Boltzmann-Grad limit of a system of
point particles undergoing specular collisions
with randomly distributed circular obstacles, in
space dimension 2.

(Collisions involving two — or more than two
— point particles are neglected, which explains
why the limiting model is linear)

Periodic distribution of obstacles

eiS the Lorentz kinetic model still valid in the
case of a periodic configuration of circular ob-
stacles?

ecan the absorption coefficient appearing in
the Lorentz kinetic model

Nyir2, cos(v, w)dw

lw|=1
w-v>0
be interpreted as the reciprocal mean-free path
of the point particles (neglecting inter-particle

collisions)?



The free-path length

Assume that |[v| =1 for 0 <r < % consider
Zr = {z € RP| dist(z,Z”) > r}, Y. = Z,/Z"
and set
Mt ={(z,v) € Yy x SP"1|v-n, >0}
For x € Y,, define
mr(x,v) = inf{t > 0|z + tv € 9Y;}

this definition can be extended by continuity
along trajectories to the case of (x,v) € I‘;".

eFirst notion of mean free-path: defined as the
mean of r-(x,v) for (z,v) uniformly distributed
on Y, x SP—1 unfortunately

1 —
Vo8P ]y wgp-1 7r(x,v)drdv = 400



eAnother notion of mean free-path: defined as
the mean of 7.(x,v) for (x,v) on T with dis-
tribution proportional to

dvy(x,v) = (v - ng)dS(x)dv on I_;l_
One finds (explicit formula due to Santald)

1

m.f.p. = m

/I‘;" (2, v)dvr(x,v)

_ ISP _ 0D 8Py
v (M) B BPY

If D = 3 the reciprocal leading order term as
r — 0 coincides with the damping coefficient
in the Lorentz kinetic model (Ngt = 1, rqt = 7):

Nat’l”‘CQLt ﬁwlzl cos(w,v)dw = e

w-v>0



Distribution of exit times

If m € ¢(SP~1) and m > 0, let P,, be the
probability measure on Y, x SP~1 proportional
to m(v)dxzdv; define

®"(t) = Pr({(z,v) € Yr x SP7 | 7 (2,0) > t})
Theorem. For each positive m € C(SP—1)

there exist two positive constants C,, and C{n
such that, for all r € (0, %) and t > 1/7~D—]L

51 < P < 5

eBourgain-Golse-Wennberg (CMP 1998):
upper bound + lower bound for D =2
eGolse-Wennberg (M2AN 2000):

lower bound for all D + simulations



Asymptotic evaluation of &
In the case of space dimension D = 2:

Theorem. For each positive m € C(S1),

1/4

e ()T =m o)
€_>O+|ﬂ€| T T2t t2
lim

ot ne|/1/4 ()r :%27: O(tl?)

ast — +oo.

eProof by Caglioti-Golse (CMP 2003) using a
new partition of T2 + ergodic properties of
continued fractions

elater, Boca-Zaharescu announced a proof of
explicit formulae conjectured by Dahlqvist (see
Nonlinearity 1997) for

lim & (t/r)

r—07T

using the same partition of T2 + Farey trees
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Idea of the proof

eOn T2\ ({0} x [0, R]) with 0 < R < 1 consider
the linear flow with irrational slope 0 < o < 1;
each orbit has length € {i4 <l < lg}. (Proved
by Blank-Krikorian, Int. J. Math. 1993)

el et p,/qn be the sequence of convergents in

1 1 1
= ‘—|— |—|—...—|——|

a1 |a2 |an
and let dy = |gna — pnl.

«

R—dy 1
dn

If d, <R <d,_1 with k = —| then

la=aqn, Ilp=gqn-1+kan, lc=1la+Ip

e [ he union of orbits of type A, resp. B, C,
defines a 3-set partition of T2 \ slit that gives
an O(r)-approximation of

Prob{z € Y, |m(x,v) >t} a.e. inw

eAverage in v and r using ergodicity of the
Gauss map z+— 1/a—[1/a] on (0,1).



Applications to kinetic theory
oSet Qn, = {z € R?| dist(z,122) > L}, n > 2.
eFor p' = p'(z) > 0, let f, be the solution to
O fn(t,z,v) +v-Vafn(t,z,v) =0 on , x S1

f(t,z,v) — f(t,z,Rn,v) =0 on 92, x St
f”’tzo ="

Cn
(with Rp,v = v —2(v - ng)ng).

Theorem. For some p'™ periodic in each vari-
able x1, x> with period 1, neither f, nor any
subsequence thereof converges in L weak-*
to the solution of the Lorentz kinetic equation

(O +v-Va)f =C(f) on RZx8t, f| _ = p"
with collision integral

C(A(®) = [z (#(Ruv) = 6(v)) cos(v, w)da

w-v>0
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Method of proof

eSpectral arguments show that the solution of
the Lorentz equation satisfies

1) = [ @

T,V

=0 ™M)p" || 2

for some v > 0 independent of p'™;

eBy the lower bound on the distribution of free-
path lengths, if f,, — f in L® weak-*,

C .
/I‘stl f(t, z,v)dzdv > 71/112 " (x)dx

for some C7 > 0 independent of p'™:

eBoth inequalities are incompatible: choose a
family p¥* such that

o2 =1 tim [ ol (@)de =0



