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LECTURE 6

FROM BOLTZMANN TO INCOMPRESSIBLE NAVIER STOKES

CONVERGENCE PROOF




The incompressible Navier-Stokes scaling

eConsider the dimensionless Boltzmann equation in the incompressible
Navier-Stokes scaling, i.e. with|[St = 7rKn = e < 1|

1
€8tF€ _I_ U - V{,UFE — _B(F67 Fe)
€

eStart with an initial data that is a perturbation of some uniform Maxwellian
(say, the centered reduced Gaussian M = My g 1) with Mach number

Ma = O(e) |:

F'™ = My01 + ef™

eExample 1: pick v'» € L2(R3) a divergence-free vector field; then the
distribution function

F™M(@,0) = My in(ay1 ()
is of the type above.



eExample 2: If in addition 6°» € L2 N L>°(R3), the distribution function

(v)

F'(z,v) =M

. m( ) 1
1 —692”(33), 1€_u607,naéx) ’ 1_60in(x)

is also of the type above. (Pick 0 < € < ”manLoo, then 1 — 6" > 0 a.e.).

e Problem |: to prove that

1
—/ vFe(t,z,v)dv — u(t,z) ase — 0O
e JR3
where u solves the incompressible Navier-Stokes equations
ou—+u-Veu—+ Vep =vQAzu, divpu=20
t=0

The viscosity v is given by the same formula as in the Chapman-Enskog
expansion.



A priori estimates

e The only a priori estimate satisfied by renormalized solutions to the Boltz-
mann equation is the DiPerna-Lions entropy inequality:

1 ot
H(F|M)(t) + 6—2/0 /R3 ///R3><R3><82 d(Fe)|(v — vy) - wldvdvsdwdzds
< H(F"|M)

eNotation:

/ .
H(flg) = //R3><R3 (f In <§> — f+ g) dxdv  (relative entropy)

f’fi)
f 1+

(dissipation integrand)

d(f) =2(f'fi — ffe)In (




eintroduce the relative number density, and the relative number density
fluctuation:
Fe— M
Je —

F,
GGZ_G,
M e M

ePointwise inequalities: one easily checks that

(VGe —1)2 < C(GeInGe — Ge + 1)
2 G/ G/
(\/GQG’E* _ Weae*) < 1(GLGL, — GeGex) In [ T ex
GeGex
— d(Ge)

eNotice that ZInZ — Z + 1 ~ 5(Z — 1)? near Z = 1.




eExpress that the initial data is a perturbation of the uniform Maxwellian M
with Mach number Ma = O(e):

e\With the DiPerna-Lions entropy inequality, and the pointwise inequalities
above, one gets the following uniform in € bounds

//R3 R3(\/G€ — 1)°Mdvdz < Ce?
X

+o0 5
/o /R3 ///RngngQ <\/@ - \/@) dpdzdt < Ce*

where p is the collision measure:

du(v, vy, w) = [(v — V%) - w|dw Mydvs M dv
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The BGL Program (CPAM 1993)

eLet F'™ > 0 be any sequence of measurable functions satisfying the

entropy bound H(F™| M) < C'™e2, and let F. be a renormalized solution
of the scaled Boltzmann equation
1

E&tFE_I_'U‘VxFe :_B(Fe,Fe), Fe f—
€

. n
o_F6

elLet g¢ = ge(x,v) be such that Ge := 1 4 ege > 0 a.e.. We say that
ge — g entropically at rate e as e — O iff

| 1
ge — ginw — L}, (Mdvdz) , and 5 H(MGe|M) — L / / g2 Mdvdz
€




Theorem. Assume that
F'"(x,v) — M(v)
eM(v)
entropically at rate €. Then the family of bulk velocity fluctuations

1
—/ vFedv
e JR3

is relatively compact in w — L lloc(dtda:) and each of its limit points as e — O
Is a Leray solution of

oru + dive(u @ u) + Vep = vAzu, divyu =20, Ul _o = um

with viscosity given by the formula
I 1—10 / A AMdv

where A = £~ 1A



Method of proof

eRenormalization: pick v € C*°(R ) a nonincreasing function such that

. d
7‘[0,3/2] =1, 7‘[2,4_00) =0; sety(z) = 5((2 — 1)v(2))

e The Boltzmann equation is renormalized (relatively to M) as follows:
1 1 _
Ot(geve) + ;’U - Va(geve) = 6_3%Q(Gea Ge)

where ve ;= v(Ge), 7%e = 3(Ge) and (G, G) = M~ 1B(MG, MG)



e Continuity equation | Renormalized solutions of the Boltzmann equation
satisfy the local conservation of mass:

e The entropy bound implies that

(1 + |v|?)ge is relatively compact in w — L (dtdz; L' (Mdv))
Modulo extraction of a subsequence
ge — ginw — L (dtdx; LY (Mdv))

and hence (vge) — (vg) =: uwin w — Llloc(dtd:c); passing to the limit in
the continuity equation leads to the incompressibility condition

divy,u =20




eHigh velocity truncation: pick K > 6 and set K. = K|Ing|; for each
function £ = £(v), define i (v) = 5("’)1|v|2§K6

eMultiply both sides of the scaled, renormalized Boltzmmann equation by
each component of vy :

: 1
(v geve) + diva Fe(A) + Va=(3[v[% g¢7¢) = De(v)

where

1 _
Fc(A) = %<AK.596’Y€> , De(v) = 6_3<<'UKE%(G/6G,6* — GGGG*)>>

eNotation: with du = |(v — vx) - w| M dvMidvsdw (collision measure)

\9) = /R3 p(v)Mdv, <<w>> - ///R3XR3XSQ¢(U’U*’w)d'u




eThe plan is to prove that, modulo extraction of a subsequence

(VK. geYe) — (vg) = u inw — Llloc(R+ x R3)
D¢(v) — 0 in L (R4 x R3) and
P (divy Fe(A)) — Pdive(u®2) —vAgu  inw—Lh (dt, W50

for s > 1 as ¢ — 0, where P is the Leray projection.




Conservation defects — O
(as in FG+DL, CPAM 2002, but simpler)

Proposition. D.(v) — 0inL} (R4 x R3) ase— 0.

oSplit the conservation defect as

Dg (v) = ei3<<’UK€’AYe ( G/eGé* -V G€G€>2>

)
DEQ(U) — €i3<<rUK€:)\’€ (\/ G/eG/e* —V GeGe) Y, G€G€>>

That D! (v) — 0 comes from the entropy production estimate.



eSetting = = 6% <\/G’EG’E* — \/GEGE) VGeGe, we further split D2(v)
into
<<U1‘U‘2>K€;)\/eze>> + g<<U’A}/e(1 — ’76*;)\/2’76*)56»

€

2

1
+ Z<<('U + Ul)ﬁ’e’?e*:}\’é:}\’e*ze»

The first and third terms are easily mastered by the entropy production

bound and classical estimates on the tail of Gaussian distributions.

DZ(v) = —

eSending the second term to 0 requires knowing that

(14 |v]) is uniformly integrable on [0,7] x K x R>

()

for the measure dtdzM dv, for each T' > 0 and each compact K C R3.




Asymptotic behavior of the momentum flux

Proposition. Denoting by N the L2 (M dv)-orthogonal projection on ker L
vVGe—1

€

2
Fe(A) = 2<A (FI ) >—2<A€%Q(\/Ge, \/G6)>+0(1)Llloc(dtdaz)

The proof is based upon splitting F<(A) as

Ge—1\2\ 2
\/— > >‘|‘Z<AK€’YG

\/G—e—1>

€

Fe(A) = <AK€’YG <

€

2
using the uniform integrability of (1 4 |v]|) (@) and the following
consequence thereof

VGe—1 rI\/Ge— 1

€ €

=0

lim
e—0

L2 (dtdz;L2((14|v|)Mdv))




eBy the entropy production estimate, modulo extraction of a subsequence

1 /

and passing to the limit in the scaled, renormalized Boltzmann equation
leads to

//R3 g2 Q|(v — ’U>|<) . w|M*de*dw = - vxg = %A : Vg;u _|_ Odd in v
X

oSince YE=1 ~ g+, one gets

Fc(A) = A((vK geve)) — v(Vazu + (va)T) + O(l)w_Llloc(dtdx)

(remember that A(u) = u ® u — $|u|?I), while

(Wi geve) — uinw — L} (Ry x R3)




Strong compactness

eIn order to pass to the limit in the quadratic term A({vg_ geve) ), One needs
strong-L? compactness of (v geye).

e\elocity averaging provides strong compactness in the x-variable:

<\/eo‘—|—G€— 1

€

2
) is locally uniformly integrable on R x R> x R3

T+ G —1. .
(edy + v - vgg)\/6 TG is bounded in L} (R4 x R> x R3)

€
This implies that, for each T > 0 and each compact K ¢ R3,

T
/O /K |<UK€9€’YG> (ta x + y) — <UK6g€7€>(t’ ZI?)|2d:L‘dt -0
as |y| — 0, uniformly ine > 0




elt remains to get compactness in the time variable. Observe that

BiP(vi.geve) = P(De(v) — divy Fe(A)) is bounded in L}, .(dt, W &1

Joc

(Recall that De(v) — 0 while Fc(A) is bounded in L} (dtdz)).

e Together with the compactness in the x-variable that follows from velocity
averaging, this implies that

P(vg_ geve) — win leoc(dtda:)

eRecall that (vi geve) — v in w — leoc(dtdx); we do not seek to prove
that

(VK. geYe) — u strongly in leoc(dtd:v)




Filtering acoustic waves (PLL+NM, ARMA 2002)

elnstead, we prove that

P divy (<er9€%>®2) s Pdivy (u®2) in D'(R%. x R3) ase — 0

eODbserve that
€0L(VEK geYe) + Vx(l|v|%( geve) — 0in Llloc(R_|_; Wloc (R3))
€8t< |U|K geve) + d|V$< VK, geve) — 01n LZOC(R—|—' loc (R3))
as e — 0.

oSetting Ve = (I — P)(vk, geve), the system above becomes

Eatvfﬁﬂ'é + v$<%‘v|%(6967€> — 01n Llloc(R—l‘; Wl;cl’l(R:%))
€8t<%|v|%(€g€7€> T %Aaﬂre — 01in Llloc(R+' loc (R3))




eStraightforward computation shows that

loc

(dtdx)

eOn the other hand, because the limiting velocity field is divergence-free,
one has

Vome — 0inw — leoc(dtda:) ase — 0O
o Splitting
P divy ((vx,ge7)2) = P div ((P(vg, geve)) ) + P divy (Vame) ©2)
+2P divy (P(vg, geve) V Vare)
The last two terms vanish with e while the first converges to P diva(u®2)

since P(vg geve) — w strongly in L? (dtdz).

loc



The key estimates (as in FG+LSR, Invent. Math. 2004)

Proposition. For each T > 0 and each compact K C R3, the family
2
(@) (1 + |v|) is uniformly integrable on [0,T] x K x R3 for the

measure dtdx M dv.

2
ldea no. 1| We first prove that (@) (1 + |v]) is uniformly integrable
on [0,7T] x K x R3 for the measure dtdzMdv in the v-variable .

eWe say that ¢c = de(x,y) € L%,y(du(:p)dz/(y)) is uniformly integrable in
the y-variable for the measure du(x)dv(y) iff

/ sup ’ |pe(x,y)|dv(y)du(x) — 0 as a — O uniformly in e

v(A)<a



eStart from the formula

E(\/G—€_1> = eQ <\/G—€_1,\/G—€_1> —%Q(\/Ge,\/G’e>

€ € €

and use the following estimate (G.-Perthame-Sulem, ARMA 1988)

1Q(/f; f)||L2((1—|—|v|)—1Mdv) < C||f||L2(Mde)||f||L2((1-|-|v|)Mdv)
to arrive at

(1 O()‘@—l )H@—l S VGe—1
—O(e _
¢ L2(Mdv) ¢ ¢ L2((14|v]) Mdv)
2
Ge—1
<0(e) 2 4 O(e) |F
b € L2(Mdv)

e This estimates tells us that @ stays close to its associated infinitesi-
mal Maxwellian = regularity+decay in v.




ldea no. 2|Use a L!-variant of velocity averaging (FG+LSR, CRAS 2002).

Lemma. Let f, = fn(x,v) be a bounded sequence in L} (dzdv) such

that v - V. fn is also bounded in L} (dzdv). Assume that fy is locally
uniformly integrable in v. Then

e fn is locally uniformly integrable (in x,v)

e for each test function ¢ € ngmp(RUD ), the sequence of averages

pa(@) = [ Jalz, )¢ (v)dv

is relatively compact in L} (dz).



eLet’'s prove that the sequence of averages p?{ is locally uniformly inte-
grable (LSR, CPDEs 2002). WLOG, assume that f,, and ¢ > 0.

eLet x = x(¢, z,v) be the solution to

8tX + v - VZCX — 07 X(Oaxav) — ]-A(x)

Clearly, x(t,z,v) = 1Ax(t)(v) (x takes the values 0 and 1 only). On the
other hand,

|Az(t)] = /X(t,:c,v)dv = /1A(az — tv)dv = L%'

eRemark: this is the basic dispersion estimate for the free transport equa-
tion.




oSet gn(z,v) = fn(z,v)¢(v),and v-Vagn(x,v) = ¢(v)(v- Ve fn(z,v)) :
hn(x,v) =: gn and hy, are bounded in L%,U and gy, is uniformly integrable
in v.

eObserve that (hint: integrate by parts the 2nd integral in the r.h.s.)

/A/gndvde//x(t) gndvdm_/ot/ (2, )X (5, 7, v) dzdvds

The second integral on the r.h.s. is O(t) sup ||hn|l;1 < € by choosing

t > 0 small enough. For that value of ¢, |Az(t)| — 0 as |A| — O, hence
the first integral on the r.h.s. vanishes by uniform integrability in v.




