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LECTURE 3

HILBERT AND CHAPMAN-ENSKOG EXPANSIONS




Hilbert’s asymptotic solution

eStart from the dimensionless Boltzmann equation in the compressible Eu-
ler scaling St = 1 and 7Kn = e:

1
8tF€ + U - VQ;'FE — EB(FG, Fe)

eHilbert's expansion is a method for constructing solutions of the scaled
Boltzmann equation above in C*° (R x R3 x R3)[[€]] (i.e. formal power
series in e with coefficients that are smooth in (¢, z, v):

Fe(t,z,v) = Y  €'Fp(t,z,v)
n>0
e The convergence radius of the above power series may very well be 0.



The linearized collision operator

eThe leading order of Hilbert's expansion should be a local Maxwellian
(see lecture 1) whose parameters are governed by Euler’'s system.

e This suggests to study the linearization at a Maxwellian M of Boltzmann’s
collision integral

Lyrp = —2M~1B(M, M)
- //RSXSQ(Qb + ¢ — ¢ — $) (v — vx) - w|dw Midoy

WLOG, assume that M = M7 o 1 (the centered, reduced Gaussian)




o Translation/Scaling invariance of B3| Denote by = the action of R3 on func-
tions by translations, and by m that of Rj_ by scaling:

TwP(v) = (v —w), maep(v) = a%qb (%fu)
Then

B(rwF, 7wF) = mwB(F, F); B(mgF, meF) = am B(F, F)

eIn particular, since M, ,, 9 = prum M7 01, 0Ne has

£Mp,u,0(7um\/§¢) — p\/éTum\/gﬁMl,O,lgb




eNotice that the operator £, takes the form

(Lye) () = Ay (Jv))o(v) — (Kpre)(v)

where A(|v|) is the collision frequency, while K, is an integral operator

A(jv]) =27 /R3 v — vs | Madvs, Ky =K1y — Ko p

and where the operators K1 jy and Ko s are defined by

Kimo =2 //R3><82 ¢ |(v — vi) - w|dwMiduv

/CQ,MQS — 27'(' /R3 ¢>|<|’U — U*‘M*d’l]*




Lemma. (Hilbert 1912) The operator K1 s is compact on L2(Mdv).

eSince Ko 3 is also compact on L2(Mdv), Hilbert's lemma implies that

Theorem. The operator L,; IS a nonnegative, unbounded self-adjoint
Fredholm operator on L?(Mdv) with domain L?(\(|v|)2Mdv). Further,
its nullspace is the set of collision invariants, i.e.

ker Ly = span{l,vq,vo,v3, |v|2} .
Moreover, there exists cg > 0 such that, for each ¢ € L2(\(Jv|) Mdv):
2
b1 Kker Ly = /R3 bLrrdMdv > co /R3 &2\ (|v) Mdv .
Finally, there exists c1 > 1 such that
(L4 oD < A(Jo]) < er(1+ o))



A nonlinear variant of Hilbert’s lemma

Theorem. (P.--L. Lions 1993) The gain term in Boltzmann's integral
By (F,F) = // F'Fl|(v — vy) - w|dwdvs
maps Lz,,,,(R>) continuously into H (R3).

eHere is the very elegant proof found by Bouchut-Desvillettes: parametrize
the solutions to the collision relations

A . T A e A R T S UM
as follows:
v = %(v + vs) + %|v —vilo, U= %(v + vs) + %|v — Vx|o

where o runs through S2.



The two parametrizations of the collision relations




oA straightforward change of variables shows that

B (F,F)(v) = 2 / / 2 (vg’v* 4 ""—2’”%) I (% _ "”—2’”*|a) v—vs|dodus

eCompute the Fourier transform of By (F, F') by the pre- to post-collision
change of variables:

v—v]

(55

—1&- 5O

B(F, F)(&) = 2 /// FF.e v — vy|dodvsdy
Vx |’U U*l

— 2//F(’U)F(’U*)€_Z > & </ e T2 v — v*|da> v — vs|dvsdv

eCompute the inner integral in spherical coordinates with polar axis R&:

|v— ’U*| |€|| — Vx|
/e_zg v — vildo = 27 /Oﬁe €0S05in de

3 _
€]l — v



eSetting z = ”E”* and w = 5

EIBCF, F)(©) = 64r [[ IF(- +w)F(- = w)(©) sin(l€]|w])duw
By Cauchy-Schwarz and the Plancherel identity,

o T\ (2 dw
IIEBCR F)I7, < 647 [ o o

« (2m)3 // F(z 4+ w)2F(z — w)2(1 + |w])3T0dzdw
< C//F(U)QF(’U*)Q(]. + v — ’U*|)3+Odvdv*

Hence

3140/

IB(F, F)ll g1 < C HF(l + o) 2

1,2




eFredholm’s alternative: Consider the (integral) equation £,,¢ = . Either

e | ker L,;|= there exists a unique solution ¢gL ker L, (denoted
by ¢g = cL]Qlw); all solutions are of the form ¢g+n withn € ker L ;

e otherwise, there exists no solution ¢ to the above equation.

eExample: For M = M g 1, consider the vector field B and the tensor
field A defined by

A(v) = v®2 —3Pl’I, B(v) = gu(jv|* ~ 5)

Notice that A_L ker £, B_L ker £y and AL B; there exist £, AL ker £,
and £, BL ker Ly



e Rotational invariance of B|Let R € O3(R); it acts on functions f on R3,
on vector fields U on R3, and on 2-contravariant tensors fields S on R3 as
follows:

fr(v) = f(R'v), Ugr(w) = RU(R'v), Sgr(v)= RS(R'v)R"

e The Boltzmann collision integral is rotationally invariant:

B(Fg, Fr) = B(F,F)p, therefore Ly, o ,¢r = (Lar o, PR

since M g1 Is a radial function.

eOne has Ap = Aand Br = B; hence (£K41A)R = £]T41A and (£]T41B)R =
E&lB. Therefore, there exist a = a(|v|) and 8 = B(|v]|) s.t.

LyiAW) =a(w)A@), £y} Bw) = B(jv])B(v)




The Hilbert expansion

eSeek a solution of
1
8‘[;F€ _I_ v - VxFe — EB(FE’ Fe)
in the form

Fe(t,z,v) = ) €'Fp(t,z,v) € Cezwllell
n>0

eOrder 0: B(Fp, Fp) = 0, which implies that F{ is a local Maxwellian

Fo(t, 2, v) = Mo (4 ) ug(t,x) 0o (L) (V)
eOrder 1: one finds that

F1
8tFO+U'VCIZFO:28(F07F1) :_Mpo uQ 90£M un,0 ( )
PO,>u0-Y0 MPO,UO,GO



Once Fy is known, one finds Fj by solving the Fredholm integral equation
above.

eCompatibility condition at order 1: in order for this Fredholm integral equa-
tion to have a solution, one must verify the compatibility condition

(Bt + v - Vm)FOJ_ ker ,CM

Po,uo 0o P0,u0,90
le.
1
8t/ 1 v MPO?“’O?QOdU —I_ leaj/U ® v Mp07u0700dv =0
2 1.2
flvl jl’Ul

This compatibility condition means that (pg, ug, 8g) solves the compress-
ible Euler system.



eAssuming that (pg, ug,0g) solves the compressible Euler system, there
exists a unique solution F{ to the Fredholm equation

1
atFo—I—’U-Vg;FO = QB(Fo,Flo) S.t. / v F{)dv =
Slvl?
e Therefore Iy (the first order term in Hilbert’s expansion) is of the form
Fy (@, 0)= FP (8, 2,0) M50 00 00) (t,0) (@(t, @) Fb(E, 2) vt ) [v]?)
with

FP = =M1 4, (a(6,[VDAWVY:D(u0) +26(60, [V BOV) Vo0

(see Chapman-Enskog expansion below) where

vV — uQ

Voo

but a, b and ¢ remain undetermined so far.

V= D(u) = Veu 4 (Veu)! — 2(divew)I



eOrder 2: one finds

OiF1 +v - Vgl — B(Fy, F1) = 2B(Fp, F»)

which is another Fredholm integral equation for the unknown F5. For this
equation to have a solution, one must verify the compatibility conditions

at/ v Fldv—l—divx/v® v | Fydo =0

1,2 1.2

2|U| 2|U|
These 5 compatibility conditions are 5 PDEs for the five unknown functions
a, b and c.



eQOrder n: one finds

é%lﬁl+-v-‘7xﬁh-— z: Eﬂjﬁnfﬁ)::iZB(Fb,Fk+l)

k+l=n
1<k,l,<n

which is the same Fredholm equation as above.

eHere again, the compatibility condition reduces to

at/ v Fndv—l—divx/v@) v | Fpdo =0

1,2 1.2

2|v| 2|U|
eMore generally, the compatibility condition at order n 4+ 1 (to guarantee
the existence of I}, 1) provides the equations satisfied by that part of I,

which belongs to the nullspace of ‘CMpo wo o



The Chapman-Enskog expansion

eSeek a solution of
1
atFe _|_ v - ijFe — EB(FG, Fe)
in the form of a formal power series

Fe(t,z,v) = > e"FU[P(t, )] (v)
n>0

parametrized by the vector P of conserved densities of Fr.

eNotation: F"[P(¢,z)](v) designates any quantity that depends smoothly
on P and any finite number of its derivatives with respect to the z-variable
at the same point (¢, x), and on the v-variable.




o [ P(t, z)](v) doesn’t contain time-derivatives of P: the game is to elim-
inate 0; P in favor of x-derivatives via conservation laws satisfied by P.

eThat P is the vector of conserved densities of Fe means that

1 1
/F(0>[15’](U) v |dv="5, /F(”)[ﬁ](v) v |dv=0, n>1
11,2 11,2
2|U| 2|’U|

e These conserved densities satisfy a formal system of conservation laws

P =3 "divy ®MW[P]

n>0
where the formal fluxes are obtained from the local conservation laws:
1
eMF = [va| v | FMP(w)dv
Lof2



eOrder 0: one has

BFOIP], FOI[P]) =0, and thus FO[P] = M, , ¢

here
B p ) pu
P = pU : CD(O)[P] = — | pu®24 phI
p(5lul® + 36) pu(3lul® + 36)

Hence the formal conservation law at order O is

8, P9 = divy (9 [B9] mod. O(e) & Euler system
eEuler's system can be recast as

8tp0 + u? - Va;po -+ po diveu® =0
1
OO + (u0 - V)u® + p—ovx<p°90) =0

010° 4+ u® - V20° + 269 divyu® = 0



eQOrder 1: one has
(8 + v - Vo) FO[P] = 28(FO[PL], FOD[PL])

using the formal conservation at order 0, eliminate 8, F(9)[P1] and replace
it with z-derivatives of F(0)[P1]:

(8t +v- vm)Mpl,ul,Hl :Mpl,ul,Ol (A(V) : D(ul) -+ QB(V) y Vm\/;l
+0O(e

N—

N—

with the notations

v—ul

Vol

and where D(u) is the traceless part of the deformation tensor of wu:

D(u) = % <qu + (Vau)! — %divx uI)

V= A(V) =V®2 - LI, B(V)=3V(V|*-5)




eTherefore, F(1)[P1] is determined by the conditions

rpl
A(V) D(ul) +2B(V) - Va:\/;: _L:Mpl 41 o1 (M 1 [1 1)
e pt,ut,0

1
/F(D[ﬁl](v) ( v 2) dv=20
|

1
5|v

By Hilbert's theorem, £, is a Fredholm operator on L2(Mdv); therefore

FOF (@) = =My 41 g1 (a6, VD AV):D(u!)

+ 283(61, |V|)B(V)-vx\/97)




eHence the first order flux in the formal conservation law is

0
>D[P] = u(61) D(ul)
p(01)D(ul) - ul + K(61) V.61

e [ herefore, the formal conservation law at first order is
5, P = divy ®O[P1] + ediv, D[P

i.e. the compressible Navier-Stokes system with O(e) dissipation terms

Bipt + dive(prul) =0
Or(ptut) + dive(p' (uh)®?) + Vi (p'0h) = edive(uD(u'))
O (pGlul | +301)) + diva (pul (Blut? 4 301)) = ediva(kV.0")
+edive(uD(ul) - ul)




e The viscosity and heat conduction coefficients are computed as follows:
9/04(9, V) A (V) Apy (VM7 4 gdv = p(0) (8651 + 61185 — 50i50k1)

9/[3(9, V)B;i(V)Bj(V) My 4 9dv = k(0)0;;

or, in other words

—2/24y

V2

k(0) = 16 /OJFOO 8(6, r)r*(r2 — 5)2°

+o0 e
0 =£9/ 0, )6
w@ =30 [ a@,n)r
—r2/2 gy

V2T

eln the hard sphere case, one finds that

u(0) = poVe, k() = rkoVo




Hilbert vs. Chapman-Enskog

eHilbert’'s expansion more systematic? Chapman-Enskog expansion re-
quires knowing in advance that one gets a system of local conservation
laws at any order in e.

eChapman-Enskog expansion=reshuffling terms in Hilbert expansion? Not
really: in the case of a boundary-value problem, Hilbert’s expansion leads
to a set of boundary conditions for (pg, ug, 8g) that is adapted to the com-
pressible Euler system, i.e. to a hyperbolic system.

eThis is in general not consistent with the boundary conditions adapted to
the compressible Navier-Stokes system, which is (degenerate) parabolic.
(For instance: there may be a viscous boundary layer of thickness O(+/¢)).



Deficiencies in both expansions

e Truncated Hilbert or Chapman-Enskog expansions are polynomials in v,
and thus may not be nonnegative for all ¢, z and v. See a proof by Caflisch
(CPAM 1980) of the compressible Euler limit; lack of positivity may be cured
by suitable initial layers, as constructed by Lachowicz (M2AS 1987).

eHydrodynamic equations may develop singularities in finite time (as in the
case of the compressible Euler system) — or it may be unknown whether
the solution remains smooth for all times (as in the case of 3D incompress-
ible Navier-Stokes). Truncated expansions cannot provide a justification of
the hydrodynamic limit past the time of appearance of a singularity in the
limiting solution.



