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LECTURE 3

HILBERT AND CHAPMAN-ENSKOG EXPANSIONS



Hilbert’s asymptotic solution

•Start from the dimensionless Boltzmann equation in the compressible Eu-
ler scaling St = 1 and πKn = ε:

∂tFε + v · ∇xFε =
1

ε
B(Fε, Fε)

•Hilbert’s expansion is a method for constructing solutions of the scaled
Boltzmann equation above in C∞(R+×R3

x ×R3
v)[[ε]] (i.e. formal power

series in ε with coefficients that are smooth in (t, x, v):

Fε(t, x, v) =
∑
n≥0

εnFn(t, x, v)

•The convergence radius of the above power series may very well be 0.



The linearized collision operator

•The leading order of Hilbert’s expansion should be a local Maxwellian
(see lecture 1) whose parameters are governed by Euler’s system.

•This suggests to study the linearization at a MaxwellianM of Boltzmann’s
collision integral

LMφ = −2M−1B(M,Mφ)

=
∫∫

R3×S2
(φ+ φ∗ − φ′ − φ′∗)|(v − v∗) · ω|dωM∗dv∗

WLOG, assume that M = M1,0,1 (the centered, reduced Gaussian)



• Translation/Scaling invariance of B Denote by τ the action of R3 on func-
tions by translations, and by m that of R∗+ by scaling:

τwφ(v) := φ(v − w) , maφ(v) = 1
a3φ

(
1
av
)

Then

B(τwF, τwF ) = τwB(F, F ) ; B(maF,maF ) = amaB(F, F )

•In particular, since Mρ,u,θ = ρτum√θM1,0,1, one has

LMρ,u,θ
(τum√θφ) = ρ

√
θτum√θLM1,0,1

φ



•Notice that the operator LM takes the form

(LMφ)(v) = λM(|v|)φ(v)− (KMφ)(v)

where λ(|v|) is the collision frequency, while KM is an integral operator

λ(|v|) = 2π
∫
R3
|v − v∗|M∗dv∗ , KMφ = K1,M −K2,M

and where the operators K1,M and K2,M are defined by

K1,Mφ = 2
∫∫

R3×S2
φ′|(v − v∗) · ω|dωM∗dv∗

K2,Mφ = 2π
∫
R3

φ∗|v − v∗|M∗dv∗



Lemma. (Hilbert 1912) The operator K1,M is compact on L2(Mdv).

•Since K2,M is also compact on L2(Mdv), Hilbert’s lemma implies that

Theorem. The operator LM is a nonnegative, unbounded self-adjoint
Fredholm operator on L2(Mdv) with domain L2(λ(|v|)2Mdv). Further,
its nullspace is the set of collision invariants, i.e.

kerLM = span{1, v1, v2, v3, |v|2} .
Moreover, there exists c0 > 0 such that, for each φ ∈ L2(λ(|v|)Mdv):

φ⊥kerLM ⇒
∫
R3

φLMφMdv ≥ c0
∫
R3

φ2λ(|v|)Mdv .

Finally, there exists c1 > 1 such that
1
c1

(1 + |v|) ≤ λ(|v|) ≤ c1(1 + |v|)



A nonlinear variant of Hilbert’s lemma

Theorem. (P.-L. Lions 1993) The gain term in Boltzmann’s integral

B+(F, F ) =
∫∫

F ′F ′∗|(v − v∗) · ω|dωdv∗

maps L2
comp(R

3) continuously into H1(R3).

•Here is the very elegant proof found by Bouchut-Desvillettes: parametrize
the solutions to the collision relations

v′+ v′∗ = v + v∗ , |v′|2 + |v′∗|2 = |v|2 + |v∗|2

as follows:

v′ = 1
2(v + v∗) + 1

2|v − v∗|σ , v′∗ = 1
2(v + v∗) + 1

2|v − v∗|σ

where σ runs through S2.



The two parametrizations of the collision relations



•A straightforward change of variables shows that

B+(F, F )(v) = 2
∫∫

F

(
v+v∗

2 + |v−v∗|
2 σ

)
F

(
v+v∗

2 − |v−v∗|2 σ

)
|v−v∗|dσdv∗

•Compute the Fourier transform of B+(F, F ) by the pre- to post-collision
change of variables:

̂B(F, F )(ξ) = 2
∫∫∫

FF∗e
−iξ·

(
v+v∗

2 +
|v−v∗|

2 σ

)
|v − v∗|dσdv∗dv

= 2
∫∫

F (v)F (v∗)e
−iv+v∗

2 ξ·v
(∫

e−iξ·
|v−v∗|

2 σ|v − v∗|dσ
)
|v − v∗|dv∗dv

•Compute the inner integral in spherical coordinates with polar axis Rξ:∫
e−iξ·

|v−v∗|
2 σ|v − v∗|dσ = 2π

∫ π
0
e−i
|ξ||v−v∗|

2 cos θ sin θdθ

=
8π

|ξ||v − v∗|
sin |ξ||v−v∗|2



•Setting z = v+v∗
2 and w = v−v∗

2

|ξ|| ̂B(F, F )(ξ) = 64π
∫∫

̂|F (·+ w)F (· − w)(ξ) sin(|ξ||w|)dw

By Cauchy-Schwarz and the Plancherel identity,

‖|ξ|| ̂B(F, F )‖2
L2
ξ
≤ 64π

∫
dw

(1 + |w|)3+0

× (2π)3
∫∫

F (z + w)2F (z − w)2(1 + |w|)3+0dzdw

≤ C
∫∫

F (v)2F (v∗)2(1 + |v − v∗|)3+0dvdv∗

Hence

‖B(F, F )‖Ḣ1 ≤ C
∥∥∥∥∥F (1 + |v|)

3+0
2

∥∥∥∥∥
2

L2



•Fredholm’s alternative: Consider the (integral) equation LMφ = ψ. Either

• ψ⊥kerLM ⇒ there exists a unique solution φ0⊥ kerLM (denoted

by φ0 = cL−1
M ψ); all solutions are of the form φ0+n with n ∈ kerLM ;

• otherwise, there exists no solution φ to the above equation.

•Example: For M = M1,0,1, consider the vector field B and the tensor
field A defined by

A(v) = v⊗2 − 1
3|v|

2I , B(v) = 1
2v(|v|2 − 5)

Notice thatA⊥ kerLM ,B⊥ kerLM andA⊥B; there existL−1
M A⊥ kerLM

and L−1
M B⊥ kerLM



• Rotational invariance of B Let R ∈ O3(R); it acts on functions f on R3,
on vector fields U on R3, and on 2-contravariant tensors fields S on R3 as
follows:

fR(v) = f(RTv) , UR(v) = RU(RTv) , SR(v) = RS(RTv)RT

•The Boltzmann collision integral is rotationally invariant:

B(FR, FR) = B(F, F )R , therefore LM1,0,1
φR = (LM1,0,1

φ)R

since M1,0,1 is a radial function.

•One hasAR = A andBR = B; hence (L−1
M A)R = L−1

M A and (L−1
M B)R =

L−1
M B. Therefore, there exist α ≡ α(|v|) and β ≡ β(|v|) s.t.

L−1
M A(v) = α(|v|)A(v) , L−1

M B(v) = β(|v|)B(v)



The Hilbert expansion

•Seek a solution of

∂tFε + v · ∇xFε =
1

ε
B(Fε, Fε)

in the form

Fε(t, x, v) =
∑
n≥0

εnFn(t, x, v) ∈ C∞t,x,v[[ε]]

•Order 0: B(F0, F0) ≡ 0, which implies that F0 is a local Maxwellian

F0(t, x, v) = Mρ0(t,x),u0(t,x),θ0(t,x)(v)

•Order 1: one finds that

∂tF0 + v · ∇xF0 = 2B(F0, F1) = −Mρ0,u0,θ0
LMρ0,u0,θ0

(
F1

Mρ0,u0,θ0

)



Once F0 is known, one finds F1 by solving the Fredholm integral equation
above.

•Compatibility condition at order 1: in order for this Fredholm integral equa-
tion to have a solution, one must verify the compatibility condition

M−1
ρ0,u0,θ0

(∂t + v · ∇x)F0⊥ kerLMρ0,u0,θ0

i.e.

∂t

∫  1
v

1
2|v|

2

Mρ0,u0,θ0
dv + divx

∫
v ⊗

 1
v

1
2|v|

2

Mρ0,u0,θ0
dv = 0

This compatibility condition means that (ρ0, u0, θ0) solves the compress-
ible Euler system.



•Assuming that (ρ0, u0, θ0) solves the compressible Euler system, there
exists a unique solution F0

1 to the Fredholm equation

∂tF0 + v · ∇xF0 = 2B(F0, F
0
1 ) s.t.

∫  1
v

1
2|v|

2

F0
1 dv ≡ 0

•Therefore F1 (the first order term in Hilbert’s expansion) is of the form

F1(t, x, v)=F0
1 (t, x, v)+M(ρ0,u0,θ0)(t,x)(a(t, x)+b(t, x)·v+c(t, x)|v|2)

with

F0
1 = −M1,u0,θ0

(
α(θ, |V |)A(V ):D(u0) + 2β(θ, |V |)B(V )·∇x

√
θ0

)
(see Chapman-Enskog expansion below) where

V =
v − u0√

θ0
, D(u) = ∇xu+ (∇xu)T − 2

3(divx u)I

but a, b and c remain undetermined so far.



•Order 2: one finds

∂tF1 + v · ∇xF1 − B(F1, F1) = 2B(F0, F2)

which is another Fredholm integral equation for the unknown F2. For this
equation to have a solution, one must verify the compatibility conditions

∂t

∫  1
v

1
2|v|

2

F1dv + divx

∫
v ⊗

 1
v

1
2|v|

2

F1dv = 0

These 5 compatibility conditions are 5 PDEs for the five unknown functions
a, b and c.



•Order n: one finds

∂tFn + v · ∇xFn −
∑

k+l=n
1≤k,l,≤n

B(Fk, Fl) = 2B(F0, Fk+1)

which is the same Fredholm equation as above.

•Here again, the compatibility condition reduces to

∂t

∫  1
v

1
2|v|

2

Fndv + divx

∫
v ⊗

 1
v

1
2|v|

2

Fndv = 0

•More generally, the compatibility condition at order n + 1 (to guarantee
the existence of Fn+1) provides the equations satisfied by that part of Fn
which belongs to the nullspace of LMρ0,u0,θ0

.



The Chapman-Enskog expansion

•Seek a solution of

∂tFε + v · ∇xFε =
1

ε
B(Fε, Fε)

in the form of a formal power series

Fε(t, x, v) =
∑
n≥0

εnF (n)[~P (t, x)](v)

parametrized by the vector ~P of conserved densities of Fε.

•Notation: Fn[~P (t, x)](v) designates any quantity that depends smoothly
on ~P and any finite number of its derivatives with respect to the x-variable
at the same point (t, x), and on the v-variable.



•Fn[~P (t, x)](v) doesn’t contain time-derivatives of ~P : the game is to elim-
inate ∂t ~P in favor of x-derivatives via conservation laws satisfied by ~P .

•That ~P is the vector of conserved densities of Fε means that

∫
F (0)[~P ](v)

 1
v

1
2|v|

2

 dv = ~P ,
∫
F (n)[~P ](v)

 1
v

1
2|v|

2

 dv = ~0 , n ≥ 1

•These conserved densities satisfy a formal system of conservation laws

∂t ~P =
∑
n≥0

εn divxΦ(n)[~P ]

where the formal fluxes are obtained from the local conservation laws:

Φ(n)[~P ] = −
∫
v ⊗

 1
v

1
2|v|

2

F (n)[~P ](v)dv



•Order 0: one has

B(F (0)[~P ], F (0)[~P ]) = 0 , and thus F (0)[~P ] = Mρ,u,θ

here

~P =

 ρ
ρu

ρ(1
2|u|

2 + 3
2θ)

 , Φ(0)[~P ] = −

 ρu

ρu⊗2 + ρθI

ρu(1
2|u|

2 + 5
2θ)


Hence the formal conservation law at order 0 is

∂t ~P
0 = divxΦ(0)[~P0] mod. O(ε)⇔ Euler system

•Euler’s system can be recast as

∂tρ
0 + u0 · ∇xρ0 + ρ0 divx u

0 = 0

∂tu
0 + (u0 · ∇x)u0 +

1

ρ0
∇x(ρ0θ0) = 0

∂tθ
0 + u0 · ∇xθ0 + 2

3θ
0 divx u

0 = 0



•Order 1: one has

(∂t + v · ∇x)F (0)[~P1] = 2B(F (0)[~P1], F (1)[~P1])

using the formal conservation at order 0, eliminate ∂tF (0)[~P1] and replace
it with x-derivatives of F (0)[~P1]:

(∂t + v · ∇x)Mρ1,u1,θ1 =Mρ1,u1,θ1

(
A(V ) : D(u1) + 2B(V ) · ∇x

√
θ1
)

+O(ε)

with the notations

V =
v − u1
√
θ1

, A(V ) = V ⊗2 − 1
3|v|

2I , B(V ) = 1
2V (|V |2 − 5)

and where D(u) is the traceless part of the deformation tensor of u:

D(u) = 1
2

(
∇xu+ (∇xu)T − 2

3 divx uI
)



•Therefore, F (1)[~P1] is determined by the conditions

A(V ) : D(u1) + 2B(V ) · ∇x
√
θ1 = −LM

ρ1,u1,θ1

F (1)[~P1]

Mρ1,u1,θ1


∫
F (1)[~P1](v)

 1
v

1
2|v|

2

 dv = 0

•By Hilbert’s theorem, LM is a Fredholm operator on L2(Mdv); therefore

F (1)[~P1](v)=−M1,u1,θ1

(
α(θ1, |V |)A(V ):D(u1)

+ 2β(θ1, |V |)B(V )·∇x
√
θ1
)



•Hence the first order flux in the formal conservation law is

Φ(1)[~P1] =

 0
µ(θ1)D(u1)

µ(θ1)D(u1) · u1 + κ(θ1)∇xθ1


•Therefore, the formal conservation law at first order is

∂t ~P
1 = divxΦ(0)[~P1] + εdivxΦ(1)[~P1]

i.e. the compressible Navier-Stokes system with O(ε) dissipation terms

∂tρ
1 + divx(ρ1u1) = 0

∂t(ρ
1u1) + divx(ρ1(u1)⊗2) +∇x(ρ1θ1) = εdivx(µD(u1))

∂t
(
ρ(1

2|u
1|2 + 3

2θ
1)
)

+ divx
(
ρ1u1(1

2|u
1|2 + 5

2θ
1)
)

= εdivx(κ∇xθ1)

+εdivx(µD(u1) · u1)



•The viscosity and heat conduction coefficients are computed as follows:

θ
∫
α(θ, V )Aij(V )Akl(V )M1,u,θdv = µ(θ)(δikδjl + δilδjk − 2

3δijδkl)

θ
∫
β(θ, V )Bi(V )Bj(V )M1,u,θdv = κ(θ)δij

or, in other words

µ(θ) = 2
15θ

∫ +∞

0
α(θ, r)r6 e

−r2/2dr√
2π

κ(θ) = 1
6θ
∫ +∞

0
β(θ, r)r4(r2 − 5)2 e

−r2/2dr√
2π

•In the hard sphere case, one finds that

µ(θ) = µ0
√
θ , κ(θ) = κ0

√
θ



Hilbert vs. Chapman-Enskog

•Hilbert’s expansion more systematic? Chapman-Enskog expansion re-
quires knowing in advance that one gets a system of local conservation
laws at any order in ε.

•Chapman-Enskog expansion=reshuffling terms in Hilbert expansion? Not
really: in the case of a boundary-value problem, Hilbert’s expansion leads
to a set of boundary conditions for (ρ0, u0, θ0) that is adapted to the com-
pressible Euler system, i.e. to a hyperbolic system.

•This is in general not consistent with the boundary conditions adapted to
the compressible Navier-Stokes system, which is (degenerate) parabolic.
(For instance: there may be a viscous boundary layer of thicknessO(

√
ε)).



Deficiencies in both expansions

•Truncated Hilbert or Chapman-Enskog expansions are polynomials in v,
and thus may not be nonnegative for all t, x and v. See a proof by Caflisch
(CPAM 1980) of the compressible Euler limit; lack of positivity may be cured
by suitable initial layers, as constructed by Lachowicz (M2AS 1987).

•Hydrodynamic equations may develop singularities in finite time (as in the
case of the compressible Euler system) — or it may be unknown whether
the solution remains smooth for all times (as in the case of 3D incompress-
ible Navier-Stokes). Truncated expansions cannot provide a justification of
the hydrodynamic limit past the time of appearance of a singularity in the
limiting solution.


