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Lecture 1

•Gallavotti’s thm (1972) for Poisson distribution of obstacles

•Santalò’s formula (1942) for the mean free path



In 1905, H. Lorentz proposed to describe the motion of electrons in metals
by the methods of kinetic theory



Introduction: the Lorentz kinetic model

•Gas of electrons described by its phase-space density f ≡ f(t, x, v)

(density of electrons at the position x with velocity v at time t)

•Electron-electron collisions neglected (unlike in the kinetic theory of gases)

•Only the collisions between electrons and metallic atoms are considered

⇒ LINEAR KINETIC EQUATION

unlike Boltzmann’s equation in the kinetic theory of gases



•Equation for the phase-space density of electrons f ≡ f(t, x, v):

(∂t + v · ∇x + 1
mF (t, x) · ∇v)f(t, x, v) = Natr

2
at|v|C(f(t, x, ·))(v)

where C is the Lorentz collision integral

C(φ)(v) =
∫
|ω|=1
ω·v>0

(
φ(v − 2(v · ω)ω)− φ(v)

)
cos(v, ω)dω

Notation: m =mass of the electron; Nat, rat density, radius of metallic
atoms; F ≡ F (t, x) electric force (given).



•Can one derive the Lorentz kinetic equation from a microscopic, purely
mechanical particle model?

•We consider a gas of point particles (the electrons) moving in a system
fixed spherical obstacles (the metallic atoms).

•We assume elastic collisions between the electrons and the metallic atoms:
in other words, the point particles are specularly reflected upon colliding
with the obstacles.

•The most interesting part of the Lorentz kinetic equation is the collision
integral ⇒ we assume for simplicity that there is no applied electric field

F ≡ 0



•Microscopic model= billiard system (=gas of point particles moving at a
constant speed in a configuration of fixed spherical obstacles, and specu-
larly reflected at the surface of the obstacles).



•Gallavotti (1969) derived the Lorentz kinetic equation from a billiard sys-
tem consisting of randomly distributed obstacles (Poisson, possibly over-
lapping) in some limit — the Boltzmann-Grad limit, whose definition is given
below

•Slightly more general, random distributions of scatterers by Spohn (1978)

•Almost sure convergence by Boldrighini-Bunimovich-Sinai (1983)

•What about the case of a periodic configuration of obstacles?



The Lorentz gas with Poisson distribution of obstacles

•Assume that the obstacles are disks of radius r in the Euclidian plane R2,
centered at c1, c2, . . . , cj, . . . ∈ R2. Henceforth, we denote

{c} = {c1, c2, . . . , cj, . . .} = a configuration of obstacle centers

•Assume further that {c} is distributed under Poisson’s law with parameter
n, meaning that

Prob({{c} |#(A ∩ {c}) = p}) = e−n|A|(n|A|)p

p!

•Obstacles may overlap: in other words, configurations {c} such that

for some j 6= k ∈ {1,2, . . .}, one has |ci − cj| < 2r

are not excluded



•Billiard flow (defined a.e.) in the obstacle configuration {c}:

Ẋ(t;x, v, {c}) = V (t;x, v, {c}) ,

V̇ (t;x, v, {c}) = 0 , whenever |X(t;x, v, {c})− ci| > r for all i

with specular reflection in case of a collision with the i-th obstacle:

X(t + 0;x, v, {c}) = X(t− 0;x, v, {c})

V (t + 0;x, v, {c}) = R
[
X(t;x, v, {c})− ci

r

]
V (t− 0;x, v, {c})

where R[ω] denotes the reflection w.r.t. the line(Rω)⊥:

R[ω]v = v − 2(ω · v)ω , |ω| = 1



•Given a probability density f in
{c} ≡ f in

{c}(x, v) on R2 × S1 (with support
outside the obstacles) define

f(t, x, v, {c}) = f in
{c}(X(−t;x, v, {c}), V (−t;x, v, {c}))

•Let τ1(x, v, {c}), τ2(x, v, {c}), . . . , τj(x, v, {c}), . . . be the sequence of
collision times for a particle starting from x in the direction −v at t = 0:

τj(x, v, {c}) =

sup{t |#{s ∈ [0, t] | dist(X(−s, x, v, {c}); {c}) = r} = j − 1}
•Denoting τ0 = 0 and ∆τk = τk− τk−1, the 1-particle density f is (a.e.)

f(t, x, v, {c}) = f in(x− tv, v)1t<τ1

+
∑
j≥1

f in

x−
j∑

k=1

∆τkV (−τ−k )−(t− τj)V (−τ+
j ), V (−τ+

j )

1τj<t<τj+1



•Remark: in the case of physically admissible initial data, there should be
no particle whose initial position is inside an obstacle: hence we assumed
that f in

{c} = 0 in the union of all the disks of radius r centered at the

cj ∈ {c}.

•When dealing with bounded initial data, this constraint disappears in the
BG limit, since the volume fraction occupied by the obstacles → 0 in that
limit.

⇒ henceforth we neglect this difficulty and proceed as if f in were any
bounded probability density on R2 × S1



•Goal: average the summation above in the obstacle configuration {c} un-
der the Poisson distribution, and identify a scaling on the obstacle radius r

and the parameter of the Poisson distribution n leading to a nontrivial limit.

•Interpretation of the parameter n: the expected number of obstacle cen-
ters in a domain Ω ⊂ R2 is∑

p≥0

pProb({{c} |#(Ω ∩ {c}) = p}) =
∑
p≥0

pe−n|Ω|(n|Ω|)p

p!
= n|Ω|

so that

n = # obstacles per unit volume



•The average of the first term in f(t, x, v, {c}) is

f in(x− tv, v)〈1t<τ1〉 = f in(x− tv, v)e−n2rt

since t < τ1 means that the tube of width 2r and length t contains 0

obstacle centers.

v

t

2r

x



•Henceforth, we seek a scaling limit corresponding to small obstacles, i.e.
r → 0, and a large number of obstacles per unit volume, i.e. n →∞.

• BOLTZMANN-GRAD SCALING IN DIM. 2 In order for the average of the
first term above to have a nontrivial limit

2nr → σ > 0

so that

〈f in(x− tv, v)1t<τ1〉 → f in(x− tv, v)e−σt

•Strategy: this first term corresponds with an exponential damping effect.

The subsequent terms in the summation should converge to the Duhamel
formula for the Lorentz kinetic equation



Theorem. (Gallavotti 1972) Let f in be a continuous, bounded probability
density on R2×S1, and let fr(t, x, v, {c}) = f in((Xr, V r)(−t, x, v, {c})),
where (t, x, v) 7→ (Xr, V r)(t, x, v, {c}) is the billiard flow in the system of
disks of radius r centered at the elements of {c}. Assuming that the obsta-
cle centers are distributed under the Poisson law of parameter n = σ/2r

with σ > 0, the expected single particle density

〈fr(t, x, v, ·)〉 → f(t, x, v) in L1(R2 × S1) uniformly on compact t-sets

where f is the solution of the Lorentz kinetic equation

∂f

∂t
+ v · ∇xf + σf = σ

∫ 2π

0
f(t, x, R[β]v) sin β

2
dβ
4

f
∣∣∣
t=0

= f in



End of proof: The general term in the summation giving f(t, x, v, {c}) is

f in

x−
j∑

k=1

∆τkV r(−τ−k )−(t− τj)V
r(−τ+

j ), V r(−τ+
j )

1τj<t<τj+1

and its average under the Poisson distribution on {c} is

∫
f in

x−
j∑

k=1

∆τkV r(−τ−k )− (t− τj)V
r(−τ+

j ), V r(−τ−j )


e−n|T (t;c1,...,cj)|n

jdc1 . . . dcj

j!

where T (t; c1, . . . , cj) is the tube of width 2r around the particle trajectory
colliding first with the obstacle centered at c1, . . . , and whose j-th collision
is with the obstacle centered at cj.



•As before, the surface of that tube is

|T (t; c1, . . . , cj)| = 2rt + O(r2)

t
v

x

τ1

τ2

τ2−1τ−

The tube T (t, c1, c2)



•In the j-th term, change variables by expressing the positions of the j

encountered obstacles in terms of free flight times and deflection angles:

(c1, . . . , cj) 7→ (τ1, . . . , τj;β1, . . . , βj)

The volume element in the j-th integral is changed into

dc1...dcj
j! = rj sin β1

2 . . . sin
βj
2

dβ1
2 . . .

dβj
2 dτ1 . . . dτj

•The measure in the left-hand side is invariant by permutations of c1, . . . , cj;
on the right-hand side, we assume that

τ1 < τ2 < . . . < τj

so that the 1/j! factor disappears.



r

x

1

1c

v

r

τ1
c

β

2

2

τ2

β

The substitution (c1, c2) 7→ (τ1, τ2, β1, β2)



•The substitution above is possible only if the particle does not hit twice
the SAME obstacle. Define

Ar(T, x, v) =⋃
j≥1

{{c} | dist(Xr(t, x, v, {c}), cj) = r for some 0 < t1 < t2 < T}

and set

fM
r (t, x, v, {c}) = fr(t, x, v, {c})− fR

r (t, x, v, {c})
fR
r (t, x, v, {c}) = fr(t, x, v, {c})1Ar(T,x,v)({c})

(respectively the Markovian part and the recollision part in fr.)



•After averaging over the obstacle configuration {c}, the contribution of the
j-th term in fM

r is, to leading order in r:

(2nr)je−2nrt
∫
0<τ1<...<τj<t

∫
[0,2π]j

sin β1
2 . . . sin

βj
2

dβ1
4 . . .

dβj
4 dτ1 . . . dτj

×f in

x−
j∑

k=1

∆τkR

k−1∑
l=1

βl

 v−(t− τj)R

j−1∑
l=1

βl

 v, R

 j∑
l=1

βl

 v



•It is dominated by

‖f in‖L∞O(σ)je−O(σ)tt
j

j!

which is the general term of a converging series.



•Passing to the limit as n → +∞, r → 0 so that 2rn → σ, one finds (by
dominated convergence in the series) that

〈fM
r (t, x, v, {c})〉 → e−σtf in(x− tv, v)

+σe−σt
∫ t

0

∫ 2π

0
f in(x− τ1v − (t− τ1)R[β1]v, R[β1]v) sin β1

2
dβ1
4 dτ1

+
∑
j≥2

σje−σt
∫
0<τj<...<τ1<t

∫
[0,2π]j

sin β1
2 . . . sin

βj
2

×f in

x−
j∑

k=1

∆τkR

k−1∑
l=1

βl

 v−(t− τj)R

j−1∑
l=1

βl

 v, R

 j∑
l=1

βl

 v


×dβ1

4 . . .
dβj
4 dτ1 . . . dτj

which is the Duhamel series giving the solution of the Lorentz kinetic equa-
tion



•We have proved that

〈fM
r (t, x, v, ·)〉 → f(t, x, v) uniformly on bounded sets as r → 0

where f is the solution of the Lorentz kinetic equation. Since∫∫
R2×S1

f(t, x, v)dxdv =
∫∫

R2×S1
f in(x, v)dxdv

and ∫∫
R2×S1

fr(t, x, v, {c})dxdv =
∫∫

R2×S1
f in(x, v)dxdv

we conclude by Fatou’s lemma that

〈fA
r 〉 → 0 in L1(R2 × S1) uniformly on bounded t-sets

〈fM
r 〉 → f in L1(R2 × S1) uniformly on bounded t-sets

This conclude the proof of Gallavotti’s theorem. 2



The periodic case: the mean free path

•For r ∈ (0, 1
2), define the billiard table Zr = {x ∈ RD | dist(x,ZD) > r};

2r

1



•The free path length starting from x ∈ Zr in the direction v ∈ SD−1 is

τr(x, v) = min{t > 0 |x + tv ∈ ∂Zr}

x v

(x,v)rτ

Mean Free Path = 〈τr〉

where 〈·〉 is the average under some appropriate probability measure



Two natural probability measures for the Lorentz gas:

a) the uniform probability measure in Zr/ZD × SD−1

dµr(x, v) =
dxdv

|Zr/ZD| |SD−1|

invariant under the billiard flow

b) the invariant measure of the billiard map

dνr(x, v) =
v ·nxdxdv

v ·nxdxdv-meas(Γr
+/ZD)

where nx is the unit inward normal at x ∈ ∂Zr and

Γr
+ := {(x, v) ∈ ∂Zr × SD−1 | v · nx > 0}



•Billiard flow: {
Ẋr = Vr

V̇r = 0
whenever X(t) /∈ ∂Zr

{
Xr(t+) = Xr(t−) =: Xr(t) if X(t±) ∈ ∂Zr

Vr(t+) = R[nXr(t)]Vr(t−)

with R[n]v = v − 2v ·nn denoting the reflection w.r.t. (Rn)⊥

•Billiard map:

Γr
+ 3 (x, v) 7→ Br(x, v) := (Xr, Vr)(τr(x, v);x, v) ∈ Γr

+

•A first notion of mean free path: if the billiard map Br is ergodic for the
measure νr, then for νr-a.e. (x, v) ∈ Γ+

r ,

lim
N→+∞

1

N

N−1∑
k=0

τr(Bk
r(x, v)) =

∫
Γr

+/ZD
τrdνr



SANTALÒ’S FORMULA FOR THE MEAN FREE PATH (1942)

`r :=
∫
Γr

+/ZD
τr(x, v)dνr(x, v) =

1− |BD|rD

|BD−1|rD−1

In fact, one has the following slightly more general

Lemma. (H.S. Dumas, L. Dumas, F.G. 1996) For f ∈ C1(R+) such that
f(0) = 0, one has∫

Γr
+/ZD

f(τr(x, v))v · nxdxdv =
∫
(Zr/ZD)×SD−1

f ′(τr(x, v))dxdv

The Santalò formula corresponds with f(z) = z in the identity above.



Proof: for each (x, v) ∈ Zr × SD−1 one has

τr(x + tv, v) = τr(x, v)− t , so that
d

dt
τr(x + tv, v) = −1

Hence {
v · ∇xτr(x, v) = −1 , x ∈ Zr , v ∈ SD−1

τr(x, v) = 0 , x ∈ ∂Zr , v · nx < 0

Since f ∈ C1(R+) and f(0) = 0, one has{
v · ∇xf(τr(x, v)) = −f ′(τr(x, v)) , x ∈ Zr , v ∈ SD−1

f(τr(x, v)) = 0 , x ∈ ∂Zr , v · nx < 0

Integrating both sides of the equality above, and applying Green’s formula
establishes the identity in the lemma. 2



Boltzmann-Grad limit

Small obstacles: r → 0+; long time scale so that

# collisions per unit of time = O(1)

Given f in ∈ Cc(RD × SD−1), define fr to be

fr(t, x, v) = f in
(
rD−1Xr

(
−

t

rD−1
;

x

rD−1
, v

)
, Vr

(
−

t

rD−1
;

x

rD−1
, v

))

where (Xr, Vr) is the billiard flow in Zr with specular reflection on ∂Zr.

Problem: to find an equation governing the L∞ weak-* limit points of the
scaled number density fr as r → 0+.



Final remarks:

a) the proof of Santalò’s thm shows that it holds in greater generality (smooth
obstacles other than circles, trajectories of particles subject to some exter-
nal force field...)

b) assuming no external force field is not as inocuous as it may seem.
For instance, in the case of Poisson distributed holes (so that particles
falling into the holes disappear from the system), the presence of an exter-
nal force may introduce memory effects in the BG limit (Desvillettes-Ricci,
2004)


