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MOTIVATION

eConsider a parabolic PDE of the form

{ Byu + Oz f (u)

u|t:O
For each € > O, the energy equality

t .
/R %u(t,;r;)ng; + 6/0 /R (%u(s,g;)deds — /R %um(x)zdx

gives us a bound on w in L (L2) N L7(H}) so that the solution map

ed2u, z€R,t>0

u’LTL

L2 5 4™ —u e L} (dtdz)
IS compact by Rellich’s theorem.

eWhat remains of this compactness in the limit as ¢ — 0T — that is, for
entropy solutions of the inviscid equation?



eConsider the conservation law
{ ou—+0rf(u) = 0, z€R,t>0

_ m
u = u

with strictly convex flux f € C1(R) such that f/(z) — +o0 as z — +oo.
Two compactness results:

o(P.D. Lax, 1954) For each t > 0, the entropy solution dynamics
u™ v u(t, )
is compact from L} into L} (dx)

o(L. Tartar, 1979) Compensated compactness (entropy bound + div-curl)
= convergence of the vanishing viscosity method



Both arguments are based on the fact that
up—u and F(up)—F(u)
for some suitable class of nonlinearities F' implies that

Un — U STRONGLY

QUESTION (P.D. Lax, 2002): can one transform such arguments into quan-
titative compactness or regularity estimates?




Part 1. e-entropy estimate for scalar conservation laws

Joint work with C. De Lellis




Let f € C2(R) with f” > a > 0, and s.t.(WLOG) f(0) = f/(0) = 0.
{éku—i—(%f(u) O, z€R, ¢t>0

’U/‘ u’l/)’L

t=0
Entropy solution semigroup S(t) : u'™ — wu(t,-); it satisfies the

- . . : 1
Lax-Oleinik one-sided estimate: Oy (S(t)u’m) < —> t >0
a

Definition (Kolmogorov-Tikhomirov, 1959) For e > 0, the e-entropy of £
precompact in the metric space (X, d) is :

H(E|X) = logp Ne(E)

where N¢(FE) is the minimal number of sets in an e-covering of E —i.e. a
covering of E by sets of diameter < 2¢in X

Example: Hc([0, 1]"*|R"™) ~ n|logs €



For each R, m,t > 0O, the set {u‘[—R,R] s.t.u € S(t)BLl(R)(O,m)} IS
precompact in L1 ([—R, R]) (P.D. Lax, 1954)

Theorem. (C. DelLellis, F.G. 2005) For each € > 0, one has
C1(%) Ca(t)

€ €

He (S(8)Bpicry(0,m)| LM ([~ R, R]) < +zlogg( +03<t>>
where

__ 32R? _ 2t M (t)cps ()
Ci1(t) = + 32RM(t), Cz(t) =3+ R+ Vimal

at
Co(t) = 8Lt (R + Vmat + 2tM(t)cM(t))

and with the notations M (t) = /%% and cj; = supy, ;< f”(2).



o(P.D. Lax, 1957) In the limit as t — +o0, one has S(t)u*™ — Ny 4(t) — 0
in L1 (R) where N, is the N-wave

N, (1) = {x/f”(gO)t if —/pt <z <\qt

otherwise

and where

Yy : 0o .
p=—21"(0) inf/ u g =2f"(0) Sup/ u'"
Y J—o0 y Jy

—(pt)1/2

i (qt)1/2




eHence, in the limit as e — 01, one has

lim (resp. lim )He(S(t)Bpigy(0,m)|L'(R)) ~ 2|10g2 €]

t——00 t——+400

eOur bound on the e-entropy does not capture this behavior; yet it shows
that

lim  He(S()Bpigy(0,m)|L*([-R(), R()])) = O(1)

t——+o0

as e — 01 whenever R(t) = o(1/%); consistent with the fact that the

dependence of the N-wave in p, g can be seen only on intervals of length
at least O(v/t)

Motivation: P.D. Lax advocated using e-entropy estimates for defining a
notion of resolving power of a numerical scheme for the conservation law

oru + Orf(u) =0



Part 2: regularity by compensated compactness




Scalar conservation laws in space dimension 1

Let f € C2(R) with f”/ > a > 0, and s.t.(WLOG) f(0) = f/(0) = 0;
{ ou~+ O0zf(u) = 0, z€R, t>0

u‘ = "
t=0

An adaptation of Tartar's compensated compactness method leads to

Theorem. For each v € L®°(R) s.t. u'*(xz) = 0 a.e. in |z| > R, the
VTR X R), e,

oo,loc

oC 2 B 4 _
| Joxt@)?ult) = u(t + 5,2 + ) *dadt = O(Is| + ly))
for each x € C2(R*_ x R)

entropy solution v € B



e¢DEGENERATE CONVEX FLUXES: assume that f € C2(R) satisfies

f"(v) > 0foreachv € R\ {vy,...,vn}
'(v) > ag|v — vk|25k foreach v near vy, fork =1,...,n

forsome v1,...,vp, € Rand a1,81,...,an, Bn > 0.

Theorem. For each v € L®(R) s.t. v"*(z) = 0 a.e. in |z| > R, the

- 1/pp - _ -
entropy solution u € Boo,loc(R—l— x R), withp = 2 1r£]?§><n Br. + 4 1.e.

o0 5 B D _
| x(t@)Plult o) —u(t + s, + y)Pdedt = O(Is| + [y])
for each x € C; (R%. x R)



COMPARISON WITH KNOWN RESULTS

eLax-Oleinik estimate = u € BV},.(R% x R) (specific to scalar conser-
vation laws, space dimension 1, and f” > a > 0)

ePerthame-Jabin (2002) prove that v € W, ’p(R* x R) for s < % and

1 < p< % Proof based on kinetic formulation + velocity averaging;
generalizes to degenerate fluxes, higher space dimensions + one particular
2 X 2 system in space dimension 1 (isentropic Euler with v = 3.)

eDelellis- Westdlckenberg (2003) prove that one cannot obtain better reg-
ularity than BOO/ » forr > 3 or BT 37 for 1 < r < 3 by using only the fact
that the entropy production is a bounded Radon measure without using
that it is a positive measure — as does the Perthame-Jabin, or our proof.

= the compensated compactness method gives a regularity estimate in
the DelLellis-Westdickenberg optimality class



Proof of regularity by compensated compactness

eNon degenerate case: f”/ > a > 0 and (WLOG) f(0) = f/(0) = 0.

We shall only use the fact that the entropy solution « satisfies

Oru + Oz f(u) =0

Oru’ + Org(u) = —p
where
() .
= '(w)dw and // </ Ll 2dy <
o) i= [ wf wdwand [l < [ S Pde < oo

Notation: henceforth, we denote

T(S,y)¢(t7 x) — Qb(t — 5T — y) ) and J = (Ol _01>



Step 1: the div-curl argument.  Set
1, 2
= Y — _ 2U
B <f(u)>’ E=06y =D <g<u>>

One has

In particular, there exists

T € Lip(Rj_ XxR), st B=JVigm
Integrating by parts shows that

00 5 o ;
o
2
:/O /R Vi X 'E(T(S’y)ﬂ' — 7)dtdx

2
+/O /RX (T(S,y)ﬂ- o 7'(')(,LL T T(s,y):u)



Therefore, one has the upper bound

/OOO/R \2E - J(7(;.,)B — B)dtda

< (IV6axl gl Bllise + 2302 [ Inl) Lin(r) (sl + ly))
which leads to an estimate of the form

/o /RXQ((T(s,y)u —u) (T(S,y)g(u) —g(u))
_ %(7'(s,y)u2 B UQ)(T(S,y)f(U)_f(u)))dtdx§0(|s|_|_‘yD

Next we shall give a lower bound for the integrand in the left-hand side.

Remark here the div-curl argument reduces to a simple integration by
parts, since divy , B = 0.



Step 2: a pointwise inequality

Lemma. Foreachv,w € R, one has (f"” > a > 0)

(w—v)(g(w) — g(v)) = 5(w* =) (f(w) = () = {5lw—ov|*

Proof: WLOG, assume that v < w, and write
(w —v)(g(w) — g(v)) — 2(w? — v2)(f(w) — f(v)) =
/v de / CFI(C)de— / £de / F(O)de = / / (¢ — &)/ (¢)dedc

=3 [T -0 © - F©)ddc = 5 [ [T~ &)2ded



Remark Tartar uses the flux f as entropy, together with Cauchy-Schwarz

(w—v)(h(w) —h(v)) > (f(w)—f(v))? with h(v) 1= /O ' (w)?dw

which is OK since he is aiming at proving compactness, not regularity

Step 3: conclusion Putting together the upper bound for the integral in
Step 1 and the lower bound for the integrand of the left hand side obtained
In Step 2, we find that

a [T 2 — ul*dtdx < C
15 X|T(s,y)u u|"dtdr < C(|s| + |y|)

which is the announced B /z estimate for the entropy solution u. O

Y

Remark Here we have used only one convex entropy 2u2 By using all
Krushkov entropies, the compensated co éoactness argument above leads
to the optimal regularity estimate in B . (B. Perthame)




1D Isentropic Euler system, 1<~ <3

Unknowns: p = p(t, z) (density) and v = u (¢, ) (velocity field)

Otp + Oz(pu) = 0
De(pu) + 0z (pu® 4 rp7) = 0
eHyperbolic system of conservation laws, with characteristic speeds
Ay :=u—|—9,09 >u—9p9 = A_, With@zw/mvz%
eAlong any C'! solution (p, ), this system can be put in diagonal form
6tw+ —|— >\+893w+ — O,
orw_ + A\_0rw_ =0,
where w4+ = w+(p, u) are the Riemann invariants

wy :=u—|—p0>u—p9=:w_



eR. DiPerna (1983) proved that, for each initial data (p'™, u'™) satisfying
(p'™ — p,u'™) € CZ(R) and p"" > 0

there exists an entropy (weak) solution (p,u) of the isentropic Euler sys-

tem that satisfies the L°° bound

o . N1/6

0 < p < p*=sup (5(wy (" u™) —w_(p",u™))
zeR

inf w_(pzn’uzn) — U S U S ’U,* r— Supw_i_(pm,um)

zeR zeR

eDiPerna’s argument appliesto vy = 1 + %H for each n > 1; improve-
ments by G.Q. Chen and, more recently, by P.-L. Lions, B. Perthame, P.
Souganidis and E. Tadmor, by using a kinetic formulation of Euler’s system

eProblem: is there a regularizing effect for isentropic Euler? what is the
regularity of entropy solutions?



Admissible solutions

e\Weak entropies: an entropy ¢ for the isentropic Euler system is called a
“weak entropy" if (b‘p—o = 0.

Example: the energy &, with energy flux G:

EWU) = 5pu? + Lgp) _ <p>
{Q(U) =u(£(U)j|—/<;p’7) where U o

eDiPerna’s solutions are obtained from solutions of the parabolic system
a{;Ue _I_ axF(Ue) — Eagca';Ue
in the limit as e — 071 These solutions satisfy

OE(U) + 0;G6(U) = —M with M = w- Iin?)eDQS(UE) 1 9:U%? > 0
E—>



eEach weak entropy ¢ has its dissipation dominated by that of E:

ID?¢(U)| < C¢,KD2€(U) for U € K compact subset of R4 x R

eHence DiPerna solutions of Euler’'s system constructed as above satisfy,
for each weak entropy ¢, the entropy condition

Orp(U) + 0:(U) = —pld]

where u[¢] is a bounded Radon measure verifying the bound

[(uld], )l < Cy (M, x), x € CZ(Ry xR)

where M is the energy dissipation.



Definition. Let O C R% x R open. A weak solution U = (p, pu) S.t.
O<ps<p<p* and ux<u<u*for(t,x) €O
Is called an admissible solution on Q iff for each entropy ¢, weak or not,

Orp(U) + 0y (U) = —pulé]

IS a Radon measure such that

61011ty (0) < C oot V1D Lo (1 x ] ) M

eExample: any DiPerna solution whose viscous approximation U, satisfies
the uniform lower bound

pe > px >0 onQOforeache >0
Is admissible on O.

eEXxistence of admissible solutions in the large?



Theorem. Assume that~ € (1,3) and let O be any open set in R xR.
Any admissible solution of Euler's system on O satisfies

//O (p,u)(t + 5,2 +y) — (p,u)(t,z)|2dzdt < Const.|In(|s| + |y|)| 2

whenever |s| + |y| < %
eIn the special case v = 3, the same method gives

Theorem. Assume thaty = 3 and let O be any open setin Ri x R. Any
admissible solution of Euler’s system on O C R’_‘F x R satisfies

(p,u) € BY T4 (0)

oo,loc



eFor v+ = 3, by using the kinetic formulation and velocity averaging, one
has (Lions-Perthame-Tadmor JAMS 1994, Jabin-Perthame COCV 2002)
popu € WiP(Ry xR)foralls< 2, 1<p<8
eThe kinetic formulation for v € (1, 3) is of the form
Orx + 0z [(0§ + (1 — O)u(t,z))x] = Oggm  withm >0
and x = [(wy — (€ —w)]}  forx = 52745

Because of the presence of w(t, x) in the advection velocity — which is just
bounded, not smooth — classical velocity averaging lemmas (Agoshkov,
G-Lions-Perthame-Sentis, DiPerna-Lions-Meyer, ...) do not apply in this
case



Main ideas in the proof

Step 1: the div-curl bilinear estimate A variant of Murat-Tartar div-curl
lemma is the following bilinear estimate

'// XQE - JBdtdzx

+ IxEl elix divez El o1y + IXBllzellx divez Bl -1
where J is the rotation of an angle 5 and p € (1, 00). Apply this with

o= w0 (H005) 7= w0 (Z63)

where (¢1,11) and (¢, 1) are two entropy pairs, while (p,u) is an
admissible solution of isentropic Euler on O, and supp(x) is a compact
subset of O

< harmless localization terms




The admissibility condition implies that
divt,CIZ E = _(T(S,y) T I)/’L[¢1] ) din,a: B = _(T(s7y) T I),Ll,[¢2]
with

liele51 vty 0y < CIDZG511 oo ([pa o] x [tm.4])

where 0 < px < p < p*and usx < u < u* on O. By Sobolev embedding
WwrP(R2) c C(R2) forr > %; by duality

X diVee Bl < CrllD? S5l e[, 011 x ey (sl + 19D
and likewise for B, so that
‘// X2E - JBdtdz| < Crl|D2; |l oo 1ps o x sy (18] + [y

CONCLUSION:

Div-curl=- upper bound for integral of Tartar’'s equation




Step 2: the Tartar equation for Lax entropies  Define

T¢1,92l(U, V) 1= (¢1(V) — ¢1(U)) (¥2(V) — ¢2(U))
—(1(V) = 91(U))(92(V) — ¢2(U))
for two entropy pairs (¢1,11) and (¢», 1), so that

E-JB = T[¢1, ¢2] (T(sjy)(p7 U), (p7 ’U,))
Therefore, for each x € C1(©), step 1 leads to an upper bound for

// j—XRXQT[(bl,<Z52](7'(3,y)(,0,u),(p,u))dtds:// j_XRXQE.JBdtdS

2 1—
< Cr||D qu”Loo([p*,p*]x[u*,u*])(|3| + lyD""
As In case of a scalar conservation law, we need a lower bound of that
same quantity.



eUse Lax entropies in Riemann invariant coordinates

+
b (w, k) = kv (Aé[(w>+A1£‘“) +> o tec
+
o (w, k) = kv (Boi<w) T ) w= (g, wl)

eSuch entropies exist for all strictly hyperbolic systems (Lax 1971): hence
the need for the lower bound p > psx > 0

el eading order term in Tartar’s equation: as k — +oo

T4 (- k), ¢y (-, —K)(U, V) = 2A3 (w(U)) A (w(V))

x AL (U) = 2L (V) sinh(k(wy (U) —wy(V))) + ...
Ty (- k), oo (- —k)(U, V) = 245 (w(U)) Ag (w(V))
x (A_(U) = A_(V)) sinh(k(w_(U) —w_(V))) +...



At this point, we use two important features of Euler’s isentropic system.

eFact no.1: with § = %

>“|— . ’LU_|_ . —l 1—|—9 1—-6
(A_>_A<w_> WIthA—2<1_9 1_|_9>

and forv € (1,3) one has 6§ € (0, 1), leading to the coercivity estimate

<2||22§Z§> A (Z) > 0 (asinh(a) + bsinh(b)) + (1 — 0) x positive

Suggests a lower bound on

provided that the leading order terms in Lax entropies are proportional:

a AT (w) = bAg (w)



eFact no.2: Euler’s isentropic system satisfies the relation

H_A D
o, + \_ g5 ( %+
Ay — A Ao — Ay

Hence there exists a function A = A(w4,w—) such that

LA O_A
(DN, 0-N) = [ —"— +
A=Al Ap — A

so that one can take
Aé_(w+,w_) = Ay (wy,w_) = N w4 w-)
Here we choose

1
Ag(wy,w-) = (wp —w-) 20



FINAL REMARKS

oAt variance with the original DiPerna argument (1983) for genuinely non-
linear 2 x 2 system, the proof above is based on the leading order term
In the Tartar equation — whereas DiPerna’s argument uses the next to
leading order term of the same equation

eNot all Lax entropies are convex, or weak entropies — i.e. vanish for
p = 0. In order to control the entropy production

it (w, k) + Oarps (w, k) =: —p
one needs locally admissible solutions

ePerhaps one can use only weak entropies — as in the original proof
of compactness by DiPerna. This would require refining significantly the
present argument.



