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Abstract. Consider the domain Zε = {x ∈ R
n ; dist(x, εZn) > εγ} and let the free path length

be defined as τε(x, v) = inf{t > 0 ; x − tv ∈ ∂Zε}. In the Boltzmann-Grad scaling corresponding to
γ = n

n−1
, it is shown that the limiting distribution φε of τε is bounded from below by an expression

of the form C/t, for some C > 0. A numerical study seems to indicate that asymptotically for large
t, φε ∼ C/t. This is an extension of a previous work [J. Bourgain et al., Comm. Math. Phys. 190
(1998) 491–508]. As a consequence, it is proved that the linear Boltzmann type transport equation is
inappropriate to describe the Boltzmann-Grad limit of the periodic Lorentz gas, at variance with the
usual case of a Poisson distribution of scatterers treated in [G. Gallavotti (1972)].

Résumé. Considérons le domaine Zε = {x ∈ Rn ; dist(x, εZn) > εγ} et définissons le temps de sortie
par la formule τε(x, v) = inf{t > 0 ; x− tv ∈ ∂Zε}. Sous l’hypothèse de la loi d’échelle de Boltzmann-
Grad, qui correspond au cas où γ = n

n−1 , on montre que la fonction de répartition φε des valeurs de

τε est minorée asymptotiquement lorsque ε→ 0 par une expression de la forme C/t, avec C > 0. Des
simulations numériques semblent indiquer que, pour ε→ 0 et t→ +∞, φε ∼ C/t. Ce travail généralise
ce qui a été montré précédemment [J. Bourgain et al., Comm. Math. Phys. 190 (1998) 491–508]. On
en déduit l’impossibilité de décrire la limite de Boltzmann-Grad d’un gaz de Lorentz par une équation
de Boltzmann linéaire dans le cas d’une configuration périodique des obstacles, contrairement au cas
d’une distribution poissonienne d’obstacles traité dans [G. Gallavotti (1972)].
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1. The distribution of free path lengths

The Lorentz gas is a classical model of non-equilibrium statistical mechanics. It consists of a cloud of point
particles interacting by collisions with a prescribed distribution of obstacles. Collisions between particles are
neglected. One of the main issues concerning this model is the large scale dynamics, which is expected to be
described by either kinetic or diffusion equations, depending on the various scaling assumptions made. While
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Figure 1. The billiard table.

satisfying results on this model have been obtained in the case of a random distribution of obstacles (see for
example [1], [8] or [10]), the case of periodic distributions of obstacles has been at the origin of highly nontrivial
techniques in ergodic theory (see [3–6]).

If one has in mind to describe the large scale dynamics of the periodic Lorentz gas by a kinetic (linear
Boltzmann) equation, a very natural first ingredient to consider is the notion of mean free path, or, more
generally, the distribution of free path lengths. The latter notion was studied in [2], with fairly complete success
in the two dimensional case, and only partial success in all dimensions higher than two. The present paper
extends the two dimensional result of [2] to any space dimension, and discusses applications thereof to the
derivation of the linear Boltzmann equation.

1.1. The periodic billiard table

The Lorentz gas model considered in this paper is defined by a periodic distribution of spherical obstacles
centered at the nodes of a cubic lattice in the Euclidean space.

More precisely, let n ≥ 2 denote the space dimension. Choose the minimal distance between distinct lattice
points as unit of length, and pick the radius of the spherical obstacles to be r ∈]0, 1

2 [. The spatial domain where
particle motion takes place is therefore

Z[r] = {x ∈ Rn ; dist(x,Zn) > r}.

For simplicity, we restrict our attention to a one-speed gas (as shall be seen, the dynamics of the system under
consideration here does not involve changes in the kinetic energy of particles induced by collisions with the
obstacles). By an appropriate choice of a macroscopic time scale, particles are assumed to move at (uniform)
speed 1. In other words, the velocity variable v is assumed to be a unit vector v ∈ Sn−1.

The free path length (or exit time) is defined as follows for all points x ∈ Z[r] and v ∈ Sn−1

τ(x, v; r) = inf{t > 0 ; x− tv ∈ ∂Z[r]}.
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Clearly τ(·, ·; r) is a Borelian function for all r ∈]0, 1
2 [. The notion of mean free path, which is central in the

classical kinetic theory of gases, is defined as some appropriate average of τ(·, ·; r).
Therefore, the next logical step is to define a measure on Z[r] × Sn−1 so as to have a precise definition of

the notion of mean free path. There are two natural choices of such a measure, whose respective merits are
discussed in [7]. The only one considered in the present work has the advantage of taking into proper account
the considerable oscillations of the free path length τ(x, v; r) as the velocity variable v runs through the unit
sphere.

Let Y [r] = Z[r]/Zn; topologically Y [r] is a punctured torus. Let Q[r] = dxdv −meas(Y [r] × Sn−1) and let
µ[r] be the Borelian measure defined on Y [r]× Sn−1 by the formula

dµ[r](x, v) =
1

Q[r]
dxdv.

Since the free path length satisfies the relation

τ(x+ k, v; r) = τ(x, v; r) for all x ∈ Z[r] , k ∈ Zn, v ∈ Sn−1,

the function τ(·, ·; r) induces a Borelian function on the quotient phase space Y [r] × Sn−1, still, somewhat
abusively, denoted by τε, which is the main object of study in the present paper.

1.2. Estimates on the distribution of τ

As will be seen below, if one proceeds to defining the mean free path as the average of τ(·, ·; r) under the
measure defined above, one finds

mean free path =
∫
Y [r]×Sn−1

τ(x, v; r)dµ[r](x, v) = +∞. (1)

This already casts doubts on the validity of a linear Boltzmann equation as the limiting governing equation for
the dynamics of the Lorentz gas in the so-called Boltzmann-Grad scaling. We discuss this issue in the next
section.

However, more information is to be found in the distribution φ[r] of the free path length τ(·, ·; r) under µ[r],
which is the push-forward under the map τ(·, ·; r) : Y [r] × Sn−1 → R+ of the measure µ. We recall that this
phrase designates the Borelian probability measure on R+ such that, for all a ≤ b ∈ R+,

φ[r]([a, b]) = µ[r]({(x, v) ∈ Y [r]× Sn−1 ; τ(x, v; r) ∈ [a, b]}). (2)

Our main result is:

Theorem 1.1. For any integer n > 1, there exist two positive constants C(n) < C′(n) such that, for all r ∈]0, 1
2 [

and all t > 1
rn−1

C(n)
rn−1t

≤ φ[r]([t,+∞[) ≤ C′(n)
rn−1t

· (3)

In [2], the upper bound in (3) was established for all n, while the lower bound was proved only in the case where
n = 2. Here we complete the result of [2] by extending the validity of the proof for the lower bound there to
arbitrary space dimension. Also, in [2] (see Rem. 1, p. 495), we announced a weaker lower bound of the form

φ[r]([t,+∞[) ≥ C′′(n)
rtn−1

, (4)
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for all t > 1

r
1

n−1
. While such an estimate would have the same effect regarding the application of kinetic theory

to the periodic Lorentz gas as does (3), it is a weaker estimate for large t’s, in particular one that does not
entail that the mean free path is infinite (see (1)).

On the contrary, estimate (3), which implies (4), is clearly optimal as regards the decay rate in t. Thus, the
present paper improves on the lower bound announced in [2] in a significant way.

The remaining part of the paper is organized as follows: Section 3 contains the proof of Theorem 1.1 above,
while applications to kinetic theory are given in Section 2 below.

2. Applications to kinetic theory

2.1. The Boltzmann-Grad scaling

So far, we have only considered the geometry of the billiard table. Now we consider the dynamics of a gas
of point particles on the billiard table, undergoing elastic collisions with the spherical obstacles (with inter-
particle collisions neglected). The question is whether one can model the large scale effect of the obstacles by
an equivalent absorption/scattering mechanism, as can be done in the case of a random (Poisson) distribution
of obstacles (see [1], [8] or [10]).

This suggests to pick a macroscopic length scale as unit of length instead of the minimal distance between
lattice points, which is now considered as a microscopic length scale. In other words, one chooses as macroscopic
length scale the typical length scale on which the initial density of particles varies significantly: this length scale
henceforth defines the unit of length. One calls ε the ratio of the minimal distance between lattice points to
this unit of length; in this scaling, the radius of the obstacles becomes εr so as to keep the ratio of this radius
to the lattice length scale equal to r as in Section 1. In this process, the speed of the particles is unchanged
(equal to 1); thus the free path length of this new billiard table, henceforth denoted by τε(·, ·; εr) scales exactly
as the lattice, i.e.

τε(εx, v; εr) = ετ(x, v; r).

Thus, if one defines φε[εr] to be the distribution of free path length τε(·, ·; εr), one sees that (3) transforms into

C(n)
rn−1 t

ε

≤ φε[εr]([t,+∞[) ≤ C′(n)
rn−1 t

ε

· (5)

Now, the only case where the number of collisions per unit of time is not either 0 or +∞ as ε → 0 is the case
where rn−1/ε converges to some r∗ ∈ ]0,+∞[ as ε→ 0. Up to a trivial change of time scale, we may pick r∗ = 1,
which suggests that the value

r = ε
1

n−1 (6)

plays a special role.
Indeed, if rε >> ε

1
n−1 , the upper bound in (5) shows that φε[εr]([t,+∞[) → 0 for all t > 0: thus φε[εr]

converges weakly to the Dirac measure at t = 0, which is another way of saying the free path length is
statistically small compared to the macroscopic length scale (or that there are infinitely many collisions per unit
of time).

On the other hand, if rε << ε
1

n−1 , then, for all t > tε with tε = ε/rn−1, then the lower estimate in (3) shows
that φε[εr]([t,+∞[) ≥ C(n)tε/t. In particular does one have φε[εr]([tε,+∞[) ≥ C(n), which indicate that, in
the limit as ε→ 0 the free path length statistically becomes large compared to the macroscopic length scale (in
other words, there are almost no collision per unit of time).

But, if r = ε
1

n−1 , the number of collision per unit of time takes all positive values with nontrivial probability,
at least when averaged over a sufficiently large interval of time. This is why the scaling (6) is, for the present
model, the closest possible approximation of a Boltzmann-Grad scaling.
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2.2. Why a kinetic description is impossible

We assume the Boltzmann-Grad scaling (6) henceforth and use the following abbreviations:

Zε = εZ[ε1/(n−1)] , τε(x, v) = τε(x, v; εn/(n−1)).

A kinetic description of the periodic Lorentz gas in the billiard table defined by Zε would consist in replacing
the effect of collisions on the periodic distribution of obstacles by an absorption and scattering mechanism.

As a first step, one could consider the case of fully absorbing obstacles (i.e. think of these obstacles as holes
into which particles would fall and disappear); the corresponding question for this system is whether one can
model the effect of the periodic distribution of traps by an absorption cross-section in the limit as ε → 0. On
the basis of estimate (3), we show below that this is not possible.

The mathematical formulation of the problem is as follows. Consider the free transport of the gas of point
particles moving at unit speed; the gas is described by its number density fε(t, x, v) which is the density
of particles which, at time t are in position x ∈ Zε and move in the direction v ∈ Sn−1. Before falling in the
traps, particles are transported with no acceleration, so that

∂tfε + v · ∇xfε = 0, x ∈ Zε, v ∈ Sn−1, t > 0.

No particle can leave a trap: hence

fε(εk + εn/(n−1)ω, v) = 0, k ∈ Zn, v, ω ∈ Sn−1.

Finally, the initial number density is prescribed

fε(0, x, v) = f in
ε (x, v), (x, v) ∈ Zε × Sn−1.

The main result in this section, answering the question raised above concerning the validity of a kinetic limit
for the periodic, fully absorbing Lorentz gas is provided by the following theorem.

Theorem 2.1. Assume that there exists M > 0 such that

0 ≤ f in
ε ≤M , a.e. on Zε × Sn−1.

For each ε > 0, the number density fε is extended by by 0 in R × Zcε × Sn−1 (the resulting extension being
still denoted by fε). Then the family fε is relatively compact in L∞(R× Rn × Sn−1) equipped with the weak-*
topology, and, for any limit point f of fε as ε→ 0, there exists no absorption cross-section κ ≡ κ(x, v) such that

κ(x, v) ≥ σ > 0, for all (x, v) ∈ Rn × Sn−1 (7)

and

∂tf + v · ∇xf + κf = 0. (8)

Proof. Suppose, on the contrary, that there exists a subsequence of fε (still denoted fε for simplicity) converging
to f in L∞(R× Rn × Sn−1) weak-*, and a constant σ > 0 such that

∂tf + v · ∇xf + σf ≤ 0. (9)

Solving the transport equation by the method of characteristics shows that

fε(t, x, v) = f in
ε (x− tv, v)11t≤τε(x,v).
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Without loss of generality, we can consider the case where f in
ε is 11Zε . Since fε → f as ε→ 0 in L∞(R×Rn×Sn−1)

weak-*, for any test function φ ∈ C1
c (Rn × Sn−1) and any 0 < t1 < t2, one has∫ t2

t1

∫∫
fε(t, x, v)φ(x, v)dxdvdt =

∫∫
φ(x, v)

∫ t2

t1

11t≤τε(x,v)dtdxdv

→
∫ t2

t1

∫∫
f(t, x, v)φ(x, v)dxdvdt

as ε→ 0. Pick φ so that φ ≥ 0 on Rn × Sn−1 and φ ≥ 1 on [−R,R]n × Sn−1; thus

lim inf
ε→0

∫∫
φ(x, v)

∫ t2

t1

11t≤τε(x,v)dtdxdv ≥ (2R)n
∫ t2

t1

φε([t,+∞[)dt ≥ (2R)nC(n) log
(
t2
t1

)
, (10)

by (3)–(5), provided that t1 > 1. On the other hand, if f satisfies (8),

f(t, x+ tv, v) ≤ f(0, x, v)e−σt ≤ e−σt,

so that ∫ t2

t1

∫∫
f(t, x, v)φ(x, v)dxdvdt ≤ e−σt1

σ

∫∫
φ(x, v)dxdv. (11)

Keeping t1 fixed and letting t2 → +∞, one sees that, for t2 large enough,

(2R)nC(n) log
(
t2
t1

)
> 2

e−σt1

σ

∫∫
φ(x, v)dxdv;

thus, in view of (10) and (11) one has

lim inf
ε→0

∫ t2

t1

∫∫
fε(t, x, v)φ(x, v)dxdvdt >

∫ t2

t1

∫∫
f(t, x, v)φ(x, v)dxdvdt.

This contradiction shows that the weak-* limit f of fε as ε→ 0 in L∞(R×Rn × Sn−1) cannot satisfy (8), and
this holds for any positive σ.

Further, any nonnegative f that satisfies (8) with an absorption cross-section κ as in (7) must satisfy (9); by
the previous argument, it is therefore impossible that f satisfy (8) with κ as in (7).

2.3. An open problem

Nevertheless, the maximum principle for the transport equation implies that, under the same assumptions as
in the previous subsection, the family fε is bounded (and therefore relatively compact for the weak-* topology)
in L∞(R× Rn × Sn−1). A natural problem is to describe the weak-* limit points of fε as ε→ 0.

Another formulation of the same problem is as follows: the bounds (5) imply that, for all t > 1 and all ε > 0,

C(n)
t
≤ φε([t,+∞[) ≤ C′(n)

t
·

It would then be natural to investigate the possible limit points of φε as ε→ 0 in the set of probability measures
on R+ equipped with the vague topology. For example, if φ is such a limit point, does there exists a constant
A(n) such that

φ([t,+∞[) =
A(n)
t

? (12)
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Figure 2. Sandwich-layers (channels) in Z[r].

3. Sandwiches and long trajectories in n-dimensional regular lattices

This section is devoted to the proof of the main theorem, i.e. of the estimate (3). The upper bound is
established in [2], and also the lower one in the two-dimensional case. Here we give a proof, valid in an arbitrary
dimension, for the lower bound. The idea is very much the same as for two dimensions: one considers a line
segment of length L, starting at x0 ∈ Z[r], and in the direction v ∈ Sn−1. If x0 and v are taken at random,
uniformly distributed, can one find an estimate of the probability that the entire line segment lies in Z[r]? The
estimate (3) is an answer to this, and the construction below gives its proof.

In the two-dimensional case, it is clear that only the line segments with a rational direction can be arbitrarily
extended without intersecting with the holes. In [2] this fact was used as follows. A rational vector q = (q1, q2)
defines a set of channels which are orthogonal to q and which extend to infinity inside Z[r], and which do not
contain any of the points in Zn. Assuming that the greatest common divisor of q1 and q2 is one (g.c.d.(q1, q2) =
1), it is easy to compute the distance separating the channels: Any lattice vector p = (p1, p2) ∈ Z2 satisfies
q1p1 + q2p2 = k, where k = 0,±1,±2,±3 . . . This defines a set of lines that includes all lattice points, and the
distance between these lines is d = 1/|q|, or, without the assumption that q1 q2 are coprime, d = g.c.d.(p1, q2)/|q|.
The width of an actual channel is |q|−1 − r, because of the holes that are blocking the path. This means that
the number of rational directions for which infinitely long channels exist is finite. The estimate from below
in (3) is then obtained by considering the a middle third of a channel: any line-segment starting in the middle
third with a direction v such that |v · q|/|q| < d/3L lies entirely in that same channel. And the estimate can be
concluded by summing over the finite number of open channels that exist for a given r.

One can do very much the same operation in any space dimension. In R3, the channels are replaced by a
layered structure, and similarly in higher dimensions. We shall call the n-dimensional analogue of a channel a
sandwich layer.

Take an integer vector q such that g.c.d.(q) ≡ g.c.d.(q1, . . . , qn) = 1. The sandwich layers corresponding to
the direction q are separated by planes,

Pq,z = {x ∈ Rn; (x− z) · q = 0}, z ∈ Zn



1158 F. GOLSE AND B. WENNBERG

which also in this case are separated by a distance d = 1/|q|, and if r < |q|−1, there are hole-free layers with
thickness |q|−1 − r. And the “middle third” of a hole-free layer has thickness

aq,r =
1
3

( 1
|q| − r

)
·

From now on, a typical hole free sandwich layer will be denoted by Λ̃q,r, and the corresponding middle third by
Λ̃ 1

3 ,q,r
. Moreover, the union of all middle thirds is denoted

Λ 1
3 ,q,r

=
⋃

Λ̃ 1
3 ,q,r

.

Like in the two-dimensional case, any line segment of length L which begins at a point in one middle third,
x0 ∈ Λ̃ 1

3 ,q,r
, and has a direction v belonging to the set

Aq,r,L =
{
v ∈ Sn−1; |v · q|/|q| ≤ aq,r

3L

}
lies entirely inside the layer Λq,r. If only directions q for which

|q| ≤ qmax ≡ (2r)−1,

are considered, then for any large ball K ∈ Rn,

meas
({
x ; x belongs to some middle third

}⋂
K
)

meas(K)
∼ 1

3
( 1
|q| − r

)
> 1/6.

This is the same as saying that if |q| is not to large (depending on the diameter r), then the density of the
middle third layers is larger than 1/6. This means that in considering only those line segments that have an
endpoint in a middle third, one does not loose too much:

dxdv-meas
{

(x, v) ; v ∈ Aq,r,L, x ∈ Λ 1
3 ,q,r
∩K

}
dx-meas(K)

≥ 1
6

dv-meas(Aq,r,L).

The total dxdv-measure of the set of x0 ∈ K, v ∈ Sn−1 for which the corresponding line segment of length L
remains in Z[r] is consequently bounded from below by

1
6

dv-meas
( ⋃
|q|≤qmax

Aq,r,L
)
.

The measure of a set Aq,r,L is approximately dv-meas(Sn−2)aq,r, but when summing of the different q, one must
take into account that any two sandwich layers of different directions intersect. Let the number of directions q
with |q| ≤ qmax be J . Enumerate these directions so that

j ≤ k =⇒ |qj | ≤ |qk|, k ≤ J.

By the inclusion-exclusion principle,

dv-meas(Aq1,r,L ∪Aq2,r,L) ≥ dv-meas(Aq1,r,L) + dv-meas(Aq2,r,L)− dv-meas(Aq1,r,L ∩Aq2,r,L)
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Figure 3. Intersection of a sandwich-layer and a sphere.

and then adding more sandwich layers increases the measure; the kth sandwich layer contributes to the total
measure by at least

dv-meas(Aqk,r,L)− dv-meas
(
Aqk,r,L ∩

(
∪k−1
j=1 Aqj ,r,L

))
≥ dv-meas(Aqk,r,L)−

k−1∑
j=1

dv-meas
(
Aqk,r,L ∩Aqj ,r,L

)
.

Consider now the unit sphere in Rn. We shall be interested in the intersection of this sphere and a sandwich
layer. The picture below illustrates the situation for n = 3, and for simplicity we begin by carrying out the
calculations for this case. The calculations in higher dimension are similar.

The two layers intersect with the sphere along two bands with width aqj ,r/L and aqk,r/L respectively, and
these two bands intersect at an angle αj,k, which can be computed from qk and qj . The area of the intersection
is then

2aqk,raqj ,r
L2 sinαj,k

≤ 2
36|qj||qk|L2 sinαj,k

for |qj | , |qk| ≤ qmax .

The factor 2 comes from the fact that there are two intersections, and actually the factor should have been
slightly larger, because in this way we are not taking into account that the bands of intersection are spherical.
Hence

k−1∑
j=1

dv-meas
(
Aqk,r,L ∩Aqj ,r,L

)
≤
k−1∑
j=1

2
36|qj||qk|L2 sinαj,k

=
1

18L2|qk|

k−1∑
j=1

1
|qj | sinαj,k

· (13)

Recall that the sum from j = 1 to j = k − 1 really means that the sum is taken over the set{
q ∈ Zn; |q| ≤ |qk|, g.c.d.(q) = 1, q 6= qk

}
.
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If the restriction that g.c.d.(q) = 1 is removed, then each rational direction q in the sum is represented by several
colinear vectors; the multiplicity of a given direction is

#
{
q′ ∈ Zn ; q′ ‖ q , |q′| ≤ |qk|

}
=
[
|qk|

g.c.d.(q)
|q|

]
where # denotes the number of elements in a set, and [z] denotes the largest integer smaller than or equal to z.
The sum in (13) is then not larger than

1
18L2|qk|

∑
|q|≤|qk|,q 6=qk

g.c.d.(q)

|q|
[
|qk| g.c.d.(q)|q|

]
sinαj,k

≤ C

L2|qk|
∑

|q|≤|qk|,q 6=qk

1
|qk| sinαj,k

· (14)

This sum may now be estimated by an integral:

C

L2|qk|2
∫ |qk|

0

∫ 2π

0

∫ π

0

11{| sinα|>αmin}
sinα

q2 dq sinα dαdφ ≤ C |qk|
L2

(15)

and hence the fraction lost is∑k−1
j=1 dv-meas

(
Aqk,r,L ∩Aqj ,r,L

)
dv-meas

(
Aqk,r,L

) ≤ C |qk|
L2

( 1
3L

( 1
|qk|
− r
))−1

= C
|qk|2
L
· (16)

Recall that only |qk| < qmax = 1/2r are considered, and hence the last quantity is smaller than

Cn
r2L

where Cn is an absolute constant (possibly depending on the dimension). Therefore, if r2L > 2Cn

dv-meas
( ⋃
|q|≤qmax

Aq,r,L
)
≥ 1

2
C′n

∑
|q|≤qmax ,g.c.d.(q)=1

1
L|q|

and this can be estimated just as the union of all intersections above, and it is bounded from below by

C′n
qmax

2

2L
= C′n

1
Lr2
·

These estimates can be carried out in exactly the same way in the general n-dimensional case. The dv-measure of

Aq,r,L =
{
v ∈ Sn−1; |v · q|/|q| ≤ aq,r

3L

}
is proportional to 1/|q|L, and qmax = 1/2r gives hole-free layers just as in the three-dimensional case. Only
the constants involved depend on the dimension. To estimate the measure of the intersection of Aq,r,L ∩Ap,r,L
with the n − 1-dimensional unit sphere, note that in a suitable coordinate system, q/|q| = (1, 0, · · · , 0) and
p/|p| = (cosα, sinα, 0, · · · , 0), and hence

Aq,r,L ∩Ap,r,L ∩ Sn =
{
ω = (ω1, · · · , ωn) ∈ Sn; |ω1| < 1/|q|L, |ω1 cosα+ ω2 sinα| < 1/|p|L

}
.
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Therefore

dv-meas(Aq,r,L ∩Ap,r,L ∩ Sn) =
∫ 1

−1

∫ √1−x2
1

−
√

1−x2
1

∫
|x̄|2=1−x2

1−x2
2

11Aq,r,L∩Ap,r,L∩Sn dx̄dx2dx1

= Vol(Sn−3)
∫ 1

−1

∫ √1−x2
1

−
√

1−x2
1

11Aq,r,L∩Ap,r,L∩Sn(1− x2
1 − x2

2)(n−3)/2dx1 dx2

≤ Cn
1

sin(α)
1
|p|L

1
|q|L

just as in the three-dimensional case: (13) and (14) are unchanged, whereas the integral in (15) is replaced by
the corresponding n-dimensional one, and as a consequence, the last member of (16) is replaced by

Cn
qn−1
k

L
·

All together, this proves the main result of this section:

Proposition 3.1. Let Mr,L ⊂ Sn−1 × Rn denote the set of (v, x0) such that the line segment of length L,
starting from x0 in the direction v lies entirely in Z[r]. There is a constant Cn > 0 depending only on the
dimension n, such that for any set K ⊂ Rn,

dxdv-meas
(
Mr,L ∩ Sn−1 ×K

)
dxdv-meas

(
Sn−1 ×K

) ≥ Cn
1

rn−1L
if rn−1L ≥ 2Cn.

A final remark: In estimating the sum in (3.2) by an integral, it is tacitly assumed that this poses no problem.
It is not quite an innocent assumption, because of the factor 1/α. However, in the sum, α is never zero, and a
more careful calculation estimating separately the contribution from each cylinder

{|q| < qmax ; 2jαmin ≤ α < 2j+1αmin}, j ≥ 0

would give the same result. After all, here only an upper bound is needed.

4. Numerical experiments

In this section we go back to the inequalities (3)

C(n)
rn−1t

≤ φ[r]([t,+∞[) ≤ C′(n)
rn−1t

,

and to the question posed at the end of Section 2.2: could it be that, asymptotically for large rn−1t one could
take C(n) and C′(n) arbitrarily close to each other? We have not been able to prove this, but the numerical
simulations described in this section indicate that this is actually the case. The results that we report here are
from two-dimensional simulations, and for moderately small r. For D ≥ 3, and for very small r, the method
that we have used is too time consuming to give good results (a small number of particles give noisy data).

The method used is the simplest one conceivable:
1. An initial point is chosen at random in the unit square.
2. Then the particle is advanced (using the periodicity of the cell) until the trajectory passes through a ball

of radius R in the centre of the cell.
3. The exact exit-time can then be calculated.

This is repeated a large number of times (in this case 5× 106 times).
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Figure 4. Log-log-plot of φ[r]([t,∞]) vs. t for r = 0.01, r = 0.03 and r = 0.001.
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Figure 5. Plot of trφ[r]([t,∞[) vs. t.

The plots above show the results from three runs, with r = 0.01, r = 0.03 and r = 0.001. In Figure 4,
φ[r]([t,∞[) is plotted as a function of t in a log-log-diagram, and Figure 5 shows trφ[r]([t,∞[) as a function
of t. Obviously this type of experiment does not prove anything, but at least indicates that C(2) and C′(2) in
equation (3) should not be too different. There is one thing to remember, though: for a fixed r, the picture
would be rather different if t was allowed to increase arbitrarily. The asymptotic result expected (namely (12))
can only hold when r→ 0 and rt→∞ simultaneously.
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