
Journées Équations aux dérivées partielles
Forges-les-Eaux, 2–6 juin 2003
GDR 2434 (CNRS)

The Mean-Field Limit for the Dynamics of Large
Particle Systems

François Golse

Abstract
This short course explains how the usual mean-field evolution PDEs in

Statistical Physics — such as the Vlasov-Poisson, Schrödinger-Poisson or
time-dependent Hartree-Fock equations — are rigorously derived from first
principles, i.e. from the fundamental microscopic models that govern the
evolution of large, interacting particle systems.
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Tréville
Alexandre Dumas Les Trois Mousquetaires

1. A review of physical models

The subject matter of these lectures is the relation between “exact” microscopic
models that govern the evolution of large particle systems and a certain type of
approximate models known in Statistical Mechanics as “mean-field equations”. This
notion of mean-field equation is best understood by getting acquainted with the most
famous examples of such equations, described below.
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1.1. Examples of mean-field equations

Roughly speaking, a mean-field equation is a model that describes the evolution of
a typical particle subject to the collective interaction created by a large number N
of other, like particles. The state of the typical particle is given by its phase space
density; the force field exerted by the N other particles on this typical particle is
approximated by the average with respect to the phase space density of the force
field exerted on that particle from each point in the phase space.

Here are the most famous examples of mean-field equations.

1.1.1. The Vlasov equation

The Vlasov equation is the kinetic model for collisionless gases or plasmas. Let
f ≡ f(t, x, ξ) be the phase space density of point particles that occupy position
x ∈ RD and have momentum ξ ∈ RD at time t ≥ 0. Let V ≡ V (x, y) be the
potential describing the pairwise interaction exerted by a particle located at position
y on a particle located at position x. Vlasov’s equation reads

∂tf + 1
m
ξ · ∇xf + F (t, x) · ∇ξf = 0 , x, ξ ∈ RD ,

F (t, x) = −∇x

∫∫
RD×RD

V (x, y)f(t, y, ξ)dξdy .
(1.1)

The parameter m in the PDE above is the particle mass; below, we shall set it to
be 1 without further apology, along with other physical constants.

In other words, Vlasov’s equation can be put in the form of a Liouville equation

∂tf + {Hf(t,·,·), f} = 0

with a time-dependent Hamiltonian given by the formula

Hf(t,·,·)(x, ξ) = 1
2m
|ξ|2 +

∫∫
RD×RD

V (x, y)f(t, y, ξ)dξdy . (1.2)

This formulation may be the best justification for the term “mean-field": the field
exerted on the typical particle at time t and position x is created by the potential∫

RD

V (x, y)

(∫
RD

f(t, x, ξ)dξ

)
dy

which is the sum of the elementary potentials created at position x by one particle
located at position y distributed according to the macroscopic density

ρf (t, x) =

∫
RD

f(t, x, ξ)dξ . (1.3)

The best known physical example of (1.1) (in space dimension D = 3) is the
case where

V (x, y) = q
4π

1

|x− y|
electrostatic potential created by a charge q
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that is used to model collisionless plasmas with negligible magnetic effects. In truth,
plasmas are made of several species of charged particles (electrons and ions); thus
in reality the description of a plasma would involve as many transport equations
in (1.1) as there are particle species to be considered, while the total electric force
would be computed in terms of the sum of macroscopic densities of all particles
weighted by the charge number of each particle species (e.g., if q is minus the charge
of one electron, Z = −1 for electrons, Z = 1, 2, . . . for positively charged ions...)

Another physical example of (1.1) is the case where

V (x, y) = − Gm

|x− y|
gravitational potential created by a mass m

where G is Newton’s constant. This model is used in Astronomy, in very specific
contexts. Its mathematical theory is harder than that of the electrostatic case
because the interaction between like particles in the present case is attractive (unlike
in the previous case, where particle of like charges are repelled by the electrostatic
force), which may lead to buildup of concentrations in the density.

Both models go by the name of “Vlasov-Poisson” equation, since V is, up to a
sign, the fundamental solution of Poisson’s equation

−∆xU = ρ

in R3.
There are many more physical examples of mean field equations of the Vlasov

type than these two. For instance, one can replace the electrostatic interaction
with the full electromagnetic interaction between charged, relativistic particles. The
analogue of the Vlasov-Poisson equation in this case (in the somewhat unphysical
situation where only one species of charged particles is involved) is

∂tf + 1
m
ξ · ∇xf + q

m

(
E + 1

c
v(ξ)×B(t, x)

)
· ∇ξf = 0 (1.4)

coupled to the system of Maxwell’s equations

∂tE − c curlxB = −jf , divxE = ρf ,

∂tB + c curlxE = 0 , divxB = 0 ,
(1.5)

where

v(ξ) =
ξ√

m2 + |ξ|2
c2

, jf (t, x) =

∫
R3

v(ξ)f(t, x, ξ)dξ .

The system (1.4)-(1.5) is called “the relativistic Vlasov-Maxwell system". It is a
good exercise to find its Hamiltonian formulation.

There are many more examples of Vlasov type equations, such as the Vlasov-
Einstein equation which is the relativistic analogue of the gravitational Vlasov-
Poisson equation above. There also exists a Vlasov-Yang-Mills equation for the
quark-gluon plasma.
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1.1.2. The mean-field Schrödinger equation

Vlasov-type equations are classical, instead of quantum, models. There exist non-
relativistic, quantum analogues of Vlasov’s equation (1.1). We shall be mainly con-
cerned with two such models, the mean-field Schrödinger equation that is presented
in this section, and the time-dependent Hartree-Fock equation, to be described in
the next section.

The recipe for building the mean-field Schrödinger equation is to start from the
time-dependent, classical mean-field Hamiltonian (1.2) in the form

Hρ(t,·)(x, ξ) = 1
2m
|ξ|2 +

∫
RD

V (x, y)ρ(t, y)dy

and to quantize it by the usual rule ξ 7→ ~
i
∇x, leading to the operator

Hρ(t,·) = − ~2

2m
∆x +

∫
RD

V (x, y)ρ(t, y)dy .

If one considers a large number of undistinguishable quantum particles in the same
“pure" state, the whole system of such particles is described by one wave function
ψ ≡ ψ(t, x) ∈ C, and the density ρ is given by

ρ(t, x) = |ψ(t, x)|2 .

The evolution of the wave function ψ is governed by the mean-field Schrödinger
equation

i~∂tψ = H|ψ(t,·)|2ψ

= − ~2

2m
∆xψ +

(∫
RD

V (x, y)|ψ(t, y)|2dy
)
ψ

(1.6)

It may also happen that the N particles are in distinct quantum states, defined by
a family of N wave functions, ψk ≡ ψk(t, x), k = 1, . . . , N , that are orthonormal in
L2, i.e. 〈ψk|ψl〉 = δkl. In this case, the density ρ is

ρ(t, x) =
1

N

N∑
k=1

|ψk(t, x)|2 ,

and each wave function is governed by the Schrödinger equation defined by the
Hamiltonian Hρ(t,·), i.e. the system

i~∂tψk = − ~2

2m
∆xψk +

(
1

N

N∑
k=1

∫
RD

V (x, y)|ψk(t, y)|2dy

)
ψk ,

k = 1, . . . , N .

(1.7)

One might think that the mean-field Schrödinger equation is a less universal object
than its classical counterpart (the Vlasov equation) since there are so many variants
of it — (1.6) and (1.7) for instance.

In fact, (1.6) and (1.7) (and all the other variants of the mean-field Schrödinger
equation) are unified by considering instead the formulation of Quantum Mechanics
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in terms of operators. In this formulation, the state of this system is described
by a time-dependent, integral operator D(t) ∈ L(L2(RD)) — with integral kernel
denoted by D(t, x, y) — that satisfies the von Neumann equation

i~∂tD = [Hρ(t,·), D] , where ρ(t, x) = D(t, x, x) . (1.8)

The operator D(t) is usually referred to as the density operator, while its integral
kernel D(t, x, y) is called the density matrix. A more explicit form of (1.8) is

i~∂tD(t, x, y) =− ~2

2m
(∆x −∆y)D(t, x, y)

+D(t, x, y)

∫
(V (x− z)− V (y − z))D(t, z, z)dz .

(1.9)

In the case corresponding to the single mean-field Schrödinger equation (1.6), the
density matrix is given by

D(t, x, y) = ψ(t, x)ψ(t, y) , (1.10)

and the density operator it defines is usually denoted

D(t) = |ψ(t, ·)〉〈ψ(t, ·)| .

In the case corresponding to the system of N coupled mean-field Schrö- dinger
equations (1.7), the density matrix is given by

D(t, x, y) =
1

N

N∑
k=1

ψk(t, x)ψk(t, y) , (1.11)

while the density operator it defines is

D(t) =
1

N

N∑
k=1

|ψk(t, ·)〉〈ψk(t, ·)| .

Of course, in either case, the mean-field von Neumann equation (1.8) is equivalent
to (1.6) or (1.7) — up to some unessential phase factor that may depend on t, the
wave functions are recovered as the eigenfunctions of the density operator.

However, the mean-field von Neumann equation (1.8) does not take into account
a purely quantum effet, the “exchange interaction", that is described in the next
section.

1.1.3. The (time-dependent) Hartree-Fock equation

It is a well-known fact that the electrical interaction of (non-relativistic) charged par-
ticles is independent of their spins. However, the effect of the spin of non-relativistic
particles is seen on their statistics. Indeed, one deduces from Relativistic Quantum
Mechanics that particles with integer spin are bosons, meaning that the wave func-
tion of a system consisting of N such particles is a symmetric function of their
positions (see [20], §11). A similar argument shows that the wave function of a
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system of N particles with half-integer spin is a skew-symmetric function of their
positions (see [20], §25); in other words, such particles are fermions. For instance
photons, α particles, hydrogen atoms, or π mesons are bosons, while electrons,
positrons, protons, neutrons etc... are fermions. That the wave function of a sys-
tem of N fermions is skew-symmetric implies Pauli’s exclusion principle: two (or
more) fermions cannot find themselves in the same quantum state. This apparently
innocuous statement has far-reaching physical consequences — for instance on the
structure of atoms, where successive electronic layers are filled with electrons of
opposite spins.

Returning to the discussion in the previous section, one immediately sees that
the mean-field Schrödinger equation (1.6), applies to bosons only, since it is a model
based on the assumption that the N particles are in the same quantum state char-
acterized by the wave function φ. This particular situation is referred to as “Bose
condensation", and is typical for bosons at zero temperature.

Consider next a system consisting of 2 fermions: its wave function takes the form
1√
2
(ψ1(x1)ψ2(x2)− ψ1(x2)ψ2(x1)) ,

where (ψ1, ψ2) is an orthonormal system of L2(RD). If V ≡ V (|x1−x2|) is a pairwise
interaction potential, the interaction energy of this system is∫∫

V (x1 − x2)|ψ1(x1)|2|ψ2(x2)|2dx1dx2

−
∫∫

V (x1 − x2)ψ1(x1)ψ1(x2)ψ2(x2)ψ2(x1)dx1dx2 .

(1.12)

In the expression above, the second integral is the “exchange interaction" (see [19],
§62, problem 1).

From this elementary computation, one easily arrives at the mean-field equation
for N fermions: the k-th particle is subject to the sum of all interactions of the form
(1.12) exerted by the N − 1 other particles:

i~∂tψk(t, x) = − ~2

2m
∆ψk(t, x)

+
1

N

N∑
l=1

ψk(t, x)

∫
V (|x− y|)|ψl(t, y)|2dy

− 1

N

N∑
l=1

ψl(t, x)

∫
V (|x− y|)ψk(t, y)ψl(t, y)dy , 1 ≤ k ≤ N .

(1.13)

This system of equations is known as the “time dependent Hartree-Fock equations"
(abbreviated as TDHF); the wave functions ψk go by the name of “orbitals" of the
system — we recall that the term “orbital” applies to that part of the wave function
that does not depend on the spin variables.

Perhaps the simplest method for obtaining this system consists in writing the
Hamiltonian as the sum of the kinetic energies of each particle, i.e.

N∑
k=1

~2

2m

∫
|∇xψk(t, x)|2dx ,
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and of all the terms of the form (1.12) corresponding to each pair of particles. Then
the evolution equation associated to the resulting Hamiltonian, say H, is

i~∂tψk =
δH

δψk(t, x)
.

The constant 1/N on the right-hand side of (1.13) scales the interaction so that in
the total energy (Hamiltonian H), both the kinetic and interaction energies are of
the same order of magnitude.

To emphasize the similarity between the TDHF equations and (1.9) — which
may not seem that obvious on the formulation involving orbitals — let us write the
operator form of (1.13). Let D ≡ D(t, x, y) be the density matrix defined as in
(1.11); assuming that the orbitals ψk satisfy (1.13), D(t, x, y) must satisfy

i~∂tD(t, x, y) =− ~2

2m
(∆x −∆y)D(t, x, y)

+

∫
(V (x− z)− V (y − z))D(t, x, y)D(t, z, z)dz

−
∫

(V (x− z)− V (y − z))D(t, x, z)D(t, z, y))dz .

(1.14)

In fact there are several variants of the TDHF equations presented here. In many
applications (to Chemistry, for instance), they govern the evolution of electrons. In
this case, the interaction potential V involved in equations (1.13) is the Coulomb
repulsive potential between negatively charged particles; it is also necessary to in-
clude other terms modelling the effect of the positively charged particles (nuclei,
ions...). In most cases, including these terms does not result in additional mathe-
matical difficulties, since they lead to linear perturbations of (1.13) in the electronic
orbitals. For this reason, we shall restrict our attention to the simplified model
(1.13) or (1.14) in this course.

1.2. First principle equations

Next we turn our attention to the fundamental equations describing the dynamics
of a system of N particles. In this course, we only consider non-relativistic parti-
cles. We are mainly concerned with quantum models; however, we also discuss the
derivation of Vlasov’s equation from the classical N -body problem, in the limit as
N → +∞.

1.2.1. The classical N-body problem

Consider a system of N point particles of mass m. In the absence of external
forces (such as gravity), these particles are subject only to binary interactions cor-
responding to a potential V ≡ V (x1, x2). (Obviously, V is symmetric: V (x1, x2) =
V (x2, x1)). If xk ≡ xk(t) denotes the position of the k-th particle, Newton’s sec-
ond law of motion for each particle is expressed in the form of the system of N
second-order differential equations:

mẍk = −
∑

1≤l 6=k≤N

∇xk
V (xk, xl) , 1 ≤ k ≤ N . (1.15)
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Equivalently, one can write the Hamiltonian of this system of N particles as the
total energy = kinetic energy + potential energy, i.e.

HN(x1, . . . , xN , ξ1, . . . , ξN) =
N∑
k=1

|ξk|2

2m
+

∑
1≤l<k≤N

V (xk, xl) . (1.16)

The system of second order differential equations (1.15) is equivalent to the system
of Hamilton’s equations

ẋk = ∇ξkHN , ξ̇k = −∇xk
HN . (1.17)

The integral curves of this system of first-order differential equations are the char-
acteristic curves of the Liouville equation

∂tFN + {HN , FN} :=

∂tFN +
N∑
k=1

∇ξkHN · ∇xk
FN −

N∑
k=1

∇xk
HN · ∇ξkFN = 0

(1.18)

In (1.18), FN ≡ FN(t, x1, . . . , xN , ξ1, . . . , ξN) can be seen as the joint probability
density of the system of N particles in the N -body phase space, i.e.

FN(t, x1, . . . , xN , ξ1, . . . , ξN)dx1 . . . dxNdξ1 . . . dξN

is the probability that the particle 1 is to be found in a volume dx1dξ1 of the 1-
particle phase space RD × RD around (x1, ξ1), that the particle 2 is to be found
in a volume dx2dξ2 of the 1-particle phase space RD ×RD around (x2, ξ2), and so
on. (In truth, the system of characteristics (1.17) can be used to propagate just
any function FN on the N -body phase space, but the only such function that is
physically meaningful is the joint probability density described above).

1.2.2. The quantum N-body problem

Next we describe the quantum analogue of (1.15). The quickest route to this model
is to quantize the Hamiltonian HN in (1.16), as we already did for the mean-field
Hamiltonian. Here, quantization means associating to a function defined on the N -
body phase space (RD

x ×RD
ξ )N an operator acting on the Hilbert space L2((RD

x )N)
— here, (RD

x )N is usually called the configuration space. For an arbitrary function,
there is more than one way of doing this; but for a function such as HN , quan-
tization means replacing the momentum variable ξk with the momentum operator
~
i
∇xk

. Therefore, the Hamiltonian function HN is transformed into the Hamiltonian
operator

HN =
N∑
k=1

− ~2

2m
∆xk

+
∑

1≤k<l≤N

V (xk, xl) . (1.19)

With the Hamiltonian (1.19), one writes the N -body Schrödinger equation

i~∂tΨN = HNΨN

=
N∑
k=1

− ~2

2m
∆xk

ΨN +
∑

1≤k<l≤N

V (xk, xl)ΨN .
(1.20)
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Here ΨN ≡ ΨN(t, x1, . . . , xN) is the wave-function of the system of N particles.
The analogue of the classical, N -body Liouville equation (1.18) is the N -body

von Neumann equation

i~∂tDN(t,XN , YN) = [HN , DN ](t,XN , YN)

=
N∑
k=1

− ~2

2m
(∆xk

−∆yk
)DN(t,XN , YN)

+
∑

1≤k<l≤N

(V (xk, xl)− V (yk, yl))DN(t,XN , YN) ,

(1.21)

with the notation XN = (x1, , . . . , xN), YN = (y1, . . . , yN), where the density matrix
is defined in terms of the wave-function by the formula

DN(t,XN , YN) = ΨN(t,XN)ΨN(t, YN) .

It is left as an easy exercise to check that, if ΨN is a solution of the Schrödinger
equation (1.20), then the density matrix defined by the formula above is a solution
of the von Neumann equation (1.21).

1.3. Another example of mean-field limit

There is another classical example of mean-field limit, namely the vorticity formu-
lation of the two-dimensional Euler equation of perfect, incompressible fluids. Let
u(t, x) = (u1(t, x1, x2), u2(t, x1, x2)) be the velocity field and ω = (∂x1u2 − ∂x2u1).
The Euler equation is

∂tu+ (u · ∇x)u+∇xp = 0 , div u = 0 .

Taking the curl of the equation above leads to

∂tω + divx(uω) = 0 , u = ∇⊥
x∆−1ω

where the orthogonal gradient is defined as ∇⊥ = (−∂x2 , ∂x1). The operator ∇⊥
x∆−1

— say, on T2 — is an integral operator of the form

u(t, x) = (K ? ω(t, ·))(x) ,

where K is the orthogonal gradient of the fundamental solution of ∆, so that the
vorticity formulation above of the Euler equation is recast as

∂tω + divx((K ? ω(t, ·))ω) = 0 . (1.22)

This is another example of mean-field PDE, very similar to the Vlasov-Poisson equa-
tion. In his famous article [28], Onsager got the idea of explaining two-dimensional
turbulence by the methods of Statistical Mechanics applied to (1.22), viewed as
the mean-field limit of a system of point vortices of equal strengths located at the
positions z1(t), . . . , zN(t) satisfying the system of ODEs

żk =
1

N

∑
1≤l 6=k≤N

K(Zk(t)− zl(t)) , 1 ≤ k ≤ N . (1.23)
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We refer to [9] and to [17] for a mathematical treatment of some of the main ideas
in Onsager’s paper.

This description is also used to design numerical methods for the two-dimensional
Euler equations (the so-called vortex method): we refer the interested reader to the
book by Marchioro-Pulvirenti [23] and to the references therein.

However, we shall not insist too much on this theme in these lectures, since the
N -vortex system (1.23) is not a fundamental principle of physics, but rather an
approximation of the physical model (1.22). Yet, in view of the simplicity of this
model, we shall use it instead of Vlasov’s equation in Appendices A-B to part I of
these lectures, to show Dobrushin’s stability estimate in terms of the Wasserstein
distance, with its application to the propagation of chaos.

1.4. The Boltzmann equation is not a mean-field equation

Vlasov’s equation belongs to the kinetic theory of plasmas. Indeed, it governs the
1-particle phase space density of a system consisting of a large number of like point
particles, which is precisely the fundamental notion that appeared in the founding
papers by Maxwell and Boltzmann.

However, not every kinetic model is a mean-field equation. The most famous of
such models, the Boltzmann equation itself, is not. It reads

(∂t + v · ∇x)f =

∫∫
R3×S2

(f ′f ′1 − ff1)|v · ω|dv1dω (1.24)

where f ≡ f(t, x, v) is the probability density of particles which, at time t, are
at position x with velocity v. The notations f1, f ′ and f ′1 designate respectively
f(t, x, v1), f(t, x, v′), and f(t, x, v′1), where

v′ = v − (v − v1) · ωω , v′1 = v1 + (v − v1) · ωω .

It is interesting to compare the Vlasov equation (1.1) with (1.24). Since the mo-
mentum ξ = mv where m is the particle mass, this amounts to comparing

−F · ∇ξf with
∫∫

R3×S2

(f ′f ′1 − ff1)|v · ω|dv1dω .

The latter term, which is Boltzmann’s collision integral, describes the loss of particles
with velocity v due to binary collisions with particles located at the same position
x with an arbitrary velocity v1, and the creation of particles with that velocity v
due to binary collisions involving one particle with velocity v′ and another particle
with velocity v′1, both located at that same position x. Here, particles are viewed
as hard spheres with radius 0 and the collisions are assumed to be perfectly elastic.
Hence, each particle is unaffected by all the other particles, unless it touches another
particle, in which case a collision of the type described above occurs. Because the
radius of these particles is negligible — or 0 — collisions involving more than two
particles are infinitely rare events and are discarded in Boltzmann’s equation.

By constrast, the former term, i.e. the mean-field term in Vlasov’s equation,
takes into account the effect on any given particle of all the other particles, and not
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only the effect of its closest neighbor. In this sense, one could think that Vlasov’s
equation is better adapted at describing long-range interactions, while Boltzmann’s
equation is better suited for short-range interactions. There is some truth in such
a statement, which however fails to capture the essential differences between both
models.

In fact, Boltzmann’s equation for hard spheres was rigorously derived by Lanford
[22] from the model analogous to (1.15) where the potential V is replaced with hard
sphere collisions, under some scaling assumption known as the Boltzmann-Grad
scaling. There is an unpublished proof by King [18] that does the same for some
class of short-range potentials. Vlasov’s equation is also derived from (1.15), but
under a very different scaling assumption.

Rather strikingly, both limits lead to very different qualitative behaviors. For
instance, it is believed (and indeed proved in a variety of cases by Desvillettes and
Villani [13]) that the long time limit of the Boltzmann equation in a compact domain
(e.g. on a flat 3-torus) leads to uniform Maxwellian distributions (i.e. Gaussian
distributions in the v variable with moments that are constant in the variable x).
Boltzmann’s H-Theorem states that, if f is a solution to the Boltzmann equation,
the quantity

−
∫∫

f(t, x, v) ln f(t, x, v)dxdv (1.25)

(which represents some form of entropy) increases until f reaches a Maxwellian
equilibrium. This is related to the notion of irreversibility in Statistical Mechanics,
however in a way that was very misleading in Boltzmann’s time, thereby leading to
bitter controversy.

On the contrary, this quantity is a constant if f is a solution to the Vlasov
equation — this is left as an easy exercise, whose solution is reminiscent of the proof
of Liouville’s theorem on Hamilton’s equation (i.e. the invariance of the measure
dxdξ under the Hamiltonian flow). Moreover, the long time limit of the solution of
Vlasov’s equation on a compact domain, say on a flat torus, is not yet understood,
and seems a rather formidable open problem. By the way, it is interesting to note
that the quantum analogue of (1.25) is

trace(D(t) lnD(t))

where D ≡ D(t) is the density operator — notice that D(t) lnD(t) is well defined
by the continuous functional calculus, since D(t) is a positive self-adjoint operator
and z 7→ z ln z a continuous function on R+.

Outline

Part I: From the classical N-body problem to Vlasov’s equation

Part II: From the quantum N-body problem to Hartree’s equation

Part III: From the quantum N-body problem to the TDHF equa-
tions
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Part I. From the classical N-body problem to Vlasov’s equa-
tion

In this section, we start from the classical N -body problem in Hamiltonian form:

ẋk = ξk ,

ξ̇k = − 1

N

∑
1≤k 6=l≤N

∇xV (xk, xl)
(I.1)

which is equivalent to (1.17) with a Hamiltonian

HN(x1, . . . , xN , ξ1, . . . , ξN) =
N∑
k=1

1
2
|ξk|2 +

1

N

∑
1≤l<k≤N

V (xk, xl) (I.2)

where the interaction potential V ≡ V (x, y) is scaled by the 1/N factor.
This situation is known as “the weak coupling scaling"; it naturally leads to

mean-field equations, since the force exerted on each particle is of order one as
N → +∞.

Perhaps the most convincing argument in favor of this scaling is as follows: since
the total kinetic energy is a sum of N terms and the total potential energy is a sum
of 1

2
N(N − 1) terms, the 1/N factor in multiplying the potential scales the kinetic

and potential energy in the Hamiltonian to be of the same order of magnitude as
N → +∞.

For notational simplicity, we set zk = (xk, ξk) ∈ RD ×RD, with k = 1, . . . , N .
The potential V : RD ×RD → R is assumed to satisfy

V ∈ C2
b (R

D ×RD) , V (x, y) = V (y, x) for all x, y ∈ RD . (I.3)

Under this assumption, the Hamiltonian vector field

Z 7→ (∇xk
HN(Z),−∇ξkHN(Z))T1≤k≤N

belongs to C1
b ((R

D ×RD)N , (RD ×RD)N).
By the Cauchy-Lipschitz theorem, for each Z0

N ∈ (RD × RD)N , there exists a
unique solution ZN(t) = (xk(t), ξk(t))1≤k≤N to the system of ODEs (1.17) such that
ZN(0) = Z0

N . This solution is denoted by ZN ≡ ZN(t, Z0
N) and is defined for all

times. Finally, ZN belongs to C1(R× (RD ×RD)N ; (RD ×RD)N).

Definition I.1. The empirical distribution of the system of N particles is the prob-
ability measure on RD ×RD defined as

fN,Z0
N
(t, ·) =

1

N

N∑
k=1

δzk(t,Z0
N ) .

This is a probability measure on the 1-particle phase space, and yet, it is equiva-
lent to know fN,Z0

N
or to know the trajectory of each of the particles considered. This

probability measure is not to be confused with the unknown in the Liouville equa-
tion (1.18), the latter being a probability measure on the N-particle phase space.
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We shall discuss the relation between these two probability measures in Appendix
B below.

For the time being, let us point at a nice feature of the empirical distribution:
like the solution f of the Vlasov’s equation — the target equation to be derived
from (1.17) — it is already defined on the 1-particle phase space, unlike the solution
of the Liouville equation (1.18), that lives in a different, bigger space.

In fact, fN,Z0
N

is a solution — in fact an approximate solution — to (1.1) in the
sense of distributions, and this statement is equivalent to the fact that (xk, ξk) is a
solution to (1.17).

Lemma I.2. Let ZN ≡ ZN(t, Z0
N) be the solution of (I.1) with initial data ZN(0, Z0

N) =
Z0
N . Then the empirical distribution fN,Z0

N
satisfies

∂tfN,Z0
N

+ ξ · ∇xfN,Z0
N

+ divξ(FN,Z0
N
(t, x)fN,Z0

N
)

=
1

N2

N∑
k=1

divξ(∇xV (xk, xk)δzk(t,Z0
N ))

(I.4)

in the sense of distributions, where

FN,Z0
N
(t, x) = −∇x

∫∫
V (x, y)fN,Z0

N
(t, dy, dξ) .

(In (I.4), ∇xV designates the derivative with respect to the first group of variables
in the product space RD ×RD).

Proof. Let φ ≡ φ(x, ξ) ∈ C∞
c (RD ×RD). Then

∂t〈fN,Z0
N
(t), φ〉 =

1

N

N∑
k=1

ẋk(t) · ∇xφ(xk(t), ξk(t))

+
1

N

N∑
k=1

ξ̇k(t) · ∇ξφ(xk(t), ξk(t))

=
1

N

N∑
k=1

ξk(t) · ∇xφ(xk(t), ξk(t))

+
1

N

N∑
k=1

FN,Z0
N
(t, xk(t)) · ∇ξφ(xk(t), ξk(t))

− 1

N2

N∑
k=1

∇xV (xk(t), xk(t)) · ∇ξφ(xk(t), ξk(t))

which gives the announced equality.

Next we study the limiting behavior of fN,Z0
N

as N → +∞; some uniform es-
timates are needed for this. In fact we need only the conservation of Hamilton’s
function under the Hamiltonian flow (1.17), expressed in the following manner:
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Lemma I.3. Let Z0
N = (x0

k, ξ
0
k)1≤k≤N . Assume that

sup
1≤k≤N

N≥1

|ξ0
k| < +∞ .

Then
sup
N≥1
t∈R

∫∫
|ξ|2fN,Z0

N
(t, x, ξ)dxdξ < +∞ .

Proof. The Hamiltonian HN is constant on the integral curves of the associated
Hamiltonian vector field; hence

1

N
HN(ZN(t, Z0

N)) =
1

N
HN(Z0

N) ≤ 1
2

sup
1≤k≤N,N≥1

|ξ0
k|2 + 1

2
‖V ‖L∞ .

On the other hand, one has∫∫
|ξ|2fN,Z0

N
(t, x, ξ)dxdξ =

1

N

N∑
k=1

|ξk(t)|2

≤ 2

N
HN(ZN(t, Z0

N)) + ‖V ‖L∞ ,

which implies the announced result.

Lemma I.4. Let V ∈ C2
r (R

D ×RD)1. Let Z0
N be such that

fN,Z0
N
(0) =

1

N

N∑
k=1

δ(Z0
N )k

→ f 0

weakly-* in M(RD ×RD)2 and

HN(Z0
N) = O(N)

as N → +∞. Then, the sequence fN,Z0
N

is relatively compact in C(R+;w∗−M(RD×
RD)) (for the topology of uniform convergence on compact subsets of R+) and each
of its limit points as N → +∞ is a solution f to the Vlasov equation

∂tf + ξ · ∇xf + F (t, x) · ∇ξf = 0 , x, ξ ∈ RD ,

F (t, x) = −∇x

∫∫
RD×RD

V (x, y)f(t, y, ξ)dξdy .
(I.5)

in the sense of distributions, with initial data

f
∣∣
t=0

= f 0 .

1We denote by Ck
r (RN ) the space of Ck functions f on RD such that, for all n ≥ 0 and all

p = 1, . . . , k, |Dpf(x)| = O(|x|−n) as |x| → +∞.
2We denote by M(X) the space of Radon measures on a locally compact space X; its weak-*

topology is the one defined by duality with test functions in Cc(X).
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Proof. For each t ≥ 0, fN,Z0
N
(t) is a sequence of probability measures on RD ×RD.

Hence fN,Z0
N

is weakly-* relatively compact in M(R+ × RD × RD). Denote by
fN ′,Z0

N′
be a subsequence of fN,Z0

N
weakly-* converging to f . Because of Lemma I.3,∫

fN ′,Z0
N′

(t, x, ξ)dξ →
∫
f(t, x, ξ)dξ

weakly-* in M(R+ ×RD) as N ′ → +∞.
On the other hand, any solution to the Hamiltonian system (I.1) satisfies the

bound
sup
t≥0

1≤k≤N

|ẍk(t)| ≤ ‖∇xV ‖L∞ .

From this bound, an easy argument shows that, for each φ ∈ Cc(R
D × RD), the

sequence of functions
t 7→ 〈fN ′Z0

N′
(t), φ〉 (I.6)

is equicontinuous on compact subsets of R+. By Ascoli’s theorem

FN ′,Z0
N′
→
∫∫

−∇xV (x, y)f(t, y, η)dηdy

uniformly on compact subsets of R+ ×RD as N ′ → +∞. Thus

FN ′,Z0
N′
fN ′,Z0

N′
→ f(t, x, ξ)

∫∫
−∇xV (x, y)f(t, y, η)dηdy

in the sense of distributions on R+ ×RD ×RD. Hence f solves Vlasov’s equation
(1.1) in the sense of distributions. Also, f

∣∣
t=0

= f 0 because of the equicontinuity of
(I.6).

Notice that classical solutions to the Vlasov equation (I.5) are unique- ly defined
by their initial data, as shown by the following

Lemma I.5. Let V ∈ C2
r (R

D ×RD), and let f 0 ∈ C1(RD ×RD) be such that

f 0 ≥ 0 ,

∫∫
(1 + |ξ|)2f 0(x, ξ)dxdξ,+∞ .

Then the Vlasov equation (I.5) has a unique classical solution f ∈ C1(R+ ×RD ×
RD) with initial data

f
∣∣
t=0

= f 0 .

Any g ∈ C(R+, w
∗−M(RD×RD)) that solves (1.1) in the sense of distributions on

R∗
+×RD×RD and satisfies g

∣∣
t=0

= f 0 must coincide with f on all of R∗
+×RD×RD.

The (easy) proof of this Lemma is left to the reader (we shall prove a slightly
more general result later).

Collecting the results in Lemmas I.4 and I.5, we arrive at the following Theo-
rem, proved by several authors (Neunzert [26], Braun-Hepp [8], Dobrushin [14] and
Maslov [24]).
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Theorem I.6. Let V ∈ C2
r (R

D × RD). Start from a sequence Z0,N
N of initial

configurations of N particles such that

1

N

N∑
k=1

δ(Z0,N
N )k

→ f 0 in w∗ −M(RD ×RD)

and
HN(Z0,N

N ) = O(N) .

Then
1

N

N∑
k=1

δzk(t,Z0,N
N ) → f(t, ·, ·) in w∗ −M(RD ×RD)

uniformly on compacts subsets of R+, where f is the solution to the Vlasov equation
(1.1) with initial data f 0.

Hence, Vlasov’s equation (1.1) is shown to be the mean-field limit of the N -body
Hamiltonian system (1.17) as N → +∞.

In fact the proof given here reduces to the continuous dependence on initial data
of the solution to Vlasov’s equation.

I.A. Mean-field PDEs and Wasserstein distance

In this first appendix to Part I, we present Dobrushin’s beautiful idea of proving
stability of first order mean-field PDEs in the Wasserstein distance.

Definition I.7. Let µ and ν be two probability measures on RD. The Wasserstein
distance between µ and ν is

W (µ, ν) = inf{E|X − Y | |X (resp. Y ) has distribution µ (resp. ν)}

In other words, let E(µ, ν) be the set of probability measures P on RD × RD

such that the image of P under the projection on the first factor (resp. on the
second factor) is µ (resp. ν). Then

W (µ, ν) = inf
P∈E(µ,ν)

∫∫
|x− y|P (dxdy) .

Consider next the mean-field, 1st order PDE, for the unknown ρ ≡ ρ(t, z),

∂tρ+ divz((K ?z ρ)ρ) = 0 , ρ|t=0 = ρ0 . (I.7)

where K is a Lipschitz continuous vector-field on RD and ?z denotes the convolution
in z. This is model is analogous to the vorticity formulation of the two-dimensional
Euler equation (see section 1 above), except that the function K in that case is
singular at the origin. In the context of vortex method for the Euler equation, it
is customary to replace the original kernel K by a truncation of it near the origin
— this is called the “vortex blob" method, since it amounts to assign a positive
thickness to each vortex center in the system considered: see [23].
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The associated system of characteristics is

ż(t, a, ρ0) = (K ?z ρ(t))(z(t, a, ρ
0)) ,

z(0, a, ρ0) = a , ρ(t) = z(t, ·, ρ0)∗ρ
0 .

(I.8)

(We recall the following usual notation for transportation of measure: given two
measurable spaces (X,M) and (Y,N ), a measurable map f : X → Y and a measure
µ on (X,M), one defines a measure ν on (Y,N ) called the “image of µ by f" and
denoted by ν = f∗µ, by the formula ν(B) = µ(f−1(B)) for B ∈ N ). In other words

ż(t, a, ρ0) =

∫
K(z(t, a, ρ0)− z(t, a′, ρ0))ρ0(da′) . (I.9)

Let µ ≡ µ(t, dz) and ν ≡ ν(t, dz) be two solutions to the mean-field PDE (I.7)
in C(R+, w

∗ −M1(RD))3 Then

Dobrushin’s inequality

W (µ(t), ν(t)) ≤ W (µ0, ν0)e2t‖K‖Lip , t ≥ 0 .

Proof. Let P 0 ∈ E(µ0, ν0); define P (t) to be the image of P 0 under the map (a, b) 7→
(z(t, a, µ0), z(t, b, ν0)). Then P (t) ∈ E(µ(t), ν(t)). Set

Φ(t) =

∫∫
|a− b|P (t, dadb) =

∫∫
|z(t, a, µ0)− z(t, b, ν0)|P 0(dadb) .

Observe that

z(t, a, µ0) = a+

∫ t

0

∫
K(z(s, a, µ0)− z(s, a′, µ0))µ0(da′)ds

= a+

∫ t

0

∫∫
K(z(s, a, µ0)− z(s, a′, µ0))P 0(da′db′)ds

and similarly

z(t, b, ν0) = b+

∫ t

0

∫
K(z(s, b, ν0)− z(s, b′, ν0))ν0(db′)ds

= b+

∫ t

0

∫∫
K(z(s, b, ν0)− z(s, b′, ν0))P 0(da′db′)ds ,

so that
|z(t, a, µ0)−z(t, b, ν0)| ≤ |a− b|

+

∫ t

0

∫∫
‖K‖Lip

∣∣(z(s, a, µ0)− z(s, a′, µ0))

− (z(s, b, ν0)− z(s, b′, ν0))
∣∣P 0(da′db′)ds

≤ |a− b|+ ‖K‖Lip
∫ t

0

|z(s, a, µ0)− z(s, b, ν0))|ds

+ ‖K‖Lip
∫ t

0

∫∫
|z(s, a′, µ0)− z(s, a′, ν0))|P 0(da′db′)ds .

3M1(X) denotes the set of probability measures on X.
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Integrating both sides of this inequality with respect to P 0(dadb) leads to∫∫
|z(t, a, µ0)− z(t, b, ν0)|P 0(dadb) ≤

∫∫
|a− b|P 0(dadb)

+ ‖K‖Lip
∫ t

0

∫∫
|z(s, a, µ0)− z(s, b, ν0))|P 0(dadb)ds

+ ‖K‖Lip
∫ t

0

∫∫ ∫∫
|z(s, a′, µ0)− z(s, b′, ν0))|P 0(da′db′)P 0(dadb)ds

which implies that∫∫
|z(t, a, µ0)− z(t, b, ν0)|P 0(dadb) ≤

∫∫
|a− b|P 0(dadb)

+2‖K‖Lip
∫ t

0

∫∫
|z(s, a, µ0)− z(s, b, ν0))|P 0(dadb)ds

or in other words

Φ(t) ≤ Φ(0) + 2‖K‖Lip
∫ t

0

Φ(s)ds .

By Gronwall’s inequality
Φ(t) ≤ Φ(0)e2t‖K‖Lip

and taking the infimum of both sides of this inequality over E(µ0, ν0) leads to
Dobrushin’s inequality.

At this point, Dobrushin’s inequality can be used in two different ways in the
proof of the mean-field limit:

• it proves in particular the uniqueness of the solution to (I.7) within the class
C(R+, w

∗ −M1(RD));

• if one takes ν0,N to be of the form

ν0,N =
1

N

N∑
k=1

δz0,N
k

,

then for each k ≥ 1, zNk (t, z0,N
k , ν0,N) is the solution to the system of ODE

˙zNk (t, z0,N
k , ν0,N) =

1

N

N∑
l=1

K(zNk (t, z0,N
k , ν0,N)− zNl (t, z0,N

l , ν0,N))

zNk (0, z0,N
k , ν0,N)= z0,N

k ;

then, by setting

νN(t) =
1

N

N∑
k=1

δzN
k (t,z0,N

k ,ν0,N ) ,

a direct application of Dobrushin’s inequality shows that

W (µ(t), νN(t)) → 0 for each t > 0 as N → +∞

if W (µ0, ν0,N) → 0. Since the Wasserstein distance metricizes the weak-*
topology of M1(RD), this gives another proof of the mean-field limit as in
Theorem I.6
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I.B. Chaotic sequences

In Theorem I.6, we proved the convergence of the empirical distribution of particles
to the solution of Vlasov’s equation in the large N limit and for the weak coupling
scaling.

Even if the empirical distribution is a natural object encoding the motion of
N particles under the Hamiltonian flow of (I.1), it is a probability measure on the
1-particle phase space. Another, equally natural object to consider is the joint dis-
tribution of the same system of N undistinguishable particles which is a probability
measure on the N -particle phase space.

The next Lemma explains how both objects are related.
More generally, this Appendix is aimed at explaining in detail the respective

roles of the N -particle and the 1-particle phase spaces in the mean-field limit.

Lemma I.8. Let f ∈ M1(RD) and, for all N ≥ 1, FN ∈ M1((RD)N) symmetric
in all variables — i.e. FN is invariant under the transformation

(x1, . . . , xN) 7→ (xσ(1), . . . , xσ(N))

for each σ ∈ SN . The two following statements are equivalent
(1) for each ε > 0 and each φ ∈ Cc(RD),

FN({(x1, . . . , xN) ∈ (RD)N | |〈 1
N

N∑
k=1

δxk
− f, φ〉| ≥ ε}) → 0

as N → +∞;
(2) the sequence FN :j of marginal distributions of FN — i.e. FN :j is the image of
FN under the projection (x1, . . . , xN) 7→ (x1, . . . , xj) — satisfies

FN :j → f⊗j weakly-* , as N → +∞ .

Proof. Let us show how (1) implies (2). First, (1) clearly implies that

EFN

∣∣∣∣∣〈 1
N

N∑
k=1

δxk
− f, φ〉

∣∣∣∣∣
j

→ 0 for all j ≥ 1

as N → +∞. For j = 1, observe that, by symmetry of FN ,

EFN 〈 1
N

N∑
k=1

δxk
− f, φ〉 = EFN

(
1
N

N∑
k=1

φ(xk)

)
− 〈f, φ〉

= EFN :1φ− 〈f, φ〉
and hence

FN :1 → f weakly-* as N → +∞ .

For j = 2

EFN

(
〈 1
N

N∑
k=1

δxk
− f, φ〉

)2

= EFN

(
1
N

N∑
k=1

φ(xk)

)2

− 2〈f, φ〉EFN

(
1
N

N∑
k=1

φ(xk)

)
+ 〈f, φ〉2 .
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On the other hand

EFN

(
1
N

N∑
k=1

φ(xk)

)2

=
1

N2
EFN

N∑
k=1

φ(xk)
2

+
1

N2
EFN

∑
1≤k 6=l≤N

φ(xk)φ(xl)

=
1

N
EFN :1φ2 +

N(N − 1)

N2
EFN :2φ⊗2

so that, by using again the symmetry of FN ,

EFN

(
〈 1
N

N∑
k=1

δxk
− f, φ〉

)2

=
N(N − 1)

N2
EFN :2φ⊗2

−2〈f, φ〉EFN :1φ+ 〈f, φ〉2 +
1

N
EFN :1φ2

(I.10)

Hence, if

EFN

(
〈 1
N

N∑
k=1

δxk
− f, φ〉

)2

→ 0

as N → +∞, one has

FN :2 → f⊗2 weakly-* as N → +∞ .

The extension to js larger than 2 is done in the same manner.
Conversely, assume that (2) holds for j = 1, 2. By the Bienayme-Chebyshev

inequality

FN({(x1, . . . , xN) ∈ (RD)N | |〈 1
N

N∑
k=1

δxk
− f, φ〉| ≥ ε})

≤ 1

ε2
EFN 〈 1

N

N∑
k=1

δxk
− f, φ〉2

so that, because of (I.10)

FN({(x1, . . . , xN) ∈ (RD)N | |〈 1
N

N∑
k=1

δxk
− f, φ〉| ≥ ε})

=
1

ε2

(
N(N − 1)

N2
EFN :2φ⊗2 − 2〈f, φ〉EFN :1φ+ 〈f, φ〉2 +

1

N
EFN :1φ2

)
.

Keeping ε > 0 fixed and letting N → +∞ leads to (1) because of the limits

EFN :1φ→ 〈f, φ〉 , EFN :2φ⊗2 → 〈f, φ〉2

as N → +∞.
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Definition I.9. A sequence FN ∈M1(XN) that satisfies either one of the equivalent
statements in Lemma I.8 is called “chaotic".

An obvious example of chaotic sequence is FN = f⊗N . In this case, and for
X = RD, the condition (1) in Lemma I.8 can be improved as follows.

Define Ω = (RD)N
∗ to be the space of RD-valued sequences (an)n≥1, endowed

with the σ-algebra generated by cylinders 4. The infinite tensor product F∞ = f⊗N∗

defines a probability measure on Ω with that σ-algebra.

Lemma I.10. For F∞-a.e. a = (a1, a2, a3, . . .) ∈ Ω, the empirical measure

fN,a =
1

N

N∑
k=1

δak
→ f weakly-* on RD .

In the particular case of F∞ = f⊗N∗ considered here, condition (1) in Lemma
I.8 can be recast as

lim
N→+∞

F∞({a ∈ Ω | |〈fN,a − f, φ〉| > ε}) = 0

for each ε > 0; in other words, it expresses that, for all φ ∈ Cc(RD)

〈fN,a, φ〉 → 〈f, φ〉 in F∞-probability as N → +∞,

while Lemma I.10 says that

〈fN,a, φ〉 → 〈f, φ〉 F∞-a.e. as N → +∞ ,

which is a stronger statement (we recall that a.e.- convergence is a stronger notion
of convergence than convergence in probability — more precisely, a.e.-convergence
implies convergence in probability, while convergence in probability implies only the
a.e.-convergence modulo extraction of subsequences).

Proof. Pick φ ∈ Cc(R
D) and set Yn(a) = φ(an). Clearly, the random variables

(Yn)n≥1 are independent on Ω and identically distributed (under f). By the strong
law of large numbers,

1

N

N∑
n=1

Yn(a) → EF∞(Yn) = 〈f, φ〉 F∞-a.e. on Ω as N → +∞ .

By a classical separability argument, one can choose the F∞-negligible set in the
statement above to be independent of φ, which gives the announced statement.

Let us go back to our original problem, namely the mean-field limit of a system
of N particles. Our aim is to apply the notion of chaotic sequence to that problem.
We shall do so for the first-order mean-field PDE on which we explained Dobrushin’s

4i.e. sets of the form
∏

n≥1 Bn, with Bn a Borel set in RD for each n ≥ 1 and Bn = RD for all
but a finite number of ns.
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inequality, rather than on the Vlasov equation itself, the extension of arguments to
this latter case being obvious.

Given Z0
N = (z0

1 , . . . , z
0
N), let ZN(t, Z0

N) = (z1(t, Z
0
N), . . . , zN(t, Z0

N)) be the solu-
tion of the system of ODEs

żk(t, Z
0
N) =

1

N

N∑
l=1

K(zk(t, Z
0
N)− zl(t, Z

0
N))

zk(0, Z
0
N) = z0

k , k = 1, . . . , N .

(I.11)

We designate by fN,Z0
N
(t) the empirical measure

fN,Z0
N
(t) =

1

N

N∑
k=1

δzk(t,Z0
N ) .

Given f 0 ∈ M1(RD), we denote by FN(t) the image of (f 0)⊗N under the map
Z0
N 7→ ZN(t, Z0

N), i.e.
FN(t) = ZN(t, ·)∗(f 0)⊗N .

Theorem I.11. Assume that K is Lipschitz continuous on RD, and let f 0 ∈
M1(RD). Then, for each n ≥ 1 and each t > 0,

FN :n(t) → f(t)⊗n weak-* as N → +∞

where f(t) is the solution to the mean-field PDE

∂tf + divz((K ?z f)f) = 0 , f
∣∣
t=0

= f 0 . (I.12)

Proof. Let h ∈ Cc((RD)m); one has

EFN (t)〈(f 0
N,Z0

N
)⊗m, h〉 = EFN (0)〈(fN,Z0

N
(t))⊗m, h〉 = EF∞〈(fN,•(t))⊗m, h〉

in the notation of Lemma I.10.
For F∞-a.e. a ∈ Ω, Lemma I.10 implies that

fN,a(0) → f 0 weakly-* as N → +∞ .

By the analogue of Theorem I.6 adapted to the mean-field limit of (I.11) —
which follows directly from Dobrushin’s inequality — one has

fN,a(t) → f(t) weakly-* as N → +∞

for F∞-a.e. a ∈ Ω and each t > 0.
Hence, given any h ∈ Cc((RD)m),

〈(fN,a(t))⊗m, h〉 → 〈f(t)⊗m, h〉 weakly-* as N → +∞

for F∞-a.e. a ∈ Ω and each t > 0. On the other hand, one has

|〈(fN,a(t))⊗m, h〉| ≤ ‖h‖L∞
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so that, by dominated convergence

EFN (t)〈(f 0
N,Z0

N
)⊗m, h〉 = EF∞〈(fN,•(t))⊗m, h〉 → 〈f(t)⊗m, h〉

as N → +∞, for each t > 0.
Using the Bienayme-Chebyshev inequality as in the proof of Lemma I.8 shows

that, for each t > 0, FN(t) satisfies condition (1) in that Lemma. Hence it must
also satisfy condition (2) there, which is precisely our claim.

In other words, if FN(t) is the solution to the Liouville equation

∂tFN +
∑

1≤k,l≤N

divzk
(K(zk − zl)FN) = 0 ,

FN(0) = (f 0)⊗N ,

with f 0 ∈ M1(RD), then, for each t > 0, FN(t) is a chaotic sequence and its
marginal distributions satisfy

FN :n(t) → f(t)⊗n weakly-* as N → +∞
for each t > 0, where f is the solution to (I.12). Thus, the fact that FN(0) = (f 0)⊗N ,
i.e. that FN(0) is the simplest chaotic sequence imaginable, implies that FN(t) is
chaotic for all t > 0. This property is called propagation of chaos and is of paramount
importance in Statistical Mechanics.

Part II. From the quantum N-body problem to Hartree’s
equation

In this section, we explain how the nonlinear, mean-field Schrödinger equation (1.6)
can be derived from the linear N -body Schrödinger equation (1.20). One way of
doing this is through the weak-coupling scaling similar to (I.2) in the classical case.
Hence the potential V is replaced by V/N in (1.19), leading to

HN =
N∑
k=1

−1
2
∆xk

+
1

N

∑
1≤k<l≤N

V (xk, xl) . (II.1)

(Here, for simplicity, we switch to dimensionless variables, so that ~ = m = 1). We
assume that the potential V in (II.1) satisfies

V ∈ L∞(RD ×RD) , V (x, y) = V (y, x) ∈ R for a.e. x, y ∈ RD . (II.2)

The quantum, N -body HamiltonianHN in (II.1) is an unbounded self-adjoint opera-
tor on L2((RD)N) with domain H2((RD)N). By Stone’s theorem, − i

~HN generates
a unitary group on L2((RD)N). Thus, given any Ψ0

N ∈ H2((RD)N), e−itHN/~Ψ0
N

defines the only classical solution ΨN to the linear N -body Schrödinger equation

i∂tΨN = HNΨN = −1
2

N∑
k=1

∆xk
ΨN

+
1

N

∑
1≤k<l≤N

V (xk − xl)ΨN(t,XN , YN)

ΨN

∣∣
t=0

= Ψ0
N .

(II.3)
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II.1. The quantum BBGKY hierarchy

We shall work with density operators rather than with wave functions. If ΨN solves
the N -body Schrödinger equation (II.3), then the density operator

DN(t) := |ΨN(t, ·)〉〈ΨN(t, ·)| (II.4)

— i.e. the integral operator on on L2((RD)N) with integral kernel

DN(t,Xn, YN) = ΨN(t,XN)ΨN(t, YN)

— solves the N -body von Neumann equation

i∂tDN = [HN , DN ] ,

DN

∣∣
t=0

= |Ψ0
N〉〈Ψ0

N | .
(II.5)

In terms of the density matrix, this equation becomes

i∂tDN = −1
2

N∑
k=1

(∆xk
−∆yk

)DN

+
1

N

∑
1≤k<l≤N

(V (xk − xl)− V (yk − yl))DN(t,XN , YN)

DN

∣∣
t=0

= Ψ0
N(XN)Ψ0

N(YN) .

(II.6)

(Throughout this course, we designate by the same letter the integral operatorDN(t)
— the density operator — and its integral kernel — the density matrix).

Below, we assume that the initial data is factorized, i.e. that

Ψ0
N(x1, . . . , xN) =

N∏
k=1

ψ0(xk) (II.7)

where ψ0 ∈ H2(RD). Because of the interaction modelled by the binary potential
V , ΨN(t, ·) is usually not factorized for t > 0.

However, the symmetry

Ψ0
N(x1, . . . , xN) = Ψ0

N(xσ(1), . . . , xσ(N)) , σ ∈ SN

is obviously propagated by e−itHN/~:

ΨN(t, x1, . . . , xN) = ΨN(t, xσ(1), . . . , xσ(N)) , t > 0 , σ ∈ SN (II.8)

At this point, we must depart from the strategy used for the limit that leads
from the classical N -body problem to Vlasov’s equation. Indeed, there is no quan-
tum analogue of the empirical distribution — or equivalently, whatever quantum
analogue of the empirical distribution one may think of is in general not a solution
to Hartree’s equation

i∂tψ(t, x) + 1
2
∆xψ(t, x) = ψ(t, x)

∫
V (x− y)|ψ(t, y)|2dy ,

ψ(0, x) = ψ0(x) ,

(II.9)
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Thus, Hartree’s approximation is not a statement on the continuous dependence
upon initial data of the solution to Hartree’s equation.

Fortunately, the discussion in Appendix B, and especially Lemma I.8 there sug-
gests another strategy, namely to study the sequence of marginal distributions com-
ing from the N -particle density. In the quantum case, one must consider density
matrices — i.e. operators — instead of functions.

For n = 1, . . . , N , define DN :n(t), the n-th reduced density matrix of DN , by the
formula

DN :n(t,Xn, Yn) =

∫
DN(t,Xn, Z

N
n , Yn, Z

N
n )dZN

n (II.10)

with the notation
ZN
n = (zn+1, . . . , zN) , n < N . (II.11)

Since the sequence of DN :n’s are the objects of interest, it is natural to seek an
equation — or more exactly a system of equations — governing their evolution.
This is done in the following manner: reducing the N − n variables to the diagonal
and integrating them out, one finds that

i∂tDN :n(t,Xn, Yn) + 1
2

n∑
k=1

(∆xk
−∆yk

)DN :n(t,Xn, Yn)

=
1

N

∑
1≤k<l≤n

(V (xk − xl)− V (yk − yl))DN :n(t,Xn, Yn)

+
1

N

∑
1≤k≤n

n+1≤l≤N

∫
(V (xk − zl)− V (yk − zl))DN(t,Xn, Z

N
n , Yn, Z

N
n )dZN

n

+
1

N

∑
n+1≤k<l≤N

∫
(V (zk − zl)−V (zk − zl))DN(t,Xn, Z

N
n , Yn, Z

N
n )dZN

n

The last term on the right-hand side of the above equality is obviously 0; the second
one can be simplified in the following manner. Observe that, by the symmetry (II.8),
one has

DN(t, xσ(1), . . . , xσ(N), yσ(1), . . . , yσ(N)) = DN(t,XN , YN) ,

for all σ ∈ SN , XN , YN ∈ (RD)N .
(II.12)

Hence, if l 6= n+ 1, in the integral∫
(V (xk − zl)− V (yk − zl))DN(t,Xn, Z

N
n , Yn, Z

N
n )dZN

n

we change variables by (zl, zn+1) 7→ (zn+1, zl), leaving all the other variables un-
changed. Because of the symmetry (II.12), this does not change the density matrix,
so that the above integral satisfies∫

(V (xk − zl)− V (yk − zl))DN(t,Xn, Z
N
n , Yn, Z

N
n )dZN

n

=

∫
(V (xk − zn+1)− V (yk − zn+1))DN(t,Xn, Z

N
n , Yn, Z

N
n )dZN

n

=

∫
(V (xk−zn+1)−V (yk−zn+1))DN :n+1(t,Xn, zn+1, Yn, zn+1)dzn+1
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after integrating over ZN
n+1. Hence the system of equations that govern the reduced

density matrices DN :n is

i∂tDN :n(t,Xn, Yn) + 1
2

n∑
k=1

(∆xk
−∆yk

)DN :n(t,Xn, Yn)

=
N − n

N

n∑
k=1

∫
(V (xk−z)−V (yk−z))DN :n+1(t,Xn, z, Yn, z)dz

+
1

N

∑
1≤k<l≤n

(V (xk − xl)− V (yk − yl))DN :n(t,Xn, Yn) , n ≥ 1

(II.13)

with the convention

DN :N = DN , DN :n ≡ 0 for all n > N . (II.14)

This system of equations is known as the “Bogolyubov-Born-Green-Kirkwood-Yvon"
(abbreviated as BBGKY) hierarchy".

Notice that the N -th equation in this hierarchy is nothing but the N -body von
Neumann equation (II.6); hence the N − 1 first equations in the BBGKY hierar-
chy contain no additional information. This observation might cast doubts on the
relevance of the BBGKY hierarchy.

However, here is how this hierarchy is used to establish the mean-field limit.
Keeping n fixed, we let N → +∞ in the n-th equation of the BBGKY hierarchy,
assuming that

DN :n(t,Xn, Yn) → Dn(t,Xn, Yn) as N → +∞

in some sense that will be described later. Taking limits in (II.13), we arrive at the
infinite BBGKY hierarchy

i∂tDn(t,Xn, Yn) + 1
2

n∑
k=1

(∆xk
−∆yk

)Dn(t,Xn, Yn)

=
n∑
k=1

∫
(V (xk−z)−V (yk−z))Dn+1(t,Xn, z, Yn, z)dz , n ≥ 1

(II.15)

since the second term on the right-hand side of (II.13) is (formally) of orderO(n2/N),
while N−n

N
→ 1 as N → +∞, so that the first term on the right-hand side of (II.13)

is (formally) of order n. Because of the assumption (II.7) on the initial data, one
has

Dn(0, Xn, Yn) =
n∏
k=1

ψ0(xk)ψ0(yk) . (II.16)

In this infinite hierarchy, there is no particular equation that entails all the other,
as is the case of the finite BBGKY hierarchy.

However, here is a fundamental property of the infinite hierarchy.
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Proposition II.1. Let ψ be the solution to Hartree’s equation (II.9) with ‖ψ0‖L2 =
1. Then the sequence of density matrices

Fn(t,Xn, Yn) =
n∏
k=1

ψ(t, x)ψ(t, y) (II.17)

is a solution to the infinite BBGKY hierarchy (II.15) with initial data (II.16).

The proof of this Proposition is done by inspection. Observe that the sequence
of functions (II.17) is not a solution to the BBGKY hierarchy (II.13) for finite N :
in other words, factorization appears in the limit as N → +∞ only.

Since one can expect to prove that the sequence of solutions to the BBGKY
hierarchy (II.13) converges to solutions of (II.15), the observation above suggests
the natural question: is the factorized solution (II.17) the unique solution to (II.15)
with initial data (II.16)?

II.2. Handling the BBGKY hierarchy with the Cauchy-Kova-
levski theorem

It is of paramount importance for the rest of the discussion to have a clear picture
of this notion of infinite hierarchy of equations — and especially of its meaning.

Start from the simplest nonlinear ODE — Riccati equation — in the form

ẏ = y2 , y(0) = yin , (II.18)

whose solution is

y(t, x) =
yin

1− tyin
, t <

1

yin
. (II.19)

We embed this nonlinear ODE into an infinite hierarchy of linear ODEs by the
prescription

xn(t) = y(t)n , n ≥ 1 ,

which leads to

ẋn(t) = nxn+1(t) , xn(0) = (yin)n , n ≥ 1 . (II.20)

The simple form of this hierarchy suggests considering the generating function

f(t, z) =
∑
n≥1

xn+1(t)z
n . (II.21)

As long as z remains in the open disk of convergence and xn is differentiable at t,
one has

∂tf(t, z) =
∑
n≥0

(n+ 1)xn+2(t)z
n = ∂z

(∑
n≥0

xn+2(t)z
n+1

)
= ∂zf(t, z) ,

while

f(0, z) =
∑
n≥0

(yin)n+1zn =
yin

1− zyin
.
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Hence

f(t, z) = f(0, z + t) =
yin

1− (z + t)yin
.

In particular, the solution y(t) to Riccati’s equation (II.18) is found as

y(t) = x1(t) = f(t, 0) =
yin

1− (z + t)yin
.

This is certainly the most difficult way to solve (II.18), yet this discussion suggests
that the interaction term in n-th equation of the infinite hierarchy (II.15), namely

n∑
k=1

∫
(V (xk−z)−V (yk−z))Dn+1(t,Xn, z, Yn, z)dz ,

should be regarded as a first-order differential operator acting on the string of un-
knowns Dn.

The appropriate mathematical tool to do this is the following abstract variant
of the Cauchy-Kovalevski theorem, due to Nirenberg [27] and Nishida [29]

Theorem II.2. Let Bρ(0 < ρ < ρ0) be a decreasing scale of Banach spaces, and let
F (t, u) be a continuous mapping defined for u ∈ Bρ, ‖u‖ρ ≤ R, |t| < η (R > 0, η > 0
are fixed) with values in Bρ′ for every ρ, ρ′ such that 0 < ρ′ < ρ < ρ0. Assume that

(1) ‖F (u, t)− F (v, t)‖ρ′ ≤ C‖u− v‖ρ/(ρ− ρ′);
(2) ‖F (0, t)‖ρ ≤ const/(ρ0 − ρ).

Then there exists a positive constant a such that the problem

u̇(t) = F (t, u(t)) , |t| < a(ρ0 − ρ)

u(0)= 0

has a unique solution u ∈ C([−a(ρ0 − ρ), a(ρ0 − ρ)], Bρ), for every ρ such that
0 < ρ < ρ0.

We refer to Nishida’s original article ([29]) for an elegant proof of this result.
Next we explain how to apply this Cauchy-Kovalevski theorem to an infinite

hierarchy as (II.15). We do so by considering an abstract variant of (II.15), as
follows:

u̇n(t) = Anun(t) + Cn,n+1un+1(t) , n ≥ 1 ,

un(0) = uinn ,
(II.22)

Here An is an unbounded operator on a Banach space En — whose norm is denoted
by ‖ · ‖n — and generates a group of isometries on En denoted by Sn(t). On the
other hand, for each n ≥ 1, one has Cn,n+1 ∈ L(En+1, En) with

‖Cn,n+1‖L(En+1,En) ≤ Cn , n ≥ 1 (II.23)

where C > 0 is some positive constant.
With these data, we define a scale of Banach spaces Bρ for ρ > 0 by

Bρ =

{
(vn)n≥1 ∈

∏
n≥1

En
∣∣∣ ‖v‖ρ =

∑
n≥1

ρn‖vn‖n < +∞

}
.
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We next define F (t, v) = (Sn(−t)Cn,n+1Sn+1(t)vn+1)n≥1 for t ∈ R. Observe that

‖F (t, v)‖ρ0 ≤ C
∑
n≥1

nρn0‖vn‖n ≤ C
∑
n≥1

ρn1 − ρn0
ρ1 − ρ0

‖vn‖n

≤ C

ρ1 − ρ0

∑
n≥1

ρn1‖vn‖n =
C‖v‖ρ1
ρ1 − ρ0

.

In terms of vn(t) = Sn(−t)un(t), the hierarchy (II.22) is recast as

v̇n(t) = Sn(−t)Cn,n+1Sn+1(t)vn+1(t) , vn(0) = uinn , n ≥ 1 ,

in other words,
v̇(t) = F (t, v(t)) , v(0) = (uinn )n≥1 .

Hence we arrive at the following uniqueness result:

Proposition II.3. Let (un(t))n≥1 be a solution to (II.22) such that, for each T > 0,
there exists r(T ) > 0 satisfying

un(0) = 0 , and sup
t∈[0,T ]

‖un(t)‖n ≤ r(T )n , n ≥ 1 . (II.24)

Then
un(t) = 0 for each t ∈ [0, T ] and each n ≥ 1 .

II.3. A digression on trace-class operators

In order to apply the discussion above to the BBGKY hierarchy (II.13), we need to
recall a few basic facts on trace-class operators.

Let H be a separable Hilbert space; we denote by L(H) the algebra of bounded
operators on H and by K(H) the set of compact operators on H. The norm of an
element T of L(H) is denoted by

‖T‖ = sup
ξ∈H
|ξ|=1

|Tξ|

We recall that K(H) is a closed two-sided ideal of L(H) — more precisely K(H) is
the norm closure in L(H) of the set of finite rank operators on H.

A bounded operator T on H is of trace-class if

sup

{∑
n≥0

|(Ten|fn)|
∣∣∣ (en)n≥0&(fn)n≥1 orthonormal basis of H

}
<+∞.

The sup in the definition above is denoted by ‖T‖1 and is called “the trace norm
of T ". The set of trace-class operators on H is a two-sided ideal in L(H) denoted
by L1(H). Equipped with the trace-norm, L1(H) is a Banach space, the completion
of finite-rank operators on H with respect to the trace-norm — in particular, both

IX–29



L1(H) and K(H) are separable, unlike L(H). In particular, every trace-class operator
on H is compact:

L1(H) ⊂ K(H) .

For any T ∈ L1(H) and any A ∈ L(H), both AT and TA belong to L1(H) and one
has

‖AT‖1 = ‖TA‖1 ≤ ‖A‖‖T‖1 . (II.25)

If T is a trace-class operator on H, its trace is

trace(T ) =
∑
n≥0

(Ten|en) where (en)n≥1 is any orthonormal basis of H

(the sum above being indeed independent of the choice of the orthonormal basis
(en)n≥1). Obviously, for each T ∈ L1(H),

| trace(T )| ≤ ‖T‖1 .

In addition, if A ∈ L(H) and T ∈ L1(H), then [A, T ] ∈ L1(H) and

trace([A, T ]) = 0 .

The dual of K(H) (viewed as a closed subspace of L(H) for the operator norm)
is canonically identified to L1(H), by viewing any trace-class operator T as the
continuous linear functional on K(H) defined by

K 7→ trace(TK) .

Likewise, the dual of the Banach space (L1(H), ‖ · ‖1) is canonically identified with
L(H) by viewing any bounded operator A on H as the continuous linear functional
on L1(H) defined by

T 7→ trace(AT ) .

This situation is identical to that of c0(N) (the set of vanishing sequences), whose
dual is `1(N) (the class of summable sequences), which itself has `∞(N) (the class
of bounded sequences) as dual space. In particular the weak-* topology on L1(H)
is that induced by the family of semi-norms

pK(T ) = | trace(TK)|

where K runs through K(H).
Another important class of operators on H is that of Hilbert-Schmidt operators,

denoted by L2(H); a bounded operator T on H is in L2 if and only if T ∗T ∈ L1(H).
The class L2(H) is a two-sided ideal of L(H) and a Banach space for the norm
‖T‖2 = ‖T ∗T‖1/2

1 . Since L1(H) is an ideal in L(H), L1(H) ⊂ L2(H).
Finally, we consider the special case where H = L2(RD). There is an extremely

simple characterization of L2(RD): an operator T ∈ L2(RD) if and only if it is an
integral operator of the form

(Tf)(x) =

∫
kT (x, y)f(y)dy with kT ∈ L2(RD ×RD) .
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If T is a trace-class operator on H, it is a Hilbert-Schmidt operator and as such is
defined as above by an integral kernel kT ∈ L2(RD ×RD). But this integral kernel
has additional regularity properties: in particular, if T ∈ L1(RD), the function

(z, h) 7→ kT (z + h, z) belongs to Cb(RD
h ;L1(RD

z )) .

Consider further the case where H = L2(Rm×Rn), and let T ∈ L1(H) with integral
kernel kT ≡ kT (x1, x2, y1, y2), with x1, y1 ∈ L2(Rm) while x2, y2 ∈ L2(Rn). For
a.e. x2, y2, let Tx2,y2 be the operator on L1(L2(Rm)) with integral kernel (x1, y1) 7→
kT (x1, x2, y1, y2). Then

(1) the map

(z, h) 7→ Tz+h,z belongs to Cb(Rn
h, L

1(Rm
z ;L1(L2(RD)))) ;

(2) in particular, for a.e. z ∈ Rn, one has Tz,z ∈ L1(L2(Rm)) and

‖Tz,z‖1 ≤ ‖T‖1 . (II.26)

For these last results, see [5], Lemmas 2.1 and 2.3.

II.4. Application to the Hartree approximation

The precise mathematical statement of the mean-field limit for theN -body Schrödinger
equation leading to Hartree’s equation is summarized in the following

Theorem II.4. Let ψ0 ∈ H1(RD) with ‖ψ0‖L2 = 1, and let ψ be the solution to
Hartree’s equation

i∂tψ(t, x) + 1
2
∆xψ(t, x) = ψ(t, x)

∫
V (x− y)|ψ(t, y)|2dy ,

ψ(0, x) = ψ0(x) .

For each N ≥ 1, let ΨN be the solution to the N-body Schrödinger equation

i∂tΨN(t,XN)+ 1
2

N∑
k=1

∆xk
ΨN(t,XN) =

1

N

∑
1≤k<l≤N

V (xk − xl)ΨN(t,XN) ,

ΨN(0, x) =
N∏
k=1

ψ0(xk) .

Then, for each n ≥ 1 and each t > 0, the reduced density matrix∫
ΨN(t,Xn, Z

N
n )ΨN(t, Yn, ZN

n )dZN
n →

n∏
k=1

ψ(t, xk)ψ(t, yk)

in the weak-* topology of L1(L2((RD)n)) — identifying trace-class operators with
their integral kernels — as N → +∞.

H. Spohn sketched a first proof of this result in his very interesting review article
[30]; we refer to [5] for a more complete proof.
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Proof. The proof is divided in several steps.

Step 1. Since Ψ0
N ∈ L2((RD)N) with ‖Ψ0

N‖L2 = 1, the solution ΨN ≡ ΨN(t,XN)
to the N -body Schrödinger equation satisfies ‖ΨN(t, ·)‖L2 = 1 for all t ∈ R. Hence
DN(t) ≥ 0 in L1(L2((RD)N)) and one has

trace(DN(t)) = ‖DN(t)‖1 = 1 .

Hence, for all n ≥ 1, DN :n(t) ≥ 0, belongs to L1(L2((RD)n)), and one has

trace(DN :n(t)) = ‖DN :n(t)‖1 = 1 .

Therefore, the sequence indexed by N ≥ 1 of marginal distributions (DN :n)n≥1 is
relatively compact in

∏
n≥1 L

∞(R;L1(L2((RD)n))) equip- ped with the product of
weak-* topologies on each factor. Let (Dn)n≥1 be one of its limit points: there exists
a subsequence Nk → +∞ such that, for each n ≥ 1

DNk:n → Dn weakly-* in L∞(R;L1(L2((RD)n))) as Nk → +∞ .

Step 2. Let (Dn)n≥1 be a limit point of (DN :n)n≥1; we are going to prove that
(Dn)n≥1 is a solution to the infinite hierarchy (II.15). First,

i∂tDN :n(t,Xn, Yn) + 1
2

n∑
k=1

(∆xk
−∆yk

)DN :n(t,Xn, Yn)

→ i∂tDn(t,Xn, Yn) + 1
2

n∑
k=1

(∆xk
−∆yk

)Dn(t,Xn, Yn)

in the sense of distributions on R× (RD)n× (RD)n. Next, we estimate the so-called
“re-collision term"∥∥∥∥∥ 1

N

∑
1≤k<l≤n

(V (xk − xl)− V (yk − yl))DN :n(t,Xn, Yn)

∥∥∥∥∥
L∞t (L2

Xn,Yn
)

≤ n(n− 1)

N
‖V ‖L∞‖DN :n‖L∞t (L2

Xn,Yn
)

so that
1

N

∑
1≤k<l≤n

(V (xk − xl)− V (yk − yl))DN :n(t,Xn, Yn) → 0

in L∞(R;L2((RD)n × (RD)n). Finally, for each k = 1, . . . , n, the interaction term
satisfies ∫

V (xk − z)DNk:n+1(t,Xn, z, Yn, z)dz

→
∫
V (xk − z)Dn+1(t,Xn, z, Yn, z)dz ,
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and similarly∫
DNk:n+1(t,Xn, z, Yn, z)V (yk − z)dz

→
∫
Dn+1(t,Xn, z, Yn, z)V (yk − z)dz ,

weakly-* in L∞(R;L1(L2((RD)n))) as Nk → +∞. Notice that the map

ρn+1 7→
∫

(V (xk − z)− V (yk − z))ρn+1(Xn, z, Yn, z)dz

is continuous from L1(L2(RD)n+1) to L1(L2(RD)n).
This continuity property would be enough if we knew that DNk:n+1(t) converges

to DNk:n(t) weakly in L1(L2((RD)n), but we only know that this sequence converges
weakly-* in in L1(L2((RD)n). The limits above hold indeed, but their proof requires
additional work. After integrating the n-th equation in the BBGKY hierarchy
against some test function, the convergence property to be proved ultimately rests
on the following lemma (Lemma 2.3 in [5], to which we refer for a proof).

Lemma II.5. Consider a sequence TN ∈ L1(L2(RD)) that converges to 0 weakly-*
and whose (sequence of) integral kernels kTN

satisfies∫
|kTN

(z, z + h)− kTN
(z, z)|dz → 0 as |h| → 0 uniformly in N .

Then, for any χ ∈ Cc(RD)∫
χ(z)kTN

(z, z)dz → 0 as N → +∞ .

Hence, passing to the limit as Nk → +∞ in each equation of the BBGKY
hierarchy (II.13) shows that (Dn)n≥1 is a solution to the infinite hierarchy (II.15).
The uniform convergence in N required in the Lemma above comes from the H1

bound implied by the conservation of energy and the symmetry (II.12) preserved
under the evolution of the N -body linear Schrödinger equation.

Finally, observe that, for each ζ ∈ C∞
c (Rn ×Rn),

∂t

∫∫
DN :n(t,Xn, Yn)ζ(Xn, Yn)dXndYn is bounded in L∞(R+)

(this follows from integrating by parts to bring the Laplacian operators in the n-
th equation of (II.13) to bear on ζ, and from the convergence properties of the
re-collision and interaction terms above). This last bound establishes the initial
condition (II.16).
Step 3. Suppose that (Dn)n≥1 is a limit point of the sequence (DN :n)n≥1 as N → +∞
for the product of weak-* topologies in

∏
n≥1 L

∞(R;L1(L2((RD)n))), then (Dn)n≥1

is a solution to the infinite hierarchy (II.15) with initial data (II.16).
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As we observed earlier (see Proposition II.1), (Fn)n≥1 defined by

Fn(t,Xn, Yn) =
∏

1≤k≤n

ψ(t, xk)ψ(t, yk)

where ψ is the solution to Hartree’s equation (II.9) is also a solution to (II.15)-
(II.16) .

Since the infinite hierarchy (II.15) is linear, (Qn)n≥1 defined for each n ≥ 1 by
Qn = Dn − Fn is a solution to (II.15) with initial data

Qn

∣∣
t=0

≡ 0 , n ≥ 1 .

Further, one has
‖Qn(t)‖1 ≤ ‖Dn(t)‖1 + ‖Fn(t)‖1 ≤ 2 ;

indeed, ‖DN :n(t)‖1 = 1 so that, by convexity and weak-* convergence, ‖Dn(t)‖1 ≤
1 for each n ≥ 1 and each t ∈ R; likewise, for each n ≥ 1 and each t ∈ R,
‖Fn(t)‖1 = ‖ψ(t, ·)‖2n

L2 = 1 since the dynamics of Hartree’s equation (II.9) entails
‖ψ(t, ·)‖L2 = ‖ψ0‖L2 = 1.

Then we apply Proposition II.3 to the infinite BBGKY hierarchy (II.15) with

AnDn = −i1
2

n∑
k=1

(∆xk
−∆yk

)Dn

and
(Cn,n+1Dn+1)(Xn, Yn)

=
n∑
k=1

∫
(V (xk − z)− V (yk − z))Dn+1(Xn, z, Yn, z)dz ,

on En = L1(L2((RD)n)), for each n ≥ 1. As noticed in the previous step, the
inequality (II.26) implies that

‖Cn,n+1‖L(En+1,En) ≤ n , n ≥ 1 .

On the other hand, An generates on En the group of isometries defined by

Sn(t)Dn = e−tAnDn = e−it
1
2
(∆1+...+∆n)Dne

it
1
2
(∆1+...+∆n) .

Applying Proposition II.3 shows that Qn(t) ≡ 0 for all n ≥ 1 and all t ∈ R.
Hence the sequence (DN :n)n≥1 converges in

∏
n≥1 L

∞(R;L1(L2((RD)n))) with
the product of weak-* topologies to (Fn)n≥1 as N → +∞.

Part III. From the quantum N-body problem to the TDHF
equations

III.1. Background on Fermi particles

In our derivation of Hartree’s equation, we postulated that the initial data for the
N -body, linear Schrödinger equation (II.3) is factorized, i.e. of the form (II.7). This
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means that the N particles considered are all in the same quantum state defined by
the 1-body wave function ψ0.

If the particles considered are fermions (such as electrons, positrons, protons, and
more generally particles with spin 1/2), such initial data are ruled out by Pauli’s
exclusion principle — which says that two such particles cannot be in the same
quantum state. (Actually, this counting takes into account the spin variable, unlike
in our present discussion: for instance, one could find two electrons in what we
consider here as one quantum state, one with spin up, one with spin down).

In any case, for a system of N fermions, the wave function should have the
following symmetry property:

ΨN(XN) = sign(σ)ΨN(xσ(1), . . . , xσ(N)) , σ ∈ SN . (III.1)

On the contrary, for a system of N bosons (particles such as photons, α particles
or more generally particles with integer spin), the wave function should have the
symmetry

ΨN(XN) = ΨN(xσ(1), . . . , xσ(N)) , σ ∈ SN . (III.2)

The case considered in the previous section (namelyN particles in the same quantum
state defined by the wave function ψ0) corresponds to the case of Bose condensation.

An important example of N -particle wave function with symmetry (III.1) is the
case of Slater determinants. A Slater determinant is a N -body wave function of the
form

ΨN(XN) =
1√
N !

det(ψk(xl))1≤k,l≤N (III.3)

where (ψk)1≤k≤N is an orthonormal system in L2(RD):∫
ψk(x)ψl(x)dx = δkl , 1 ≤ k, l ≤ N . (III.4)

Slater determinants are the wave functions of non-interacting systems of fermions.
We leave it to the reader to verify the following formulas:

Reduced density matrices for Slater determinants
If DN(XN , YN) = ΨN(XN)ΨN(YN) with ΨN a Slater determinant (III.3), then

its reduced density matrices are

DN :1(x, y) =
1

N

N∑
k=1

ψk(x)ψk(y)
∗ (III.5)

while the next reduced density matrices are all expressed in terms of this first one:

DN :j(x, y) =
(N − k)!Nk

N !
det(DN :1(xk, yl))1≤k,l≤N . (III.6)

We leave it to the reader as an exercise to verify these formulas — in fact, there is
a quick argument that explains why the factor (N−k)!Nk

N !
should be greater than or

equal to 1 (hint: compute the trace of each side of the equality above).
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Notice that

DN :1 ≥ 0 , trace(DN :1) = 1 , ‖DN :1‖L(H) =
1

N
→ 0 (III.7)

as N → +∞.
We conclude this discussion with a remark concerning the statistics of the N

particles (bosons or fermions). For each σ ∈ SN , define Uσ by the formula

(Uσf)(XN) = f(xσ−1(1), . . . , xσ−1(N)) . (III.8)

With this notation, the symmetry property that characterizes Fermi particles (III.1)
reads

(UσΨN)(XN) = sign(σ)ΨN(XN) , σ ∈ SN . (III.9)

On the other hand, if the N particles considered are bosons, their wave function has
the symmetry

(UσΨN)(XN) = ΨN(XN) , σ ∈ SN . (III.10)

In both cases, the associated density matrix has the symmetry

DN(xσ−1(1), . . . , xσ−1(N), yσ−1(1), . . . , yσ−1(N))

= DN(XN , YN) , σ ∈ SN .
(III.11)

that characterizes systems of N undistinguishable particles. In the language of
operators, the density operator of a system of N undistinguishable particles satisfies

DN = UσDNU
∗
σ ; (III.12)

moreover

UσDN = DNUσ = DN , in the case of bosons,
UσDN = DNUσ = sign(σ)DN , in the case of fermions.

(III.13)

III.2. The TDHF equation in operator form

Suppose we are given N orbitals ψ1(t, x), . . . , ψN(t, x) that satisfy the TDHF system

i∂tψk(t, x) = −1
2
∆ψk(t, x)

+
1

N

N∑
l=1

ψk(t, x)

∫
V (|x− y|)|ψl(t, y)|2dy

− 1

N

N∑
l=1

ψl(t, x)

∫
V (|x− y|)ψk(t, y)ψl(t, y)dy , 1 ≤ k ≤ N ,

(III.14)

and is, for each t ≥ 0, an orthonormal system in L2(R3):∫
ψk(t, x)ψl(t, x)dx = δkl , 1 ≤ k, l ≤ N . (III.15)
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We recall that V is assumed to be real-valued; a straightforward computation shows
that if the initial orbitals ψ1(0, ·), . . . , ψN(0, ·) satisfy (III.15), then ψ1(t, ·), . . . , ψN(t, ·)
satisfy (III.15) for each t > 0.

With the system of N orbitals above, we define the 1-particle density matrix

F (t, x, y) =
1

N

N∑
k=1

ψk(t, x)ψk(t, y) (III.16)

— in the language of operators

F (t) =
1

N

N∑
k=1

|ψk(t, ·)〉〈ψk(t, ·)| . (III.17)

If the N orbitals ψ1(t, x), . . . , ψN(t, x) satisfy (III.14), the 1-particle density matrix
F satisfies

i∂tF (t, x, y) + 1
2
(∆x −∆y)F (t, x, y)

= F (t, x, y)

∫
(V (x− z)− V (y − z))F (t, z, z)dz

−
∫

(V (x− z)− V (y − z))F (t, x, z)F (t, z, y)dz .

(III.18)

Let us recast this equation in the language of operators: denote by U1,2 the unitary
operator on H⊗2 associated to the transposition that exchanges 1 and 2 by the defini-
tion (III.8). In other words, U1,2ξ⊗η = η⊗ξ; equivalently, U12φ(x1, x2) = φ(x2, x1).
To the potential V , we associate the operator acting on H⊗2 by multiplication:

V : φ(x1, x2) 7→ V (x1 − x2)φ(x1, x2) .

With these notations, the equation (III.18) is recast as

i∂tF + 1
2
[∆, F ] = [V, F⊗2(I − U12)]:1 . (III.19)

The TDHF equation has been studied by various authors; the following result
showing that the Cauchy problem for (III.19) is well-posed is due to Bove-DaPrato-
Fano [6].

Theorem III.1. Let V be an even, real-valued function in L∞(RD × RD). Let
F 0 ∈ L1(H) be such that

F 0 ≥ 0 , trace(F 0) = 1 .

Then, there exists a unique mild solution F ≡ F (t) to (III.19) such that F (0) = F 0.
Further, for all t ≥ 0, there exists a unitary operator u(t) on H such that

F (t) = u(t)F (0)u(t)∗ , t ≥ 0 .

In particular, one has, for each t ≥ 0,

F (t) ≥ 0 , trace(F (t)) = 1 , ‖F (t)‖ = ‖F 0‖ .
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Notice that F (t) depends on N , however we opted against the notation FN(t)
to emphasize the fact that F (t) is a 1-particle object.

Electrons being the first example of Fermi particles, thus it is natural to consider
the TDHF equation with Coulomb (instead of bounded) 2-body interaction. The
analogue of Theorem III.1 in the Coulomb case has been proved by Glassey-Chadam
[12] in orbital form, and later generalized by Bove-DaPrato-Fano [7] in operator
form (see also [10]). Comparing both proofs shows the rationale for working on
the TDHF equation in operator (rather than orbital) form. On the other hand,
numerical treatments of the Hartree-Fock equations is usually done in terms of the
operator, rather than on the orbital formulation.

III.3. Convergence of the N-body problem to the TDHF
equation

Before stating our main result on this problem, we introduce the following termi-
nology.

Definition III.2. A sequence DN ∈ L1(H⊗M) is said to have Slater closure if and
only if, for each j ≥ 1,

‖DN :j −D⊗j
N :1Σj‖1 → 0 as N → +∞ ,

where Σj designates the operator

Σj =
∑
σ∈Sj

sign(σ)Uσ .

The elementary formulas (III.5) and (III.6) show that pure Slater states have
indeed Slater closure — which justifies this terminology.

The TDHF approximation for bounded 2-body interaction is summarized in the
following Theorem, taken from [3]:

Theorem III.3. Let V be an even, real-valued function in L∞(RD×RD). For each
N ≥ 1, let ψ0

1, . . . , ψ
0
N be an orthonormal system in H. Let Ψ0

N be the Slater deter-
minant built on the ψ0

j s, let ΨN(t,XN) be the solution to the N-body Schrödinger
equation (II.3) with initial data Ψ0

N , and let DN(t) be the pure state defined by

DN(t) = |ΨN(t, ·)〉〈ΨN(t, ·)| .

Finally, let F (t) be the solution to the TDHF equation (III.19) with initial data

F 0 =
1

N

N∑
k=1

|ψk(t, ·)〉〈ψk(t, ·)| .

Then, as N → +∞,
‖DN :j(t)− F (t)⊗jΣj‖1 → 0

for each j ≥ 1 and each t ≥ 0.
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Observe that this result shows in particular that DN(t) has Slater closure for
each t > 0. In fact, the result in [3] shows that the same result holds verbatim
if DN(t) is the solution of the N -body von Neumann equation (II.6) with initial
data DN(0) having Slater closure, while F (t) is the solution to the TDHF equation
(III.19) with initial data DN :1(0).

Hence, while the mean-field limits leading to the Vlasov or Hartree equations
were based on the propagation of chaos — as defined in Appendix B of part I —
the convergence to the TDHF equation rests on the propagation of Slater closure,
in the sense of the definition above.

III.4. Sketch of the proof of the TDHF approximation

The interested reader is referred to [3] for a complete proof; here we just sketch the
main ideas in it.

Proof of Theorem III.3. Step 1. Observe that DN(0) has the symmetry (III.12);
hence DN(t) also satisfies (III.12), since the 2-body interaction is an even function V .
As explained in part II, this symmetry property implies that the sequence of reduced
density operators DN :j(t) satisfies the BBGKY hierarchy (II.13) for 1 ≤ j ≤ N .

However, unlike in the case of Hartree’s approximation, the sequence (F−
j )j≥1

defined by the formula

F−
j (t) = F (t)⊗jΣj , j ≥ 1 , (III.20)

is usually not a solution to the infinite BBGKY hierarchy (II.15). This property
was crucial in the proof of Hartree’s approximation; for the TDHF approximation
however, a different type of argument is required.
Step 2: the TDHF hierarchy. Although (F−

j )j≥1 is not a solution to (II.15), it solves
a different (hopefully slightly different) infinite hierarchy of equations. This infinite
hierarchy, built “from the bottom up”, starting from the TDHF equation (III.19)
satisfied by F (t) is then compared to (II.15).

Straightforward computations show that this infinite hierarchy, henceforth re-
ferred to as the TDHF hierarchy, is

i∂tF
−
j + 1

2

j∑
k=1

[∆k, F
−
j ] =

j∑
k=1

[Vk,j+1, F
−
j+1]:j +Rj(F ) , j ≥ 1 , (III.21)

where ∆k = I⊗k−1 ⊗ ∆ ⊗ I⊗j−k and where the remainders Rj(F ) are defined as
follows:

R1(F ) = 0

Rj(F ) =

j∑
k=1

Vk,j+1, F
⊗j+1

j∑
l=1
k 6=l

Ul,j+1


:j

Σj , j > 1 .
(III.22)

At first sight, there seems to be no obvious reason for separating Rj(F ) from∑j
k=1[Vk,j+1, F

−
j+1]:j in the interaction term, and for viewing the latter term as the

leading order and the former term as a remainder.
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Step 3: consistency. Here we use the language of Numerical Analysis — specifically,
of Lax’s equivalence theorem: in order to prove that a numerical scheme converges,
one proves that it is consistent and stable. Consistency means that the discretized
equation “approximates" the exact equation, in the sense that any smooth solution
of the exact equation nearly satisfies the discretized equation.

In the present case, consistency means that the infinite TDHF hierarchy approx-
imates the BBGKY hierarchy. The key observation in this direction is the following

Proposition III.4. Let V be a real-valued, even function in L∞(RD×RD) and let
F ∈ L1(H). Then, for each j ≥ 1,

‖Rj(F )‖1 ≤ 2j(j − 1)‖V ‖L∞‖F‖‖F−
j ‖1 .

Let us postpone momentarily the proof of this Proposition, and explain how it
is used in the proof of Theorem III.3.

The Proposition above shows that

‖Rj(F (t))‖1 ≤ 2‖V ‖L∞
j(j − 1)

N
, for all j ≥ 1 , (III.23)

since a straightforward computation shows that

‖F−
j (t)‖1 ≤ ‖F (t)‖j1 = 1 , for all j ≥ 1 , (III.24)

while the last statement in Theorem III.1 shows that

‖F (0)‖ =
1

N
.

Hence, for each fixed j, Rj(F (t)) → 0 as N → +∞, uniformly in t ≥ 0. In this
sense, the infinite TDHF hierarchy (III.21) is an approximation to the BBGKY
hierarchy (II.13).
Step 4: stability. Define

AjDj =
∑
k=1j

[1
2
∆k, Dj] ,

and

Cj,j+1Dj+1 =

j∑
k=1

[Vk,n+1, Dj+1]:j .

We are interested in controlling the difference EN,j = DN :j − F−
j , with DN :j ≡ 0

whenever j > N . It follows from steps 1 and 2 that EN,j satisfies the hierarchy of
equations

∂tEN,j = iAjEN,j − iCj,j+1EN,j+1 − iεN,j (III.25)

where
εN,j(t) =

1

N

∑
1≤k<l≤j

[Vkl, DN :j(t)]

− j

N

j∑
k=1

[Vk,n+1, DN :j+1(t)]:j −Rj(F (t)) .

(III.26)
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In the consistency error term εN,j, the two first terms come from the difference
between the BBGKY hierarchy (II.13) and the infinite BBGKY hierarchy (II.15);
the last term comes from the difference between the infinite BBGKY hierarchy
(II.15) and the infinite TDHF hierarchy (III.21).

Starting from Duhamel’s formula

EN,j(t) = Sj(t)EN,j(0)− i

∫ t

0

Sj(t− t1)εN,j(t1)dt1

− i

∫ t

0

Sj(t− t1)Cj,j+1EN,j+1(t1)dt1

(III.27)

shows that

‖EN,j(t)‖1 ≤ ηN,j(t) + 2j‖V ‖L∞
∫ t

0

‖EN,j+1(s)‖1ds ,

since Sn(t) is an isometry of En while ‖Cn,n+1‖L(En+1,En) ≤ 2j‖V ‖L∞ (see step 4 in
the proof of Theorem II.4), where

ηN,j(t) = ‖EN,j(0)‖1 +

∫ t

0

‖εN,j(s)‖1ds .

Iterating this inequality m times leads to

‖EN,j(t)‖1 ≤
m∑
k=0

(
j + k − 1
j − 1

)
(2j‖V ‖L∞t)kηN,j+k(t)

+

(
j +m− 1
j − 1

)
(2j‖V ‖L∞t)m sup

0≤s≤t
‖EN,j+m+1(s)‖1

(III.28)

Observing that

‖ηN,j(t)‖1 ≤ ‖EN,j(0)‖1 + 2j(j − 1)‖V ‖L∞t
(

2

N
+ ‖F (0)‖

)
and that

sup
0≤s≤t

‖EN,j+m+1(s)‖1 ≤ 2 ,

the inequality (III.28) gives the announced convergence statement.

Before giving the proof of Proposition III.4, let us comment on step 4 above.
The first proof of the Hartree approximation — Theorem II.4 — given by Spohn
in [30] is based upon iterating Duhamel’s formula (III.27). In this proof, one first
establishes that

DN :1(t) → S1(t)DN :1(0) +
∑
k≥1

(−i)m
∫

0<tm<...<t1<t

S1(t− t1)C1,2

. . . Cm,m+1Sm+1(tm)DN :m+1(0)dtm . . . dt1

in L1(H) as N → +∞, by arguments similar to those used in step 4. Finally,
one recognizes the solution to Hartree’s equation in the series on the right-hand
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side above. It may seem surprising that, in this type of proof, one works directly
with explicit formulas giving the solutions to both hierarchies (BBGKY or infinite
BBGKY) instead of working on the hierarchies themselves. This method of proof
was used originally in the proof by Gallavotti [16] of the Boltzmann-Grad limit for
the Lorentz gas with random distribution of scatterers, and later by Lanford [22] in
his derivation of the Boltzmann equation from the dynamics of a hard sphere gas.

Proof of Proposition III.4. First, observe that

Rj(F ) =

(∑
k 6=l

Vk,j+1Ul,j+1(F
−
j ⊗ F )

)
:j

−

(
(F−

j ⊗ F )
∑
k 6=l

Ul,j+1Vk,j+1

)
:j

since
Uk,j+1 commutes with F⊗j+1

and
Σj ⊗ I commutes with

∑
1≤k,l≤n

k 6=l

Vk,j+1Ul,j+1

(check this!) Hence, by symmetry, we have

‖Rj(F )‖1 ≤ 2j(j − 1)‖(Vj−1,j+1Uj,j+1F
−
j ⊗ F ):j‖1 .

Next, observe that(
Vj−1,j+1Uj,j+1F

−
j ⊗ F

)
:j

=
(
Uj,j+1(Vj−1,jF

−
j )⊗ F

)
:j

= (I⊗j−1 ⊗ F )(Vj−1,jF
−
j ) .

(Indeed, an easy computation shows that, if A and B are integral operators on H =
L2(RD) with integral kernels denoted respectively by a ≡ a(x, y) and b ≡ b(x, y),
then

(U12(A⊗B)):1 = BA ,

since
U12(A⊗B) has integral kernel a(x2, y1)b(x1, y2) ,

so that
(U12(A⊗B)):1 has integral kernel

∫
a(z, y1)b(x1, z)dz ,

which is precisely the integral kernel of BA).
Therefore,

‖
(
Vj−1,j+1Uj,j+1F

−
j ⊗ F

)
:j
‖ = ‖(I⊗j−1 ⊗ F )(Vj−1,jF

−
j )‖1

≤ ‖I⊗j−1 ⊗ F‖‖Vj−1,jF
−
j ‖1

≤ ‖F‖‖V ‖L∞‖F−
j ‖1 .
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As can be seen from this proof, it is essential that the summation inside the
commutator defining Rj(F ) in (III.22) bears on l 6= k. Only this part of the in-
teraction term can be crushed by the operator norm of the solution to the TDHF
equation. This justifies a posteriori the decomposition of the interaction term as a
leading order contribution

j∑
k=1

[Vk,j+1, F
−
j+1]:j

while the remaining part of the interaction, collected in Rj(F ), is of the order of
‖F‖, i.e. O(1/N) in the present case: see the remark just before Step 3 in the proof
of Theorem III.3.

Part IV. Extensions, open problems and further reading

In these notes, both the Hartree and (time-dependent) Hartree-Fock have been
established assuming that the pairwise interaction potential is bounded.

However, there are many interesting situations where this pairwise potential is
unbounded:

• for systems of interacting electrons, the only physically relevant potential is
Coulomb’s potential V (r) = C/|r| (in three space dimensions), which is obvi-
ously unbounded;

• for a “quasi-perfect" gas of bosons near zero temperature, the relevant mean-
field PDE is the nonlinear Schrödinger equation with cubic nonlinearity (see
[21], §30), i.e. Hartree’s equation with interaction potential of the form δ(x1−
x2) (up to multiplication by some constant).

The first result for (a large class of) unbounded potentials — including in par-
ticular the case of Coulomb’s potential — is the convergence of the finite BBGKY
hierarchy (II.13) to the infinite BBGKY hierarchy (II.15), proved in [5]. The con-
vergence result in [5] holds for any nonnegative potential in C(RD \{0})∩L2

loc(R
D)

vanishing at infinity.
The uniqueness for the infinite BBGKY hierarchy (II.15) in the case of the

Coulomb potential is proved in [15] — see also [2]. The proof by Erdös and Yau
follows the argument presented in part II of these lectures. The crucial part of
their analysis lies in the choice of the sequence of Banach spaces En in the abstract
uniqueness result of Proposition II.3: they choose to work with

En = {T ∈ L1(H⊗n) |D⊗nTD⊗n ∈ L1(H⊗n}

where H = L2(R3) and D =
√
I −∆ — i.e. the space of integral kernels with trace-

class mixed derivatives. That Cj,j+1 has norm at most j as a bounded operator from
Ej+1 to Ej follows from a nice application of Hardy’s inequality∥∥∥∥ φ

|x|2

∥∥∥∥
L2(R3)

≤ 2‖∇φ‖L2(R3) .
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The next important part of their analysis consists in showing that ‖Dn‖En grows
as cn for some c > 1. In the case of a bounded potential, the analogous estimate
is the fact that ‖Dn‖1 ≤ 1, which follows from the conservation of mass (i.e. of
trace(DN(t)) for all t ≥ 0 and all N ≥ 1) under the N -body Schrödinger dynamics.
The analogous estimate in En is much trickier and follows from the conservation of
energy under that same dynamics and an argument that compares powers of the
free Hamiltonian

N∑
k=1

−1
2
∆xk

with powers of the interaction Hamiltonian
N∑
k=1

−1
2
∆xk

+
1

N

∑
1≤k<l≤N

1

|xk − xl|
.

Again, this is based upon variants of Hardy’s inequality above.
More recently, the proof of the TDHF approximation presented in part III above

was extended to the case of Coulomb interactions, in [4]. The proof is based on the
ideas in [3] and [15]. It requires more than the uniqueness estimate in [15], namely
an estimate of the difference between both hierarchies (i.e. the BBGKY (II.13) and
TDHF (III.21) hierarchies). This leads to additional technicalities that are beyond
the scope of these lectures.

In the case of a delta potential in space dimension 1, the convergence of the
BBGKY (II.13) to the infinite BBGKY hierarchy (II.15) is proved in [1]. This is a
first step towards a derivation of the (cubic) nonlinear Schrödinger equation.

In the case of the classical mean-field limits, there is no derivation so far of the
Vlasov-Poisson system from the classical N -body problem with Coulomb potential
(even the definition of the dynamics in this case is not obvious).

Finally, one could think of proving the mean-field plus semi-classical limit, start-
ing from the N -body Schrödinger equation (1.20) and with the Vlasov equation (1.1)
as a target. There is a very interesting contribution by Narnhofer and Sewell [25]
on this problem; however, it requires a real-analytic potential.
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