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Consider the motion of a gas of point particles in a periodic array of spherical ob-

stacles. Collisions involving two or more particles are neglected; only the collisions

between the particles and the obstacles are taken into account. This talk reviews
some results bearing on the distribution of free-path lengths for these particles,

more precisely (1) upper and lower bounds for that distribution in any space di-

mension, and (2) the asymptotic evaluation of the tail of that distribution in the
small obstacle limit, in space dimension two. Applications to kinetic theory are

discussed.

1. Introduction

Almost 100 years ago, Lorentz13 proposed the following linear kinetic equation to describe
the motion of electrons in a metal:

(∂t + v · ∇x + 1
mF (t, x) · ∇v)f(t, x, v) = Natr

2
at|v|C(f(t, x, ·))(v) (1)

where f(t, x, v) is the (phase space) density of electrons which, at time t, are located at x
and have velocity v. In Eq. (1), F is the electric force field, m the mass of the electron,
while Nat and rat designate respectively the number of metallic atoms per unit volume and
the radius of each such atom. Finally C(f) is the collision integral: it acts on the velocity
variable only, and is given, for all continuous φ ≡ φ(v) by the formula

C(φ)(v) =
∫
|ω|=1,v·ω>0

(
φ(v − 2(v · ω)ω)− φ(v)

)
cos(v, ω)dω . (2)

In the case where F ≡ 0, Gallavotti9,10 proved that Eq. (1) describes the Boltzmann-
Grad limit of a gas of point particles undergoing elastic collisions on a random (Poisson)
configuration of spherical obstacles. His result was successively strengthened by Spohn15,
and by Boldrighini-Bunimovich-Sinai3.

The case of a periodic configuration of obstacles, perhaps closer to Lorentz’ original
ideas, leads to completely different results. It is the purpose of this talk to discuss some of
these differences.

2. The periodic Lorentz gas

Let D ∈ N, D ≥ 2. For all r ∈ (0, 1
2 ), let Zr = {x ∈ RD | dist(x,ZD) > r} (the “billiard

table”). The “free path length” or “(forward) exit time” for a particle starting from x ∈ Zr

1
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in the direction v ∈ SD−1 is defined as τr(x, v) = inf{t > 0 |x+ tv ∈ ∂Zr}. The function τr
is then extended by continuity to {(x, v) ∈ ∂Zr ×SD−1 | v · nx 6= 0}, where nx is the inward
unit normal field on ∂Zr. Finally, τr(x + k, v) = τr(x, v) for each (x, v) ∈ Zr × SD−1 and
k ∈ ZD: hence τr can be seen as a [0,+∞]-valued function defined on Yr × SD−1 (and a.e.
on Y r × SD−1), where Yr = Zr/ZD.

If the components of v ∈ SD−1 are rationally independent — i.e. if k · v 6= 0 for each
k ∈ ZD \ {0} — each orbit of the linear flow x 7→ x + tv is dense on TD = RD/ZD, and
thus τr(x, v) < +∞ for each x ∈ Zr.

2r1

Figure 1. Zr and the punctured torus Yr

There are two different, natural phase spaces on which to study the free path length τr.
The first one is Γ+

r = {(x, v) ∈ ∂Zr×SD−1 | v ·nx > 0} — or its quotient under the action
of ZD-translations on space variables Γ̃+

r = Γr/ZD — equipped with its Borel σ-algebra
and the probability measure νr proportional to γr, where dγr(x, v) = (v · nx)dS(x)dv, with
dS being the surface element on ∂Zr.

The second one is Yr × SD−1, equipped with its Borel σ-algebra and the probability
measure µr proportional to the Lebesgue measure on Yr × SD−1.

On the first phase space Γ̃r, defining a notion of “mean free path” for the “Lorentz gas”
— i.e. a gas of point particles undergoing elastic collisions with the periodic configuration
of obstacles defined as the complement of Zr — and evaluating the corresponding quantity
is an easy matter. It is found thatab

mean free path = Eνr (τr) =
|Yr||SD−1|
γr(Γ̃r)

=
1

|BD−1|rD−1
− |BD|
|BD−1|

r , (3)

aIf P is a probability measure and X a random variable on Ω, we denote by EP (X) the expectation — i.e.
the mean — of X with respect to P .
bIf A is a measurable d-dimensional set in RD (d ≤ D), |A| designates its d-dimensional volume.
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where Bd is the d-dimensional unit ball. The explicit computation of Eνr (τr) (i.e. the
second equality above) is credited to Santalo (see Ref. 14, p. 42). Observe that, in the limit
as r → 0+ and in the case of space dimension D = 3, this evaluation of the mean free path
coincides with the reciprocal of the factor

Natr
2
at

∫
|ω|=1,v·ω>0

cos(v, ω)dω

appearing in Eq. (1).
On the second phase space Yr × SD−1 — which is slightly more natural, at least for

the kinetic equation (1) — the analogous definition of the mean free path fails because
Eµr (τr) = +∞ — see below. In fact, as noticed in Dumas-Dumas-Golse8

Lemma 2.1. Let f ∈ C1(R+) satisfy f(0) = 0. Then

γr(Γ̃r)Eνr (f(τr)) = |Yr||SD−1|Eµr (f ′(τr)) .

In the case where f(z) = z, this identity gives back Santalo’s formula (3). In the case
where f(z) = 1

2z
2, it shows that Eµr (τr) = γr(Γ̃r)

2|Yr||SD−1|E
νr (τ2

r ) . As one can imagine, τr(x, v)
is a wildly oscillating function. For one thing, it depends upon arithmetic characteristics of
v — such as which Diophantine class v belongs to — that are known to be very unstable as
v runs through SD−1. Hence it is not very surprising that τr has infinite moments of order
higher than one.

3. Bounds on the distribution of free path lengths

Since Eµr (τr) = +∞, the next simple thing to compute is the distribution of τr under
µr. With applications to kinetic theory in mind, it is in fact more natural to consider the
following, slightly more general object:

Φm
r (t) = m(v)dµr(x, v)-meas({(x, v) ∈ Yr × SD−1 | τr(x, v) > t})

where m ∈ C(SD−1), m > 0 and Eµr (m) = 1. Theorem 3.1 below shows that, although
τr is not an element of L1(Yr × SD−1, µr), it does not miss by much: in particular τr ∈
L1,∞(Yr × SD−1, µr) (Marcinkiewicz’ weak L1 space16).

Theorem 3.1. For each m ∈ C(SD−1) such that m > 0 and Eµr (m) = 1, there exists two
positive constants Cm and C ′m such that, for each r ∈ (0, 1

2 ) and each t > 1/rD−1,

Cm

rD−1t
≤ Φm

r (t) ≤ C ′m
rD−1t

.

A weaker variant of the upper bound was proved by Dumas-Dumas-Golse7 for space
dimension 2 (using an improvement by Dumas of his ergodization rate estimates in Ref. 6).
These investigations suggested that 1/rD−1 was the right length scale for this problem. The
upper bound for any D ≥ 2 is proved in Bourgain-Golse-Wennberg4 by a method based
on Fourier series that is vaguely reminiscent of Siegel’s proof of Minkowski’s convex body
theorem. In the case of space dimension D = 2, a proof of the lower bound is also to
be found in Ref. 4. It is based on an entirely different argument, more precisely on the
construction of obstacle-free channels of rational direction and on a careful estimate of the
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Figure 2. Left: Log-log-plot of Φ1
r(t) vs. t, Right: Plot of trΦ1

r(t) vs. t, for r = 0.01, 0.03, and 0.001.

width thereof. Later, an argument of this type was extended to arbitrary space dimension
by Golse-Wennberg12.

The numerical computations above (taken from Golse-Wennberg12) suggest that
Φ1

r(t/r) ∼ C/t as t → +∞ and r → 0+, with 0.1 < C < 0.11 (inasmuch as the numerical
evaluation of trΦ1

r(t) for r → 0+ and t >> 1/r can be trusted).

4. Asymptotic evaluation of the distribution of free path lengths for D=2

In the case of space dimension D = 2, one can consider sections of the linear flow on T2,
which leads to studying iterates of a rotation on the unit circle. This suggests that the
continued fraction expansion of the slope of the linear flow considered is the appropriate
tool for evaluating τr.

Theorem 4.1. Let m ∈ L∞(SD−1) satisfy m ≥ 0 a.e. and Eµr (m) = 1. Then, as t→ +∞

lim
ε→0+

1
| ln ε|

∫ 1/4

ε

Φm
r

(
t

r

)
dr

r
=

1
π2t

+O

(
1
t2

)
,

lim
ε→0+

1
| ln ε|

∫ 1/4

ε

Φm
r

(
t

r

)
dr

r
=

1
π2t

+O

(
1
t2

)
.

This result was proved by Caglioti-Golse5. The proof uses essentially two different ideas,
which are sketched below.

4.1. A partition of T2

In 1989, R. Thom posed the following problem: “To find the longest orbit of a linear flow
with irrational slope on a flat torus with a disk removed”. This problem was essentially
solved by Blank-Krikorian1, by the following construction.

For R ∈ (0, 1), let Y [R] be the flat torus with a vertical slit of length R removed:
Y [R] = T2 \ ({0}× [0, R] mod. 1). Let v = (cos θ, sin θ) with θ ∈ (0, π

4 ) such that tan θ /∈ Q.
Call [a1, a2, a3, . . .] with an ∈ N, the continued fraction expansion of α = tan θ, meaning
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that

α = [a1, a2, a3, . . .] =
1

a1 +
1

a2 +
1

a3 + . . .

.

Call pn/qn its sequence of convergents (the integers pn and qn being co-prime), i.e.
pn+1

qn+1
=

1

a1 +
1

a2 + . . .
1
an

,

and let dn be the sequence of errors defined as dn = |qnα− pn|. Consider then the following
nested partition of (0, 1):

(0, 1) =
⋃
n≥1

⋃
1≤k≤an

In,k , with In,k = [sup(dn, dn−1 − kdn), dn−1 − (k − 1)dn) .

In Ref. 1, Blank and Krikorian proved the following

Proposition 4.2. Assume that R ∈ In,k. Any orbit of the linear flow with slope tanα on
Y [R] has length either qn, or qn−1 + kqn, or else qn−1 + (k + 1)qn.

Following Blank and Krikorian, the shortest orbits are said to be “of type A”, the longest
ones “of type C”, and the remaining orbits “of type B”.

In Ref. 5, the proposition above was used to construct a partition of Y [R] into three
strips, each strip being the union of all orbits of type A, B, or C respectively. Call ψR(t, v)
the distribution of free path lengths in Y [R] for particles moving in the direction v from
a uniformly distributed starting point x. By using the partition of Y [R] mentioned above,
especially the width of each one of the three strips in that partition which can be easily
expressed in terms of the sequence of errors dn (see Ref. 5, p. 206), one arrives at an explicit
formula for ψR(t, v), whose graph is represented in figure 3 below.

For the problem that we consider, the only significant part in the graph below is the
middle one — i.e. the contribution of orbits of type B only. More precisely

Lemma 4.3. Let r ∈ (0, 1
4 ), θ ∈ (0, π

4 ) be such that tan θ /∈ Q, and v = (cos θ, sin θ).
Assume that R = 2r/ cos θ ∈ In,k. Thenc∣∣∣∣∣ψR

(
t

r
, v

)
−
(

1− R

dn
− t

dn−1

R

)
+

∣∣∣∣∣ ≤ 4
k
1(t−2,+∞)(k) , for all t > qnR .

This is Lemma 4.2 in Ref. 5, to which we refer the reader interested in a complete proof.

4.2. An ergodic lemma

Given α ∈ (0, 1)\Q and ε > 0, defined N(α, ε) = inf{n ∈ N | dn(α) < ε}. Define ∆j(α, x) =
−x− ln dN(α,e−x)−j(α) for j = 0, 1, . . ..

cIf x ∈ R, the notation x+ designates sup(x, 0); the notation 1A designates the indicator function of A.
dWhenever necessary, we specify the dependence upon α of the continued fraction expansion of α, denoting
by qn(α) the denominator of the n-th convergent, by dn(α) the n-th error, and so on.
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Figure 3. Graph of t 7→ ψR(t, v) for R ∈ In,k.

Lemma 4.4. Let f be a bounded nonnegative measurable function on R2. For each x∗ ∈ R
and a.e. α ∈ (0, 1), one has

1
| ln ε|

∫ | ln ε|

x∗
f(∆0(α, x),∆1(α, x))dx→ 12

π2

∫ 1

0

F (θ)dθ
1 + θ

as ε→ 0+, where

F (θ) =
∫ | ln(θ)|

0

f(| ln(θ)| − y,−y)dy .

This result was proved by Caglioti-Golse5, using that the Gauss map T : (0, 1) 3 x 7→
1/x− [1/x] ∈ (0, 1) is ergodic with invariant measure 1

ln 2
dx

1+x . See Ref. 5, pp. 209-210 for a
complete proof of this result.

The key argument in the proof of Theorem 4.1 is to observe that, by Lemma 4.3, for
each t > 2, ψR

(
t
r , v
)
' (1 − e∆1(α,−x) − te−∆0(α,−x))+, with x = − lnR, up to an error of

order 4/k as k ≥ t− 2. Applying Lemma 4.4 to f(z1, z2) = (1− ez2 − te−z1)+ leads to the
asymptotic estimates stated in Theorem 4.1.

Let us conclude this section with a few remarks on Theorem 4.1. As shown above, the
proof is based upon comparing the radius r of the obstacles with the sequence of errors
dn(α). In view of the elementary formula dn(α) = αdn−1(Tα), one sees that the exit time
problem for a linear flow with slope α and obstacle size r is mapped to the same problem
with slope Tα and obstacle size r/α. Hence it is natural to consider averages for the Haar
measure dr

r on the multiplicative group R∗
+ in the statement of Theorem 4.1.

Following the result by Caglioti-Golse5, Boca-Zaharescu2 have recently proved that, for
m ≡ 1, Φ1

r(t/r) converges to a limit as r → 0+ for all t > 0. Their proof is based on the
same partition as in Ref. 5, but uses Farey fractions and Kloosterman sums instead of the
analysis presented above.
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5. Applications to kinetic theory

Set D = 2. Define Ωε = {εz | z ∈ Zε}, and consider the transport equation

∂tgε + v · ∇xgε = 0 on Ωε × S1, gε

∣∣∣
t=0

= f in
∣∣∣
Ωε×S1

,

gε(t, x, v) = 0 for x ∈ ∂Ωε , v · nx > 0
(4)

with unknown is gε(t, x, v). Here, nx is the inward unit normal at the point x ∈ ∂Ωε and
f in is a given, nonnegative function of Cc(R2 × S1). Physically, this is the variant of the
periodic Lorentz gas with scatterers replaced by holes (or traps) where impinging particles
fall instead of bouncing back.

Obviously, ‖gε‖L∞t,x,v
= ‖f in‖L∞x,v

. Reasoning as in Ref. 13 suggests that gε → g in L∞t,x,v

weak-*, where g solves the uniformly damped transport equation

∂tg + v · ∇xg + g = 0 on R∗
+ ×R2 × S1 , g|t=0 = f in , (5)

but this is ruled out by Theorem 2.1 of Ref. 12. Theorem 4.1 suggests instead that the
resulting damping rate should vanish in the limit as t → +∞. The following result was
proved by Caglioti-Golse5:

Theorem 5.1. Let f in ≥ 0 be a continuous bounded function on R2×S1 and let gε be, for
each ε ∈ (0, 1

4 ), the solution of (4). Then, for each nonnegative, compactly supported, C1

test function χ, one has

lim
ε→0

∫∫ (
1

| ln ε|

∫ 1/4

ε

gr(t, x, v)
dr

r

)
χ(x, v)dxdv =

∫∫
g(t, x, v)χ(x, v)dxdv +O

(
1
t2

)

lim
ε→0

∫∫ (
1

| ln ε|

∫ 1/4

ε

gr(t, x, v)
dr

r

)
χ(x, v)dxdv =

∫∫
g(t, x, v)χ(x, v)dxdv +O

(
1
t2

)
as t→ +∞, where

g(t, x, v) =
1
π2t

f in(x− tv, v) . (6)

In particular, g satisfies, in the sense of distributions, the transport equation

∂tg + v · ∇xg +
1
t
g = 0 , (t, x, v) ∈ (0,+∞)×R2 × S1 . (7)

In fact, Theorem 3.1 also rules out the possibility that the original periodic Lorentz gas
(with reflecting instead of absorbing obstacles) may be described by the kinetic model (1)
in the Boltzmann-Grad limit — i.e. in the same scaling limit as above. Indeed, let fε(t, x, v)
be the solution to

∂tfε + v · ∇xfε = 0 on Ωε × S1, fε

∣∣∣
t=0

= f in
∣∣∣
Ωε×S1

,

fε(t, x, v) = fε(t, x, v − 2(v · nx)nx) for x ∈ ∂Ωε .
(8)

Theorem 5.2. There exist initial data f in that are continuous on T2 × S1 and such that,
for ε of the form εn = 1/n with n ≥ 3, neither fεn

nor any subsequence thereof converge in
L∞t,x,v weak-* to the solution of

(∂t + v · ∇x)f(t, x, v) = C(f(t, x, ·))(v) , f
∣∣∣
t=0

= f in
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with collision integral C defined in (2).

Pick f in independent of v: f in ≡ ρin(x). By the maximum principle, fεn(t, x, v) ≥
gεn

(t, x, v) = ρin(x − tv)1(t/εn,+∞)(τεn
(x/εn,−v)). If fεn

→ f in L∞t,x,v weak-*, Theorem
3.1 and the same arguments as in the proof of Theorem 5.1 (see Ref. 5, pp. 217–218) imply
that

f(t, x, v) ≥ C1

t
ρin(x− vt) , t > 1 . (9)

If f were the solution to (1) with F ≡ 0 and initial data f(0, x, v) = ρin(x), it would satisfy∥∥∥∥f(t, ·, ·)−
∫
T2
ρin(z)dz

∥∥∥∥
L2(T2×S1)

≤ Ae−αt‖ρin‖L2(T2) (10)

for some constants A > 0 and α > 0 independent of the choice of ρin. (This result was
proved by Ghidouche-Point-Ukai11 in the case of the linearized Boltzmann equation — see
Theorem 1 (iii), p. 207 of Ref. 11; adapting it to Eq. (1) is obvious.) But (9) and (10) are
clearly incompatible, since one can choose ‖ρin‖L2 = 1 with

∫
T2 ρ

indx arbitrarily small.

6. Conclusions

Because of the presence of too many long collision-free trajectories with near rational slopes,
the Boltzmann-Grad limit of the Lorentz gas is not described by the kinetic equation (1).
Whether the precise asymptotic result in Theorem 4.1 could lead to a positive result on this
limit, as it does in the case of absorbing obstacles (see Theorem 5.1) remains an interesting
open problem. Also, it would be interesting to extend Theorem 4.1 to space dimensions
higher than 2; however, this could be hard since the current proof is based on continued
fractions (the same can be said of Ref. 2 which uses Farey fractions instead).
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