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LECTURE 5

THE NAVIER-STOKES LIMIT: SETUP AND A PRIORI ESTIMATES




The incompressible Navier-Stokes scaling

eConsider the dimensionless Boltzmann equation in the incompressible
Navier-Stokes scaling, i.e. with|St = 7Kn = e < 1.
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eStart with an initial data that is a perturbation of some uniform Maxwellian
(say, the centered reduced Gaussian M = Mj g 1) with Mach number

Ma = O(e) |.

F'™ = M1 01+ ef™

eExample 1: pick '™ € L2(R3) a divergence-free vector field; then the
distribution function

FM(2,v) = My yin(zy.1(V)
Is of the type above.



eExample 2: If in addition 67 € L2 N L°°(R3), the distribution function

F'(z,v) =M ewin () . (v)

1—e0(z), 1—e0i ()’ 1—e0 ()

IS also of the type above. (Pick 0 < € < HHZ'”lH ,then 1 — €6" > 0 a.e.).
LOO

e| Problem |: to prove that

1
/ vFe(t,z,v)dv — u(t,z) ase — 0O
e /R3

where u solves the incompressible Navier-Stokes equations
ou—+u-Veu—+ Vep =vAzu, divpyu=20
— N
u‘t:O — Y

The viscosity v Is given by the same formula as in the Chapman-Enskog
expansion.



Renormalized solutions relativelyto M

eThe DiPerna-Lions theory of renormalized solutions considered initial data
vanishing at infinity. In the context of the Navier-Stokes limit, we shall need
solutions that approach a uniform Maxwellian state at infinity.

Definition. A renormalized solution relatively to M of the scaled Boltz-
mann equation is a nonnegative ' € C(R4; Li (R3 x R3)) such that
H(Fe(t)|M) < +ooforallt > 0and [ (£5) B(Fe, Fe) € L}, (dtdzdv),
as well as
F 1 F
M(edy +v- Vo)l (M) =-r (M> B(F., F)

In the sense of distributions on R* x R3 x R3,forall I € Cl(R+) such

that F(0) = 0 and |I'(Z)| < \/fiTZ



eln a later paper (CPDEs 1994), P.-L. Lions studied the existence of renor-
malized solutions to the Boltzmann equation with various limiting condi-
tions at infinity. His results imply the following

Theorem. Let F*" > 0 a.e. satisfy H(F¢|M) < +4oo. Then there exists
a renormalized solution relatively to M of the scaled Boltzmann equation
such that Ft N F'™. Moreover, this solution satisfies

e the continuity equation (local conservation of mass), and

e the DiPerna-Lions relative entropy inequality



A priori estimates

eThe only a priori estimate satisfied by renormalized solutions to the Boltz-
mann equation is the DiPerna-Lions entropy inequality:

1t
H(F|M)(t) + 6—2/0 /R3 ///R3><R3><82 d(Fe)|(v — vx) - w|dvdvsdwdxds
< H(F{"|M)

eNotation:

f .
H(flg) = //R3><R3 <f In <§> — f+ g) dxdv  (relative entropy)

f’fi)

(dissipation integrand)

d(f) = L(f'fl = ff)
(f) =z(ff ff)n<ff*




eintroduce the relative number density, and the relative number density
fluctuation:
Fe— M
ge —

F,
GEZ—E,
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ePointwise inequalities: one easily checks that

(VGe—1)? < C(GeInGe — Ge + 1)
2 IDal
(\/GQGQ* _ \/GGGG*) < 1(GLGL, — GG In <g€g€>
€ €k
— d(Ge)

eNoticethat ZInZ — Z + 1 ~ 5(Z — 1)? near Z = 1.




eEXxpress that the initial data is a perturbation of the uniform Maxwellian M
with Mach number Ma = O(e):

e\With the DiPerna-Lions entropy inequality, and the pointwise inequalities
above, one gets the following uniform in ¢ bounds

//R3 R3(\/Ge — 1)°Mdvdz < Ce?
X

~+o0 5
/o /Rs ///Rsngxsz (\/@ - \/@) dudzdt < Ce*

where p is the collision measure:

du(v, vy, w) = [(v — V%) - w|dw Mydvs M dv
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The BGL Program (CPAM 1993)

eLet F'™ > 0 be any sequence of measurable functions satisfying the
entropy bound H(F'™|M) < C"e2, and let F. be a renormalized solution
relative to M of the scaled Boltzmann equation

. n
_Fe

1
68tF€+U'v$F€ :_B(Fe,Fe), Fe
€

t=0
eLet g¢ = ge(z,v) be such that Ge ;= 1 4+ ege > 0 a.e.. We say that
ge — g entropically at rate e as ¢ — O iff

| 1
ge = gin L}, (Mduvdz) , and - H(MGe|M) — %// g2 Mdvda
€




Theorem. Assume that
F'™(x,v) — M(v)
eM (v)
entropically at rate e. Then the family of bulk velocity fluctuations

1
—/ vFedv
e /RS

IS relatively compact in w — Llloc(dtd:c) and each of its limit pointsas ¢ — O
IS a Leray solution of

s u'™ () - v

oru + dive(u @ u) + Vep = vAzu, divyu =20, Ul _o = um

with viscosity given by the formula

yzl—l()/A:AMdv, where A = £71A



Method of proof

eRenormalization: pick v € C*°(R ) a nonincreasing function such that

R _d
Niosm =1 Mgy =0 5e7(2) = (= = D¥(=)
eThe Boltzmann equation is renormalized (relatively to M) as follows:
1 1_
O¢(geve) + ;’U - Va(geve) = 6—3’YGQ(G67 Ge)

where ve := v(Ge), 7%e = 7(Ge) and (G, G) = M~ 1B(MG, MG)



e Continuity equation | Renormalized solutions of the Boltzmann equation
satisfy the local conservation of mass:

€0t{ge) + dive(vge) = 0
eThe entropy bound and Young’s inequality imply that
(14 |fv|2)g€ IS relatively compact in w — Llloc(dtdac; LY (Mdv))
Modulo extraction of a subsequence
ge — gin L} (dtdz; LY (Mdv))

and hence (vge) — (vg) =: w in Llloc(dtd:c); passing to the limit in the

continuity equation leads to the incompressibility condition

divyu =0




eHigh velocity truncation: pick K > 6 and set K. = K|Ing¢|; for each
function £ = £(v), define i (v) = g(fu)1|v|g<K6

eMultiply both sides of the scaled, renormalized Boltzmann equation by
each component of vy :

: 1
O{vicgeve) + dive Fe(A) + Va— (5]v[%, 9¢7e) = De(v)

where

1 .
Fe(A) = ¢(ARgere), De(v) = 5(vkAe(GGlr — GeGer) )

eNotation: with dy = |(v — v«) - w| M dvMsdvsdw (collision measure)

@ = | joMav, (v)=[[[ uv0)d




eThe plan is to prove that, modulo extraction of a subsequence

(VK geve) = (vg) =1 u in Lj,.(Ry x R?)
Dc(v) — O in L (R4 x R3) and
P (divy Fe(A)) = Pdive(u®2) — vAgu  in L} (dt, W, 51

for s > 1 as e — 0, where P is the Leray projection (i.e. the L2 orthogonal
projection on divergence-free vector fields).




