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LECTURE 3

VELOCITY AVERAGING




PART 1:

VELOCITY AVERAGING




Fundamental formulas for the transport equation

e The solution to the Cauchy problem
Of+v-Vaf+alt,2)f = S(t,2), f,_ =f"@), t>0, zeR”

with initial data f* = f**(z), source term S, amplification/absorption rate
a, and unknown f = f(t,x) is given by

f(t,z) = f"(z — tv) exp (— /Ot a(t — s,z — sv)ds)
—I—/OtS(t—s,w—sv)exp (—/Osa(t—a,x—av)da> ds

eMethod of characteristics: solve as a linear ODE in the variable ¢

%f(t, 2+ tv) + alt, z + ) f(t, 2 + tv) = S(t, 2 + tv)

and set z = = — tw.



eStationary case: for each p > 0, the solution to

pf +v-Vef +a(z)f =5(&), zeRP

where a is the amplification/absorption rate, S the source term, and with
unknown f = f(x) is given by the formula

f(x) = /O_I_OO S(x — tv) exp (—pt — /Ot a(x — sv)ds) dt

eProof: Apply the Laplace transform to the evolution problem
Op+v-Vad+ap=0, ¢|t=o =S
with

flz) = /;OO e PLo(t, x)dt = /:OO e P oyp(t, x)dt = pf(x) — S(x)



Velocity Averaging in L2

eSetting: let m be a finite, positive Radon measure on R¥ such that

(GCp) m(H) = 0 for any hyperplane H > 0

Theorem. (G.-Perthame-Sentis, CRAS 1985) Let F be a bounded sub-
set of L2(RY x RY: dz ® dm(v)) such that

{v-Vazf|f e F}isboundedin L?(RY x RY; dz ® dm(v))

Then the set of velocity averages

{/RD f(xz,v)dm(v)

JlIS ]—"} is relatively compact in L, .(RL; dx)

eEarlier regularity remarks reported by Agoshkov (Dokl. AN 1984); general
and systematic regularity results in G.-Lions-Perthame-Sentis (JFA 1988)



Velocity Averaging for Evolution Problems

oSetz = (t,z) e R x RY, w = (u,v) € R x RY and

p=10y=1®@m

olf f(t,z,v) = F(t,x,u, ’U)‘u_l, then

w-V.F e L?(Rx RP) x (R x RY); dtdx @ du)

IS equivalent to

Of +v-Vif € L2(R x RP x RP; dtdzdm(v))




eThe homogeneous geometric condition (GCp) on p is equivalent to the
following affine geometric condition on m:

(GCy) m(H) = 0 for any affine hyperplane H ¢ R”

Theorem. Assume that m satisfies (GC,). Let F be a bounded subset
of L2(RY x RY dzdm(v)) and assume that G is a bounded subset of
L2(R_|_ x RD x RP, dtdzdm(v)).

For each f* € F and each g € G, let f be the solution of

wf+v-Vaf =g, fl,_ ="
Then, the set of velocity averages

{/RD f(t,z,v)dm(v)

is relatively compactin L2 (R4 x RY; dtdx)

f"'”ej—‘andgeg}



Proof of Velocity Averaging in L2

eRellich’s compactness lemma: let G be a bounded subset of L2(R).
The set G is relatively compact in L2 (RP) iff

/|€|>R |§(§)|2d§ — 0as R — oo uniformlying € G

Notation

We denote by g the Fourier transform of g:

(&) = / e~ (1) da for each g € L N L2(RP)

eBy Plancherel’s theorem, the assumptions of the theorem are translated
Into

(FfIfeFyand {(v-&)F|f € F}are bounded in L?(d¢ ® dm(v))
where f(¢,v) is the Fourier transform of f in the z-variable:

Fev) = [ e f(a,0)da



eEquivalently

{6 = (14iv-&)f|fe F}isboundedin L?(d¢ ® dm(v))
eDenote

¢(&; v)dm(v)

p(2) = [ f(w,0)dm(v), sothat p(¢) =
By Cauchy-Schwarz,

1412 -v

2 2
|M@I<AOGKJ/WQdem®)

where

. dm(v)
N(r,w) = / \/1 + 7“2(’0 . w)2




eSince m({v - w = 0}) = 0 for each unit vector w,
A(r,w) — 0asr — 4oo, pointwise inw € SP~1.

eMoreover, A(r,-) is continuous on the unit sphere, and A(r,w) | O as
r — 400, by Dini's theorem,

A(r,w) — 0asr — oo, uniformlyinw € SP~1.

eThen

/|£|>R|P(§)| d§ < |j|U:D1/\(R,w) //|g(§,v)| dédm(v) — 0

as R — oo uniformly in g as f runs through F

and conclude by Rellich’s compactness lemma.



Weak compactness in L1

oA sequence of functions f,, in L1(RY) converges weakly to f iff

00 N
/RN fn(x)p(x)dr — /RN f(x)p(x)dz, forallpe L°(RY)

oA bounded subset of L1 (R%) may not be weakly relatively compact:

a) there may be concentrations (|| fr||;1 = 1 and fn, — g in the sense of
Radon measures)

b) there maybe vanishing at infinity (|| fn||;1 = 1 and f wi<r O in L1
for each R > 0) N

eExercise: it may even happen that || fr||;1 = 1, that f, — f € L' in the
sense of Radon measures but NOT in the weak L1 topology.




eDunford-Pettis Theorem: a bounded subset F ¢ LI (RY) is relatively
compact for the weak topology of L1 iff

e F is uniformly integrable:

/A |f(2)|dz — 0 as |A] — 0 UNIFORMLY IN f € F

e F is tight:

/Il _1F(2)|dz — 0 as R — oo UNIFORMLY IN f € F
zZ|>



eEquivalently, F is uniformly integrable iff
/ |f(2)|dz — 0 as ¢ — 400 UNIFORMLY IN f € F
[f(2)|>c

eDe La Vallée-Poussin Criterion: F is uniformly integrable iff there exists a
function H : R4 — R satisfying

H(r)

r

> +ooasr — +oo

and such that

sup | H(f(z2))dz < o0
feF

eExample: as a function H, one can choose H(r) = r(Inr)4; in the
context of the kinetic theory of gases, an entropy bound implies the uniform
integrability of the number densities.




Velocity Averaging in L1-1

Theorem. Let F ¢ LY (RP x RP; dxdv) be weakly relatively compact
and such that {v-V.f| f € F}is bounded in L and uniformly integrable.
Then the set

{/f(ac,'v)dv ‘ f € ]—“} is relatively compact in L1 (R")

Theorem. Let F c L1([0,T] x RP x RP: dtdzdv) be weakly relatively
compact and such that {8;f + v - V.f|f € F} is bounded in L! and
uniformly integrable. Then the set

{/f(t,x,v)dv ‘ f e ]—"} is relatively compact in L ([0, T] x RP)

eBoth theorems were proved in G.-Lions-Perthame-Sentis (JFA 1988)



Proof:. By Dunford-Pettis, F is tight, and therefore one can assume WLOG
that all the functions in F are supported in {|x| 4+ |v| < r} modulo a small
error in L1 norm.

eConsider the resolvent of the transport operator: for A > 0, we define
Ry = (A +v- V)1 by the formula

_|_
Ry\S(x,v) = /O >~ e MS(z — tv,v)dt
(i.e. RySisthe solution f = f(z,v) of Af +v-Vif = 9).

eOne checks that

Ty
IRASlr < [ e 1S (z — tv,v)|[p di

teo 15Tl e
=||S / Aldt =
ISllzw ) e \




eLet £/ be a Banach space, and H C E. To check that H is relatively
compact in E, check that

for each e > O, there exists K. CC E s.t. H C K¢+ B(0,¢)
eBy assumption, G = {g = f + v - Vg f | f € F} is uniformly integrable;
for each ¢ > O, decompose
F=15+ 12, 15 =Ri(glg<) » £Z = R1(91)g5c)

oFirst

(@)= [ 2@ v)d

vI<R

satisfies

— 0asc— +ocouniformlying € ¢

o211y < 121, < [91igise] ;4

T,V



eThen, for each ¢ > 0, g1;,<.. is bounded in L , and hence, by the L?-
Velocity Averaging theorem

s () = /| <n F<(z, v)dv is relatively compact in LY (R?)
v _

eConclusion: therefore, for each ¢ > 0, we have found a compact K. C
L1(RP) such that

| f@v)dv = pS + o7 € Ke+ By (0,€)



Velocity Averaging in L1-2

eln fact, one can even drop the assumption of uniform integrability on
derivatives (G.-Saint-Raymond, CRAS2002)

Theorem. Let F ¢ LY (RP x RPL: dzdv) be weakly relatively compact
and such that {v - V. f | f € F} is bounded in L!. Then the set

{/f(ac,v)dv ‘ f € ]—"} is relatively compact in L1 (R")

Theorem. Let F C L1([0,T] x RP x RP: dtdzdv) be weakly relatively
compact and such that {0;f + v - V. f | f € F} is bounded in L1. Then
the set

{/f(t,g;,v)dv ‘ f e J-“} is relatively compact in L1 ([0, T] x R")



eProof: for each A > 0, set Ry = (A + v - V)~ 1. We recall that

Write
f=R\(Af+v-Vzf) =AR\f + R\(v- Vgf)

so that

/fdv — A/kadv+/R>\(v-fo)dv

Since {v - Vg f|f € F} is bounded in L}:,,U, the second term on the r.h.s.
can be made arbitrarily small in L};’U for some A > O large enough.

For such a ), the first term on the r.h.s. is relatively compact in L% by the
previous L1 Velocity Averaging theorem.



