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I. INTRODUCTION TO THE BGL PROGRAM

The program laid out by Bardos, Golse, and Levermore [BGL93] is (1)
to identify those fluid dynamical systems that can be obtained through a
moment-based formal derivation like those outlined in the last lecture, and
(2) to give a full mathematical justification of those formal derivations.

In order to carry out this program, we must make precise: (1) the notion of
solution for the Boltzmann equation, and (2) the notion of solution for the
fluid dynamical systems. Ideally, these solutions should be global while the
bounds should be physically natural.



Global Solutions

We therefore work in the setting of DiPerna-Lions renormalized solutions
for the Boltzmann equation, in the settings of L2 solutions for the acoustic
and Stokes systems, and in the setting of Leray solutions for the Navier-
Stokes system. These theories have the virtues of considering physically
natural classes of initial data, and consequently, of yielding global solu-
tions. There is no such theory for the Euler system, so one must work in
the setting of local classical soltions for now.

One of the central goals of the BGL program is to connect the DiPerna-
Lions theory of renormalized solutions of the Boltzmann equation to the
Leray theory of weak solutions of the incompressible Navier-Stokes sys-
tem.



II. DIPERNA-LIONS SOLUTIONS FOR BOLTZMANN

The DiPerna-Lions theory gives the existence of a global weak solution to
a class of formally equivalent initial-value problems that are obtained by
multiplying the Boltzmann equation by Γ′(G), where Γ′ is the derivative of
an admissible function Γ:

(
τǫ∂t + v ·∇x

)
Γ(G) =

1

ǫ
Γ′(G)Q(G, G) ,

G(v, x,0) = Gin(v, x) ≥ 0 .

This is the so-called renormalized Boltzmann equation. A differentiable
function Γ : [0,∞) → R is called admissible if for some constant CΓ < ∞
it satisfies

∣∣∣Γ′(Z)
∣∣∣ ≤ CΓ√

1 + Z
for every Z ≥ 0 .

The solutions lie in C([0,∞);w-L1(Mdv dx)), where the prefix “w-” on
a space indicates that the space is endowed with its weak topology.



DiPerna-Lions Solutions

We say that G ≥ 0 is a weak solution of the renormalized Boltzmann
equation provided that it is initially equal to Gin, and that for every Y ∈
L∞(dv;C1(TD)) and every [t1, t2] ⊂ [0,∞) it satisfies

τǫ

∫

TD
〈Γ(G(t2))Y 〉dx − τǫ

∫

TD
〈Γ(G(t1))Y 〉dx

−
∫ t2

t1

∫

TD
〈Γ(G) v ·∇xY 〉dxdt

=
1

ǫ

∫ t2

t1

∫

TD

〈

Γ′(G)Q(G, G)Y

〉

dx dt .

If G is such a weak solution of for one such Γ with Γ′ > 0, and if G satisfies
certain bounds, then it is a weak solution for every admissible Γ. Such
solutions are called renormalized solutions of the Boltzmann equation.



DiPerna-Lions Theorem - 1

Theorem. 1 (DiPerna-Lions Renormalized Solutions) Let b satisfy

lim
|v|→∞

1

1 + |v|2
∫

SD−1×K
b(ω, v∗ − v) dω dv∗ = 0

for every compact K ⊂ RD .

Given any initial data Gin in the entropy class

E(Mdv dx) =
{
Gin ≥ 0 : H(Gin) < ∞

}
,

there exists at least one G ≥ 0 in C([0,∞);w-L1(Mdv dx)) that for
every admissible function Γ is a weak solution of renormalized Boltzmann
equation.



This solution satisfies a weak form of the local conservation law of mass

τǫǫ ∂t〈G〉 + ∇x· 〈v G〉 = 0 .

Moreover, there exists a martix-valued distribution W such that W dx is
nonnegative definite measure and G and W satisfy a weak form of the
local conservation law of momentum

τǫ∂t〈v G〉 + ∇x· 〈v ⊗ v G〉 + ∇x· W = 0 ,

and for every t > 0, the global energy equality
∫

TD
〈12|v|

2G(t)〉dx +
∫

TD

1
2 tr(W (t)) dx =

∫

TD
〈12|v|

2Gin〉dx ,

and the global entropy inequality

H(G(t)) +
∫

TD

1
2 tr(W (t)) dx +

1

ǫ τǫ

∫ t

0
R(G(s)) ds ≤ H(Gin) .



DiPerna-Lions Theorem - 3

Remarks: DiPerna-Lions renormalized solutions are very weak — much
weaker than standard weak solutions. They are not known to satisfy many
properties that one would formally expect to be satisfied by solutions of
the Boltzmann equation. In particular, the theory does not assert either
the local conservation of momentum, the global conservation of energy,
the global entropy equality, or even a local entropy inequality; nor does it
assert the uniqueness of the solution.



III. LERAY SOLUTIONS FOR NAVIER-STOKES

The DiPerna-Lions theory has many similarities with the Leray theory of
global weak solutions of the initial-value problem for Navier-Stokes type
systems. For the Navier-Stokes system with mean zero initial data, we set
the Leray theory in the following Hilbert spaces of vector- and scalar-valued
functions:

Hv =

{
w ∈ L2(dx;R

D) : ∇x· w = 0 ,
∫

w dx = 0

}
,

Hs =

{
χ ∈ L2(dx;R) :

∫
χ dx = 0

}
,

Vv =

{
w ∈ Hv :

∫
|∇xw|2 dx < ∞

}
,

Vs =

{
χ ∈ Hs :

∫
|∇xχ|2 dx < ∞

}
.

Let H = Hv ⊕ Hs and V = Vv ⊕ Vs.



Leray Theorem

Theorem. 2 (Leray Solutions) Given any initial data (uin, θin) ∈ H, there
exists at least one (u, θ) ∈ C([0,∞);w-H) ∩ L2(dt;V) that is a weak
solution of the Navier-Stokes system in the sense that for every (w, χ) ∈
H ∩ C1(TD) and every [t1, t2] ⊂ [0,∞) it satisfies

∫
w ·u(t2) dx −

∫
w ·u(t1) dx −

∫ t2

t1

∫
∇xw : (u ⊗ u) dxdt

= −ν
∫ t2

t1

∫
∇xw :∇xudxdt ,

∫
χ θ(t2) dx −

∫
χ θ(t1) dx −

∫ t2

t1

∫
∇xχ · (u θ) dxdt

= − 2
D+2 κ

∫ t2

t1

∫
∇xχ ·∇xθ dxdt .



Moreover, for every t > 0, (u, θ) satisfies the dissipation inequalities
∫

1
2|u(t)|2dx +

∫ t

0

∫
ν|∇xu|2dxds ≤

∫
1
2|u

in|2dx ,
∫

D+2
4 |θ(t)|2dx +

∫ t

0

∫
κ|∇xθ|2dxds ≤

∫
D+2

4 |θin|2dx .

Remarks: By arguing formally from the Navier-Stokes system, one would
expect these inequalities to be equalities. However, that is not asserted by
the Leray theory. Also, as was the case for the DiPerna-Lions theory, the
Leray theory does not assert uniqueness of the solution.



A Variant of Leray Theory

Because the role of the above dissipation inequalities is to provide a-priori
estimates, the existence theory also works if they are replaced by the single
dissipation inequality

∫
1
2|u(t)|2 + D+2

4 |θ(t)|2dx +
∫ t

0

∫
ν|∇xu|2 + κ|∇xθ|2dx ds

≤
∫

1
2|u

in|2 + D+2
4 |θin|2dx .

It is this version of the Leray theory that we will obtain in the limit.



IV. VELOCITY AVERAGING

Both the DiPerna-Lions theory and the Leray theory have proofs based
on compactness arguments. (This is why they do not yield uniqueness.)
Both construct a sequence of approximate solutions and then use com-
pactness to extract a converging subsequence. Both need compactness
in a strong topology in order to pass to the limit in nonlinear terms. For
the Leray theory strong compactness follows by showing compactness in
C([0,∞);w-H) and in w-L2(dt;w-V), and using the fact

C([0,∞);w-H) ∩ w-L2(dt;w-V)−→L2(dt;H) is continuous .

The compactness in w-L2(dt;w-V) follows from the dissipation estimate.
The spatial regularity in the DiPerna-Lions theory required a new tool.



An Example

Being hyperbolic, the transport operator v ·∇x propagates singularities along
characteristics. Therefore, at first sight it seems hopeless that one might
obtain any regularizing effect from the free streaming part of the Boltz-
mann equation — or of any other similar kinetic model. One can think of
the following elementary example:

Example. Let f ∈ L2(dt); define F (v, x) = f(v2x1 − v1x2) for almost
every x, v ∈ R2. Clearly, F ∈ L2

loc(dv dx) and v ·∇xF = 0. However,
because f can be any function in L2(dt), F /∈ Hs

loc(dv dx) for any s > 0,
although v ·∇xF ∈ L2

loc(dv dx).



Regularity by Averaging

The key to obtaining regularizing effects from the transport operator v · ∇x

is to seek those effects not on the kinetic density itself, but on velocity
averages thereof — in other words, on the macroscopic densities. Here is
the prototype of all Velocity Averaging results. Given G ∈ L2(dv dx) let F

solve

F + v ·∇xF = G .

Clearly G ∈ L2(dv dx). Let φ ∈ L2(dv) and define

ρ(x) =
∫

RD
φ(v)F (v, x) dv .

Velocity Averaging states that ρ gains regularity. This is easily shown as
follows.



Regularity by Averaging

Let F̂ , Ĝ, and ρ̂ denote respectively the Fourier transforms of F , G, and ρ

in the x variable. Then

ρ̂(ξ) =
∫

RD

φ(v) Ĝ(v, ξ)

1 + iv · ξ dv .

We need to study how ρ̂(ξ) decays for |ξ| large. By the Cauchy-Schwarz
inequality

|ρ̂(ξ)|2 ≤ 1

m(ξ)

∫

RD
|Ĝ(v, ξ)|2dv ,

with

1

m(ξ)
=

∫

RD

|φ(v)|2
1 + |v · ξ|2 dv .

We must show that m(ξ) → ∞ as ξ → ∞.



We express 1/m(ξ) as

1

m(ξ)
=

∫

RD

|φ(v)|2
1 + |v ·ω|2|ξ|2 dv ,

where ω = ξ/|ξ| ∈ SD−1 for every nonzero ξ ∈ RD. The integral is a
decreasing family indexed by |ξ| of continuous functions of ω. This family
vanishes pointwise in ω as |ξ| → ∞ by dominated convergence. By Dini’s
theorem, it vanishes uniformly over ω ∈ SD−1, and therefore m(ξ) → ∞
as |ξ| → ∞. Because the family

∫

RD
|ρ̂(ξ)|2 m(ξ) dξ ≤

∫∫

RD×RD
|Ĝ(v, ξ)|2 dv dξ

is bounded by Plancherel’s theorem, ρ is relatively compact in L2
loc(dx)

(by a variant of Rellich’s compactness theorem).



Regularity by Averaging in Lp

Because the operator (I + v · ∇x)−1 (which maps G on the solution F

of F + v ·∇xF = G) is a contraction mapping on both L1(dv dx) and
L∞(dv dx), by interpolation the Velocity Averaging result above also holds
in Lp for every p ∈ (1,∞) by interpolation. However, it fails in L1, as the
following example shows. (It also fails in L∞).

Example. Consider Gǫ, a bounded family of L1(dv dx) such that Gǫ →
δ(v−v∗)⊗ δ(x) weakly, where |v∗| = 1. For each ǫ, let Fǫ be the solution
to Fǫ + v · ∇xFǫ = Gǫ, which is given by

Fǫ(v, x) =
∫ ∞

0
e−tGǫ(v, x − vt) dt .



Then both Fǫ and v · ∇xFǫ are bounded in L1(dv dx) and

ρǫ(x) =
∫

RD
Fǫ(v, x) dv =

∫ ∞

0

∫

RD
e−tGǫ(v, x − vt) dv dt

so that, for any test function ψ ∈ Cc(RD),
∫

RD
ρǫ(x)ψ(x) dx →

∫ ∞

0
e−tψ(v∗t)dt ,

as ǫ → 0. Hence, ρǫ converges weakly to a density supported on the half-
line v∗R+ ⊂ RD. This means that the family ρǫ is not relatively compact in
L1

loc(dx).



Regularity by Averaging in L1

The last example rests on the possible build-up of concentrations in Fǫ

and v · ∇xGǫ. If such concentrations are ruled out, the same interpolation
argument as above entails the following L1 variant of Velocity Averaging.

Theorem. 3 (Golse-Lions-Perthame-Sentis) Let Fǫ be a family of mea-
surable functions on RD× RD such that, for each compact subset K of
RD, both families Fǫ and v ·∇xFǫ are uniformly integrable on RD × K.
Then the family ρǫ defined by

ρǫ(x) =
∫

RD
Fǫ(v, x) dv

is relatively compact in L1
loc(dx).



V. SURVEY OF THE BGL PROGRAM

The main result of [BGL93] for the Navier-Stokes limit is to recover the
motion equation for a discrete-time version of the Boltzmann equation as-
suming the DiPerna-Lions solutions satisfy the local conservation of mo-
mentum and with the aid of a mild compactness assumption.

This result falls short of the goal in five respects.

• First, the heat equation was not treated because the v3 terms in the
heat flux could not be controlled.

• Second, local momentum conservation was assumed because DiPerna-
Lions solutions are not known to satisfy the local conservation law of
momentum (or energy) that one would formally expect.



• Third, unnatural technical assumptions were made on the Boltzmann
collision kernel.

• Fourth, the discrete-time case was treated in order to avoid having to
control the time regularity of the acoustic modes.

• Finally, a mild compactness assumption was required to pass to the
limit in certain nonlinear terms.

In recent works all of these shortcomings have been overcome.



Bardos-Golse-Levermore

Bardos, Golse, and Levermore [BGL98] recover the acoustic and the Stokes
limits for the Boltzmann equation for cutoff collision kernels that arise from
Maxwell potentials. In doing so, they control the energy flux and estab-
lish the local conservation laws of momentum and energy in the limit. The
scaling they used was not optimal, essentially requiring

δǫ

ǫ
→ 0 rather than δǫ → 0 for the acoustic limit ,

δǫ

ǫ2
→ 0 rather than

δǫ

ǫ
→ 0 for the Stokes limit .



Lions-Masmoudi - 1

Lions and Masmoudi [LM00] recover the Navier-Stokes motion equation
with the aid of only the local conservation of momentum assumption and
the nonlinear compactness assumption that where made in [BGL93]. How-
ever, they do not recover the heat equation and they retain the same un-
natural technical assumptions made in [BGL93] on the collision kernel.

There were two key new ingredients in their work. First, they were able to
control the time regularity of the acoustic modes. Second, they were able
to prove that the contribution of the acoustic modes to the limiting motion
equation is just an extra gradiant term that can be incorporated into the
pressure term.



Lions-Masmoudi - 2

They also recover the Stokes motion equation without the local conserva-
tion of momentum assumption and with essentially optimal scaling. How-
ever, they do not recover the heat equation and they retain the same un-
natural technical assumptions made in [BGL93] on the collision kernel.

There are two reasons they do not recover the heat equation. First, it is
unknown whether or not DiPerna-Lions solutions satisfy a local energy con-
servation law. Second, even if local energy conservation were assumed,
the techniques they used to control the momentum flux would fail to control
the heat flux.



Golse-Levermore - 1

Golse and Levermore [GL01] recover the acoustic and Stokes systems.
They make natural assumptions on the collision kernel that include those
classically derived from hard potentials.

For the Stokes limit they recover both the motion and heat equations with
a near optimal scaling.

For the acoustic limit the scaling they used was not optimal, essentially
requiring

δǫ

ǫ
1
2

→ 0 rather than δǫ → 0 .



Golse-Levermore - 2

There were two key new ingredients in this work. First, they control the
local momentum and energy conservation defects of the DiPerna-Lions
solutions with dissipation rate estimates that allowed them to recover these
local conservation laws in the limit. Second, they also control the heat flux
with dissipation rate estimates.

Because they treat the linear Stokes case, they do not face the need either
to control the acoustic modes or for a compactness assumption, both of
which are used to pass to the limit in the nonlinear terms in [LM00].



Golse-Saint Raymond

Without making any nonlinear compactness hypothesis, Golse-Saint Ray-
mond [GSR03] recover the Navier-Stokes system for the Boltzmann equa-
tion with cutoff collision kernels that arise from Maxwell potentials. Their
major breakthrough was the development of a new L1 averaging lemma to
prove the compactness assumption. This was extracted from Saint Ray-
mond [SR98] where she recovered the Navier-Stokes limit for the BGK
model. Their proof also employs key elements from [LM00] and [GL01].

Recently they have extend their result to the hard sphere collision kernel.
It is this most recent result that will be described in the next lecture.



Some Major Open Problems in the Program:

• the acoustic limit with optimal scaling (δǫ → 0);

• all limits for collision kernels from soft potentials;

• dominant-balance Stokes, Navier-Stokes, and Euler limits;

• uniform in time results (compressible Stokes system).


