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Abstract. The present work establishes a Navier—Stokes limit for the Boltz-
mann equation considered over the infinite spatial domain R®. Appropriately
scaled families of DiPerna-Lions renormalized solutions are shown to have
fluctuations whose limit points (in the w-L' topology) are governed by
Leray solutions of the limiting Navier—Stokes equations. This completes
the arguments in Bardos-Golse-Levermore [Commun. Pure Appl. Math.
46(5), 667-753 (1993)] for the steady case, and in Lions-Masmoudi [Arch.
Ration. Mech. Anal. 158(3), 173—-193 (2001)] for the time-dependent case.

Introduction

Hydrodynamic models such as the Euler or Navier—Stokes equations were
first established by applying Newton’s second law of motion to infinitesimal
volume elements of the fluid under consideration. All equations from fluid
dynamics can be obtained in this way — see Chap. I of [38]. However, this
method fails to relate equations of state (expressing for example the pressure
in terms of the density and temperature) or transport coefficients (like the
heat conduction or the viscosity) to microscopic data (such as the laws
governing molecular interactions). In the particular case of gas dynamics,
kinetic theory allows one to express thermodynamic functions and transport
coefficients for perfect gases in terms of purely mechanical data concerning
collisions between the gas molecules.

In his 6th problem, Hilbert asked for a full mathematical justification
of this procedure; in his own words [35]: “[...] Boltzmann’s work on the
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principles of mechanics suggests the problem of developing mathematically
the limiting processes [...] which lead from the atomistic view to the laws
of motion of continua”.

The present work answers one part of this question, namely the limiting
process leading from the Boltzmann equation of the classical kinetic theory
of gases to the Navier—Stokes equations of incompressible fluids. This limit
was first discussed by Y. Sone in [59] in the steady case on the basis
of formal asymptotic expansions, and later by C. Bardos, F. Golse and
C.D. Levermore in [5], [6] in the time dependent case by a systematic
moment-closure method. The first complete mathematical proof of this
limit is due to C. Bardos and S. Ukai [11] in the case of small initial
data leading to smooth solutions; K. Asano [3] studied independently the
same limit for short times. A complete justification of the Hilbert expansion
for the incompressible Navier—Stokes limit method as in [59] has been
given by A. DeMasi, R. Esposito and J. Lebowitz in [21]. However these
methods fail to encompass the generality of all physically admissible initial
data for either the Boltzmann or the Navier—Stokes equations, at least as
long as it remains unknown whether initially smooth solutions to these
equations may develop singularities in finite time. What is worse, the proof
based on Hilbert’s expansion [21] — at least in its present formulation —
leads to solutions of the Boltzmann equation that are not a.e. nonnegative,
which is incompatible with the original physical meaning of solutions of the
Boltzmann equation as phase space densities. However, it seems' that one
can obtain nonnegative solutions by adding initial layers to the truncated
expansion used in [21], following the method of M. Lachowicz [37] for the
compressible Euler limit.

That the Navier—Stokes equation of incompressible fluids can be derived
from the Boltzmann equation may seem somewhat surprising, since the
latter models compressible fluids — more precisely, perfect gases. However,
itis well known (see for instance [36]) that, for compressible fluids in the low
Mach number limit, fluctuations about an equilibrium state are governed by
the equations of incompressible fluids. In other words, the limit considered
in the present paper concerns incompressible flows of a compressible fluid.

At present, the only known theorems giving the global existence of
solutions to either equations in the spatial domain R? for all physically
admissible initial data are those of J. Leray [40] in the case of the Navier—
Stokes equations, and of R. DiPerna and P.-L. Lions [23] in the case of
the Boltzmann equation. Both results lead to weak solutions to which the
methods of either [11] or [21] cannot be applied.

For that reason, a program concerning the derivation of Leray (weak)
solutions of the Navier—Stokes equations from DiPerna-Lions renormalized
solutions of the Boltzmann equation was discussed in detail by C. Bardos,
F. Golse and C.D. Levermore in [7]. There, this derivation is established
rigorously in the time-discretized case under two conditions bearing on the

' R. Esposito, personal communication.
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sequence of renormalized solutions considered. This method was extended
by P.-L. Lions and N. Masmoudi to the time dependent case in [50], under
the same two conditions. That these conditions hold is not guaranteed by the
theory of the Boltzmann equation in its present state, so that the derivations
in [7] and [50] remained incomplete. We refer to [62] for a recent survey of
these issues.

In the present work, we show how to circumvent the need for both
assumptions left unverified in either [7] or [50], thereby proving the Navier—
Stokes limit of the Boltzmann equation (including a convection-diffusion
equation for the temperature field) for all physically admissible initial data.
Our discussion is restricted so far to bounded collision kernels, as in the
case of cutoff Maxwellian molecules. Yet our methods could apply to more
general cases which we hope to analyze in subsequent publications.

An alternate approach, proposed by J. Quastel and H.-T. Yau in [54] con-
sists in deriving the Navier—Stokes equations from some stochastic lattice
gas. Some of the methods in [54] might eventually prove useful in the context
of hydrodynamic limits. However, this result in itself is somewhat remote
from Hilbert’s original question: indeed the microscopic model in [54] is
neither a fundamental principle of physics nor a consequence thereof. On
the contrary, the Boltzmann equation has been widely accepted and used
as a legitimate microscopic model. In fact, it has been rigorously derived
by O. Lanford from the Newtonian dynamics of a large number of spheres
interacting by elastic collisions [39] — see also Chap. 4 of [19].

Notation for spaces. The notations LY, L”(RP) and L”(dx) all designate
L?(RP, dx). In general, whenever a positive Borel measure m is defined
on a topological space X, the notation L”(dm) designates L (X, dm). For
any Banach space E, the notation w-E designates E endowed with its weak
topology, while the notation w*-E’ designates E’ (the topological dual of E)
endowed with its weak-* topology.
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1. Statement of the problem and main results

1.1. The Boltzmann equation. In kinetic theory, a gas is described by
a function F' = F(¢, x,v) > 0 measuring the density of gas molecules
which at time € R, are located at x € R? and have instantaneous velocity
v € R3. This function F, usually called the “distribution function” or the
“number density”, is governed by the Boltzmann equation

(1.1) F +v-V,F = B(F, F)

where B(F, F) is the Boltzmann collision integral. This collision integral
acts only on the v-argument of the number density F and is given by the
expression

B(F, F)(t, x,v) =

(1.2) f/ (F/F]/ — FF)b(v — vy, w)| cos(v — vy, w)|dwdv; ,
R3xS§?

where the notations F', F” and F| designate respectively the values F(z,x,v;),
F(t, x, v') and F(t, x, v}), withv and v} givenintermsof v; € R*andw € S?
by the formulas

(1.3) V=v—-@W—v) oo, Vi=v+@—-v) oo.

These formulas give all possible solutions to the system with unknowns v’
and v

(1.4) Vv =vtu, WP+ = A+ o],

in terms of the data v and v; and of an arbitrary unit vector w. The rela-
tions (1.4) are the conservation of momentum and kinetic energy for each
binary collision between gas molecules (of like mass). The notation dw
designates the uniform measure on the sphere S? normalized so that

(1.5)
/ dw = 2, which implies that / | cos(z, w)|dw = 1 forall z € R?;
s s

below, we use the notation
(1.6) doy », (w) = |cos(v — v, w)|dw .

The geometrical interpretation of the measure do, ,, (w) is as follows. Let
(v, v1, V', v}) be any quadruple satisfying (1.4); clearly

vy =V =lvr — ]

/ /
v —v

Whenever v # v;, define 0 = For w € 8? as in the collision

formulas (1.3), one has

[vi—v|*

v — Vo= (v —v) =2V —v) - vo.
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Fig. 1. The geometry of collisions in the center of mass reference frame

Set V = v; — v # 0; the map

\% \%
Ssw—s>0=—-2— - wwes
V] V]

is adouble cover, and the image of the measure | cos (V, w) |dw under this map
is precisely 2do (i.e. twice the uniform measure on S?). In other words, given
a pair of colliding particles with pre-collision velocities v and vy, do, ,, (@)
represents the element of solid angle around their post-collision velocities
in the center of mass reference frame. In particular, the term | cos(V, w)| has
an intrinsic meaning in the representation (1.3) of the collision relations in
terms of the parameter w. We decided to use this representation in order to
be consistent with most of the references quoted in the present work.
Observe that

(1.7) do, (@) = do,, () .

Since the map (v, v;) — (V', v}) is a linear isometry of R3 x R? for each
w € S?, one has

(1.8)  dwdvdv, = dodv'dv| and do, ., (w)dvdv, = doy (w)dv'dv .
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The collision kernel b = b(z, w) is in general an a.e. positive function de-
fined on R? x S? that encodes whichever features of the molecular interaction
are relevant in kinetic theory; it satisfies the symmetries

(1.9) b(v— v, ) = b — v, w) = bV — V|, w),
fora.e. (v, v1, w) € R? x R? x 8%, It is also assumed to satisfy the condition

(1.10)
(1+ |v|)2f f b(v — vy, w)doy ,, (w)dv; — 0 as |v] — 400
|vi|<R J 82

for all R > 0. This estimate holds for all physically relevant potentials
satisfying Grad’s angular cutoff assumption (see [32] and [18] pp. 74-79
for more details). These properties of the collision kernel b, especially the
symmetries (1.8) and (1.9), imply that the relation

(1.11)
ff (f' fi = e, v, V', v)b — vy, w)do, ,, (w)dv;dv

— // (f' fi = ff)d, vy, V', v)b(v — vy, w)do, ,, (w)dvdv
= /f (f' fi = )@@, v, v, v)b(v — vy, w)do, ,, (w)dv dv

with
P(v, v, V', V) = 2o, v1, V', V) + @(vr, v, V], V)
(v, vy, v, V) = He, v, v, V) + vy, v, V], V)

—pV', v}, v, v1) — @], V', vy, V)

holds whenever these integrals make sense, for example if f € C.(R?) and
if o € CR® x R® x R? x RY).

The equilibrium states for the Boltzmann collision integral, in other
words the number densities £ = E(v) such that B(E, E) = 0, are the
Maxwellians, i.e. the distribution functions of the form

P _ Ju=uf?
e — 20
(112) M(p’u’g)(l)) (27[9)3/28
for some p > 0,0 > O0andu € R3. Below, we shall always use the notation
M to designate M o,1).
In the sequel, we are concerned with solutions to the Boltzmann equation
which converge to some Maxwellian state as |x| — 4-o00; without loss of
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generality, we assume that this Maxwellian is precisely M. Consider the
following scaled variant of (1.1):

1
€, F.+v-V.F.=-B(F.,F.), t>0, x,veR?,
€

(1.13) F.(t,x,v) - M(v), as |x| > +o0,

F.(0, x,v) = Fé"(x, v), x,veR?,

where € > 0 designates the common order of magnitude of the Knudsen
and Mach numbers (see the introduction in [7] for a detailed discussion on
these scalings), and where F, e’” > ( a.e. is a family of measurable functions
such that

(1.14) sup — // |:F”’ log(
>0 €2

For any pair of measurable functions f and g defined a.e. on R® x R? and
satisfying f > 0 and g > O a.e., we use the following notation for the
relative entropy

)—Fé"+Mi|dvdx<+oo.

(1.15) H(flg) = // [flog (g) — f—l—g] dvdx € [0, 4o00].

A renormalized solution relatzve to M of (1.13) is a nonnegative function
F, that belongs to C(Ry; L} (R?; L'(R?))), satisfies

loc
’ FE 1 3 3
(1.16) M\ 7 ) BUFe Fo e L, (Ri x R x R’)

forall ' € C'(R) such that

(1.17) '0) =0and z — (1 4+ z)I"(z) is bounded on R, ,
has finite relative entropy for all positive times:

(1.18) H(F.(t,-,)|[M) < +o0, t>0,

and finally satisfies

/ﬂo// ( ) <8’X + lv : VxX) Mdvdxdt
(1.19) /f (
+oo// ( )"@(FHF)dedxdt =0

for each test function x € C°(R, x R? x RY).
The methods due to R. DiPerna and P.-L. Lions [23] — and their extension
by P.-L. Lions [43] — lead to the following global existence result.

)X(O x, v) Mdvdx
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Theorem 1.1. Let € > 0 and F™ = F"(x,v) be an a.e. nonnegative,
measurable function defined on R? x R3 such that H(F. ei” |IM) < 400. Then
there exists a renormalized solution of (1.13) relative to M which satisfies

e the local conservation of mass in the sense of distributions

1
(1.20) 8,/F€dv—|—Vx-—/vF€dv:O, t>0, xeR3,
€

e and the relative entropy inequality

1 [ 4
(1.21)  H(F.(,-,)|M) + _2/ f/ D(F)dvdxds < H(F"|M)
€ Jo
for all t > 0, where the dissipation term D(f) is defined for all positive

measurable functions [ = f(v) by

(1.22)

D(f) =1 f (F'fi — ff)log (%1

‘Whether the local conservation of momentum

) b(v — vy, w)do, ,, (w)dv; .

1
(1.23) 0y / vFedv + V- - / v vF.dv=0

holds in the sense of distributions on RY x R3 is still unknown, unless F.
is a classical solution of the Boltzmann equation. (P.-L. Lions and N. Mas-
moudi made an interesting additional observation on this particular point
in [51]). This is one of the difficulties in rigorously deriving hydrodynamic
models from the Boltzmann equation.

Likewise, it is still unknown whether (1.21) is an equality unless F,
is a classical solution; the relation (1.21) with an equal sign is one of the
most important formal properties of the Boltzmann equation, known as
Boltzmann’s H Theorem.

Remark. The notion of renormalized solution relative to M of the Boltz-
mann equation (1.13) slightly differs from the original notion of renor-
malized solution defined in [23] and [43]. By Theorem IV.1 of [43], for
each € > 0 and each F" > 0 a.e. such that H(F"|M) < +o0, there ex-
ists a renormalized solution® of the Cauchy problem (1.13), i.e. a function
F. € C([0, +00); L} (dx; L'(dv))) such that

loc
B(Fe, Fo)
(1.24) T35 € L, (dtdxdv)

2 Theorem IV.1 in [43] gives in fact the existence of a weak solution of the Boltzmann
equation, a notion defined on pp. 548-549 of [47] that is stronger than the notion of
renormalized solution: see [47], p. 551.
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which satisfies (1.18) and is such that

1 B(F,, Fe)
9 V) log(14+ F,) = -—"—"2""¢%
(€d; +v -V log(l + F,) c 11 F

holds in the sense of distributions on R, x R?® x R? with initial condition
log(1 + F.)|,_, =log (1 + F/").

Observe that

0<(1+Fy)

/ Fe /
r (M)‘ <1+ M)sup (1 +2)ITQ@)I);

7220

hence the bound (1.24) implies the bound (1.16). Based on this bound,
an elementary argument shows that the renormalized solutions in the usual
sense constructed in Theorem IV.1 of [43] are in fact renormalized solutions
relative to M as defined above.

1.2. The Navier-Stokes equations. The Navier—Stokes equations govern
the velocity field u = u(t, x) € R? of an incompressible fluid. They are

Vi-u=20, t>0, xeR?,
(1.25) 3
ou+u-Viu+Vip=vAu, t>0, xeR’,

where v > 0 is the kinematic viscosity of the fluid. The first equality in
(1.25) says that the fluid motion preserves the volume, and is referred to
as the incompressibility condition; the second equality expresses Newton’s
second law of motion for any infinitesimal volume of fluid.
Consider the function spaces
H={uel’?R;R)|V,,u=0}, V=HNHR;R).

In particular, #¢ is the space of three-dimensional incompressible velocity
fields with finite kinetic energy 3 [ |u|*dx.

Let u™ € F¢, and consider the Cauchy problem for (1.25) with initial
data

(1.26) u(,x) =u"(x), xeR.

A weak solution to the Cauchy problem (1.25)—(1.26) is an element u €
C(Ry; w-F) N L>(Ry; V) that satisfies the relation

(1.27)
+00 +0o0
/ fu(t, x) - 0y x(t, x)dxdt —I—/ fu®2(t, x) 1 Vex(t, x)dxdt
0 0

400
+/uin(x) - x(0, x) = vf /qu(s, x) : Vix(s, x)dxds
0
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for each divergence free test vector field x € C°(Ry x R*; R?). We re-
call that the only global existence theorem known to hold for the Cauchy
problem (1.25)—(1.26) without restriction on the size of the initial data in
the class ¢ of three-dimensional divergence-free velocity fields with finite
kinetic energy is the following?

Theorem 1.2 (J. Leray [40]). For each u™ € J, there exists at least one
weak solution of (1.25)—(1.26) satisfying the energy inequality

t
(1.28) %/m(z, x)|2dx+v//|vxu(s, x)|2dxds < §f|uf"(x)|2dx
0

forallt > Q.

A weak solution of (1.25)—(1.26) that satisfies in addition the energy
inequality (1.25) forall # > Ois referred to as a Leray solution. It is unknown
whether there is a unique Leray solution of (1.25)-(1.26). However, if the
system (1.25)—(1.26) has a classical solution with bounded x-derivatives,
this solution is unique within the class of Leray solutions of (1.25)—(1.26).
It remains unknown whether equality holds in (1.28), unless u is a classical
solution of (1.25)—(1.26), much in the same way that it is unknown whether
equality holds in (1.21) unless F¢ is a classical solution of (1.13).

The Leray energy inequality (1.28) and the DiPerna-Lions entropy
inequality (1.21) are similar objects. More precisely, it was proved by
C. Bardos, F. Golse and C.D. Levermore in [7] that the Leray energy
inequality (1.28) is the limiting form of the DiPerna-Lions entropy inequal-
ity (1.21). This confirms the view expressed by P.-L. Lions (see [46], p. 432):
“[...] the global existence result of [renormalized] solutions [...] can be seen
as the analogue for Boltzmann’s equation to the pioneering work on the
Navier—Stokes equations by J. Leray”.

1.3. The Navier-Stokes—Fourier system. The Navier—Stokes—Fourier sys-
tem is an extension of the Navier—Stokes equations which governs both the
velocity field u = u(t, x) € R? and the (fluctuations of) temperature field
6 = 0(t, x) € Rin an incompressible fluid. In the setting considered below,
the temperature field is just advected by the velocity field u and diffuses ac-
cording to Fourier’s law. More complicated effects such as viscous heating
for example (see [10] or [44] p. 10, fla. (1.41)) do not appear in the scaling

3 There is a theory of global existence and uniqueness of classical solutions to the Navier—
Stokes equations (1.25) for all divergence free initial velocity fields that depend on two space
variables only and belong to H 2(R2, R3): for a concise presentation of these results, see [44]
pp- 83 and 151. However, these solutions do not have finite kinetic energy (when considered
as three-dimensional velocity fields) and thus are not covered by the discussion in the present
paper: see Sect. 9.
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considered in the present work. The Navier—Stokes—Fourier system reads
V,-u=0, t>0, xe R,
(1.29) ou+u-Viu+Vip =vA.u, t>0, xeR?,
30+u-Vid=xA0, t>0, xeR,

where k > 0 designates the heat conduction coefficient.
Consider the Cauchy problem for (1.29) with initial data

(1.30) u(,x) = u™(x), 6(0,x)=0"x), xeR,

where u™ € # and 6" € L*(R?). A weak solution of the Cauchy prob-
lem (1.29)—(1.30) is a couple (u,6) where u is a weak solution of the
Navier—Stokes equation and 6 a solution in the sense of distributions of the
drift-diffusion Cauchy problem

30+ Ve W) =xkAH, >0, xeR,

6(0, x) = 0™ (x), xeR.
Theorem 1.3. For each u™ € # and 0™ € L*(R®), there exists at least
one weak solution (u, 0) of (1.29)—(1.30) that satisfies the energy inequality

%/ (Jut, ©)1* + 26(1, x)*)dx

(1.31)

(1.32) +//[v|vxu(s, 0)* + 3k|Vib(s, x)|*] dxds
0

< %/ (lu™ 0?4 36" (x)*)dx
forallt > 0.

A weak solution of (1.29)—(1.30) that also satisfies (1.32) is also referred
to as a Leray solution in the sequel (although J. Leray himself did not study
thermal effects, the theorem above is a straightforward extension of his
fundamental paper [40]).

However, there is a certain arbitrariness in considering the Lyapunov
functional

(1.33) %/(m(z, O* + 201, x)*)dx

in the energy inequality (1.32). A similar existence theorem holds with the

coefficient % multiplying the temperature replaced by any positive number.
The reason for using specifically the coefficient % in the theorem above is
that the quantity (1.33) is the leading order of the relative entropy (1.18)
in the Navier—Stokes limit as € — 0 in space dimension 3. In spite of the
fact that this Lyapunov functional reduces to the kinetic energy in the case
6 = 0, it does not coincide with the total (kinetic plus internal) energy in
the general case: see [44] p. 110 and ff. for a detailed description of models

involving the temperature in incompressible fluids.
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1.4. Main results. The Navier—Stokes (or Navier—Stokes—Fourier) limit of
the Boltzmann equation considers fluctuations of the number density about
an absolute Maxwellian. The following notations for such fluctuations are
taken from [7].

1.4.1. The Boltzmann equation near a uniform Maxwellian. First, the rela-
tive number density and the fluctuations of number density are denoted
respectively by

F. F.—M

1.34 G, = —<, —
(1.34) =77 & =Y,

while the scaled collision integrand is

’

1 / /
(1.35) 4e = E_Z(GGGGI - GGa).
The integral for the unit measure Mdv is denoted
(1.36) (g) = / gM(v)dv, forall g e L'(Mdv).

Without loss of generality — i.e. after normalization if needed — one can
assume that the measure
(1.37) du(v, vy, w) = b(v — vy, w)do, , (w) M dv) Mdv

also is a unit measure; the integral for this unit measure is denoted

(1.38)  ((g) = //f q(v, v, w)du(v, vy, w), forallg e L](d,u).

We shall need (minus) the linearized collision operator

(1.39)  Lg= / (g+ 81 — & —g)Hb(v— vy, w)do, , (w)Mdv; ,

as well as (half) the Hessian of the collision integral at the Maxwellian M
which is denoted by

(140) Qg ) = / (22, — 281)b(v — v1, @)do0, (@) Midv |

Assume from now on that the Boltzmann collision kernel b satisfies the
assumption

1
(HI) b <b(z,w) <bsx, ze€ R, weS?, forsomeby >0.

o
The main properties of the linearized collision operator /£ were proved by
H. Grad [32] and are recalled below.
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Proposition 1.4. For any collision kernel b satisfying (H1), L is a bounded
nonnegative self-adjoint Fredholm operator on L*>(Mdv) with nullspace

(1.41) ker £ = span {1, vy, va, v3, [v]*}.

Because each entry of the tensor v®2— % |v|*I and of the vector %v(| v|>—5)
is orthogonal to ker £, there exist a unique tensor A and a unique vector B
such that

LA=v— LI, A€ (kerL)" C L*(Mdv),

1.42
(142 LB =1v(v]*—=5), B e (kerL)" C L*(Mdv).

The main properties of the bilinear operator @ used in the present work
are collected in the next proposition.

Proposition 1.5. For any collision kernel b satisfying (HI) and all p €
[1, 00], @ defines by polarization a continuous, symmetric bilinear operator
(still denoted by Q) from LP(Mdv) x LP(Mdv) to L?(Mdv). Further,

(1.43) Q(g, g) = 31L(g"), forallg € ker L.

Sketch of proof. The proof of (1.43) can be found in [6] or in [15] (Lem-
ma 2.5, p. 74). As for the continuity property, pick p € [1,00) and f €
L?(Mdv); by (H1), the symmetry property (1.9) and Jensen’s inequality
(observing that the measure do, ,,, (w) M dv; has total mass 1)

p
f‘f 1 fibdo, », (w)Mydv| Mdv

= bf, // L 171 f{1Pdoy v, (@) My dvy Mdv
= bgo /f |f|p|fl|pdav,v1 (w)Mldv]MdU

_ bgof | FIPLAI? Midvy Mdv = || £ a) -

where the first equality follows from the change of variables (v, v;) >
(v', v}), the second equality in (1.8), and the last relation in (1.9). O

Within the class of collision kernels satisfying (H1), we further restrict

our attention to those for which
A B

(H2) %—W € L for some p > 0.
The class of collision kernels satisfying both (H1) and (H2) is not empty
since it contains at least all collision kernels of the form b(z,w) =
b(] cos(z, w)|) satistying (H1). These collision kernels correspond to cutoff
Maxwellian molecules and satisfy (H2) with p = 3 (see [18], pp. 82-87).
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1.4.2. The limit theorems. From now on, we denote by P the Leray pro-
jection, i.e. the orthogonal projection on the space of divergence free vector
fields in L?(R?) — in particular, for any p € H'(R?), one has P(V,p) = 0.
The operator P so defined coincides with a classical pseudo-differential
operator of order 0 on R?, and therefore has a natural extension to tempered
distributions on R3.

Theorem 1.6 (Weak Navier—Stokes—Fourier limit). Let b satisfy (H1)-
(H2), and let F" be a family of a.e. nonnegative, measurable functions on
R? x R? satisfying the bound

(1.44) H(F"|M) < C"é

for some C™ > 0 and all € > 0, as well as the convergence properties

1 . .
P (— / vFE’”dv) — u™ inw-L*(R*) ase — 0,
(1.45) ¢

= [ G = ) w)as > 0" iR ase — 0.
€

Let F, be a family of renormalized solutions to (1.13). Then the family

1 1
— | vF.dv, — | (|v)* =1)F.d
<€/v v E/(3|v| ) v)

is relatively compact in w-L}, (dtdx) and each of its limit points as € — 0is
a weak solution of (1.29)—(1.30) with viscosity and heat diffusion coefficient
given by the formulas

(1.46) v = %/A D(LAMd, k= %fB-(oCB)Mdv.

For well-prepared initial data, the weak-compactness result above leads
to Leray instead of weak solutions. First we recall from [7] the following
definition:

Definition 1.7. A family g. = g.(x, v) of L} (Mdvdx) converges to g =
g(x, v) entropically at rate € as € — 0 if

e foreache, 1 +€g. > 0a.e. onR*> x R,
e g.— gin w-L}OC(Mdvdx) ase€ — 0,
e and

L HM( + eg)1M) — | f ()
€

as € — Q.
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This notion of convergence is the natural one in the context of the Navier—
Stokes(—Fourier) limit of the Boltzmann equation, as was shown in [7].
Specifically, this reference proved that the Leray energy inequality (1.32)
is the limiting form of the DiPerna-Lions entropy inequality (1.21) by
establishing the inequality recalled as (11.7) in Appendix B below. By
using this inequality together with Theorem 1.6, one obtains the following
convergence statement relating DiPerna-Lions solutions of the Boltzmann
equation to Leray solutions of the Navier—Stokes—Fourier system.

Corollary 1.8 (Well-prepared data). Under the same assumptions as in
Theorem 1.6, assume that

lFé" (x,v) — M(v)
€ M(v)

= u" () - v+ 6" (03] ~5)

entropically at rate € as € — 0, where u™ € J. Then all limit points of the

family
1 1
— | vFdv, - | Lv?*=1)Fd
(G/v v E/(3|v| ) v)

as € — 0 are Leray solutions of (1.29)—(1.30) with viscosity and heat
diffusion coefficient given by the formulas (1.46).

Further, if the limiting initial data ™ is smooth and such that (1.29)—
(1.30) has a (unique) smooth solution u, the weak compactness result above
can be strengthened into a strong convergence result as shown below.

Theorem 1.9 (Strong Navier—Stokes—Fourier limit). Under the same as-
sumptions as in Theorem 1.6, assume that

lFé" (x,v) — M(v)
€ M(v)

— u"(x) - v+ 6" (03 (v]* = 3)

entropically at rate € as € — 0, where u™ is a divergence-free vector field
such that the Navier—Stokes equations (1.25)—(1.26) with v given by (1.46)
have a strong solution u (see [20], Chaps. 9 and 10). Let 6 be the solution
of the drift-diffusion equation (1.31) with «k given by (1.46).

Then, forall t > 0,

lFE(t, x,v) — M(v)

Ll —
€ M(v) — u(t, x) - v+ 0t x) 5 (Jv]* = 5)

entropically at rate € as € — Q.

Theorem 1.9 is a straightforward consequence of Theorem 1.6 and of
a squeezing argument based on the fact that the inequality (1.32) becomes
an equality in the case of strong solutions. Its proof closely follows the
proofs of Theorems 6.2 and 7.4 in [7], and of Proposition 6.1 in [25]. In
fact Theorem 1.9 holds true provided that (1.29)—(1.30) has a unique weak



96 F. Golse, L. Saint-Raymond

solution (u, 0) for which equality holds in (1.32), since its proof does not
use consequences of the regularity of (u, 6) other than the uniqueness of the
solution and the energy equality.

This discussion shows that the convergence proofs in the present paper
would not become obsolete should one eventually prove that the Navier—
Stokes equations posed in R? have global smooth solutions for arbitrary
smooth initial data. We shall return to this in Sect. 9.

1.5. The state of the art for the Navier—Stokes limit. The only previously
existing results on the Navier—Stokes limit — without restrictions on the size
or regularity of the initial data, i.e. starting from renormalized solutions
of the Boltzmann equation — are due to C. Bardos, F. Golse and D. Lever-
more [7] for the steady problem and to P.-L. Lions and N. Masmoudi [50] for
the time-dependent problem. Both are based on two assumptions recalled
below:

e first, the family of renormalized solutions F, of (1.13) considered in the
limit as € — O satisfies local conservation of momentum, i.e.

(A1) €9, / vF.dv+ V,- / v F.dv =0

in the sense of distributions on R x R3;

e in addition, the family F; is such that

(A2)
(1 + [P (Fe = M)?

eM(F.+ M)

is relatively compact in w-L }Oc(dtdx; L' (Mdv)) .

As mentioned above, whether renormalized solutions of the Boltzmann
equation satisfy (A1) remains a major open problem. Likewise, the global
conservation of energy is not guaranteed by the DiPerna-Lions theory in its
present state; only the inequality

(1.47) //%|v|2FE(t, x, v)dxdv < //%Ivleé"(x, v)dxdv

is known to hold for all # > 0 in the case of bounded domains. For this rea-
son, only the Navier—Stokes equations, and not the Navier—Stokes—Fourier
system, were derived in both references [7] and [50] under assumptions
(A1) and (A2).

On the other hand, whether assumption (A2) is satisfied by renormalized
solutions of the Boltzmann equation (1.13) in the Navier—Stokes scaling also
remains unknown. It was proved by C. Bardos, F. Golse and C.D. Levermore
— see Proposition 3.3 of [7] — that the quantity considered in (A2) is of
order O(]loge]) in LfO(Ll(Mdvdx)). Such a control suffices to establish
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all hydrodynamic limits leading to linearized macroscopic models such as
the acoustic limit in [8], [9] and [25], the Stokes limit in [7], [8] and [51] or
the Stokes-Fourier limit in [25]). However, this control is not sufficient to
obtain the Navier—Stokes limit.

It was noticed for the first time in [8,9] that the local conservation
laws of momentum and energy could be established in the limit as € — 0
by using the O(|loge|) estimate proved in Proposition 3.3 of [7] for the
quantity appearing in (A2) and in the Stokes scaling. The method used
in these works applied only to bounded collision kernels; however these
papers made it clear that local conservation laws needed to be estab-
lished in the hydrodynamic limit only. This was done for the first time
by F. Golse and C.D. Levermore in [25], for general collision kernels (in-
cluding in particular all hard cutoff potentials and Maxwell molecules),
using both the v-v; and the (v, v;)-(v', v}) symmetries of the Boltzmann
collision integral (1.8) and (1.9) with Young’s inequality and some of its
variants described in Appendix A below. More recently, C.D. Levermore
and N. Masmoudi [41] announced a proof of these local conservation laws
in the hydrodynamic limit and for the Navier—Stokes scaling, this time under
an assumption which, although slightly weaker than (A2), also remained
unverified.

Hence, verifying (A2) remained the main obstruction to deriving the
Navier—Stokes equations from the Boltzmann equation.

1.6. Method of proof. In the present paper, we follow the method initiated
in [25] and establish the local conservation laws of both momentum and
energy in the limit as ¢ — 0: see Sect. 4 below. This step is based on two
nonlinear estimates weaker than (A2). These estimates are stated in Propo-
sition 3.4 and Corollary 3.5 in Sect. 3. In doing so, we bypass assumptions
(A1)—(A2) that remain unverified.

In addition, the nonlinear controls in Proposition 3.4 and Corollary 3.5,
together with other controls stated in Propositions 2.7, 3.8 and Corollary 3.9
allow one to take limits in some appropriately renormalized form of the
Boltzmann equation (1.13) integrated against v and %|v|2 — 1: this is done
in Sect. 5, closely following the methods initiated in [8], [50] and [25].

Hence, the key points in this work are the new nonlinear controls stated

e in Proposition 3.4 and Corollary 3.5,
e in Propositions 2.7, 3.8 and Corollary 3.9.

These new nonlinear controls are combined with earlier techniques, such
as:

e the entropy controls for fluctuations and velocity averaging estimates
leading to relative L' compactness of appropriate moments of the fluc-
tuations of number density already established in [7],

e the control of standing acoustic oscillations as in [50],

e the vanishing of conservation defects proved along the lines of [25].
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The tools leading to the new nonlinear controls mentioned above are:

e two decompositions of the fluctuations of number density (the first being
based on relative entropy controls while the second is based on the
entropy production controls): see Sect. 2, and

e arefined velocity averaging result in L' (based on improved v-regularity
estimates): see Sect. 3.

As regards this last item, we recall the basic principle of velocity av-
eraging: let f, = f,(x, v) be a bounded sequence in L; (R” x R”) such
that v - V, f,, is also bounded in L} _(R” x RP). Then, given any £* # 0,
£, (-, v) is microlocally bounded in H' in the direction £* near each point
x € R? and for each v € R? \ (RE*)*. Since (R&*)" is a set of (Lebesgue)

measure zero, the integral of f,, on a small conical neighborhood of (R;)L

is shown to vanish uniformly in 7 as the neighborhood shrinks to (Rg‘)L by
applying the Cauchy—Schwarz inequality. Following essentially this line of
reasoning, F. Golse, B. Perthame and R. Sentis [28] proved* that, for any
test function ¢ € C.(RP), the sequence of v-averages

P (X) =/fn(x, v)p(v)dv

is relatively compact in L?_(R?). However, if the sequences f, and v- V, f,
areboundedin L (R”xRP), it may happen that the sequence of v-averages
P is not even locally uniformly integrable in R”. The simple counter-
example given in [27] (Example 1, pp. 123—-124) is based on concentrations
in v. Intuitively, if the f,,’s concentrate in the variable v in a single direction
v* # 0, the v-average p, simply reduces to ¢(v*) f, — in other words,
the benefit of averaging in v is lost. Unless D = 1, one cannot expect to
prove compactness on p, in L }OC (RP) under the sole assumption that f, and
v -V, f, are bounded in L} (R” x RP).

Yet if one excludes such concentrations by assuming additional reg-
ularity in the variable v only on the f,’s — assuming for example that
the sequence f, is also bounded in L}oc(dx; Ly (dv)) — the sequence of
v-averages p, is indeed locally uniformly integrable in R”. This was ob-
served for the first time by L. Saint-Raymond [55]. (An earlier remark in the
same direction appears in Lemma 8 of [27], stating the relative compactness
of p, in L} (RP) under the additional assumption of slab symmetry).

Various extensions of this new observation are described in detail (es-
pecially in the time-dependent setting needed in the present study) in the
second half of Sect. 3 — especially in Lemma 3.6. It is based on a new in-
terpolation mechanism involving the dispersion properties of the advection

operator v - V, presented in Lemmas 3.2 and 3.3.

4 V. Agoshkov [1] quotes without proof a somewhat analogous result obtained indepen-
dently.

5 In other words, f, depends on only one space variable, say x|, and on all the velocity
variables vy, ... , vp.
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Thus, applying this new velocity averaging result to the Navier—Stokes
limit requires additional v-regularity on (fluctuations of) the phase-space
density. This was done by L. Saint-Raymond in [56] for the BGK model;
doing the same for the Boltzmann equation is much more involved for rea-
sons that will be described below. Modulo various truncations too technical
to be discussed at this stage, this extra v-regularity is implied

e by the dissipation (i.e. the entropy production) estimate, and
e by a smoothing property in the v-variable for the gain part of the collision
integral.

The derivations in [7] or [50] did not make much use of the dissipation
controls. This was clearly seen as a major shortcoming in both articles.
Indeed, when F, is a local Maxwellian, an easy argument (see [55]) shows
that the ratio in (A2) is bounded but not necessarily weakly relatively
compact in L} (dtdx; L' (Mdv)). This observation suggests

loc
o that the dissipation estimate implied by (1.21) might help to improve the
O(|log €]) bound on the ratio in (A2) established in [7]; but
e that this dissipation estimate is not enough to prove the compactness
statement in (A2), since the ratio in (A2) is in general not weakly rela-
tively compact in L}Oc(dtdx; L'(Mdv)) when F, is a local Maxwellian,
in other words when the dissipation term D(F,) in (1.22) vanishes.
Both these remarks have the merit of showing the importance of the dis-
sipation estimate when trying to establish (A2). Yet they are somewhat
misleading, especially as regards the precise manner in which this dissipa-
tion estimate is to be used for that purpose. Indeed, the local Maxwellian
associated to F, —i.e. with the same macroscopic density, bulk velocity and
temperature as F, — plays essentially no role in the present work.

For various reasons specific to the Boltzmann equation (see a more de-
tailed discussion on this in Sect. 2), the distance from the phase-space density
F¢ toits local Maxwellian is not generally well controlled by the dissipation
estimate. The key to the extra-regularity in v needed for the Navier—Stokes
limit consists in choosing a substitute for the local Maxwellian of the phase
space density F, —see (2.13) below. This local “pseudo-equilibrium” is not
defined by a formula showing its regularity properties in v explicitly such
as (1.12). Instead, this local pseudo-equilibrium is defined in terms of the
gain part of an artificial collision operator in such a way that its distance to
F¢ is controlled by the dissipation integral. That the gain part of the collision
integral is more regular in v than F itself was proved by P.-L. Lions in [45].
In fact, what is used is not exactly the main result in [45], but an earlier and
linear variant of it due to H. Grad [32] and R. Caflisch [16].

The idea of using a fictitious collision operator is somewhat reminiscent
of the argument used by P.-L. Lions in [45] p. 423 to prove that any function
F e LJ) such that B(F, F') = 0 is smooth — and therefore a Maxwellian.

It may also be interesting to compare the procedure described above
for gaining compactness from the dissipation estimate with the work of
L. Arkeryd and A. Nouri [2].
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Both Sects. 2 and 3 describe the main steps leading to the nonlinear
controls stated in Proposition 3.4, Corollary 3.5, and in Propositions 2.7,
3.8 and Corollary 3.9. However the complete proofs of these nonlinear
controls are postponed to Sects. 6, 7 and 8 below.

Finally, Appendix B collects the main results established in [7] without
using the unverified assumptions (A1) and (A2). Our proofs make occasional
use of some of these results.

2. Analytical tools I: Decompositions of the number density based on
entropy and dissipation

The present section is aimed at describing in detail the part of our argument
that improves upon the use of dissipation controls that was made in [7]
and [50].

Throughout the present section and the next, we consider Fg, a family of
renormalized solutions to (1.13) with initial data F, E’” such that (1.14) holds,
as well as the relative number densities G, and fluctuations g. defined
in (1.34). The Boltzmann collision kernel b is assumed to satisfy (H1).

2.1. Entropy-based estimates

2.1.1. The Flat-Sharp decomposition. Most of the estimates in [7] were
based on the relative entropy control

2.1 eiz/(h(ége(t, x,-))dx < C"

inferred from (1.44) and the entropy inequality (1.21). We keep here the
notations from [7] (see also Appendix A below) and denote the nonlinearity
involved in the relative entropy by

2.2) h(z) =0 4+z)logd +2)—z, z>-1.

Since h(z) ~ %zz near z = 0, the entropy control (2.1) is as good as a L?
control but only for the part of g, that does not exceed 1/¢ in size. This
suggests splitting the fluctuation of relative number density g, as follows.
First, we consider the class of bump functions

2.3)
YT={y: Ry = [0, 11|yeC", y([5.3]) =1}, suppy C[5 3]}

We then present
The Flat-Sharp decomposition. Let y € T; then

(2.4) g = & +e'g
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with

L . 1

8e = Z(Ge - Dy(Go),  ge= Z(Ge — DU =y(Go).

While this new decomposition is not the same as the old one just before
Corollary 3.2 of [7] (p. 696), it shares most of its key properties — and
avoids one unpleasant feature that will be discussed after the statement of
Proposition 3.4 below.

Proposition 2.1 (Entropy controls). Assume that the bump functiony € Y
as in (2.3). The relative fluctuation g. of number density satisfies the fol-
lowing estimates:

e %= O(1) in L®(L*(Mdvdx));

e “g. = O(1) in L¥*(L"(Mdvdx));

e the family

é(&)(l — y((Ge))) is of order O(1) in L°(L,) ;
e for each compact subset E of R,

21£(Go) = 0(1) in L™ (L*(Mdvdx)) ;
e for each ) > e, and each € > 0, one has

< Cin; )
L (L' (Mdvdx)) loga — 1

1
—[8clg =
€

Proof. The control on %, relies on the entropy inequality (2.1) and on the
following elementary inequality: there exists ¢ > 0 such that

(2.5) h(z) > ez, lz] <

=

Likewise the fourth control relies on the entropy inequality (2.1) and on the
fact that, for each compact subset E of R, there exists cg > 0 such that

h(z) > cgz’, :+1€E.
The control on “g, relies on (2.1) and on the existence of ¢’ > 0 such that
(2.6) h(z) > |z|, ze[—1,—1]U[}, 400).
By Jensen’s inequality and the convexity of &, one has

/h(é(ge))dx < /(h(Ege))dx < C"e?

because of (2.1). The third control follows from this estimate and (2.6).
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h(z)

Finally, observe that the function z > == is increasing on R. Thus

foreach A > e

h(x — 1
h(elgel) = 7; 1 )elgél wherever G, > A.
(Notice that G, > A implies that g > e — 1 > 0). This and (10.1) imply
that
/ Ll Y < ! 1/<h( )
—|&e > XS —/—————= €gc X
¢ BeliOe=n WG —1) e g
oa—1 cin
<Cc" < ,
- h(h—1) — logh — 1
which in turn establishes the last control. O

2.1.2. Pointwise estimates implied by the Flat-Sharp decomposition. The
old decomposition introduced on p. 696 of [7] had one feature used repeat-
edly there and in [50], namely the fact that the L' part in this decomposition
gf /N, controlled the square of the L? part g./N,. The analogue with the
Flat-Sharp decomposition (2.4) (namely, that |%.|*> < |%.]|) is no longer
true, but (2.4) leads to a precise localization of g, which has several useful
implications.

Proposition 2.2 (Pointwise estimates). Assume that the bump function
y € Y as in (2.3). The relative number density fluctuation g, satisfies the
following estimates:

o € ?gel = %;

o (1 —y(G,)) < 4€?|%g.|, which implies that %(1 —Y(Go) < 2|% |3

o (1 -YG))G, < 5€¢°|%g|;

o fork : Ry — [0,1], let Cy = ||z /> zk(2)||Lo~, then for any family
V. — 400 as € — 0, one has®

/(k(Ge)|Ge — 1D MP |1y p sy, dv

ptl
< 47”(2%)_%(1 OOV T et
as e — Q.
. ol o3
Proof. Because y is supported in [3, 5],

€lgel =G~ 1ING) <G =1L, | 1 <

6 The notation a. < b, as € — 0 means that there exists ¢c ~ b, as € — 0 such that

~

ae < ce for all € small enough in ]0, 1.
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Because (1 — y) vanishes identically on [%, fT]’

1% = |G — 1](1 — ¥(G.))
2 (Ge—111 >1(1 — ¥(Go))

= il 1 (=760

= 1(1 = %Go)).
Because 0 < 1 — (G,) < 1, one also has

1—¥(Go)
€’ %ge| = 1(1 — ¥(Go))* and thus % <2|%|"*.

The third control is a direct consequence of the second because

(1 = YG))Ge = € ¥gc + (1 = 1(Go)) .

The last control relies on the obvious estimate k(G.)|G. — 1| < 1 4+ C and
on the standard tail estimate for the Gaussian distribution:

_3B Fo0 _ B2 )
/Mﬂ|v|P1|v|2>V€dv: (2m) 247-[/ e 17 P2y
B Ve
+oo d
~ Qm)” 2471] (5t
JVe Cdr

54 1
= (2n)~ 2%6 vapz

as € — 0, since V., — +o0. O

2.2. Dissipation-based estimates

2.2.1. Dissipation controls of the scaled collision integrand. While the
fluctuations of relative number density g, satisfy the bound (2.1), the scaled
collision integrand g, defined in (1.35) satisfies the dissipation bound

@. 7)

+00 E2qE +00
— / << ( )GEGd»dxdt / D(F,)dvdxdt
de GGGE]

S _H(Fm|M) < Czn

inferred from (1.44) and the entropy inequality (1.21). Again we use the
notations from [7] (see also Appendix A below) and denote the nonlinearity
involved in the dissipation by

(2.8) r(z) =zlog(14+z), z>—1.
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Since r(z) ~ z* near z = 0, the dissipation control is also as good as an
L? control but again this is only true of the part of g./(G.G.;) that does
not exceed 1/€” in size. This suggests decomposing the scaled collision
integrand as

e = %]e +é n‘]e with
G .G,
b € el
= ——= ) and
(29) q qey (Ge Gel )
1 G.G!

]j N 1 _ € el

o=z (1-7 ()
where y is any element of Y as in (2.3).

Proposition 2.3 (Dissipation controls). The scaled collision integrand q.
satisfies the following estimates

e for any function y € T

b2
9 D(Fo)
f/ —GeGdb(v — V1, @)doyy, (@) Mydvy < 2 e41v;

where the constant c is defined in (2.5), so that

g2 |
—<—)N=01)inL, ;
«Gﬁa» (il

o likewise
4 D(F)
< M

J[ Vbt = w1, 0o @i <
where the constant c is defined in (2.6), so that

(l'gel) = 0y in L}

e more generally, for any compact subset E of [—1, +00),

2 Fall
qe GeGel . 1
1 —1 = O(1 L, .
<< GeGe] E (GeGe] ) >> ( ) " b

Proof. The elementary inequality r(z) > h(z) for all z > —1 together with
the inequalities (2.5) and (2.6) shows that, for the same positive constants ¢
and ¢’ as in these inequalities, one has

(2.10) r(z) > cz*, |z <

9

=

and

(2.11) r(z) > |z, ze(—1,-1]U[} +0).



Navier—Stokes limit of the Boltzmann equation 105

Then, the condition

G;G;1> .. G.G, €2|q.|
y | === ) # 0 implies that | —= — 1| =
(GeGel G.Gq

which shows that the first control follows from (2.10) and (2.7). Likewise,
the condition

/ /!

GEGel _1 — € |q€|
GEGel

G.G!
11—y <—1) # 0 implies that
GeGel P

which shows that the second control follows from (2.11) and (2.7).

As for the third control, it is obtained in exactly the same way as the
first, because, for any compact E C [—1, +00), there exists cg > 0 such
that r(z) > cgz* forall z € E. O

These estimates were apparently used for the first time in proving that
conservation defects vanish as € — 0 in the proof of the Stokes or Acoustic
limits [25].

2.2.2. A second decomposition of g.. The Flat-Sharp decomposition (2.4)
of g. is exclusively based on the level set of g., i.e. on the size of the
values taken by g.. Thus it cannot help in controlling the decay in v of g,
at least not beyond the L'((1 + |v|*) Mdv) control following from Young’s
inequality (see [7], Propositions 3.1 (1), 3.5 (1) and 3.3). This was the main
reason for the unverified assumption (A2) from [7] recalled at the end of
Sect. 1.

In the present work, we introduce a second decomposition of g, based
in particular on the dissipation controls above. An obvious idea would be
to adapt the arguments used in the case of the BGK model (see [55], [56])
and decompose the number density as

(2.12) Fe = (Fe — Mp) + My, — M)

where M, is the local Maxwellian with the same macroscopic density, bulk
velocity and temperature as F, at every (z, x).

However, instead of using the local Maxwellian of F, in the decompos-
ition (2.12) above, we propose to replace it with the following quantity.

The local pseudo-equilibrium. The substitute for My, considered in this
work is

ATMG,., MG,
(2.13) ( _ )
(Ge)
with

(2.14) Ge=1+¢€% = (1-pG)) + (GG,
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and where A" is the gain part of a fictitious collision operator:

AT(fg =1 / / (F', + £18)doy ., (@)dv;

Using the gain term 4™ in a decomposition like (2.12) is suggested by
the inequality below (satisfied by any measurable, a.e. positive function F'):

R (AT(F, F) AT(F, F)
4D(F) > = (T — F) <log (T) — log F)

(2.15) o
with R = / Fdv,

where D(F) is the dissipation term defined in (1.22). This inequality (2.15)
is obtained on account of (H1) by applying Jensen’s inequality to the prob-
ability measure F(v;)do, , (w)dv,/R and to the convex function X
(X —=Y)(log X —logY) with Y > 0 fixed. It provides an explicit control of
the distance between F and A" (F, F)/R interms of D(F). If AT(F, F)/R
is replaced by the local Maxwellian M, the same control is known to be
false: see for example the work of G. Toscani and C. Villani [61], eq. (25)
and the discussion pp. 671-672. Replacing then AT (MG., MG.)/(G.)
by (2.13) has three further advantages that are fully exploited below in
Sect. 6:

e (G >0,
e G. is L*®-bounded and L'(Mdv)-close to G,
o G.is L2(Mdv)-close to 1.

Letk: R, — [0, 1] and set C; = ||z > zk(z)]|L~; then

+ ~ ~
KGoMge = ék(Ga (MGG _ ATMG, MGJ)

(Go)
AT MG, MG,) y
(G)

(2.16)

1
+ —k(Ge) (
€
=T1+T71.

Using the last equality in (2.14) and the decomposition of the scaled colli-
sion integrand suggested by Proposition 2.3 to further decompose 77 while
decomposing 75 as

k(Go)

+ o4t
T, = G (AT(MGe, MGo) — AT (M, M))

k(G)A+(M M)<((i)_l>

€

leads to the following crucial inequality.
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The Relaxation-based decomposition. For each € > 0

J D F
KGOMIg.| = a2t /6, 53 e/ar | 200

€
- V(Ge)>
€

2.17) +2M<|’§e| +(Cr +3)

1—
+ AT (M [5|%’e| +9(Cr + 1)+(Ge)] : M) ;

where by, > 01is the constant appearing in assumption (H1) on the collision
kernel, while ¢ and ¢’ are the positive constants appearing in (2.5) and (2.6).

Deriving inequality (2.17) from the basic decomposition (2.16) requires
nontrivial computations that will occupy most of Sect. 6 below (see in
particular the Subsect. 6.1 there).

The benefits of using this new decomposition may not seem obvious at
first sight. Observe however that the first term on the right-hand side of (2.17)
is O(€) in L?>(M~'dvdxdt), while the second is of the form M x O(I)L?o(L%).
This has the following implications on the decay in the v-variable:

Proposition 2.4. Forany p > 0

/em,/ DS}) [v|Pdv = O(¢) in Lix

sup <|v|”M<|’3gE| + (Ck +3)%>) =0(1) in L*(L3).

veR3

and

The first estimate follows from the dissipation estimate (2.7) and the
Cauchy—Schwarz inequality. The second estimate follows from the first
and second entropy controls in Proposition 2.1, and the second pointwise
estimate in Proposition 2.2.

It remains to see that the third term enjoys similar decay properties; this
will result from classical estimates recalled below.

2.2.3. The Caflisch—-Grad estimates. For all p € [1, +o0] and all s > 0,
define LP* as the space of a.e.-defined measurable functions f on R? such
that v — (1 + |v|*) f(v) belongs to L?(R3, dv) and set

1A lrs = I+ 01 fllze -

Define further the linear operator

1
Kf=—AT(WMf, M).
f N I
The properties of the operator K were studied in detail by H. Grad in his
fundamental paper [32]. His estimates, later improved by R. Caflisch [16],
are recalled below.
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Proposition 2.5 (Caflisch-Grad estimates). For all s > 0, the bilinear
operator

(f,9) —> AT(f, 9

is a continuous map from L' x LY to LY. Further

e the operator X maps L* continuously into L>>/?;
e for each s > 0, X maps L continuously into L>+2;

3
e foreachs,o > 0, X maps L** continuously into L>*T2 4+ L>°.

Proof. The second equality in (1.4) clearly implies that sup(|v|?,|v]?) <
|v'[2+ v} |*. Thus for each s > 0 there exists C; > 1 such that [v|* + |v]* <
Cs(JV'|* + |v}]*) for all vand v; € R3 and all w € S?. For each measurable
f one therefore has

A

AT s < %ff (f 118+ 1Allg DA + [vI*)doy,y, (w)dvydv

= %// | F 11112 + v + [vi]*)doy,y, (@)dvidv

IA

%f/ | FIC2 + W' + [V)])doy,v, (w)dvidv

A

-c / / 1€, 1+ WY+ [0 )dow, o, ()ddvrdv
—c f f Fller (14 1) (L 1Yo, (@)dvr o
=Cs/|fl(1+lvls)dv/|g|(1+|vI‘)dv,

which establishes the first statement. The first equality above comes from
the v-v; symmetry in (1.8) and (1.4), while the penultimate equality results
from the (v, v1)-(V', v}) symmetry in these same formulas (see (1.11)).
The second and third statements are much harder to prove: they are
particular cases of estimates (6.1) and (6.2) of [16].
The fourth statement is an easy consequence of the first and second, as
shown below. For all f € L**, write

Kf=a +a

with a; defined by

1 ]<
a = — ANVM 1,2 <oy M
I /—M//2 T pp<appM,
+y M fl/l\v\2§2|v'l\2M/)dav,v| (w)dv,
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while a; is defined by

1 1 EVINIEY i
a; = \/—M /f E( M f Ml(l — 1‘7)‘252|U/|2)
+ MM (= 1oy P))do,,,vl(w)dvl .

Then

3. s 3 s
(2.18) [v[2 T ar] = 222 K (vl £]) -

Using again the second equality in (1.4) implies that, for all v, v; and w,
one has

2o 17,2 2o 12

WIT = 2" or [ui]T = glvl".

In other words, for all v, v; and w,
1< 1p<opp + Lpp<ae -

Therefore
1 a
lv|7|as| < —=AT (VM| f|,22|v|]°M
N (VM| f )

= [[ (1231001 + 1AW A23 1) o @)
(2.19) 1
2 1
< ([[ amn@nann)” atase i
1
= ATSP 2 P M)

The inequality (2.18) and the second continuity statement of Proposition 2.5
imply the existence of a positive constant C such that

larll 3 = Clfllzes.
Loo,2+s

The inequality (2.19) and the first continuity statement of Proposition 2.5
imply the existence of a positive constant C” such that

lazllze < C'll fll2 < CllLfllas -

These last two inequalities imply the fourth continuity statement of Propo-
sition 2.5. i
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2.2.4. Conclusion. The Caflisch—Grad estimates summarized in Proposi-
tion 2.5 above imply that the third term on the right-hand side of the in-
equality (2.17) also is uniformly bounded a.e. pointwise in v with good decay
as |[v] — +oo. Eventually this implies that, after truncating large values
of g., whatever remains of the fluctuations of relative number density is
uniformly bounded a.e. pointwise in v and has good decay as |v] — 4o0.
Before going further, we need the following definition.

Definition 2.6. Let f. a bounded family of L, (R" x RY). We say that fe
is uniformly integrable in y if and only if, for each n > 0, there exists ¢ > 0

such that, for each measurable family (A.) erm of measurable sets in R’;
satisfying’ sup,cgm |Ax| < @, one has

/</ |fe(X,)’)|dy)dx<n, for each e.
Ax

The family f. is said to be locally uniformly integrable in y if and only if
1k fe is uniformly integrable in y for each compact K C RY x RY.

The main consequences of the two decompositions introduced in this
section are stated in the next proposition. Obviously, the proof of the Navier—
Stokes—Fourier limit will also use many of the results already proved in [7],
mainly from the analogue of the Flat-Sharp decomposition there. We have
chosen to summarize these results in Appendix B below so as to avoid
a cluttered presentation of the material that is genuinely new in the present

paper.

Proposition 2.7 (%, controls I). For any y € Y defined by (2.3), the family
%, has the following properties:
e for any sequence €, — 0, the associated sequence M|%.,|* is locally
uniformly integrable in v;
o (1+1v% =0Q)in L2 (dtdx; L*(Mdv)) for all s > 0.

loc

In addition, one has

1 - V(Ge) 1

(1 + [v])—5—= = O(1) in L}, (drdx; L' (Mdv))
€

forall s > 0.

3. Analytical tools II: A new limiting case of velocity averaging in L'

While the ideas presented in the previous section certainly help in controlling
the v dependence of g, more is needed to estimate the ‘g, term. Indeed, in
order to control ‘g,

7 For each measurable set A C RY, the notation |A| designates the d-dimensional
Lebesgue measure of A.
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e because of the last entropy control (the fifth estimate in Proposition 2.1),
it suffices to control the truncated family “g.15, -1/ for some § appro-
priately chosen in terms of €; -

e because of the last pointwise estimate (the fourth statement in Proposi-
tion 2.2), one can further truncate in v and consider finally the truncated
family

t1é’elcegel/é 1<y,

for some well-chosen V, — +o0.

Next, we split the expression above as

1
B g canlppay, = (glGéewge) (1 = UGN p<y,) -

To control the first factor, one can think of using the Relaxation-based
decomposition (2.17) with k(z) = 1,-,1/s. This would lead to estimating

1 ]/8
-1 <1sMge = VMO ( )
¢ Ge=

(3.2) € (dtdx; L)

Ior

=+ O(B]/ZB)LZ(dtdx;LZ,s) fOI' all R) Z 0,

— see estimate (7.14) below. This control would match nicely with an esti-
mate of the second factor in (3.1)

(1 = (G pay, in Ly (didx; Ll) ;

loc

— see Lemma 7.2. This term is obviously O(1) in L73 ; because of the
second pointwise estimate in Proposition 2.2 and the second entropy control
in Proposition 2.1, it is also O(e%e¢"</?) in L;’O(L)Lv), which can be taken as
o(¢€) by a suitable choice of V.. This suggests trying the following classical
argument.

Lemma3.l. Let x € L' N L>*RY x Rz). There exists x| € L;O(L;) and
X2 € Ly(LY®) such that x = xi + xa with

Ix1l < x| and |x2| < |x]| a.e.,

and

1/2 172

1/2
X% el < Xl

172
1l zseeyy < xllys 1~ -
Proof. The decomposition is obtained as

x1(x, ) =1 x(x, y),  x2(x,y) = 1g(x) x(x, y),

where, for some A > 0,

p={ver| [ iy <rianf |
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Indeed
172
151 ey = sup / e, ldy < MlxIb2

: xeE xy

while '
: 1/2
E| < Zlxl; -
Thus
¢ 1 1/2
Ix2llziczeey < 1ESIsup [Ix(x, Mo < =Ml xlee, -
Picking A = || x|| IL/O% leads to the desired result. O
X,y

Applying the lemma to x = (1 — Y(G))1j,p<y, gives a x; that can
be paired with (3.2) as described above. Handling the y, term requires
a different idea presented below.

3.1. Advection/Dispersion bilinear interpolation. The Relaxation-based
decomposition (2.17) improves the L” -regularity in the variable v of suitable
truncations of the number density fluctuations g.. It remains to transfer some
of this extra L”-regularity to the variable x. In the case where the spatial
domain is the whole R? space, doing so rests in particular on a dispersion
argument originally due to C. Bardos and P. Degond [4] — see also [17].
We first recall this argument in the setting best adapted for future use in the
present paper: see Proposition 1.11 of [15].

Lemma 3.2. Let ¢° = ¢°(t, x,v) € L®(LY(LY)) for some 1 < p < q <
400, and let ¢ = ¢(1, t, x, v) be the solution of the Cauchy problem

33 p+edp+v-Vip=0, >0, reR, x,veR’,
' #0,1,x,v) =¢°(t,x,v), teR, x,veR’.

Then, for all T € R*,
(50

In the Cauchy problem (3.3) the variable t is not the physical time
variable, but an independent, fictitious time variable used below as an inter-
polation parameter. In other words, let

lo(z, -, -, ')||L,°°(Lfg(L{,’)) <7l ¢ ||L;>0(L5(Lg)) .

U = ¢ttt
T

be the group generated by —(€d; +v-V,). Then, any function ¢° = ¢°(t, x, v)
is decomposed into

(3.4)
@1, x, v) = (UL%)(t, x,v) + f t (€0, +v - V)(UL9") (. x, v)dr .
0
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In this decomposition, the first term has enhanced L”-regularity in the
variable x while the second term is small with |7*| if ¢° belongs to the domain
of €9, 4+v- V,. Introducing this fictitious time variable might seem somewhat
unusual; yet this is in complete analogy with the classical procedure due
to J.-L. Lions (see [42]) relating interpolation spaces with spaces of traces
(in the sense of restrictions to some boundary) of functions taking their
values in Banach spaces. These former methods would typically use elliptic
operators and the domains of their fractional powers as the means of gauging
the smoothness of the functions under consideration. In the present work,
we use instead precisely that advection operator which appears in the scaled
Boltzmann equation (1.13) and are concerned with dispersion rather than
regularity properties.

Second, we write and prove a formula that will be used together with
Lemma 3.2.

Lemma 3.3. Picke > 0, t* > 0, and t* > 0, and consider
Q={(t,t,x,0) e RxRxR* xR |0<t<71", 0<t—er<1'}.

Then, for all f € L} (dtdxdv) such that (€d, + v - V) f belongs to

loc

L} (dtdxdv) and all compactly supported ¢° € L>(dtdxdv),

(3.5)

t* t*+et*
/ / foldtdxdv = / / fo(r*, -, -, dtdxdv
0 eT*

— / o(t, t, x, v) (€0, + v - V) f(t, x, v)drdtdxdv ,
Q

where ¢ denotes the solution of (3.3).
The same identity (3.5) holds for any ¢° in L (dtdxdv) (not necessarily
compactly supported) and all f in L} (dt; L' (dxdv)).

loc

Proof. Apply Green’s formula to the integral

/ f(t, x, v)(0; + €0, + v - V)P(1, t, x, v)drdtdxdv = 0.
Q

Set ¢° to be the x, term obtained by applying Lemma 3.1 to x =
(I = (G 1y2<y,; by Lemma 3.2, the resulting ¢(z*) enjoys for each
7" > 0 the same properties as the x; term and is paired with (3.2) in the
manner described above, while the streaming term is estimated by Young’s
inequality recalled in Appendix A and the third estimate in Proposition 2.1.
This procedure eventually leads to the following crucial estimate.
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Proposition 3.4 (“g. control). For each y € Y defined by (2.3), the family
Yo, satisfies the estimate

1
% = O ————) in L} (dtdx; L' (Mdv))
log | log €]

as e — Q.

This result shows a notable difference between the Flat-Sharp decom-
position and the older decomposition in [7] (p. 696): here “g. — 0, which
means that the whole of the hydrodynamic limit is contained in the L? part
of the Flat-Sharp decomposition — namely %..

Proposition 3.4 leads to an amplification of the last statement in Propo-
sition 2.7, stated below.

Corollary 3.5. For each y € Y defined by (2.3) and each s > 0, one has
1 —y(Go)

1 . 1
5 _0(7@ﬁ£5> (dtdx; L' (Mdv))

in L}

loc

(1 +1vl*)
as € — Q.

3.2. A limiting case of velocity averaging in L'. The Advection/Dis-
persion bilinear interpolation procedure has another important application,
leading to an improvement of the existing velocity averaging results in L'
(namely, it extends the validity of Lemma 8 in [27] to any space dimension).

Lemma 3.6 (Local uniform integrability by velocity averaging). Con-
sider a bounded family f. of L7, (dt; LI]OC (dxdv)) indexed by € € [0, 1] such
that (€0, + v - Vy) fe is bounded in L}oc(dtdxdv). Suppose that f, is locally
uniformly integrable in v. Then f, is locally uniformly integrable (in all

variables t, x and v).

Proof. Without loss of generality, one can assume that all the f. are sup-
ported in the ball of radius R centered at the origin in R, x R? x R>. Let B
designate a measurable subset of that same ball.

For all r € R, call

B, ={(x,v) e R* xR*| (¢, x, v) € B}

and
B..={veR|(tx,v) € B)}.

Applying Lemma 3.1 twice to the indicator function of B leads to the
decomposition

1p =151p + 151515 +1l51p .
where

By ={teR||B,]| > |B|'"?}, B,={reR||B)|=<|B|'"?},



Navier—Stokes limit of the Boltzmann equation 115

and, for all r € B,

By = {x e R*||B,.| > |BI""}, Bl ={xeR||B,.| =B}

Thus
1515, )l ) < 1BI'?,
(3.6) ||13132le Lozt (e < |B] 14,
1,15 llre ey < [BI'*.

Then

3.7) / / / sl | fldidxd < | follicey )L,y = OUBIY).

The definition of uniform integrability in v can be equivalently recast as
follows: for each n > 0, there exists o > 0 such that, for each measurable
x : Ry xR} x R} — {0, 1} such that || x|z ;1) < a, one has

3.8) f// x| feldtdxdv < n, uniformly in €.

Let n > 0 and « be so chosen; pick 0 < t* < 1 such that
(3.9) (b + v Vo fll <.
Assume that B satisfies

(3.10) |IB|'* < t%a < «;

then, by using (3.8) for x = 1z15,1p; together with the third inequality
in (3.6),

(3.11) /// 131321332|f€|dtdxdv <.

It remains to estimate
f/f 131321351 |f€|dthdU .

Let ¢° = 1515,1 B, and ¢ be the solution of the Cauchy problem (3.3).
Notice that ¢ takes its values in {0, 1}. Lemma 3.2 and the second inequality
in (3.6) imply that

1/4
G116 Mt < = 1ty < P <
: [ Lt,x(Lv> — .[*3 LP(Ly(L3®)) = .L-*3
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by (3.10). Thus, the first term on the right-hand side of (3.5) satisfies

t*ter*
/ / | fe(t, x, v)|p(T*, 1, x, v)dtdxdv < 1

by (3.12) and (3.8). On account of this inequality, applying Lemma 3.3 with
| fe| in place of f and t* as in (3.9) shows that

(3.13) /// 131, 1p | feldtdxdv < T°||(€d, +v - Vo) fll;  +n <2n.

Eventually, the three estimates (3.7), (3.11) and (3.13) show that

/// | f.|dtdxdv < O(a?) + 3n
B

for each measurable B C R, x R® x R? satisfying (3.10), once 7* has
been chosen as in (3.9). This implies that the family f, is locally uniformly
integrable on R, x R? x R? (in all variables ¢, x and v). O

One might object that the final result in Lemma 3.6 above is about
fe itself and not about its moments in v, so that the reference to velocity
averaging results as in [28] and [27] may seem inappropriate. However,
the only nontrivial part in the proof of this result is the step appealing to
Lemma 3.3, which essentially amounts to proving the local uniform integra-
bility of f fedv (see [55] for the first observation in this direction). Besides,
it has been previously noticed in various contexts that the velocity averag-
ing method combined with additional regularity estimates in the velocity
variable only gives compactness in all variables: see for instance [48], [22],
and [13]. Our Lemma 3.6 can be viewed as an analogue in L' of these
hypoellipticity results.

In fact, applying Lemma 3.3 a second time would show that, under the
same assumptions on the family f,, the family of moments | f, x(v)dv
is “strongly compact in L} (dtdx) relatively to the x variable” for each
x € C.(R%). We refer to [30] for a precise statement and a complete proof.
However, in order to establish the strong compactness of moments, we use
here a slightly different argument.

Lemma 3.7. Let f. be a bounded family of leo (dtdx; L*(Mdv)) indexed
by € € [0, 1] such that both families | f.|* and (€3, + v - V) f. are locally
uniformly integrable with respect to the measure Mdvdxdt. Then, for each
function ¢ = ¢(v) in L>(Mdv), each t* > 0 and each compact K C R3,
there exists a function n : Ry — Ry such that lim,_, ¢+ n(z) = 0 and

2

H/ fe(t, x +y, v)p(v)M(v)dv — / Je(t, x, v)p(v) M (v)dv

L2([0,%]x K)
< n(lyD

for each y € R such that |y| < 1, uniformly in € € [0, 1].
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This lemma is a minor amplification of Theorem 3 in [27] and its proof
is deferred to Appendix C.

Finally, the first %, controls (Proposition 2.7), the ‘g, controls (Pro-
position 3.4) and both Lemmas 3.6 and 3.7 lead to the last piece of infor-
mation needed about the %, family, stated below.

Proposition 3.8 (%, controls II). Let y € Y as in (2.3). Then the family
% has the following properties

e foreachcompact Q C R, xR? and each sequence €, — 0, the extracted
sequence (t,x,v) — 1p(t, x)| %’en (t, x, v)|* is uniformly integrable in
R, x R? x R? with respect to the measure dtdxMdv;

e for each sequence €, — 0, each function ¢ = ¢(v) in L>(Mdv), each
t* > 0, and each compact K C R, there exists afunctionn : R, — R,
such that lim,_, o+ n(z) = 0 and

fofK|<ng,,¢>(z,x+y>—<bge,,¢>(r,x>|2dxdrsn(|y|>

for each y € R? such that |y| < 1, uniformly in n.

We close this section with an amplification of the first statement of
Proposition 3.8.

Corollary 3.9. Let y € Y as in (2.3). Then the family g has the following
properties

e foreachcompact Q C Ry xR? and each sequence €, — 0, the extracted
sequence (t, x, v) — 1g(t, x)( 'jgenoC 'fgsn)(t, X, v) is uniformly integrable
in Ry x R? x R3 with respect to the measure dtdxMdv;

e for each compact Q C R, x R® and each sequence ¢, — 0, the
extracted sequence (t, x, v) — 1o(t, x)Q( %En, bgsn)(t, X, v) is uniformly
integrable in Ry x R x R3 with respect to the measure dtdxMdv.

4. Estimating conservation defects

The controls stated in Sect. 2 and proved below establish the local conser-
vation laws of momentum and energy in the limit as € — 0, by essentially
the same method as in the proof of the Stokes-Fourier limit by F. Golse and
C.D. Levermore [25].

Before stating the main result of the present section, we need to introduce
a new class of bump functions. For each C > 0, set

Ye={y e TV~ = C}.

Consider the transformation 7 defined by 7y = 1 — (1 — y)?; clearly T
maps Y¢ into Y,¢. Define

4.1 Y=97Ys C Yis; notice that T # @ since Ys £ 0.
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For each y € Y, define

. dy
(4.2) (@ =y@)+ (- 1)d—Z(Z)-
Notice that
4.3) supp 7 C [3.2]. 7([3.3]) = {1}.
On the other hand, let y € Yg be such that y = 7y (the existence of ¥
being guaranteed by the fact that y € ). One has
N - . dy
1-7@=>0-7)|0-7@)—20z- I)Z(z) ., 220

so that
4.4) [1-9@)| <91 —-%(), z=0.

Proposition 4.1 (Vanishing of conservation defects). Ler y € Y, and de-
note by &€ = &(v) any collision invariant (i.e. E(v) = 1 or £(v) = vy, ..., v3
or else £&(v) = |v|?) or any linear combination thereof. Then

1
8[(%6%-) + va' (U%ES) — 0, in LIIDC(R+ X R3)

ase€ — Q.

Proof. We start from the renormalized form (1.19) of the Boltzmann equa-
tion (1.13) with I'(Z) = (Z — Dy(Z)

1
<a, + v vx) (M go)
1 - dy
= 6_3 (FEFEI - FeFe]) V(Ge) + (Ge - l)d_Z(Ge) bdav,m (w)dv]
from which we deduce that
1 1 R
B(kek) + — Vo (0}b) = —(genet)

€

with the notation
)95 = ?(GE ) )

the function { being defined in terms of y by (4.2).
In order to estimate the L'-norm of the conservation defects, we consider
the decomposition

1 1 1
4.5) «‘kﬁes» = _«q€)>6(1 - )961)%_» =+ E«CIG);GJQE]S» .

€ €
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Because our choice of & satisfies & + & = &' 4 &, using the defin-
ition (1.35) and the collisional symmetry (1.11) with f = MG, and

@ = VeVer§ 1y, 216/ 10ge] OF @ = VeVe1EL 211, 2<16]10g¢| iMPlies that

1

E«Clef/ef/elé»
= é« ePePer&Ljup 2> 161 10gel ) + é«qe?e?e151|v|2+|v1|2<16logel»
= 56161 ~ GG PeFa & + 80 Lupprenoel)
+ %(((G;G;l ~ GeGe)PePer = VDE + EDLupsiuy p=teftogel)

On the other hand, observe that

(J,)G),}Gl - ),}e/j)e/]) = (J,)G),}Gl - 1)),};)75/1 - (J,)é),}é] - 1)?6)961
so that, using again (1.11) with f = MG, and this time with ¢ =
(VeVer — DIV E +EDL i, 2<16]10g¢» WE have
1 / / AA Al AL
4—63«(G€G€1 —GG)(PeVer — VeV )(E + Sl)l\v\br\vl\2516|1oge|»
1
263

Therefore

((GLGLy = GeGe) PePer — DIPLE + EDL i <16/ 10ge ) -

1 1
I (8eE) + Ve (vee&)| < ;<(|qe||ﬁe||1 — Pall€l)

1 R
(4.6) + 2—6«|Cle||)/el/e1 |(&] + 161D o210y 2= 16] ogel)

1 A A Al AT
+ 2—6«|C]e||)/el/e1 — WIPPLIAEN + 18 DLt 10 2<16] ogel)
=L+L+1.

For any n > €, Young’s inequality (10.4) together with the elementary
properties of z and r recalled in (10.1) and (10.3) (see Appendix A below)

imply that
1 4 24,
g |EW)] < 26 Gy [h( €4 ) + R <i|s<v>|)]
€ 4n

64 GeGel

4.7 5
€°qe
Ge Ge]

4 4
< —ZG€G€1F< ) + TG€G€]€|E(U)|/4_
€ €n

Then, using (2.7) and the elementary bounds
(4.8) P/ <9, 11—=9/<9, 0=<Gfl =¥
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leads to

“[ [ D(F)
111121 qo.1x0) = 16'92'77/ // -
0 Jo €
4 " 1— 9.
+ —/ / <<G6G51|JA/€|7| zylleS(”)/4>>dxdt
nJo Jo €

, 4.2.p (6114 pr* 1— 9,
< 16-92.C™"y + #/ / <| 2;/ |G€>dxdt
n 0 Jo €

Sebo (€14 [T 1
[ <—2|1 — 3G - 1|>dxdz,
n 0o Jo \€

where the last inequality follows from the same argument as in the proof
of the third pointwise control in Proposition 2.2. Because of the inequal-
ity (4.4), one has

dvdxdt

©[S

Nl

< 16.92.Cm 4 &
=16:97-C"n +

1 N 1 -
<_2|1 — VellGe — 1|> = 9<_2(1 — YI)|Ge — 1|>
€ €
so that, by applying Proposition 3.4 with the bump function y € Tg and by
choosing n = 1/4/log | log €| we get
m <——<
1 * p—
HILH0.71x0) = log | log €]

Next we estimate the term [, defined in (4.6). Replacing |&(v)| with
E(v)| 4+ |&(vy)] in Young’s inequality (4.7) above and using again the
bounds (4.8) implies, by integrating first in w, that

4.9

4.10)
2 in 2
120l 1 o,rx0) < 8-97-C"np + e
t*
8 /0 /Q«GeGeIWer/elle(é+|E'|)/41|u|2+|u.|23161oge|>>dde
2-(3)? by

<8-92.C"n+ >

ne
t*

X/ ///e(mé])/41v2+v12216|loge|MM1dvdvldXd’
o Jo

1
< 0@ + EO(eﬂlogeF) = O(e|loge|*)

by choosing this time n = €.
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It remains to estimate the term /3 in (4.6). Using the decomposition (2.9)
of the scaled collision integrand and once again the bounds (4.8) shows that

' 2
I < 9-. (1 ;i—9 )

@.11) 2¢
+2 3«6 | G| PePeal Il — P94 1E | + |$]/|)1\v’\2+\v’1\2§16|logel»~

(€*1 %1181 + 1ED D piu p<16f10ger)

(Observe that we have exchanged the primed and unprimed variables in the
integral defining /3, on account of (1.9) and the second equality in (1.8)).
Denote by I3 and I3 the two terms on the right-hand side of (4.11). The
second statement in Proposition 2.3 shows that, for each r* > 0 and each
compact subset Q of R?, one has

(4.12) 13 < Ce|loge|.

H L1([0,¥]x Q)
By the Cauchy—Schwarz inequality,

1/2

|CIe 1 2
I H— GG |7y
| SHLI (0.1 = H<<G Gell 21 qo.1% 0 462« Galyeral
|1 AIAL |2(|§/|+|E/|)21 »Hl/z
X — 7 /12 < .
VeVe 1 [V 2410} |2 <16] loge| L(0.01%0)

This inequality, together with the first estimate in Proposition 2.3, the third
inequality in (4.8), and the formula

1=9P=1-9"+7' A=)

imply that
155 |2 qom1x0)
) 2 /Cm N N 1/2
=9 (F)" (<(|1 DU, D2 (IE HHED?)
Ve L1([0,]% 0)

(4.13) | "

=C| (1 =Pl + lv|*))

€ L1(10.14]x Q)
1/2 c

9
<C H?“l — (G + [v|*)

B —
L1([0,]x Q) (log | log E|)1/4

for some constant C > 0, where the penultimate inequality is based on (4.4)
and the last inequality follows from Corollary 3.5 applied to the bump
function € Y. (The constant C™ is that which appears in (1.44), while
the constant ¢ is defined in (2.5)).

Combining estimates (4.9), (4.10), (4.12) and (4.13) gives the expected
convergence. O
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5. Proof of the weak Navier—Stokes limit theorem

Throughout this section, it is assumed that the bump function y belongs to T
(defined by (4.1)). Using Proposition 4.1, the classical Sobolev embedding
theorems, and the continuity of pseudo-differential operators of order O on
W*P for 1 < p < +00, one sees that, for all s > 0

(5.1)
1 , L
9 P(vie) + PV, E((u®2 — 1) %) — 0in L}, (dt; W2 (RY),

loc

and
52 a{(Lul? = 1) %) + Vi é(v(%|v|2 —1) %) — Oin LL (didx)

as € — 0. (We recall that P is the Leray projection, i.e. the L>(dx)-
orthogonal projection on the space of divergence-free vector fields).

By Proposition 2.1 and Theorem 11.1 in Appendix B below, pick any
sequence €, — 0 such that

%, — gin w*L®(L*(Mdvdyx)),

(5.3) . 1 1 2
Yende, — q I w-L,, (dtdx; L ((1 4 [v]7)dw)) .

In this section, we deal exclusively with such extracted sequences, drop the
index n and abuse the notations g., %., “g., g and so on to designate the
subsequences g, , Zc,, “ge, and g, . Call u and 6 the limiting (fluctuations of)
velocity and temperature fields defined by

(5.4) wg) = u, (3P —1)%)— 0inw*-LP(L3).

X

The second entropy control in Proposition 2.1 implies that %, and g, have
the same limit g in w-L} (dtdx; L'(Mdv)); hence the Boussinesq rela-

loc

tion (11.3) and the incompressibility condition (11.2) hold:
(5.5 Vieu=0, 0+ (g) =0;

(see Theorem 11.1 in Appendix B).
Denote by ¢ either the tensor A or the vector B defined in (1.42). By
Proposition 1.4, £ is self-adjoint on L?(Mdv) so that

1 1 1
(L0 %) = it %)) = ;((@(”gg + %a— & — %))
1
(5.6) = <<; [;(bge + % — B — B+ (Beka — & bg;])} >>

+(£Q(%e, %))

The first term in the (last) right hand side of (5.6) converges to the diffu-
sion term while the second term converges to the convection term in the
Navier—Stokes—Fourier system. These limits are analyzed in detail in the
next subsections.
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5.1. The diffusion term. The convergence to the diffusion term is obtained
by an argument that closely follows [25], except that the present work uses
the Flat-Sharp decomposition (2.4) instead of the decomposition introduced
on p. 696 of [7] as in [25]. This apparently minor difference makes our
analysis slightly more difficult than that in [25].

Proposition 5.1. Define
v=15(A:LA), k= Z(B-LB).

Then, as € — 0,
((LA) &) — (AQ(%&e, 2)) > —v (Veu + (Va)")

((LB) %) — (BA(%e, %)) > —3kV,0

N[ =M=

in w-L}OC (dtdx).

Proof. The convergence to the diffusion term depends upon a careful an-
alysis of the integrand appearing in the first term of the (last) right-hand
side in (5.6) that involves the scaled collision integrand

1 / /
qe = E_Z(GEGGI - GeGel)

1
= ;(gé + 8L — 8 — 8e1) + (8L801 — &e&e1) -

Indeed consider the decomposition of the integrand in (5.6) as

e = B ) (e - K|
= —qcVeYa V.V
G +[keka(l —yly,) — 201 = yeva)]
+ é [%e + ket — & — &1 — Veva v v, (g + g1 — 8. — &.1)]
=L+L+1.

Notice that this decomposition is slightly more complicated than its ana-
logue in [25] (formula (10.6) there). In particular, the analogue of the
normalizing factor y, in that work is an affine function of g.. This accounts
for additional cancellations in (5.7).

Step 1: controlling I,. By Theorem 11.1 in Appendix B below,

qeve = q inw-L;, (didx; L' (dp)) .
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On the other hand, each term in the product y/y. Y/, is bounded by 1 in
L (dtdxdu). Hence the decomposition

L= ylyvavi =1—=y.+ v/ =y) +vv i = va)
implies that
0 < 1=y/yar, < A=y)+0—y/)+A—ye) <4 (1%L 1+ %L1 1+ et l)

because of the second pointwise estimate in Proposition 2.2. Using the
second entropy control in Proposition 2.1 with the symmetries (1.8) and (1.9)
shows that

(11— vivavil) = 4€(1 %Ll + gl + gal) < 12€%boll "8ell L1ty — O

in L}, (dtdx) as € — 0. Hence the family y/y.y/, is bounded (by 1) in

L°°(dtdxdv) and converges in measure to 1 on compacts sets in R, x R? x
R? x R? x 8% as € — 0. By Lemma 14.1 in Appendix E below,

(5.8) geYeVea Vvl — q inw-Lj, (dtdx; L' (dp)) .
‘We claim that in fact
(5.9 qeVeVa vyl — qinw-Lj (dtdx; L*(dw)) .

Indeed, unless yeye1y/y., = 0, one has

SGeGelfga _gf

ENEN

then, the third statement of Proposition 2.3 with £ = [—%, 8] implies that

2 ali
/ 7 \2 9 q6 G G 1 .
((Gevevivayl)?) < Z<<G€G€11E (GiG; - 1) >> =0(l),; .

This bound together with the w-L' convergence (5.8) imply (5.9). In par-
ticular, ¢ = A or ¢ = B belongs to L?>(Mdv) in either case (see (1.42)
above), so that the w-L? convergence (5.9) implies that

5100 (&gevevivavi) = (¢a) = (€ v- Vig) in w-Li, (didx) .

The last equality in (5.10) follows from the limiting Boltzmann equa-
tion (11.6) in Theorem 11.1 (see Appendix B).

Step 2: controlling I, and I5. The first pointwise estimate in Proposition 2.2
and the obvious formula

L=vivi=0=y)+v.0=vy)
<U=y)+A =y
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imply that

1
(1211 %e Berl(1 = y/y[D) < E«ma —vi+1=v))-

By assumption (H2) and relation (1.4), there exists p > 0 and C,, > 0 such
that, for all (v, v;, @) in R? x R? x §?

12(v)| < C,p(1 + V|7 + |v}|?) for each (v, v, ®) € R® x R® x §%.
Thus, by using the (v, v;)-(v', v}) symmetry (1.8) and (1.9), we have
(5.11)

C
(1211 %e Berl(1 = y/v[D) < 4—6’;«(1 + WP+ YA =y +1=y))
b C
< ECU+ P (A + 0P =)

- 2e2
The term /3 in the right-hand side of (5.7) can be recast as
1 b ro b ’o
g(ge(l - Velygygl) + ge](l - )/el/e)’el)
— %L1 = yevavl) — a1 = vevay)) -
Then, proceeding as in (5.11) leads to

(5.12)
1
(12110 = v
C / / / / 1
< 2—6';(((1 + P+ DA =yl 1=y + g«lél(l — ven)
bsC bso
== P14 ol + ) (1 = o)) + 22 el = ve) .

Both inequalities (5.11) and (5.12) (and those deduced from (5.11)-
(5.12) by the v-v; and the (v, vy)-(v', v}) symmetries (1.7), (1.8) and (1.9))
with Corollary 3.5 imply that

(5.13) (I21) = 0 and (|13]) — Oin L, (dtdx) as € — 0.

Conclusion. Using both convergences (5.10) and (5.13) in formula (5.7)
implies that

1 /
<<; [;(Egg + -2 )+ (g a— 5k, ]>> — —(¢v- Vyg)

. 1
inw-L,;,

(dtdx) as € — 0. Because of (5.6) this is equivalent to

1
-((£0) 2e) — (CQ(%e, ) = —(Cv-Vig)
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in w-L}, (dtdx) as € — 0. Using the limiting form of the number density

fluctuation (see (11.1) below in Appendix B) leads precisely to the statement
of Proposition 5.1. i

5.2. The convection term. The convection term is the nonlinear part of
the limiting system and its convergence is therefore the most difficult to
establish. The analysis below rests not only on all the previous sections but
also on the arguments in [7] and [50].

Proposition 5.2. The following convergences hold in the sense of distribu-
tions on R% x R*:

PV, (AQ(%, 2)) — PV, - u®*,
Ve (BQ(%e, 20)) — 2V (),

as € — 0. (We recall that P is the Leray projection, i.e. the L*-orthogonal
projection on the space of divergence-free vector fields).

Define
Pe= (%), ‘ue= (k) " ={(3v> —1)&).
e First, we establish that
Vi (AQ(%es 80)) — Vir (AQ(I %, M) — 0
Vi (BQ(%e, §) — Vir (BQ(M g, M%) — 0
in some appropriate sense as € — 0, where
M2 = P+ e v+ "0 = 3);

in other words, IT designates the orthogonal projection on the nullspace
of £ in L*(Mdv);
e Then we show that

PV, (AQ(Mg, %)) = PV, u®* — PV, -u®?,
Ve (BQIT %, %) = 3V, (Cuc"0e) — 2V, (ub),

in the sense of distributions on Ri x R¥ase — 0.

Step 1. Relaxation to the local infinitesimal Maxwellian

The main result in this first step expresses that the distance from %, to the
space of local infinitesimal Maxwellians —i.e. elements of leoc (dtdx)Qker L
— vanishes in the limit as € — 0.

Lemma 5.3. Ase — 0

(5.14) 2. —Tg — 0 inL; (dtdx; L*(Mdv)).
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Proof. By Proposition 1.4, £ is a nonnegative bounded Fredholm opera-
tor on L>(Mdv), and therefore is coercive on (ker .£)*. Thus, in order to
establish (5.14), it suffices to prove that

(5.15) (L) — 0in L, (dtdx).

In order to do so, we pick an arbitrary compact Q C R, x R? and split
Lo(%L %) as

(5.16) 1Q<bge°c %e) = (IQ - Xe)(bge°cbge> + Xe(bge°cbge>
with
1o
5.17) e = ————.
1+ Le(lgel)

By Corollary 3.9, the sequence of functions 1p %L, is uniformly
integrable with respect to the measure Mdvdxdt and therefore relatively
compactin w-L' (Mdvdxdt) by Dunford—Pettis’ theorem. On the other hand,
0<1p—x <1land
ye(lge) 1o

S22 < Le(lg)p.
1+ 1e(lgel) = °

1Q_X5:

By the first and second entropy controls in Proposition 2.1 1y — x. converges
toOin L }0 .(dtdx) and therefore in (Mdvdxdt-)measure on compact subsets
of R; x R? x R3. Lemma 14.1 in Appendix E implies that

(5.18) (1o — x){&eL ge) = (1o — x)Lo(&eL &) — Oin L' (drdx).
Then we prove that

(5.19) xe(8e L ge) — 0in L' (dtdx) .

This is done in two steps. In the first one, we consider the quantity

(5.20)

1
€Xe bge (// QEbde,vl (w)M,dv; + E°Cbge)
= € %[ — Xeel "ge + X @(Ze, B) + Q(ge, (e % + €7 0))].

Because £ = —2Q(1, -), the continuity property stated in Proposition 1.5
implies that £ is a bounded operator on L'(Mdv). Then, as € — 0,

(5.21)
b i
ll€ Ze Xel "gell Lt arar: 11 wtavyy < 1L 21110 el L1 e 11wty — O
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because of Proposition 3.4 and the first pointwise estimate in Proposition 2.2.
Likewise the L'-continuity of @ in Proposition 1.5 implies that

HE bge @(ng’ XE (2E %E + 62 ﬁgE)) ”Ll(dtdx;Ll(Mdv))

— b g b 24
(5.22) o HE 8e Q1o ge, xe(2€ 8e +€7°8c)) ||L'(dtdx;L'(Mdv))

A

1
< 0@ L1110 *ell 1 e 11 Moy

b 2
X (211€ Bell oo (anae: L1 vavy) + 11€7 Xe "Gl Lo (v 11 waaty)) = O

again by Proposition 3.4, the first pointwise estimate in Proposition 2.2 and
the elementary inequality

€lgel

——=— implying that [€*xc "gcll 11 (paw) < 3-
1+ Le(lgel) ‘

€2 xe "gel <
Finally, by Corollary 3.9 15Q(%., %.) is uniformly integrable for the
measure Mdvdxdt and therefore relatively compact in w-L'(Mdvdxdt) (by
Dunford—Pettis’ theorem), while €%, is bounded in LY, and € 2. — 0in
L} (Mdvdxdr) as € — 0. Thus € &, converges to 0 in (Mdvdxdt-)measure
on compact subsets of R, x R? x R?. By Lemma 14.1 in Appendix E

(5.23) €2.Q(%., %) — 0in L}, (dtdx; L' (Mdv)) .
The convergence statements (5.21), (5.22), (5.23), above show that

(5.24)

— 0.
L' (Mdvdxdt)

1
€Xe &e ( / / Gebdo (@) Mydvides + —L ;ng)
The second step in the proof of (5.19) is the following lemma that will
also be used elsewhere.
Lemma 5.4. Assume that y € Y. The sequence
(5.25) (lge gel) is bounded in L}, (dt; L}) .

Postponing the proof of Lemma 5.4, observe that both estimates (5.25)
and (5.24) imply that (5.19) holds. The limit (5.18) being already estab-
lished, this proves that (5.15) holds, as announced. |

Proof of Lemma 5.4. Young’s inequality (10.4) from Appendix A implies
that, for all t* > O and € € [0, 1]

/O[* /« e e ) dxar
e () o

<4 P godrdr +1*(1) (GGei %2) dxdr .
0 e 0 ‘
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The first term on the right-hand side of this inequality is controlled by the
entropy dissipation control (2.7). In order to control the second term, we
first decompose it as

1 —
«GeGel bgg» = <<62GE bngel 62)/61 >> + «Ge bggGelyel» .

Using the bound (H1) on b, the first and the third pointwise controls in
Proposition 2.2 lead to

1 —
<<e265 82Ger ef‘»‘ < Bboo( )

and
‘«Ge bg?GelVel» = %boo“ bge|2> :

Eventually, the last three inequalities lead to

(5.26)

r* .
/0 f<<|q€bg€|>>dxd[§4H (4)

€

Ll

1 (Dboo (B8l 0 vtean + H1 8 12y -
Therefore (5.25) holds (see Proposition 2.1). m]
The following convergences are easy consequences of Lemma 5.3.
Corollary 5.5. One has

(AQ(%e, &) — uE + 31 °ucl’1 — 0

€

5.27
62D (BQ(%e, 8)) — 3'uc 0. — 0

in L} (dtdx) as € — 0.

Proof. We first recall from (1.42) that { € L?>(Mdv). By the Cauchy—
Schwarz inequality and the L? continuity of @ stated in Proposition 1.5,
one has, for some constant C > 0

(5.28)
(EQ(%e. 80)) — (£QUT ge, T8 = [{CQ(%e — M &e, &e + 150))]
< 122w 1Q(%e — T &, Be + TR 12010y
< ClIE N r2man |l 8 + T &ell 20aany | 8 — T1Zell 22 (aray
< 2C12 | 2 maw Il 8ell 22man |l 8e = T1 8ell 12 (vtan)
= O oyl % — M2l 2(paw) — O
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in L}, (didx) as € — 0, by the first entropy control in Proposition 2.1 and
Lemma 5.3.
The symmetry relations

(LA) f(v) = (LA p(lv])) =0,
(LB) f(v)) = (LB)p(|v]*)) =0,
which hold for any f € ker /£ and any polynomial p, and formula (1.43)
imply that
(cQMEe, ME) = (¢ 3L£((3)%))
(5.29) = (LM g)?)
= (L[ w2 : v®* + "0 "uc - v(|v]* — 3)]).

€

Collecting the results from (5.28) and (5.29) and using the conver-
gence (11.1) proves that

(CQ(%e, &) — 3((LO[u® - v® + "0 uc - v(Jv]* = 3)]) = 0

which in turn implies the convergences stated in (5.27). O

Step 2. Convergence of the nonlinear convection terms

Because the Navier—Stokes(—Fourier) system is nonlinear, weak conver-
gences are not enough to take limits in the convection terms. First, in the
next lemma we identify two quantities that converge strongly.

Lemma 5.6. As e — 0,
(5.30) Pu¢ — u, and £(3°0. —2p.) — 6

. 2
in L loc

(dtdx).

Proof. Step 1: a priori estimates. By Proposition 4.1

3, Pu. + P (vx- l<(¢,£A) Ege)> -0
(5.31) €

1
(30 — be) + Vi (022 g)— 0
in L!

loc

Proposition 5.1, for { = A or ¢ = B,

(dt; ngj’](dx)) for all s > 0 and in L! (dtdx) respectively. By

loc

(5.32)

1
E((oc;) 2.) — (¢Q(%., %)) is bounded in L, (dtdx) .
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Because ¢ € L?(Mdv) (see (1.42)), by the Cauchy—Schwarz inequality and
the L? continuity of @ stated in Proposition 1.5, there exists C > 0 such
that

(533)  1€Q(%e, N < ClIEI 2 aan | 8ell T2 pgay = O iowty

because of the first entropy control in Proposition 2.1. These last two controls
imply that the family

1
(5.34) —((£2) ) is bounded in L, (dtdx) .
€

Thus, the convergences (5.31) and the bound (5.34) imply that

foralls > 1, P u.isbounded in L, (dt; W' (R?)),

5.35
(5:33) and 9;(2 6. — ) is bounded in L}, (dt; W " (R?)) .

Further, the second statement of Proposition 3.8 with ¢(v) = v or ¢(v) =
%(| v|?> —5), and the Lz—continuity and translation invariance of P imply that

[*
(5.36) f f |Puc(t,x + y) — Pluc(t, x)|*dxdt < n(|yl)
0 Jo

t*
and/ / (376 — Do) (tx + ) — (36 — p) (6.0 dudr < n(ly)
0 JQ

for each y € R? such that |y| < 1, uniformly in €, where 7 is the modulus
of continuity in the statement of Proposition 3.8.

Step 2: convergence of 3 "0, — p. The L' variant of Aubin’s lemma (see [58],
p- 84, Theorem 5), and both estimates (5.35) and (5.36) imply that the

sequence % "6, — p. is relatively compact in L} (dtdx). On the other hand,
the sequence (% *0, — pe)? is locally uniformly integrable on R, x R? by the
first assertion in Proposition 3.8. Hence the sequence % "0, — . is relatively
compact in leoc(dtdx). (Indeed, if a, converges to a in measure and if ai
is locally uniformly integrable, then @, — a in leoc). By (5.4), we already
know that

%bee_ %5_> %0_<g>

in w-L2 (dtdx) as € — 0, and hence this convergence holds in the strong

loc
topology of leoc (dtdx). The second relation in (5.5) (the Boussinesq relation)

finally implies that
%bGG — ?os — %0 strongly in leac(dtdx)
as € — 0, and this is precisely the second convergence in (5.30).

Step 3: convergence of P'u.. Let £ € CSO(R3) be such that £&(x) = 0
whenever [x|] > 1, & > 0 and fS(x)dx = 1. For each § > 0 we define
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£5(x) = 673£(x/8). The first entropy control in Proposition 2.1 and the first
estimate in (5.35) imply that, for all s > 0 and all § > 0,
P'u. * & is bounded in L;’O(HS) ,

X

3P 'uc * & is bounded in L), (dt; H?) .

By Theorem 1, p. 71, and Lemma 4, p. 77 of [58], the family P ’u, x &;
is relatively compact in L7 (dtdx) for each § > 0. The first convergence
in (5.4) and the L?-continuity of P imply that

P’u, — Pu € w-L? (dtdx) while

loc

Plu, % &s — Pu x &; strongly in L? (dtdx) .

loc

(5.37)

Hence
Puc - (P°uc % &) — Pu - (Pux&;) in L, (dtdx)

as € — 0. On the other hand Pu x £ — Pu in L? (dtdx) and

loc
Pu, — Pu, % & — Oin L? (dtdx) uniformly in € as § — 0

loc

because of the first estimate in (5.36). Therefore

|P’uc|* — |Pul*in L, (dtdx) as € — 0,
With the first convergence in (5.37), this implies that
(5.38) P'u. — Pu strongly in L} (dtdx)

as € — 0. The first relation in (5.5) (the incompressibility condition) implies
that Pu = u, so that (5.38) coincides with the first convergence in (5.30). O

As indicated above, the convergences

e > u, "0, —0

2

2 (dt; L?) only, and even the strong lim-

coming from (5.4) hold in w-L
its (5.30) do not imply that

U — u®* u L0, — ub

in the sense of distributions on R x R>. Instead, one has the following
convergences.

Corollary 5.7. Ase — 0,

PV, u®? - PV, u®?

(5.39) b
Ve (e 0c) — V- (ub)

in the sense of distributions on R’ x R3.
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Proof. Denote V., = u, — P'u. and . = p. + "6.; one has
(5.40) Vime — Oand 2. = "0, — 2(3°0. — pc) > 0

in w-L? (dtdx), by the incompressibility and Boussinesq relations (see

Theorem 11.1 in Appendix B). This and (5.30) imply that

PV,. (bufﬂ) — PV,. ((Vxn5)®2) — PV, (u®2) =0

(5.41) o 5
Vir (e "0) = 5V (BeVate) — Vi (uf) — 0

in the sense of distributions on R x R3. (In other words, the cross-terms
in the quadratic expressions V, - bufﬂ and V.- ("u. °,) vanish with ).
Because of (5.41), proving (5.39) reduces to proving that

(5.42) PV, (V,r)®?* — 0 and V- (B Vi) — 0

in the sense of distributions on R x R3.

First we use a mollifier in the space variable, as follows: let§ € C>° (R
be such that &(x) = 0 whenever |x| > 1, £ > 0 and f &(x)dx = 1. For each

8 > 0 we define & (x) = §3&(x/8) and the sequences 70 = 7, * & and

,35 = (?Oe + bge) *";:8-
Then, by Proposition 4.1 and (5.34)

—Ve (LA &) + (vgepe) = 0
—V, (3(£LB) &) + (3 1v/PgePe) — 0

€0, (v ge) + V(310> &)
Eat(%h}lz Ege> + Vx' <§U<bge)

in L}, (dr; W,;"'(R)). (In fact Proposition 4.1 and (5.34) show that these
vanishing terms are of order O(¢), but that much information is not needed

here). In other words,

€0, bue + Vx(%e + beé) — 0

€d,(Pe + "00) + 3Vi- e — 0
in L} (dt; W,,""(R*)). In particular, applying I — P to the first equation
results in

€3, Vimte + Ve — 0

€Be + 3A e — 0
(dt; W, "7 L(R3)) for all s > 0. Then applying the mollifier &5 leads

: 1
m Lloc loc
to

ea,Vxnf + Vxﬁf — 0
€d, 8 + %Axnf — 0
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in L, (dt; H} (R?)) for any s > 0, while the families g} and V.7 are
bounded in L>(L?) by the first control of Proposition 2.1. The local argu-

ment for the incompressible limit due to P.-L.. Lions and N. Masmoudi [49]
(recalled in Lemma 13.1 of Appendix D below) shows that, for all § > 0

(5.43) PV, (Vr?)®*) > 0, ¥, (BVir)) = 0

in the sense of distributions on RY X R’ ase — 0.

It remains to remove the mollifier & in (5.43). In order to do so, observe
that by the last statement in Proposition 3.8, for each * > 0 and each
bounded Q C R?, there exists an increasing function n : R, — R, such
that lim,_, o+ n(z) = 0 and

[Vizre (2, x + y) — Ve (8, X) [ 220,41 0) < n(1YD)
1Be(t, x +y) = Be(t, X) | 120,11x0) = n(I¥D)
for all y € R® such that |y| < 1, uniformly in € > 0. This implies that
8 B
(544) H Vxng - vxne || Lz([o,t*]XQ) S 77(5) ’ ||ﬂ€ - /36 H Lz([o,t*]XQ) S 7’}(8)
uniformly in €. Hence

PV, ((vxne)®2) — PV,- ((VXT[S)@Z) — 0,

(5.45)
Ve ((pe + "0 Veme) = 3V (BIVirl) — 0
in the sense of distributions on R% X R?, uniformly in € as § — 0.
The limit (5.43) and the uniform convergence in (5.45) eventually im-
ply (5.42), which in turn establishes (5.39). |

Finally, Corollaries 5.5 and 5.7 imply Proposition 5.2.

5.3. Proof of the weak Navier-Stokes—Fourier limit. We conclude this
section by showing how the results from the two previous subsections and
those from [7] that are recalled in Appendix B eventually imply the Navier—
Stokes—Fourier limit (Theorem 1.6).

We recall that g, and ¢, in fact designate subsequences satisfying (5.3)
and (5.4). Then we take limits in all the terms appearing in (5.1) as well as
in (5.2):

Puc > u, 1(3°0.—2pe) — 0in L}, (drdx)

by Lemma 5.6, while, by Propositions 5.1 and 5.2,

P (vx. é((J:A) bg€)> — PV, (u®u) —vAu,

1
Vor {(LB) &) — 3V () — 3k A0,
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in the sense of distributions on R7 x R3. This shows that (u, 0) satisfies
the Navier—Stokes—Fourier system (1.29) in the sense of distributions on
R% x R3.

On the other hand, the controls (5.35) and Appendix C of [44] imply
that the quantities

Puc—u, 13°0.—2p) — 0in C(Ry; w-Lj,.(dx))ase — 0.
In particular, at # = O one has
P(gc(0) — u™, (o] = 5)2:(0)) — 6™

in w—leoc(dx). This proves that (u, 0) satisfies the initial condition (1.30).
Finally

(vge) = e + €(vig) — u
(Glv* = 1)ge) = {(Glv* = 1) &e) + €{(510* = 1) "ge) — 0

in w-L }OC (dtdx) because of (5.4) and the second entropy estimate in Propo-

sition 2.1. This completes the proof of Theorem 1.6.

6. Proving Proposition 2.7

In this and the next two sections, we prove the results announced in Sects. 2
and 3 and subsequently used in Sects. 4 and 5.

We begin with the results stated in Sect. 2, where the Relaxation-based
decomposition and Proposition 2.7 were stated without proof.

6.1. Proof of the Relaxation-based decomposition. Returning to the equal-
ity (2.16), we see that

(6.1 k(GoMge =T + T,
with & : R, — [0, 1] such that ||z +— zk(2)| .~ = C} and

k(G

Ti = —==[MG(G.) — AT (MG, MG,)]
€(Ge)
= k((fe)M//(Geéd — G.G.)do, , (w)Mdv,
€(Ge)

where the last equality uses the classical relation M'M| = MM, that fol-
lows from the formula (1.12) defining M and the microscopic conservation
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laws (1.4). Expanding each term of the form G, = (1 — y.) + .G in the
formula above leads to

(6.2)
— ¥e)(Ge — GG\ )doy ,, (w) M dv,

k(G. ) )
+ (—)Mff Yer(I = ¥y)(1 = ¥/ )(GGey — Ddoy,,, (w0) M dv,
€(Ge)

k(GG) / / /
G~ )Mf/ )/61)/5(1 - )/g])(GEGGI - Gg)dav,vl(w)Mldv]

k(GG) / / /
+ —~Mf/ Vel(l - Vg)ygl(GeGel - Gg])dOU,U| (w)Mldvl

ek(G )
// Y vlvl Gedo, o, () Midv,
3k(G )
< Vel)/gyel ‘kdav v (w)Mldvl

=Ty +T12+T13+T14+T15+T16-

In this decomposition of 77, the first four terms result from using the trun-
cated density G, (instead of G,) in the definition of the local pseudo-
equilibrium (2.13).

The first statement in Proposition 2.2 implies that

©3) 0= 3%(Ge) < UGG < 31(Go) < 5
. thus%f@eggand%s(ég)fg a.e.
while the assumptions on k imply that
6.4) 0 <k(Ge) <land0 <k(G.)G, < Cy.
These two bounds immediately imply that
1 —(Ge)
(6.5) ITil < 2(Ce+ %)M<%> .
Then
(6.6)
yel 1 - ye/
|Th3| + |Thal < BCr +3)M + c doy,y, (w)M;dv;
— (G
= (6C) + 6) A" (M#, M) .
€
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using again the relation M'M| = MM, recalled above as well as the
bounds (6.3) and (6.4). Likewise

Tl < GG +2)M / / (- ”)(1 ~Ye) g, (@) My

6.7) <@BC+2)M / / ( — Ve, 1;;’61>dav,v] ()M, dv,

= (3C; +2)AT (MLGG), M) ,

€

where the second inequality in (6.7) come from the elementary estimate
aff < %(oz + B) which holds for all &, 8 € [0, 1]. Since y and k are bounded
by 1 while the collision kernel b satisfies the assumption (H1), one has

12
|Ti5| < 2Me (/f k(Ge)VelGeGelde,v1 (w)Mldv]>

1/2
(6.8) <// G GEldov vl(a))Mldvl)
[6bme D(Fe)
< 2e %Tw\/a\/ﬁ =

by the Cauchy—Schwarz inequality and the first statement in Proposition 2.3.
Likewise

8hy, D(F)

69)  |Tie| < 2M& / e don, (@) Myduy <

by the second statement in ProPosition 2.3. On the other hand, the defin-
ition (2.9) implies that | .| < =|qel; thus

(6.10)
1 L 1
ITiel < 2Me | | Sk(G)yavv,|geldo, , (w)Midvy < (3Ck +3)-M
€? €

since the bounds (6.3) and (6.4) imply that
Ezk(Ge)Velye/Ve/l |CI€| = k(Ge)Ve]VéVél(GeGel + G;G/e]) = %Ck + ?T .

Because of the elementary inequality min(a, b) < +/ab which holds for all
positive a and b, the inequalities (6.9) and (6.10) imply

D(F,
(6.11) Tl =2,/ e+ 3 eV 252
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Estimating 75 is simpler: the decomposition of it written in Sect. 2
and the obvious relation A" (M, M) = M (that follows from the equality
M'M| = MM, recalled above) lead to

k(G,)
T = MG, MG,) — AT(M, M
y = e(Ge)(A( Ge, MG.) — AT (M, M))
k(G) . ( L )
(6.12) = A (Ge) :
k(G) k(Ge¢)
——AT(M Y., . - g
Gy B Gy s
=1 +Txn.
By (6.3),
(6.13) |To1] < 2AT (M| %], 2M) = 5AT (M| %], M);

for the same reason
(6.14) |Toal < 2M(| %l) .

Using the decomposition (6.2) with the bounds (6.5), (6.6), (6.7), (6.8)
and (6.11) and the decomposition (6.12) with the bounds (6.13) and (6.14)
leads to the inequality (2.17).

6.2. Proof of Proposition 2.7

6.2.1. Proof of the first statement. Consider the inequality (2.17) with the
choice k = y, where y is the function involved in the Flat-Sharp decom-
position (2.4). There, C;, = % so that (2.17) and the second inequality in
Proposition 2.2 imply that, for some positive constant C (depending only

on by),
VM| % < CE,/

C
+ \/_M'N(M[' gel +17ge'?]. M).
Therefore, using the Caflisch—Grad estimates (particularly the second con-
tinuity statement in Proposition 2.5) shows that, for some positive constant
C’ (depending only on b,)

M (I %]+ gel'?)

b / D(FG)
M|L§’e|2 =< C€2€—4

+ C (I8l 7 2 ptawy + 1 78l aany) (M4 (140D 77)
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Because of the dissipation control (2.7) and the first and second statements
in Proposition 2.1, this last inequality shows that

M| %> = ac + b with a, = O(Ez)Ltl,x,v and be = O(1) =11 (130)) -

Let €, be any sequence converging to 0, let Q = Q; x O, be a compact
subset of R x R? and let n > 0 be chosen arbitrarily small. Pick N > 0
such that, for alln > N,

(6.15) lae,ll,y,, <.
Then, pick o > 0 satisfying
(6.16) alQq|sup ||be,,||L,°°(L;(Lg°)) <n

n>0
and such that, for each measurable set B C R, x R? x R? satisfying
|B| < |0,

(6.17) sup f/ |ae, |dtdxdv < 1.
B

1<n<N

Consider a measurable family (A; ) x)eo Of measurable subsets of R?) such
that

(6.18) sup |A;y] <.
(,x)eQ

Then, by using (6.15), (6.16), (6.18) and (6.17) with
B = {(t’x’ 'U) | (I,X) € Q’ v E At,x},

one has

f f 1o ( M| bgenfdv) didx < 1+ | Qi l1bell =gy < 20
Apx

This immediately entails the first statement in Proposition 2.7.

6.2.2. Proof of the second statement. Set k(z) = min(l1, %) for z € R%;
then C;, = 3. Observe that '

318l
G

318l
S |g€|1G5§3+ 2 1
2+ 16,

k(Go)lgel = 1gellg. <3 + 1G,.-3

so that, by the fourth statement in Proposition 2.1 and the last statement of
Theorem 11.1 (see below in Appendix B), the family

(6.19) k(G.)g. is bounded in L™ (L*(Mdvdx)) .
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With the choice of k above, one sees immediately that, for each z € R* ,

(6.20)
Y2) k@), (1= ¥2) <k@)Iz— 11 - ¥() < k@)z—1].

Therefore . G
— Y
| el + ———= = 5k(GOlg]
so that (2.17) and the second pointwise control in Proposition 2.2 imply that

D(F,
KGOVM|ge| < k(GOVM|ge|1yp-y, + Ce LI\UPSVE

64
(6.21) + CVM(I %l + 1 %1'?)

c +
+ —MA (Mk(Ge)gel, M)

N

for some constant C > 0.
By the last statement in Proposition 2.2

1
k(Ge)v M|ge|1\v\2>v6 = Ek(Ge)lGE — 1](v Ml\v\2>v€)

1
1 1, £42
7_‘/
= O(—Eg 4 6‘162 4
L,OO’X(L%”’)

for all p > 0; next, the dissipation bound (2.7) implies that

D(F. D(F, _
€y %lvkw = 24 ) (e(1+ )P pay,) 1+ )77

P
=0 O (€V3> (I+1[vh7.

Finally, the first and second entropy controls in Proposition 2.1 imply that

VM (|8l + 18l ) = O e 12,2y,
for all p > 0.

Using the last three estimates with the choice V., = 10|loge¢| in the
inequality (6.21) implies that

622) K(GOVMlg.] < O(1) LMN (MK(GO)\g.|. M)

2,
L} (dtdx;Ly") + JM

forall p > 0. Pick such a p > 1; because of (6.19) and the second continuity
statement in Proposition 2.5, one has

k(Gé) \ M|g€| = O(l)leuc(dtdx;L%’p) + O(I)le{w(dth;LioJ/z) .
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In (6.22), using the third and fourth continuity statements in Proposition 2.5
with o = p, one gets the control

k(GIOVM|ge| = O(I)L,zw(dtdx;L%”’) + 0(1)L120((dtdx;L?,°’P+3/2)

+ O(I)lenc(dtdx;Lgo’3/2+2N)
by induction on N > 1. For N > p/2 this implies that

k(Ge) \ M|g€| = O(I)lenc(dtdx;L%'p) + O(I)lenc(dtdx;Lgo'er}ﬂ
— 0(1)

)

2,p—1
L (dtdx; Ly ™)

because LPT3/2(R3) < L>P~(R?). Since p > 1 was arbitrary, this
implies that, for all p > 0

(6.23) k(Ge)m|ge| = 0(1)leoc(dtdx;L%‘p) ’

This control and the first inequality in (6.20) establish the second statement
in Proposition 2.7.

6.2.3. Proof of the third statement. Let t* > 0 and Q be a compact subset
of R3. By the Cauchy—Schwarz inequality

k(Ge
H ( )Mlgel(l — G + [v)?

€ L1([0,¥]x Q; L)
I —y(Ge)
< |KGOVMIg I + o)) o
L2([0,t*]><Q;L%) € Lz([o,[*]XQ;LZ(Mdv))

< |GV MIgel1 + o)

£ 172
L2([0.14]x Q: L2) [21% HLQ([OJ*]XQ;LQ(W”” ’

where the last inequality follows from the second pointwise estimate in
Proposition 2.2. Thus, because of (6.23) and the second statement in Propo-
sition 2.1

kK(Go) , ,
S=MIGe =110 = /G + 1) = 0y aery

this and the second inequality in (6.20) imply the third statement in Propo-
sition 2.7.



142 F. Golse, L. Saint-Raymond

7. Proving Proposition 3.4 and Corollary 3.5

The proof follows the argument sketched in Sect. 3.

7.1. Step 1: truncating large values of G.. Choose § €]0, 1[ and a C'
function k% : R, — [0, 1] such that kK = 1 on [0,e'%], ¥* = 0 on
[2¢!/% 4 00) and || (k%)']| 1~ < 2¢~'/%. Thus C;s < 2e!/®. We use the notation
k% below to designate k°(G.).

We start from the decomposition

(71) Ijge = kin e+ (1 - ki) Ijge
and use the last statement of Proposition 2.1 which shows that

1
H (1 - ki) g || L5 (L (Mdudx)) = H EgelG‘zel/a

L (L' (Mdvdx))

in 1 in 4
<C"—=C :
5 — 1 1—-96

(7.2)

7.2. Step 2: truncating large velocities. For any family V, > 0 and each
p > 0, one has

_ 1 —y(Ge)
k§M| Iige|1\v\2>ve = k§|Ge — 1V, p/2 <M€—2€|U|p1v2>v€>

1/6y/—p/2
<2e / Ve v O(I)Ll]nc(dtdx;L},))

because of the last statement in Proposition 2.7. Therefore, for each p > 0,
each ¢* > 0, and each compact Q C R?

e

1/8
54 _
(73) Hkg g€1|v|2>VE L1([0,r*]x Q; L (Mdv)) — @ ( P/2> .
€

7.3. Step 3: L' — L™ controls. First we recall that, because of the second
pointwise estimate in Proposition 2.2 and the second entropy control in
Proposition 2.1, one has

(74) IMA = Y(GDllewr,) = O, while |1 = ©(GAlly, < 1.

Therefore
(1 = HUGLyp<vy, ”L,O"(L»{.‘v)
(1.5) < IMpey MMl IM(1 = HG )l
= O(e%v‘ez) .
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Applying Lemma 3.1 and taking into account the second equality in (7.4)
and (7.5) implies the existence of ¢ and ¢! such that

(7.6) 0<¢/ <(1—pGNppay,, j=0,1,
¢ = 0<6€ZV‘> .
LP(LL (L
(7.7) L,
¢! = O<€e4 )
L?,i(Lb)
and
(7.8) (1 = UGN ypay, = P2+ L.

7.4. Step 4: Applying the Advection/Dispersion interpolation

7.4.1. Controlling the advection term. Set
ks = (1Z = 1K(2))| s, = sen(Ge — DK’ (G + |G — 11(K) (Go) .

Lemma 7.1. The family of relative fluctuations g. satisfies the estimate

ks 1/8 e!/?
(€, +v-Vy) <?|ge|)‘ <O0fe )Ll'oc(dt;Ll(Mdvdx)) +0 ( 2 )L°°

1,x,0

Proof. Because F, is a renormalized solution relative to M of (1.13), using
the renormalized formulation (1.19) with I'(Z) = |Z — 1|k?(Z) leads to

(€0, +v- V) (—|g5 ) / / K3 gebdoy () Mydv, .

Young’s inequality (10.4) in Appendix A below implies that

]}e
/ |&5]| g v,
€
k5| €%l
// 64 G Ge] GeGelbdav,U,(w)Mldvl
e g,
<! 'ff 91\ .G 1bdoy o, () My
G Gel ’

kS|
—|—|—ih*(e)Ge /f Gebdo, , () Mydv,
€

4k5| D(F.)  h*(1)booKS|
< GE GE ’
T e M * €2 (Ge)
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where the last inequality comes from the superquadratic property of h*
(see (10.3) in Appendix A below), the equality in (2.7) and the bound on
the collision kernel implied by (H1). Since [k§| < 1+42e71/%.2¢!/% < 5and
k§ = 0 whenever G, > 2¢'/°, one has

ke 20 D(F,
[/U%MMMMQMMS (Fe)

€ 6_4 M
h*(1)bss10e!/8
+ —:; HGe — D) 1ji6o—1]>1/2
(7.9)
h*(1)bes10e!/8
+ 5 (141G = DiliGg-11211)
<L+,
with
20 D(F.) h*(1)by10e'/?
(7.10) =% ME + :‘2’ (Ge — ) jGo-11172
and
h*(1)bey 10e!/8
(7.11) L= ;+ (1+1HGe = DIj6-11=172) -

Because of the elementary inequality

KGe = DILjG.—1y=1/2 < €l{g) (1 — ¥((Ge)))

the dissipation bound (2.7) and the third entropy control in Proposition 2.1
imply that

N 1/8
(7.12) Ir=0(e"") 11 i vy
On the other hand
ol/d
(7.13) L=0 <—2)
€ .
L

1xv

Using the inequality (7.9) with (7.12) and (7.13) leads to the announced
estimate. |
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7.4.2. Using the L* bound in v. We state in the following lemma an
important auxiliary estimate which is used below in two different ways.

Lemma 7.2. Let ¢ = ¢(t, x, v) be a measurable function defined a.e. on
R, x R?® x R®. Then, for each t* > 0 the family of relative number density
Sfluctuations g, satisfies the bound

ks 126 172 2 | DF (M2
—M|gc||P| < ce' I|M¢||L/m L I|¢||L/oo, N
€ t ( x.v) t,x,v 64 1
L1([0,r*]; L} ) Lixy
e/ 1/2 1/2 r 2, (|12
D
+ C € ||M¢||L100(L)lcv) ”gb”L?i(L%) <” 8e ”L?O(Lz(Mdvdx)) + ” 8e ”L,OQ(LI(Mdvdx))) .

Proof. Because of the inequality (2.17) used here with C = 2¢!/?

k¢ 7 D(F,)
—Migellol < 4[4l p ) /) e

- V(Ge)>
€

M
+2;|</>|<|ng| + 5¢'/

| 1 — (G,
+—|plAT (M [5| %e| + 27e‘/8L)] , M) .
€ €

Using the second pointwise estimate in Proposition 2.2 and the second
Caflisch—Grad estimate in Proposition 2.5 shows that, for some constant
C>0

(7.14)
k< D(F.)
~Mlgcligl < Ce'VMigl\ | —=
VM .
+ €M1l (1 + 10D+ V) (el zzaman + 18 )

which implies the announced estimate by using the Cauchy—-Schwarz in-
equality. m|

7.4.3. The Advection/Dispersion interpolation estimate. First apply Lem-
ma 7.2 with ¢ = ¢>§. Because of estimates (7.4), (7.6) and (7.7), this leads,
for each r* > 0, to
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DF 1/2
< Ce ( )

LY. LL )

kE
§M|ge||¢:|

Lflxl
el/s 1,
+ C—O(e)0<ﬁe8 )
(7.15) €

b 1/2
X (el zzece2cmmann + 182 1 aatuan)

1
< CeP0(e) + Ce1/50<ﬁeﬁvf> .

Now we use the Advection/Dispersion interpolation technique, as explained
in Lemma 3.3. Let * > 0 and t* > 0. Below, ¢* is fixed while t is the
fictitious time used as interpolation parameter. Define ¢. = ¢. (7, t, x, v)
as the solution of the free transport equation (3.3) with initial data
1[0,,*](t)¢8(t, x, v). Observe that, for each 7 € [0, T*],

||¢€(T’ I )”Ltojt =1 ’
2
||¢e(77, ERE] ')”L,OQ(L](Mdvdx)) = O(E )’

since the estimates on ¢, that follow from (7.4) and (7.6) are obviously
propagated by the free transport equation (3.3). Because of Lemma 3.2 and
the first estimate in (7.7)

1 L
(7.17) 16", ez = 50 (eeﬂf) -

Using (7.16), (7.17), and applying Lemma 7.2 with ¢ = ¢.(7*, -, -, -) shows
that

(7.16)

ke D(F.)||'?
L M|gelpe (%) < Ce'’®0(e) H
€ LY([0,#1: LY ) Liso
el/?
—I—C—O(e) 5 (ﬁeg"e)

(7.18)
) 1/2
< (I ge||L,w(Lz<Mdvdm 182 ot i)
1

7%3/2 <\/—6_V€> :

Finally, we apply Lemma 7.1 which, together with the first estimate in (7.16)
implies that

f |9
Q

< Ce'’?0(e) +

ké
(€d, +v-V,) (—5| g€|>‘ Mdvdxdtdt
€

7.19 el/?
(7.19) <70 (¢! )||¢>E||Lf,x,+r0( )||¢E||L;><;<L1(Mdvdm

<70 (61/5)
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where €2 is as in the statement of Lemma 3.3, i.e.
Q={(t,t,x,v) e RxRxR xR} 0<t<7t", 0<t—er<t}.

Eventually, we use all three estimates (7.15), (7.18) and (7.19), as explained
in Sect. 3 before Proposition 3.4. This leads to

t* k€
f f <§|ge|(1 - y(G5>>1|U|z§v€>dxdr
0
t* ke t* ke
5/ f<—5|ge|¢;>dxdr+f /<—5|g5|¢8>dxdt
0 € 0 €
t* kg 1 t*ter* kg .
< —|8elop, ) dxdt + —|gelope (T7) ) dxdt
0 € er* €
+f |Pe]
Q

1
< Ce'’0(e) + Ce'’ 0 <ﬁe§“)

(7.20)

ké
(€d, +v-Vy) (—5| g€|>‘ Mdvdxdtdt
€

1/8

Ce 1 .
7+3/2 0 (\/Eef‘%) +70 () .

The second inequality in (7.20) follows from applying Lemma 3.3 to
f= élkglge and ¢ = ¢..

7.5. Step 5: Final estimate. We conclude the proof of Proposition 3.4 by
using the three estimates (7.2), (7.3) and finally (7.20). Let t* > 0 and Q
be a compact subset of R?; one has

ffuﬁgendxdtsf f<1_k§|ge|<1—y(Ge)>>dxdz
0 Jo 0 Jo €
t* k§
+/ f _|ge|(1 - V(Ge))l\v\2>\/5 dxdt
0o Jo\€

r* k€
+/ f <—5|8e|(1 — V(Ge))1v2§V€>dth
0o Jo\€

i pym 5 o/
O VP2

+ Ce?0(e) +

(7.21)

i
+ Ce'’?0(e) + Ce'P 0 (ﬁe§V‘>

1728 Ce!/? Ly, * 1/8
+Cel’*0(e) + =550 Vees ™ | +t70 (') .
-[*
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In this last estimate, pick

8§ = ——— sothat ¢!/° = | loge|,
log | log €|
with
1 1\ /4
V. =2|loge| so that e8" = <_) :
€
finally pick

1
F = /5030 Ve — (/10

and set p > 2. Substituting these values in (7.21) results in

1 _
I °8ell 1 qo.m1x 0: L (htawyy < € (m + |loge|'P/% + €19 loge|>
which concludes the proof of Proposition 3.4.

7.6. Proof of Corollary 3.5. Because of Proposition 3.4 and the second
pointwise estimate in Proposition 2.2, one has

1 - V(Ge) _
€2 log | log €|
On the other hand, by the last statement of Proposition 2.7

1 - V(Ge)
62

) in L, (dtdx; L' (Mdv)) .

(1+w)* =01)in L} (dtdx; L' (Mdv))

loc

for all s > 0. The Cauchy—Schwarz inequality and these last two controls
imply that

1 —y(Go)

o+ lv)* =0 ) in L, (dtdx; L' (Mdv)),

1
(\/IOgIIOgEI

as announced.

8. Proving Proposition 3.8
8.1. Uniform integrability of |%., |>. Pick y € Y. Since F, is a renor-

malized solution of (1.13) relatively to M, using the nonlinear function
I'(Z) = (Z — 1)*y(Z)? in the renormalized formulation (1.19) gives

(8.1) (€d+v-Vog?=2 f f qc g Pebdo, , (@)Mdvy
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with § defined in terms of the truncation y by (4.2). By Lemma 5.4, for
each r* > 0,

b2
1(€0; + v - Vo) Il L1 (0.1 L (Mdvdixy)

(8.2) ! : -
< 2P lLl1ge &ell L1 (0.): L dpaxyy = O1) .

On the other hand, the first statement of Proposition 2.7 expresses that, for
each sequence €, — 0, the extracted sequence M|, | is locally uniformly
integrable in v. This and (8.2) imply that this extracted sequence is in fact
locally uniformly integrable on R, x R? x R? in all variables ¢, x and v, by
Lemma 3.6.

Further (1 + |v])* %, is bounded in leoc(dtdx; L*(Mdv)) for all s > 0
according to the second statement in Proposition 2.7. This and the local
uniform integrability of the sequence M|%,, |* with respect to the Lebesgue
measure on R, x R? x R? implies that, for each compact Q C R, x R?, the
sequence 1y (%, x)| ?gen (t, x, v)|? is uniformly integrable on R, x R? x R3
with respect to the measure dtdxMdv, which is precisely the first statement
in Proposition 3.8.

8.2. Strong compactness of moments in the x-variable. Because F, is
arenormalized solution of (1.13) relative to M, using this time the nonlinear
function I'(Z) = (Z — 1)y(Z) in the renormalized formulation (1.19) gives

(8.3) (€0, +v-Vy) bge = f/ ge¥ebdo, v (w) Midvy .
with y defined in terms of y by (4.2). Observe that, denoting N, = % + %Ge
. . |ge| o lgel
(8.4) el = (2 + 16 PGl o < Z|7 |
N, N,

since y is supported in [%, %]. As recalled in the last statement in Theo-

rem 11.1 (see Appendix B below), the family g. /N is relatively compact
in w—L}oc(dtdx; L'((1 + |v|>)dw)). This and the inequality (8.4) imply that

the family g. 7. also is relatively compact in w-L} (dtdx; L' (dw)), which
implies in turn that the family

loc

ffqef/gbdav,vl (w) Mdv, is relatively compact inw-L! (dtdx;L'(Mdv)).

By Dunford-Pettis’ theorem, this and (8.3) eventually imply that

(€,0; +v-V,) 'fgsn is locally uniformly integrable in [0, "] x R’ x R®
with respect to the measure drdxMdv .

This and the first statement in Proposition 3.8 entail the second statement
in that same proposition by applying Lemma 3.7.
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8.3. Proof of Corollary 3.9. Consider the operator |.£| defined by®
|Llgp = /f((ﬁ +¢1 + ¢ + )b — vi, W) M1do, y, (@)dv; .

Using the elementary inequality ab < %(a2 + b?) repeatedly, one sees that

(8.5) %Lkl <2522 + 2 LIED,  1Q(%e, &)l < 1ILIED).

Pick a compact set Q C R, x R* and a sequence €, — 0. By the first part of
Proposition 3.8, the sequence (#, x, v) > 1o(t, x) &, (¢, x, v)* (henceforth
denoted 1p bgi) is uniformly integrable in R, x R® x R? with respect to
the measure dtdxMdv. By Dunford—Pettis’ theorem it is relatively com-
pact in w-L'(dtdxMdv). On the other hand, the same argument as in the
proof of Proposition 1.5 shows that the linear operator |.£| is continuous
in L'(Mdv). Therefore the sequence 1y |£|(bg§n) is also relatively compact

in w-L!(dtdxMdv). Applying Dunford—Pettis’ theorem again implies that
this sequence is uniformly integrable in R, x R? x R® with respect to
the measure dtdxMdv. With the inequalities (8.5), this implies the result in
Corollary 3.9.

9. Conclusions

The proof of the Navier—Stokes limit of the Boltzmann equation presented
in this work can be extended in a number of ways.

First, the case of periodic flows (i.e. of the spatial domain T = R3/Z3 as
in [7]) may be treated after only slight modifications. Indeed, the compact-
ness results based on dispersion estimates in the present analysis concern
local L? spaces.

It is possible to handle a more general class of collision kernels than
considered by following the same general strategy with, however, very sig-
nificant modifications. The case of a hard-sphere gas is of particular impor-
tance, since it is so far the only case for which the Boltzmann equation has
been rigorously derived from Newtonian mechanics — by O. Lanford [39].
In various applications, it would also be important to extend the conver-
gence results in the present paper to the case of both hard and soft cutoff
potentials proposed by H. Grad [32] (see also [18]). In general, neither hard
nor soft cutoff potentials satisfy our assumption (H1); this can be reme-
died at the expense of rather technical modifications of our arguments in
Sects. 4-8. As for assumption (H2), its role in the proof of Proposition 5.1
is crucial. As mentioned above, (H2) is thus far known to hold with p = 3
for cutoff Maxwell molecules only. Whether this assumption (H2) is sat-
isfied by hard-sphere and more general cutoff potentials remains an open

8 This is not to be confused with the common usage for this notation, i.e. the nonnegative
self-adjoint operator in the polar decomposition of £ which is of no interest here since £ is
itself a nonnegative self-adjoint operator.
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problem as of now. An alternative to establishing the validity of (H2) for
all cutoff potentials would consist of trying to merge the methods leading
to Propositions 2.7, 3.4 and 3.8 with those used by C.D. Levermore and
N. Masmoudi [41] to treat conservation defects. This however remains an
open problem, as the analysis in [41] makes essential use of a variant of the
nonlinear control (A2), slightly weaker than (A2) but which we still do not
know how to establish by the methods of the present paper, except possibly
in the case of soft cutoff potentials

Another natural extension of the present work would be to treat boundary
value problems when the spatial domain is a smooth open set in R3. This
issue has been rather systematically studied at the formal level by using
Hilbert’s expansion, for instance by Y. Sone [60]. In view of the impor-
tance of this problem for applications to the dynamics of rarefied gases, it
would be extremely desirable to confirm these formal asymptotic results by
mathematical proofs. This problem can certainly be solved by the methods
presented in this paper combined with those developed by N. Masmoudi
and L. Saint-Raymond in [52].

Still another natural extension of our results would be to treat the case of
two-dimensional flows (more precisely, 2 and 1/2-dimensional flows in the
terminology of [44], p. 151). By this, we mean the case where the number
density F, is a function of two space variables only but of all three velocity
variables: e.g. F, = F(t, x1, x2, v1, V2, v3). This is not a particular case of
the theory presented here, since such densities have infinite relative entropy
with respect to any uniform Maxwellian state. However, our method carries
over to this case by considering as relative entropy the quantity

1 F,
) // |:FE IOg (—) — FE + Mi| dvldvzdv3dx1dx2
€ M

instead of (1.15) where the integral bears on all space variables. The Navier—
Stokes limit in this setting leads to velocity fields that have three components
but depend on only two space variables, i.e. 2 and 1/2-dimensional flows.
What is usually known as a two-dimensional flow is the particular case of
a 2 and 1/2-dimensional flow where the third component of the velocity
field is identically zero initially, and therefore remains so for all subsequent
times.

This case is interesting because global classical solutions to the two-
dimensional Navier—Stokes equations are known to exist without restrictions
on the size of the initial data, at variance with the three-dimensional case: see
for instance [44], p. 83. Moreover, weak solutions of the two-dimensional
Navier—Stokes equations are known to be uniquely determined by their
initial data and satisfy the energy equality — the inequality (1.28) becomes an
equality for weak solutions of the two-dimensional Navier—Stokes equations
(see for instance Theorem 3.1 in [44], p. 81).

The special properties of two-dimensional flows have interesting conse-
quences on the hydrodynamic limit:
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e in the two-dimensional case, the analogue of Theorem 1.6 shows that the
family £ [ vF.dv converges in w-L}, (R x R?)) to the (unique) weak
solution of the two-dimensional Navier—Stokes equations with initial
data u™ defined in (1.45); likewise

e in the two-dimensional case, the analogue of Theorem 1.9 holds without
regularity assumptions on the limiting velocity field, provided that the
initial data u™ defined in (1.45) is smooth — indeed the two-dimensional
Navier—Stokes equations propagate the smoothness of the initial data.

In any case, two dimensional flows can be derived in this way from the
Boltzmann equation, in contrast with the derivation of the Navier—Stokes
equations from the lattice gas considered by J. Quastel and H.-T. Yau [54].
Whether this is a spurious feature of their particle model, or is due to the
fact that some fluctuations at the level of the particle dynamics are discarded
in the description by the Boltzmann equation is not completely clear.

Finally, a few comments on the role of weak solutions in this work are
in order.

It has been repeatedly asserted that both renormalized solutions of the
Boltzmann equation and Leray solutions of the Navier—Stokes equations
are physically unsatisfying, because to this date, they are not known to be
uniquely determined by their initial data and thus have no predictive value.
While this might cast doubts on the soundness of the program outlined
in [7], we ingsist that the reason for considering weak solutions in this
program is not that they are the only ones known to exist for all time and
initial data of arbitrary size. A more crucial reason is that the only a priori
estimates known to this date on the scaled Boltzmann equation (1.13) that
are uniform as the Knudsen number € tends to O come from the DiPerna-
Lions entropy inequality (1.21). This inequality holds for all renormalized
solutions of (1.13) and yields the Leray energy inequality (1.28) in the
limit as € — 0. Hence, Leray solutions of the Navier—Stokes system and
renormalized solutions of the Boltzmann equation should be viewed as the
natural objects to which uniform a priori estimates apply rather than a source
of spurious technical difficulties caused by our lack of knowledge on the
regularity of solutions to the Navier—Stokes or Boltzmann equations in three
space dimensions.

To illustrate this, suppose we are given a family F" of initial data
leading for each € > 0 to a classical solution F, of the scaled Boltzmann
equation (1.13) that satisfies the local conservation laws of momentum and
energy. Suppose in addition that F'" converges in the strongest possible
sense — and at least entropically at rate € — to M i ;) With u™ a smooth,
divergence-free initial velocity field leading to a classical solution u of the
Navier—Stokes equations.

In order to prove for instance that

1
—/vFedv —u
€
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in the weakest possible sense — at least in the sense of distributions — as
€ — 0, it does not seem that one can use the local conservation law of
momentum satisfied by F, for each € > 0. Indeed, passing to the limit as
€ — 0 in the momentum flux

eiz/ (v®* = L|v|*T) Fedv

involves in particular a term of the form

/ (v2 — 1ol21)@(g.. g0) Mdlv

(where g, is the relative fluctuation of F, about M defined in (1.34)).
All that we know about the family g, from the entropy inequality (1.21)
is that g. is relatively compact in w—L}DC(dtdx; w-L'(Mdv)), not in
w-leoc (dtdx; w-L'(Mdv)), and this is not enough to guarantee that

/ (v®2 — %|v|21)(£2(g€, gMdv — u@u — %|u|21

in the sense of distributions as € — 0. Apparently, the only way around
this consists of replacing g, with its L? part %, in the Flat-Sharp decom-
position (2.4). At this point, the benefit of knowing that F, satisfies the
local conservation laws of momentum and energy is lost. Therefore, one
has to deal with exactly the same conservation defects as in Sect. 4; the
proof of convergence must follow essentially the same steps as in Sect. 5
and Sects. 6 and 7, and so the main technical burden in the present paper
cannot be dispensed with. Likewise, although the global weak solutions
to the BGK model constructed by B. Perthame [53] satisfy the local con-
servation law of momentum, the only derivation known to this date of the
Navier—Stokes equations from that model in [56] uses a renormalized form
of the BGK equation — in other words, renormalization is used in taking the
hydrodynamic limit even though it is not needed to define the solution of
the kinetic model. This leads to estimating conservation defects in the same
manner as in the present paper.

Similar difficulties arise if one tries to use Boltzmann’s H Theorem
and apply instead Yau’s relative entropy method; the proof of convergence
would also require all the controls in Propositions 3.4 and 3.8; see the work
of F. Golse, C.D. Levermore and L. Saint-Raymond [26].

Thus, to summarize this discussion, it seems doubtful that dealing with
classical (instead of weak) solutions would simplify in any significant way
the proof of the Navier—Stokes limit of the Boltzmann equation.

10. Appendix A. Young’s inequality

The functions 4 : [—1, +oo[— Ryandr :]—1, +oo[— R, in (2.2), (2.8)
are both strictly convex, and satisfy, for all z > —1,

(10.1) h(lz) =h(@), r(zD) =r(@, h@) =r@).
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The Legendre transform of /4 is defined for all p € R by
(10.2) h*(p) = sup (pz — h(z)) = €’ — p — 1;

z>—1
that of r is also defined for all p € R by the implicit relation

2
Z Z

rr = sup (pz — r(z)) = ——, with log(1 +z2) + — = p.

(p) zJ)l(p (2)) T2 g( ) T3P

Further, the Legendre transform A* is super-quadratic, i.e.

(10.3) W*(p) < h*(p), peRy, nel01].
Finally Young’s inequality states that, forall p € R,z > —1 and n € [0, 1],

1 1
(10.4) plzl < ;h(z) +nh*(p) = ;r(z) + nh*(p).

11. Appendix B. A compendium of results from [7]

Some of the result in [7] were established in the greatest possible generality,
and in particular did not use any of the assumptions left unverified there. We
have recorded them below without proof; they are used in various places
in the present work. While these statements were established in the case of
a spatial domain equal to the torus, the proofs from [7] can be adapted to
the spatial domain R?.

Theorem 11.1. Under assumptions (H1)—(H2), let F, be a family of renor-
malized solutions to (1.13) with initial data F" satisfying (1.14), and define
the associated family of fluctuations by

F.—M

8e = M .

Then

e g is relatively compact in w-L}OC(dtdx; L' ((1 + |v]>)Mdv)) and all its
limit points as € — 0 are local infinitesimal Maxwellians

(1L.1) 8(t,x,v) = p(t, x) + u(t, x) - v+ 6(1, ) 5 (|v]* = 3)
where the velocity field u satisfies the incompressibility condition
(11.2) Vieu=0

while the fluctuations of macroscopic density and temperature satisfy
the Boussinesq relation

(11.3) Vi (p + 6) = 0 which implies that p + 0 = 0;
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e the rescaled collision integrands
1 / /
(11.4) qe = z(GEG61 - GGyy)

are such that the renormalized family y(G.)q. is relatively compact
inw-L} (dtdx; L'((1 + |v|*)dp)); further, any of the limit points q of

loc

Y(Ge)qe as € — 0 satisfies the du-symmetry relations
(11.5) (¢a) = (3@ + ¢ — ¢ — ¢Da));
e for any subsequence €, — 0 such that
an - g and V(an)qfn g q

in w-L}, (dtdx; L'((1 + |v*)Mdv)) and in w-L} (dtdx; L'((1 +
[v|>)d)) respectively, the limits g and q satisfy the limiting Boltzmann
equation

(11.6) v-Vig = // gb(v — vy, w)do, , (W)Mdvy ;

e for any limit point g (of the form (11.1)) of the family of fluctuations g.
as € — 0, and for each t > 0, one has

! / (p(t, )% + |u(t, )| + 30(t, x)*)dx

t
(11.7) + %/ /(v|qu + (Va)"|? 4 56| V,0|*)dxds
0

1 .
< lim f <—2h<eg;")>dx.
e—0 €
e denoting N, = % + %Ge, 8¢/ N¢ is bounded in L;’O(Lz(Mdvdx)) and
ge/ N. is relatively compact in w-L} (dtdx; L' ((1 + |v]*)duw)).

loc

12. Appendix C. Velocity averaging
Proposition 12.1. Let ¢, be a bounded family of L? (dtdx; L*>(Mdv)) in-

loc
dexed by € € [0, 1] such that both families |¢.|> and (€d; + v - V)¢, are
locally uniformly integrable with respect to the measure Mdvdxdt. Then,
for each function ¥ = Y (v) in L>(Mdv), each t* > 0 and each compact

Q C R3, there exists a function n : Ry — R such that lim,_o+ n(z) = 0

H/(lﬁe(l,x + ¥, VY W)M()dv — /(ﬁe(l, x, VY () M(v)dv

L2(10,1%]% Q)
= n(yD

for each y € R such that |y| < 1, uniformly in € € [0, 1].
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Proof. Since C.(R?) is dense in L?(Mdv), there exists a sequence v, €
C.(R?) such that || — ¥, ll.2mayy — O as n — 4o0. Since the family

¢, is bounded in leoc(dtdx; L?(Mdv)), for each t* > 0 and each compact
0 CR’,

H/(be(t, x) (Y (v) = ¥ (v)) Mdv

L2([0,r]x Q)

=< sup ||¢e||L2([o,t*]xQ;L2(Mdv))||W - Wn”LZ(Mdv) — 0
e€l0,1]
uniformly in € € [0, 1] as n — +o00. Thus we can assume without loss
of generality that ¢ € C.(R?) and that all the ¢, are supported in some
compact set K C RY x R? x R?; thus we henceforth consider ¢, as defined
on R x R3 x R3. Let A > 0; define

d)é + (68[ +uv- Vx)¢e = q)e-

The assumptions made on ¢, guarantee that the family ®. is uniformly
integrable with respect to the measure Mdvdxdt. Proceeding as in the proof
of Theorem 3 of [27] (see pp. 115-116), one shows first that

(12.1)
Hf@(l,x + y, VY (W) M(v)dv — /(ﬁe(l, x, V)Y () M(v)dv

— 0
L,

uniformly in € € [0, 1] as |y| — 0.
It remains to prove that the same convergence holds in Ltz’x. We therefore
split

(12.2)

2
// ‘/[(pe(t’ x4+, "U) - ¢e(t, X, U)]W(U)M(U)dv dxdt

dxdt

< // pc(t,x+y) ‘/[qbe(t, X+ y,v) — ¢ (2, x, V)] (v) M(v)dv

+// pc(t, x)

+// pe (t,x +y) (f[|¢e(t,x + ¥, 0+ P (1, x, v)I]W(v)M(v)dU>dxdt

dxdt

f[dk(l, X+, 0) = ¢e(t, x, ) [P (V) M(v)dv

+[/va(]h@mx+yer@mnvmwwaMwa
with the notations

ﬁ@ﬂZfW&wﬂ@%@WW@

@@ﬂZfMJmM@LWWWW-
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The first and second integrals on the right-hand side of the inequality

(12.2) are less than
(12.3)

MIvD H / 61, x + v, V(W) M(v)dy — / 6.1 x, VYW M)

9

L

X

while the third and the fourth are less than
Y PIM oA il iz 1Mz

This term vanishes as A — +oo uniformly in € € [0, 1] since the family
|¢¢|? is uniformly integrable with respect to the measure Mdvdxdt. On the
other hand, for any fixed A > 0, the first and second integrals in (12.2) vanish
as |y| — Ouniformly in € € [0, 1] by (12.3) and (12.1). This concludes the
proof. O

13. Appendix D. Compensated compactness for acoustic waves

We recall below the elegant argument proposed by P.-L. Lions and N. Mas-
moudi to establish the incompressible limit of the compressible Navier—
Stokes equations [49]. A similar result had been obtained earlier by a some-
what different method: see [33] and [57].

Lemma 13.1. Let ¢ # 0. Consider two families ¢. and . bounded in
Ly (dt; L? (dx)) and in L (dt; HILC (R%)) respectively, such that

loc loc

1
8t¢e + _AXWE =-F.,
€ €
2 1
8[VXWG + _Vx(be = —Ge,
€ €

where F, — 0 and G, — 0 in L}Dc(a’t; L? (dx)). Then

loc
va' ((VXWE)Q@Z) - 0, and Vx' (‘PerWe) - 0
in the sense of distributions on R’ x R’
Proof. By elementary computations,
Vi ((VXWE)@)Z) = %Vx (lVXWGlz) + Vi Av e

= 3V (IVe¥el> = 19 |?) — 0 (e Viethe)

+ FEVX’WG + ¢€G€ ’
and, likewise

szx' (¢€VX1//€) = C2¢€AI//€ + C2Vx¢e : vx‘/’e
= —10; (e(P1Pel” + IVive ) + P Fe + G - Viipe .
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The bounds assumed on ¢. and V. ensure that the families €¢.V, V.,
e(APel* + Vi), FVivre, Ge - Vibe, e Fe and ¢.G. all vanish with
€ in L}OC (dtdx), which, together with the two elementary formulas above,
implies the announced convergence. m|

14. Appendix E. Consequences of the Dunford—Pettis theorem

Let (X, M) be a measurable space and p be a positive measure on X such
that u(X) < 4o0.

In [24] (Theorem 3.2.1, p. 376), N. Dunford and B.J. Pettis gave a crite-
rion for subsets of L' (X, 1) to be weakly relatively (sequentially) compact.
In the following lemma we apply their result to study the weak L'-continuity
of certain bilinear expressions.

Lemma 14.1. Let a, and b, be two sequences of real-valued measurable
functions defined (a.e.) on X, such that a, is bounded in L*>*(X, n) and
b, = binw-L'(X, n) asn — +oo.

o Assume that a, — a in measure as n — —+0o9o; then a,b, — ab in
w-L'(X, u) as n — +oo.

e Assume that a, — 0 in measure as n — +00; then a,b, — 0 strongly
in L"(X, n) as n — +oo.

Proof. We first prove the second assertion. For each € > 0 and eachn € N,
let A(n,e) = {x € X|l|a,(x)| > €}. Then

Ammmmwm>
_ / (20 () e () + / (00 () ()
A(n,e) A(n,e)¢

< sup [la || L~ / |b (x)|dpe(x) + € sup [[b|l 1
k=0 A(n,e) k>0

Since a, converges to 0 in measure, u(A(n, €)) — 0 as n — +o00. On the
other hand, the sequence b, converges weakly in w-L!(X, i), and thus is
uniformly integrable on X by the Dunford—Pettis theorem. Therefore,

f by (x)|dpa(x) — O
An,€)
as n — 4o0. This and the previous inequality imply that
fim_ [ 10,6, 0ldu(x) = esupllbuls.
n——+00 X k>0
Since b, is a weakly convergent sequence in L'(X, ), it is bounded in

L'(X, jv). The inequality above, which holds for each € > 0, shows that
la,b,ll;n — 0asn — 4o0.
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Next we prove the first assertion. Write a,, b, = (a, —a)b,+ab,,. Observe
that a € L°°(X, u): indeed the sequence a, is bounded in L°°(X, ) and
there exists a subsequence a,, of a, that converges to a a.e. on X. By
the second assertion (a, — a)b, — 0 in L'(X, t); on the other hand,
ab, — abin w-L'(X, ) asn — +oosince a € L>(X, u) and b, — b in
w-L'(X, ). Hence a,b, — ab in w-L'(X, ) as n — +oo. O

Lemma 14.1 is a slight amplification of Appendix B in [7] — with
the notion of convergence in measure replacing that of a.e. convergence.
The first assertion in this Lemma is also a consequence of Proposition 1
of [34], p. 222.
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