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Consider the motion of a gas of electrons with a background of ions, subject to the
self-consistent electric field and to a constant external magnetic field. As the Debye
length and the Larmor radius vanish at the same rate, the asymptotic current density
is governed by the 2D1/2 incompressible Euler equation. Establishing limit requires to
overcome various difficulties: compactness with respect to the space variable, control
of large velocities, oscillations in the time variable. Yet, for particular initial data, the
simultaneous gyrokinetic and quasineutral approximation is completely justified.
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1. Introduction

The subject matter of this paper is the mathematical modeling of magnetized
plasmas in regimes encountered for instance in tokamaks. In such regimes the
plasma is subject to a strong axial magnetic field, inducing high frequencies in
the number densities of charged species. In view of the need for numerical simula-
tions in this context, establishing envelope equations that average out these high
frequencies as the intensity |B| of the magnetic field tends to infinity is therefore
of considerable importance.

However, the features of the asymptotic regime so obtained strongly depend in
particular upon the ordering of the following parameters23:

• ρe = mc2/e|B|, the Larmor radius of the electrons (with mass m and charge −e)
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• ρi = Mc2/Ze|B|, the Larmor radius of the ions (with mass M and charge Ze)
• λD = (ε0mc2/nee2)1/2, the Debye length where ne denotes the average density

of electrons
• L, the macroscopic (observation) length scale.

Here ε0 and c denote as usual the dielectric permittivity of the vacuum and the
speed of light.

1.1. Scalings

Near the axis of the tokamak, one can consider that

ρe = λD = 0 , ρi " L .

This implies that the plasma is quasineutral and that the density of electrons is
given by the Boltzmann relation, i.e. ne(t, x) = n0 exp(eφ(t, x)) where φ is the
electric potential and −e the charge of the electron. The motion of ions is then
obtained by the classical gyrokinetic approximation.

Closer to the “boundary”, typically on a distance of many ion gyroradii, one
can define a domain, called the “presheath”, where

ρe ∼ λD " L , L ∼ ρi .

There, the plasma is still quasineutral, but collisions between neutral and charged
particles must be taken into account. In particular, a precise description of the
motion of electrons is needed.

Still nearer to the “boundary”, i.e. at the length scale of the Debye length, there
is an electric sheath, i.e. a region where

L ∼ λD ∼ ρe , ρi $ L .

Quasineutrality is not verified there, and the interaction with the boundary
(i.e. absorption by the divertors) rules the evolution.

Our purpose in this paper is to study the trajectory of an electron between
two collisions in the presheath. In particular, one has to understand what becomes
of the gyrokinetic approximation when gradient lengths are of the order of the
Larmor radius. Below, we consider a gas of electrons with a background of ions with
constant macroscopic density ni so as to maintain global neutrality. Collisions are
neglected. Denote by f ≡ f(t, x, v) the number density of light particles (electrons).
As usual, x is the position variable, v the velocity variable, t the time and f is the
number density, which means that in any infinitesimal volume dxdv of the phase
space centered at (x, v), one can find at time t about f(t, x, v)dxdv particles. A
large magnetic field B is applied to this gas of particles; however we assume in this
paper that the self-consistent magnetic field can be neglected, thereby reducing the
Maxwell equations to their electrostatic approximation, meaning that E is governed
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by the Poisson equation.9 These assumptions lead to the following variant of the
Vlasov–Poisson equation:

∂tf + v · ∇xf − e

m

(
E +

v

c
∧ B
)
∇vf = 0 ,

∇x∧ E = 0 , ε0∇x · E = −e

∫

R3
fdv + Zeni ,

f(0, x, v) = f in(x, v) , Ze

∫
ni(x) dx − e

∫∫
f in(x, v) dxdv = 0 .

(We recall at this point that Ze is the charge of the ions.)
In this paper, we consider a very simplified model where the magnetic field B is

supposed to be homogeneous and stationary, i.e. constant. In particular, B = |B|b
where b = (0, 0, 1). Define the dimensionless variables

t̃ =
ct

L
, x̃ =

x

L
, ṽ =

v

c
and f̃ =

f

Zni
.

The previous system can be recast in the form

∂t̃f̃ + ṽ · ∇x̃f̃ −
(

Ẽ +
L

ρe
ṽ ∧ b

)
∇ṽ f̃ = 0 ,

∇x̃ ∧ Ẽ = 0 , ∇x̃ · Ẽ =
L2

λ2
D

(
1−
∫

f̃dṽ

)
,

f̃(0, x̃, ṽ) = f̃ in(x̃, ṽ) ,

∫∫
f̃ indx̃dṽ = 1 .

In the sequel we denote the dimensionless variables with the same letters as the
original ones. For simplicity, we assume periodicity in the space variable: hence
(x, v) ∈ T3 ×R3 where T3 = R3/Z3, equipped with the measure dx identified with
the restriction to [0, 1[3 of the Lebesgue measure of R3.

With the ordering of the presheath, we introduce a small parameter

ε =
λD

L
=

ρe

L
" 1 .

Then, if we denote by Vε the electric potential, one eventually arrives at

∂tfε + v · ∇xfε −
1
ε
(∇xVε + v ∧ b) · ∇vfε = 0 ,

− ε∆xVε =
∫

fε dv − 1 ,

fε(0, x, v) = f in
ε (x, v) ,

∫∫
f in

ε (x, v) dxdv = 1 .

(1.1)

The gyrokinetic approximation has already been studied in many different
regimes.6,14,18,20,26 In all cases, it is assumed that the Larmor radius of the particles
is smaller than the Debye length by one order of magnitude, which means that the
electric field induces a weak coupling, and that the guiding-center approximation
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remains valid. In other words, the variations of the electric field along Larmor circles
are assumed to be negligible in all the references above.

By contrast, in the case considered here, the coupling is strong and the collective
oscillations are comparable to the magnetic ones; thus we expect a rather different
asymptotic regime.

1.2. Formal analysis

The existence theory of global weak solutions of the Vlasov–Poisson system is due
to Arsen’ev1 and can be adapted to (1.1) without difficulty. Classical computations
lead to the global conservation of mass and energy

∫∫
fε(t, x, v) dxdv ≡

∫∫
f in

ε dxdv = 1 ,

∫∫
fε(t, x, v)|v|2dxdv +

∫
|∇xVε|2(t, x) dx

≡
∫∫

f in
ε |v|2dxdv +

∫
|∇xV in

ε |2dx = 2E in
ε (1.2)

while the maximum principle implies that

0 ≤ fε(t, x, v) ≤ ‖f in
ε ‖L∞(T3×R3) a.e. on R+ ×T3 × R3 . (1.3)

In (1.2) and (1.3), E in
ε and ‖f in

ε ‖L∞ depend on ε in a way to be made precise
later. If both sequences are bounded, there exist f ∈ L∞(R+ × T3 × R3) and
V ∈ L∞(R+, H1(T3)) such that, up to extraction of a subsequence,

fε ⇀ f weakly∗ in L∞(R+ ×T3 × R3)

fε(1 + |v|2) ⇀ f(1 + |v|2) weakly in L∞(R+, L1(T3 × R3))

∇xVε ⇀ ∇xV weakly in L∞(R+, L2(T3))

and taking limits in the Poisson equation
∫

fε dv ⇀

∫
fdv = 1 weakly in L1

loc(R+ ×T3) .

The conservation laws of mass and momentum are obtained by integrating the
kinetic equation against 1 and v.

∂t

∫
fε dv +∇x ·

∫
fεvdv = 0 ,

∂t

∫
fεvdv +∇x ·

∫
fεv

⊗2dv +
1
ε
∇xVε

∫
fε dv +

1
ε

∫
fεv ∧ bdv = 0 .

Using the Poisson equation
∫

fε dv = 1− ε∆xVε, and the identity

∇xV ∆xV = ∇x

(
∇xV ⊗∇xV − 1

2
|∇xV |2 Id

)
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we can put the previous system in the form

−ε∂t∆xVε +∇x ·
∫

fεvdv = 0 , (1.4)

∂t

∫
fεvdv +∇x ·

∫
fεv

⊗2dv +
1
ε
∇xVε −∇x

(
(∇xVε)⊗2 − 1

2
|∇xVε|2 Id

)

+
1
ε

∫
fεv ∧ bdv = 0 . (1.5)

Let Jε =
∫

fεvdv and J =
∫

fvdv. Taking limits in (1.4) gives

∇x · J = 0 (1.6)

while (1.5) leads to

∇xV = −J ∧ b , ∂x3V = 0 . (1.7)

Combining (1.4) and (1.5) and integrating in x3 lead to

−∂t

∫
∆xVε dx3 +∇x

∫ (
∂tJ

⊥
ε +∇x ·

∫
fεv

⊥ ⊗ vdv −∇⊥
x Vε∆xVε

)
dx3 = 0 ,

(1.8)

where u⊥ = u ∧ b = (u2,−u1, 0). Taking limits formally in (1.8) leads to

−∂t

∫
∆xV dx3 +∇x

∫ (
∂tJ

⊥ +∇x ·
∫

fv⊥ ⊗ vdv −∇⊥
x V ∆xV

)
dx3 = 0

which, combined with (1.7), gives

−2∂t∆xV +∇′
x ⊗∇′

x :
∫

fv⊥ ⊗ vdvdx3 −∇⊥
x V · ∇x∆xV = 0 (1.9)

(denoting by ∇′
x the operator (∂x1 , ∂x2 , 0)).

Multiplying then the kinetic equation in (1.1) by ε and assuming that
∇xVε · ∇vfε → ∇xV · ∇vf , one has

(v −∇⊥
x V )⊥ · ∇vf = 0 . (1.10)

We multiply this relation successively by v1v2 and v2
1 − v2

2 and integrate by parts,
which leads to∫

(v2
2 − v2

1)fdv = −∂x1V

∫
v2fdv − ∂x2V

∫
v1fdv = (∂x1V )2 − (∂x2V )2 ,

∫
v1v2fdv = −1

2
∂x1V

∫
v1fdv +

1
2
∂x2V

∫
v2fdv = −∂x1V ∂x2V .

As ∂x3V = 0, straightforward computations give

∇′
x ⊗∇′

x :
∫

fv⊥ ⊗ vdv = (∂x1x1 − ∂x2x2)
∫

v1v2fdv + ∂x1∂x2

∫
(v2

2 − v2
1)fdv

= (∂x2x2− ∂x1x1)(∂x1V ∂x2V ) + ∂x1∂x2 [(∂x1V )2− (∂x2V )2]

= −∇x∆xV · ∇⊥
x V .
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Inserting this relation in (1.9), we obtain

∂t∆xV +∇⊥
x V · ∇x∆xV = 0 (1.11)

which is the vorticity formulation of the incompressible 2D Euler equation. Then
there exists Π ∈ L∞(R+, L1(T3)) such that

∂t∇⊥
x V + (∇⊥

x V · ∇x)∇⊥
x V +∇′

xΠ = 0 . (1.12)

The pressure Π is then defined as the Lagrange multiplier associated to the incom-
pressibility constraint ∇x · ∇⊥

x V = 0.
It remains to obtain the evolution equation for J3. By (1.6) and (1.7),

∂x3J3 = 0 . (1.13)

Integrating (1.5) in x3 and taking limits formally gives

∂tJ3 + ∇′
x ·
∫

fvv3dv −∆xV ∂x3V = 0 .

After multiplying (1.10) by vv3 and integrating by parts, we obtain
∫

fv⊥v3dv = −J3∇xV ,

so that

∂tJ3 +∇x · (J3∇⊥
x V ) = 0 . (1.14)

The relations (1.12), (1.14) and (1.7) show that J satisfies the incompressible 2D1/2
Euler equation

∂tJ + (J · ∇x)J +∇xΠ = 0 ,

∇xJ = 0 , ∂x3J = 0 .
(1.15)

In order to obtain a rigorous asymptotic result, we must first justify the process
of taking limits in the nonlinear terms. Compactness with regard to the dependence
on the time variable is one of the first difficulties, but we shall see in the sequel
(Secs. 3 and 5) that in most cases oscillations in the time variable can be fully
described. Compactness with regard to the dependence on the space variable is
not obvious since the only control available is the energy bound. In this paper,
for certain classes of initial data, we have been able to use the regularity given
by the limiting system to establish whatever compactness in the space variable was
needed for taking limits in the nonlinear terms. However, there cannot exist a priori
estimates giving this type of regularity unconditionally on solutions of (1.1): this
is close to a similar observation by DiPerna–Lions on the 3D Euler equations and
will be explained in Sec. 6.

The second problem is to take limits in moments of second order in v, which
relies on controlling large velocities. As with the difficulties described above, this
is not a purely technical matter: in fact, similar instabilities are known to exist in
the quasineutral regime and modify the expected limit. Under the present scaling
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assumption, one can expect that the magnetic perturbation should stabilize the
system in the plane orthogonal to b, but double-humped instabilities can appear in
the direction parallel to b. In order to avoid this problem, we consider initial data
with special velocity profiles.

2. Main Results

In order to address separately the issues described above, we begin by studying the
system in some special regimes.

2.1. Near-linear regime

The formal analysis shows that the non-oscillatory part of the system (described
by the current density and the electric potential) should be governed by the 2D1/2
incompressible Euler equation. If the global energy E in

ε is small, the nonlinear terms
become negligible with respect to the linear ones, and the non-oscillatory part stays
constant. This situation allows us to study separately the oscillatory behavior of
the system.

Oscillations are created by the electrical coupling and the Larmor rotation. The
next proposition shows how both effects are combined and generate oscillations
with frequencies of order 1/ε.

Proposition 2.1. Let (f in
ε ) be a family of non-negative functions of L1(T3 ×R3)

such that
∫∫

f in
ε dvdx = 1 and E in

ε → 0 as ε→ 0 (2.1)

(with E in
ε defined in (1.2)). For every ε > 0, let (fε, Vε) be a solution of the scaled

Vlasov–Poisson system (1.1). Define

jε =
1√
E in

ε

∫
fεvdv , φε =

1√
E in

ε

(−∆x)1/2Vε . (2.2)

Then, the family ((jε, φε))ε>0 is bounded in L∞(R+, L1(T3)×L2(T3)), and for all
s > 3/2,

R
(

t

ε

)
(jε, φε) − (jin

ε , φin
ε ) → 0 strongly in C(R+, H−s(T3)) as ε→ 0 ,

where R(t) is the group of isometries generated by the linear operator

R : (j, φ) .→ (j ∧ b +∇x(−∆x)−1/2φ , (−∆x)−1/2∇x · j) .

2.2. Well-prepared initial data

Next, we establish rigorously the asymptotic equations for the non-oscillatory
part of the system, in the case where no oscillation occurs. Assuming that
the initial data are well-prepared, meaning that the initial density is such
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that (
∫

f in
ε vdv, (−∆x)1/2V in

ε ) lies in the nullspace of the operator R defined in
Proposition 2.1, we prove that no oscillation appears.

As mentioned in the introduction, we are not able to get a priori compactness
with respect to space variables either on the electric field or on the current density;
and consequently we cannot take limits in the quadratic terms. Then, in order to
establish the asymptotic behavior of the system, we will use a stability property of
the limiting equation. More precisely we will use the concept of dissipative solutions
introduced by Lions24 to prove the convergence of the incompressible 3D Navier–
Stokes equations to the Euler equations, and already used to study the asymptotic
behavior of kinetic equations by Golse,5 Brenier6 and more recently by Lions and
Masmoudi.25

Definition 2.1. A dissipative solution of the 2D1/2 incompressible Euler equation
(1.15) is a vector field u ∈ L∞([0, T ], L2(T3)) ∩ C0([0, T ], w − L2(T3)) satisfying
∇x · u = 0 and ∂x3u = 0 in the sense of distributions, as well as u(0, .) = uin and
such that
∫

|w − u|2(t, x) dx ≤
∫

|w − u|2(0, x) dx exp
(∫ t

0
2‖D(w)(τ)‖∞ds

)

+ 2
∫ t

0
exp
(∫ t

τ
2‖D(w)(s)‖∞ds

)∫
E(w)(u − w)(τ, x)dxdτ

(2.3)

for each vector field w ∈ C∞([0, T ]×T3) such that ∇x · w = 0 and ∂x3w = 0, with
D(w) = 1

2 (∇xw + (∇xw)T) ∈ L1([0, T ], L∞(T3)), and E(w) = ∂tw + (w · ∇x)w ∈
L1([0, T ], L2(T3)).

Such solutions always exist; they are not weak solutions of (1.15) in conservative
form, but coincide with smooth solutions as long as the latter exist.24

Proposition 2.2. If there exists a solution u ∈ C([0, T ], L2(T3)) of (1.15) on
[0, T ] × T3 such that D(u) = 1

2 (∇xu + (∇xu)T) ∈ L1([0, T ], L∞(T3)) and E(u) =
∂tu+(u ·∇x)u ∈ L1([0, T ], L2(T3))), then any dissipative solution of (1.15) is equal
to u on [0, T ]×T3.

In other words, proving that the current density associated to the solution of
(1.1) converges to a dissipative solution of (1.15) entails a strong convergence result
in the case where the limiting equation has a smooth solution. The strategy for
obtaining dissipative solutions consists of modulating some conserved quantity of
the initial system (1.1) by test functions and in establishing a stability inequality
similar to (2.3).

A first case is that of well-prepared and almost monokinetic initial data, i.e.

f in
ε → δv=Jin as ε→ 0 (2.4)

in a sense to be made precise later, for some divergence-free vector field J in such
that ∂x3J

in = 0. In this case, the quantity which is expected to satisfy a stability
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inequality is the modulated Hamiltonian
1
2

∫∫
fε|v − J |2dvdx +

1
2

∫
|∇xVε + J ∧ b|2 dx .

One can then prove that, up to extraction of a subsequence,

fε → δv=J as ε→ 0 (2.5)

in some sense, where J is a dissipative solution of (1.15) with initial data J in. More
precisely, the following convergence result holds:

Theorem 2.1. Let T > 0 and (f in
ε ) be a family of non-negative functions in

L1(T3 × R3) such that there exists J in ∈ L2(T3) with ∇x · J in = 0 and ∂x3J
in = 0

satisfying
∫∫

f in
ε dvdx = 1 , sup

ε>0
E in

ε < +∞ ,

sup
∣∣∣∣

∫
f in

ε dv − 1
∣∣∣∣→ 0 as ε→ 0 , (2.6)

1
2

∫∫
|v − J in|2f in

ε dvdx +
1
2

∫
|∇xV in

ε + J in ∧ b|2dx → 0 as ε→ 0 .

For every ε > 0, let (fε, Vε) be a solution of the scaled Vlasov–Poisson equation
(1.1). Then, up to extraction of a sequence εn → 0, the current density

∫
fεnvdv and

the scaled electric field ∇xVεn converge weakly in L1([0, T ]×T3)× L2([0, T ]×T3)
to (J,−J ∧ b) where J ∈ C0([0, T ], w − L2(T3)) is a dissipative solution of the
incompressible 2D1/2 Euler equation (1.15).

In particular, if the incompressible 2D1/2 Euler equation (1.15) with initial data
J in has a strong solution on [0, T ] (i.e. when J in is smooth), the whole family
(
∫

fεvdv,∇xVε) satisfies in addition the strong convergences
∫

fε vdv −
(∫

fε dv

)
J → 0 in L1([0, T ]×T3)

∇xVε → −J ∧ b in L2([0, T ]×T3)
(2.7)

as ε→ 0.

This result can be extended to the case of velocity profiles more general than
(2.4) and (2.5) provided that they satisfy some stability condition. Let h be a convex
function defined on R+, such that h′(x) → −∞ as x → 0 and h(x)/x → +∞ as
x → +∞, more precisely

∀ p ≥ 0 ,

∫
|h′−1(−r2))|rpdr < +∞ .

(Note that this class of functions is not empty since it contains the usual physical
entropy h : x .→ x log x − x.) Then it is easy to check that h is an entropy for the
Vlasov–Poisson system, i.e. for each solution f of (1.1) with initial data f in,

∫∫
h(f(t, x, v)) dxdv ≤

∫∫
h(f in(x, v)) dxdv .
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Define the thermodynamic equilibrium Mn,J,θ ∈ L1(R3) as the minimizer of the
entropy
∫

h(Mn,J,θ) dv

= min

{∫
h(f) dv

∣∣∣∣∣

∫
fdv = n,

∫
fvdv = J,

∫
f |v|2dv =

1
n

J2 + 3nθ

}
.

Elementary techniques of the calculus of variations, coupled with Legendre’s iden-
tity (h′)−1 = (h∗)′ for the Legendre dual h∗ of h and symmetry properties, imply
that

Mn,J,θ(v) = (h∗)′
(
λ− ν

∣∣∣∣v −
J

n

∣∣∣∣
2
)

, (2.8)

where λ and ν > 0 are the Lagrange multipliers associated to the constraints
depending only on n and θ. Such profiles are expected to be stable — indeed, as
the entropy decreases, if the initial data is close to a local equilibrium at each point,
the corresponding solution of (1.1) will be of small entropy and thus should remain
close of a local equilibrium at each point. Thus, in the case where the initial data
is well-pepared and has a velocity profile (2.8), the quantity expected to satisfy a
stability inequality is the modulated free energy
∫∫

(h(fε)− h(M1,J,1) − (fε −M1,J,1)h′(M1,J,1)) dvdx + ν

∫
|∇xVε + J ∧ b|2dx .

Actually we will establish that up to extraction of a subsequence,

fε → M1,J,1 as ε→ 0

in some sense, where J is a dissipative solution of (1.15). More precisely

Theorem 2.2. Let T > 0 and (f in
ε ) be a family of non-negative functions of

L1(T3 × R3) such that there exists J in ∈ L2(T3) with ∇x · J in = 0 and ∂x3J
in = 0

satisfying
∫∫

f in
ε dvdx = 1 , sup

ε>0
E in

ε < +∞ ,

sup
∣∣∣∣
∫

f in
ε dv − 1

∣∣∣∣→ 0 as ε→ 0 ,

∫∫
(h(f in

ε ) − h(M1,Jin,1)− (f in
ε −M1,Jin,1)h′(M1,Jin,1))dvdx

+ ν

∫
|∇xV in

ε + J in ∧ b|2dx → 0 as ε→ 0 . (2.9)

For each ε > 0, let (fε, Vε) be a solution of the scaled Vlasov–Poisson equation (1.1).
Then, up to extraction of a sequence εn → 0, the current density

∫
fεnvdv and the
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scaled electric field ∇xVεn converge weakly in L1([0, T ] × T3) and L2([0, T ] × T3)
respectively to J and −J ∧ b where J ∈ C0([0, T ], w − L2(T3)) is a dissipative
solution of the 2D1/2 incompressible Euler equation (1.15).

In particular, if the incompressible 2D1/2 Euler equation (1.15) with initial data
J in has a strong solution on [0, T ] (i.e. when J in is smooth), the whole family
(
∫

fεvdv,∇xVε) satisfy in addition the strong convergences (2.7) as ε→ 0.

2.3. General initial data

It remains to consider the general case where both the oscillating and the non-
oscillating parts contribute to the limiting model. Following Babin, Mahalov and
Nicolaenko,3 we prove that the non-oscillating part (corresponding to the weak
limits of the current density and the electrical field) is generically governed by the
incompressible 2D1/2 Euler equation, while the oscillating part is governed by a
linear system of equations whose coefficients depend on the non-oscillating part.

The crucial point in this asymptotic analysis is to see that the limiting equa-
tions for the non-oscillating part are decoupled — indeed there is no resonance of
the oscillating part in the equation governing the evolution of the non-oscillating
part. Such a result comes from a precise study of the oscillating frequencies and is
established only generically; as the oscillating frequencies depend on the size of the
periodic box, we state a convergence result which holds only for almost all periodic
boxes.3

The second restriction of our result is the regularity of the initial data. As we
need precise estimates on the non-oscillating part to describe the oscillating part,
we will restrict our attention to regular initial data providing strong solutions of
the limiting system.

Finally, for the sake of simplicity, we state and prove our result in the case of
almost monokinetic initial data.

Theorem 2.3. Denote by Qa1,a2,a3 = (R/a1Z)× (R/a2Z)× (R/a3Z). There exists
a set A ⊂ (R+

∗ )3 of Lebesgue measure zero such that for all (a1, a2, a3) ∈ (R+
∗ )3 \A,

the asymptotic behavior of the current density and electric field on Qa1,a2,a3 can be
completely described.

Let (J in,Φin) be a function of Cr(Qa1,a2,a3) with r > 13/2 and (a1, a2, a3) ∈
(R+

∗ )3 \ A. Denote by J̄ the (unique) smooth solution of the incompressible 2D1/2
Euler equation (1.15) on R+ ×Qa1,a2,a3 with initial data

(
1
2
∇x

′(−∆′
x)−1/2

∫
(Φin ∧ b)′dx3 +

1
2
P ′
∫

(J in)′dx3 ,

∫
J in

3 dx3

)

with the notations ∇x
′ = (∂x1 , ∂x2), ∆′

x = ∂2
x1x1

+ ∂2
x2x2

and P ′ for the 2D Leray
projection. Let (f in

ε ) be a family of non-negative functions of L1(Qa1,a2,a3 × R3)
such that ∫∫

f in
ε dvdx = 1 , sup

ε>0
E in

ε < +∞ ,



May 9, 2003 13:43 WSPC/103-M3AS 00264

672 F. Golse & L. Saint-Raymond

sup
∣∣∣∣
∫

f in
ε dv − 1

∣∣∣∣→ 0 as ε→ 0 ,

1
2

∫∫ ∣∣v − J in
∣∣2 f in

ε dvdx

+
1
2

∫ ∣∣∣∇xV in
ε −∇x(−∆x)−1/2Φin

∣∣∣
2
dx → 0 as ε→ 0 . (2.10)

For each ε > 0, let (fε, Vε) be a solution of the scaled Vlasov–Poisson equation (1.1)
with initial data f in

ε . Then, the whole family (
∫

fεvdv,∇xVε)ε converges weakly to
(J̄ ,−J̄ ∧ b) in H−1

loc (R+, L1 × L2(Qa1,a2,a3)).
More precisely, defining the group of isometries s .→ R(s) = esR as in

Proposition 2.1, the family R(t/ε)(
∫

fεvdv, (−∆x)1/2Vε) converges strongly in
L∞

loc(R+, W−1,3/2 × L2(Qa1,a2,a3)) to a function Ψ = Ψ̄ + Ψosc where Ψ̄ =
(J̄ ,−(−∆x)−1/2∇x · (J̄ ∧ b)) is the projection of Ψ on the kernel of R, and where
Ψosc is governed by a linear system of equations whose coefficients depend on J̄ .

A natural question is then to determine the asymptotic behavior of the system
when (a1, a2, a3) belongs to A. In the framework of 2D rotating fluids (which corre-
sponds to the scaling of the 2D gyrokinetic approximation with fixed Debye length),
recent improvements of Schochet’s trick8 show that the weak convergence actually
holds for all (a1, a2, a3) ∈ (R∗

+)3. The method consists of a precise characterization
of the resonant frequencies. It is not easy to extend this result to our case because
the singular perturbation is given by a pseudo-differential operator of order 0 that
is much more complicated than a rotation.

Extending the weak convergence result stated in Theorem 2.3 to all periodic
boxes and to all stable velocity profiles would achieve partially the program of
deriving mathematically the gyrokinetic limit in quasineutral regime. The remaining
open questions are two well-known mathematical problems, i.e. the global existence
of weak solutions for the 2D1/2 incompressible Euler equation (1.15) and the control
of instabilities generated by electrical interactions in the quasineutral regime.

3. Near-Linear Regime: Study of the Fast Time Oscillations

We start with a precise description of the oscillatory behavior of the system. The
framework of this study is given in Proposition 2.1: there is no particular assump-
tion on the initial data, on the velocity profile, and on the associated macroscopic
quantities. We just assume that the initial energy is very small, so that the evolution
is governed essentially by the linear part of the system.

Proof of Proposition 2.1. The first step consists of establishing the a priori
bounds on the families (jε)ε>0 and (φε)ε>0 defined by (2.2). From (1.2) we
deduce that

‖∇xVε‖2
L2(T3) ≤ 2E in

ε ,
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∥∥∥∥
∫

fεvdv

∥∥∥∥
2

L1(T3)

≤
(∫∫

fε dxdv

)(∫∫
fε|v|2dxdv

)
≤ 2E in

ε .

By the definition of jε and φε and since (−∆x)−1/2∇x is a bounded operator on L2,

‖jε‖L1(T3) ≤
√

2 , ‖φε‖L2(T3) ≤
√

2 . (3.1)

Next we derive the equations governing the evolution of jε and φε. Rewriting
(1.4) and (1.5) in terms of jε and φε leads to

ε∂tφε + (−∆x)−1/2∇x · jε = 0 ,

∂tjε +
1
ε
∇x(−∆x)−1/2φε +

1
ε
jε ∧ b = Sε ,

(3.2)

where Sε is defined by

Sε = ∇x ·
(
− 1√

E in
ε

∫
fεv

⊗2dv +
1√
E in

ε

(
∇xVε ⊗∇xVε −

1
2
|∇xVε|2 Id

))

and therefore satisfies

‖Sε‖L∞(R+,W−1,1(T3)) ≤ c
√
E in

ε . (3.3)

Equipped with these preliminary results, we can now describe the asymptotic
behavior of jε and φε as ε→ 0. Define the operator

R : (j, φ) .→ (∇x(−∆x)−1/2φ+ j ∧ b, (−∆x)−1/2∇x · j)

and recast (3.2) in the form

∂t(jε, φε) +
1
ε
R(jε, φε) = (Sε, 0) . (3.4)

As R is a bounded skew-adjoint operator on L2(T3), it generates a unitary group
on L2(T3) denoted R. In particular,

∂tR
(
− t

ε

)
(jin

ε , φin
ε ) +

1
ε
RR
(
− t

ε

)
(jin

ε , φin
ε ) = (0, 0) . (3.5)

Then, in order to establish that (jε, φε) and R(− t
ε)(jin

ε , φin
ε ) are asymptotically

close to one another as ε → 0, we need a stability result in L2(T3). Define Λ =
(−∆x)−1/2. By Sobolev embedding and (3.3)

‖Λ5/2Sε‖L∞(R+,L2(T3)) ≤ C
√
E in

ε .

Assumption (2.1) implies then that (Λ5/2Sε) converges strongly to 0 in
L∞(R+, L2(T3)) as ε→ 0. Using (3.4) and (3.5) with the commutation properties
∂tΛ = Λ∂t and RΛ = ΛR gives

Λ5/2

(
∂t +

1
ε
R

)
Λ5/2

(
(jε, φε) −R

(
− t

ε

)
(jin

ε , φin
ε )
)

= (Λ5Sε, 0)
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from which we deduce that
∥∥∥∥(jε, φε) −R

(
− t

ε

)
(jin

ε , φin
ε )
∥∥∥∥

2

H−5/2
≤
∥∥∥∥Λ

5/2

(
(jε, φε)−R

(
− t

ε

)
(jin

ε , φin
ε )
)∥∥∥∥

2

L2(π3)

≤
∫ t

0
‖Λ5/2Sε(s, x)‖2

L2(T3)ds

converges to 0 in C(R+). By (3.1) and Sobolev embeddings, as R is unitary on
L2(T3),

∥∥∥∥(jε, φε)−R
(
− t

ε

)
(jin

ε , φin
ε )
∥∥∥∥

H−3/2(T3)

≤ 2‖(jin
ε , φin

ε )‖H−3/2(T3) ≤ 2
√

2 .

A standard interpolation argument concludes the proof.

4. Well-Prepared Initial Data: Convergence of the
Non-Oscillating Part

The previous result shows that the linear part of the system does not create oscil-
lations as long as the current density Jε =

∫
fεvdv and Φε defined in terms of the

electric potential by Φε = (−∆x)1/2Vε satisfy

∇x · Jε = 0 , ∇x(−∆x)−1/2Φε + Jε ∧ b = 0 , (4.1)

i.e. as long as (Jε,Φε) belongs to the kernel of R.
In order to study the asymptotic behavior of the non-oscillating part of the

system, we begin by eliminating the oscillations. We assume that the initial data
are well-prepared, meaning that they satisfy both conditions (4.1). For such initial
data, we see that no oscillation occurs, which implies that the conditions (4.1) are
in some sense stable. The corresponding solutions of (1.1) as well as their time
derivatives are uniformly bounded, and one can prove the desired convergence by
using the stability of the limiting system (1.15).

4.1. A preliminary computation

Before prooving Theorems 2.1 and 2.2, we restate the fundamental stability result
for the Vlasov–Poisson system (1.1), which is on the modulated Hamiltonian.

Lemma 4.1. For each scalar field Φ ∈ C∞([0, T ] × T3) and each vector field
J̄ ∈ C∞([0, T ]×T3), the following identity holds :

d

dt

(
1
2

∫∫
|v − J̄ |2fε(t, x, v) dvdx +

1
2

∫
|∇xVε −∇x(−∆x)−1/2Φ|2(t, x) dx

)

= −
∫

D(J̄) :
(∫

(v − J̄)⊗2fε dv − (∇xVε −∇x(−∆x)−1/2Φ)⊗2

)
(t, x) dx

− 1
2

∫
(∇xJ̄)|∇xVε −∇x(−∆x)−1/2Φ|2(t, x) dx
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−
∫ (

∂tJ̄ + (J̄ · ∇x)J̄ +
J̄ ∧ b

ε
+

∇x(−∆x)−1/2Φ
ε

)
·
∫

(v − J̄)fε(t, x, v) dvdx

−
∫ (

∂t∇x(−∆x)−1/2Φ− J̄(−∆x)1/2Φ− J̄

ε

)
· (∇xVε −∇x(−∆x)−1/2Φ)(t, x) dx ,

(4.2)

where D(J̄) = 1
2 (∇xJ̄ + (∇xJ̄)T).

Proof. Because of the global energy conservation (1.2),

d

dt

(
1
2

∫∫
|v − J̄ |2fε dvdx +

1
2

∫
|∇xVε −∇x(−∆x)−1/2Φ|2 dx

)

=
d

dt

(∫∫ (
1
2
J̄2 − v · J̄

)
fε dvdx

+
∫ (

1
2
(∇x(−∆x)−1/2Φ)2 −∇xVε · ∇x(−∆x)−1/2Φ

)
dx

)
.

As fε is a solution of the scaled Vlasov equation, integrating by parts gives

d

dt

(
1
2

∫∫
|v − J̄ |2fε dvdx +

1
2

∫
|∇xVε −∇x(−∆x)−1/2Φ|2 dx

)

=
1
2

∫∫
fε

(
∂t + v∇x −

1
ε
∇xVε · ∇v −

1
ε
v ∧ b · ∇v

)
(J̄2 − 2v · J̄) dvdx

+
∫

(∇x(−∆x)−1/2Φ−∇xVε) · ∂t∇x(−∆x)−1/2Φdx

+
∫

(−∆x)−1/2Φ ∂t∆xVε dx .

Using the local conservation of mass (1.4) gives

d

dt

(
1
2

∫∫
|v − J̄ |2fε dvdx +

1
2

∫
|∇xVε −∇x(−∆x)−1/2Φ|2 dx

)

=
∫∫

fε(J̄ − v) (∂t + v∇x) J̄dvdx +
1
ε

∫∫
fε(∇xVε + v ∧ b) · J̄dvdx

+
∫

(∇x(−∆x)−1/2Φ−∇xVε) · ∂t∇x(−∆x)−1/2Φdx

+
1
ε

∫
(−∆x)−1/2Φ∇x ·

∫
fεvdvdx .

Decomposing v = J̄ + v − J̄ leads to
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d

dt

(
1
2

∫∫
|v − J̄ |2fε dvdx +

1
2

∫
|∇xVε −∇x(−∆x)−1/2Φ|2 dx

)

=
∫∫

fε(J̄ − v) ·
(
∂tJ̄ + (J̄ · ∇x)J̄ +

1
ε
J̄ ∧ b +

1
ε
∇x(−∆x)−1/2Φ

)
dvdx

−
∫∫

D(J̄) : fε(v − J̄)⊗2dvdx +
1
ε

∫∫
fε∇xVε · J̄dvdx

+
∫

(∇x(−∆x)−1/2Φ−∇xVε) · ∂t∇x(−∆x)−1/2Φdx

− 1
ε

∫∫
J̄ · ∇x(−∆x)−1/2Φdvdx .

By the Poisson equation
∫

fε dv = 1− ε∆xVε,

d

dt

(
1
2

∫∫
|v − J̄ |2fε dvdx +

1
2

∫
|∇xVε −∇x(−∆x)−1/2Φ|2 dx

)

=
∫∫

fε(J̄ − v)
(
∂tJ̄ + (J̄ · ∇x)J̄ +

1
ε
J̄ ∧ b +

1
ε
∇x(−∆x)−1/2Φ

)
dvdx

−
∫∫

D(J̄) : fε(v − J̄)⊗2dvdx

+
∫

(∇x(−∆x)−1/2Φ−∇xVε) ·
(
∂t∇x(−∆x)−1/2Φdx − 1

ε
J̄ + J̄∆xVε

)
.

Decomposing ∇xVε = ∇x(−∆x)−1/2Φ + ∇xVε − ∇x(−∆x)−1/2Φ and using the
identity ∇xV ∆xV = ∇x(∇xV ⊗∇xV − 1

2 |∇xV |2 Id) eventually leads to

d

dt

(
1
2

∫∫
|v − J̄ |2fε dvdx +

1
2

∫
|∇xVε −∇x(−∆x)−1/2Φ|2 dx

)

=
∫∫

fε(J̄ − v)
(
∂tJ̄ + (J̄ · ∇x)J̄ +

1
ε
J̄ ∧ b +

1
ε
∇x(−∆x)−1/2Φ

)
dvdx

−
∫∫

D(J̄) : fε(v − J̄)⊗2dvdx

+
∫

(∇x(−∆x)−1/2Φ−∇xVε) ·
(
∂t∇x(−∆x)−1/2Φdx − 1

ε
J̄ − J̄(−∆x)1/2Φ

)

+
∫

D(J̄) :
(

(∇x(−∆x)−1/2Φ−∇xVε)⊗2 − 1
2
|∇x(−∆x)−1/2Φ−∇xVε|2 Id

)
dx .

Remarking that tr(D(J̄)) = ∇x · J̄ completes the proof.

Lemma 4.1 gives a stability equality very similar to the inequality (2.3) that
defines the notion of dissipative solution for the 2D1/2 incompressible Euler
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equation. Indeed, with the acceleration term denoted

Eε(J̄ , φ) =

(
∂tJ̄ + J̄ · ∇xJ̄ +

J̄ ∧ b

ε
+

∇x(−∆x)−1/2Φ
ε

,

∂t∇x(−∆x)−1/2Φ− J̄(−∆x)1/2Φ− J̄

ε

)
,

we deduce from (4.2) that

d

dt

(
1
2

∫∫
|v − J̄ |2fε(t, x, v) dvdx +

1
2

∫
|∇xVε −∇x(−∆x)−1/2Φ|2(t, x) dx

)

≤‖D(J̄)‖L∞

(∫∫
|v − J̄ |2fε(t, x, v)dvdx +

∫
|∇xVε −∇x(−∆x)−1/2Φ|2(t, x) dx

)

−
∫

Eε(J̄ , φ)
(∫

(v − J̄)fε dv, (∇xVε −∇x(−∆x)−1/2Φ)
)

(t, x) dx .

The acceleration operator Eε(J̄ ,Φ) so defined involves a linear part of order 1/ε
(which is exactly the oscillation operator studied in the previous section), and
nonlinear terms of order 1. If we assume that (J̄ ,Φ) satisfies the conditions (4.1),
only the non-oscillating part remains.

Corollary 4.1. For each scalar field Φ ∈ C∞([0, T ] × T3) and each vector field
J̄ ∈ C∞([0, T ]×T3) satisfying (4.1), the following identity holds :

d

dt

(
1
2

∫∫
|v − J̄ |2fε(t, x, v) dvdx +

1
2

∫
|∇xVε −∇x(−∆x)−1/2Φ|2(t, x) dx

)

= −
∫

D(J̄) :
(∫

(v − J̄)⊗2fε dv − (∇xVε −∇x(−∆x)−1/2Φ)⊗2

)
(t, x) dx

−
∫ (

∂tJ̄ + (J̄∇x)J̄
) ∫

(v − J̄)fε(t, x, v) dvdx

−
∫

(∂t∇x(−∆x)−1/2Φ− J̄(−∆x)1/2Φ)(∇xVε −∇x(−∆x)−1/2Φ)(t, x) dx ,

(4.3)

where D(J̄) denotes the symmetrized gradient of J̄ .

Notice that requiring that (J̄ ,Φ) satisfies conditions (4.1) is equivalent to
assuming that

∇x · J̄ = 0 , ∂x3 J̄ = 0 . (4.4)

Then Φ is uniquely defined by ∇x(−∆x)−1/2Φ = −J̄ ∧ b. It is easily seen that

∂t∇x(−∆x)−1/2Φ− J̄(−∆x)1/2Φ = −∂tJ̄ ∧ b − J̄∇x · (J̄ ∧ b)

= −∂tJ̄ ∧ b − J̄(∂x1 J̄2 − ∂x2 J̄1) .
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Compute each component of the second term using (4.4)

J̄1(∂x1 J̄2 − ∂x2 J̄1) = J̄1∂x1 J̄2 + J̄2∂x2 J̄2 − ∂x2

J̄2
1 + J̄2

2

2

J̄2(∂x1 J̄2 − ∂x2 J̄1) = −J̄1∂x1 J̄1 − J̄2∂x2 J̄1 + ∂x1

J̄2
1 + J̄2

2

2
.

We deduce that

∂t∇x(−∆x)−1/2Φ− J̄(−∆x)1/2Φ = −
(
∂tJ̄ + (J̄ · ∇x)J̄ −∇x

J̄2
1 + J̄2

2

2

)
∧ b

− J̄3b∇x · (J̄ ∧ b) .

Then (4.3) can be rewritten in terms of J̄ .

Corollary 4.2. For each vector field J̄ ∈ C∞([0, T ] × T3) satisfying (4.4), the
following identity holds :

d

dt

(
1
2

∫∫
|v − J̄ |2fε(t, x, v) dvdx +

1
2

∫
|∇xVε + J̄ ∧ b|2(t, x) dx

)

= −
∫

D(J̄) :
(∫

(v − J̄)⊗2fε dv − (∇xVε + J̄ ∧ b)⊗2

)
(t, x) dx

−
∫

E(J̄) ·
(∫

(v − J̄)fε dv + (∇xVε + J̄ ∧ b) ∧ b

)
(t, x) dx

+
∫

J̄3∇x · (J̄ ∧ b)∂x3Vε(t, x) dx , (4.5)

where D(J̄) = 1
2 (∇xJ̄ + (∇xJ̄)T) and E(J̄) = ∂tJ̄ + (J̄ · ∇x)J̄ .

4.2. Convergence proof in the case of monokinetic profiles

In the case of monokinetic profiles, the assumption (2.6) on the initial data implies
that there exists J in ∈ L2(T3) with ∇x · J in = 0 and ∂x3J

in = 0 satisfying

1
2

∫∫
|v − J in|2f in

ε dvdx +
1
2

∫
|∇xV in

ε + J in ∧ b|2dx → 0 as ε→ 0 .

Then, because of (4.5), we expect that

1
2

∫∫
|v − J |2fε(t, x, v) dvdx +

1
2

∫
|∇xVε + J ∧ b|2(t, x) dx → 0 as ε→ 0 ,

where J is the solution of the 2D1/2 incompressible Euler equation (1.15) with
initial data J in. Indeed for such a vector field, conditions (4.4) are satisfied and
E(J) = −∇xΠ.

Nevertheless, since (1.15) does not have a unique strong solution for general
initial data J in ∈ L2(T3) with ∇x · J in = 0 and ∂x3J

in = 0, we can establish only
a weak form of this convergence result.
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Proof of Theorem 2.1. From the global conservations (1.2) and the bounds on
the initial conditions (2.6), we infer the existence of f ∈ L∞(R+,M+(T3 × R3))
and V ∈ L∞(R+, H1(T3)) such that, up to extraction of a subsequence,

fε(1 + |v|2) ⇀ f(1 + |v|2) weakly-∗ in L∞(R+,M(T3 × R3))

and

∇xVε ⇀ ∇xV weakly-∗ in L∞(R+, L2(T3)) .

Taking limits in the Poisson equation leads to
∫

fdv = 1, while the local conserva-
tions (1.4) and (1.5) give, in the limit as ε→ 0

∇x ·
∫

fvdv = 0 and ∇xV = −
∫

fvdv ∧ b (4.6)

in the sense of distributions.
Let J̄ ∈ C∞([0, T ] × T3) be any vector field satisfying (4.4). From (4.5) we

deduce the Gronwall type inequality

1
2

∫∫
|v − J̄ |2fε(t, x, v) dvdx +

1
2

∫
|∇xVε + J̄ ∧ b|2(t, x) dx

≤
(

1
2

∫∫
|v − J̄ in|2f in

ε dvdx +
1
2

∫
|∇xV in

ε + J̄ in ∧ b|2 dx

)

×
∫ t

0
exp(‖D(J̄)(s)‖L∞(T3)) ds

−
∫ t

0

∫
E(J̄) ·

(∫
(v − J̄)fεdv + (∇xVε + J̄ ∧ b) ∧ b

)
(τ, x)dx

×
∫ t

τ
exp(‖D(J̄)(s)‖L∞(T3)) dsdτ

+
∫ t

0

∫
J̄3∇x · (J̄ ∧ b)∂x3Vε(τ, x)dx

∫ t

τ
exp(‖D(J̄)(s)‖L∞(T3)) dsdτ , (4.7)

where J̄ in is the initial value of J̄ .
Denote by nε =

∫
fε dv, Jε =

∫
fεvdv and J =

∫
fvdv. By the Cauchy–Schwarz

inequality and the positivity of fε,

|Jε − nεJ̄ |2

nε
≤
(∫

fε(v − J̄) dv
)2

∫
fε dv

≤
∫

fε|v − J̄ |2 dv .

Then, by (4.7),

1
2

∫ ( |Jε − nεJ̄ |2
nε

+ |∇xVε + J̄ ∧ b|2
)

(t, x) dx
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≤
(

1
2

∫∫
|v − J̄ in|2f in

ε dvdx +
1
2

∫
|∇xV in

ε + J̄ in ∧ b|2dx

)

×
∫ t

0
exp(‖D(J̄)(s)‖L∞(T3)) ds

−
∫ t

0

∫
E(J̄) · ((Jε − nεJ̄) + (∇xVε + J̄ ∧ b) ∧ b)(τ, x) dx

×
∫ t

τ
exp(‖D(J̄)(s)‖L∞(T3)) dsdτ

+
∫ t

0

∫
J̄3∇x · (J̄ ∧ b)∂x3Vε(τ, x) dx

∫ t

τ
exp(‖D(J̄)‖L∞(T3)) dsdτ . (4.8)

As the functional (n, J) .→
∫

n−1|J − nJ̄ |2dx is convex and lsc. (lower
semi-continuous) with respect to the weak convergence of measures, the conver-
gences nε → 1 and Jε → J in the sense of measures imply that J belongs to
L∞([0, T ], L2(T3)) and that

∫
|J − J̄ |2 dx ≤ lim inf

ε→0

∫ |Jε − nεJ̄ |2
nε

dx .

In order to take limits in (4.8), it remains to study the term coming from the initial
data.

1
2

∫∫
|v − J̄ in|2f in

ε dvdx +
1
2

∫
|∇xV in

ε + J̄ in ∧ b|2 dx

=
1
2

∫∫
|v − J in|2f in

ε dvdx +
1
2

∫
|∇xV in

ε + J in ∧ b|2 dx

+
1
2

∫∫
|J in − J̄ in|2f in

ε dvdx +
1
2

∫
|(J in − J̄ in) ∧ b|2 dx

+
∫∫

(J in − J̄ in) · (v − J in)f in
ε dvdx

−
∫

(J in ∧ b − J̄ in ∧ b) · (∇xV in
ε + J in ∧ b) dx .

The assumption on the initial data (2.6) imply that

1
2

∫∫
|v − J̄ in|2f in

ε dvdx +
1
2

∫
|∇xV in

ε + J̄ in ∧ b|2 dx

→ 1
2

∫
|J in − J̄ in|2 dx +

1
2

∫
|(J in − J̄ in) ∧ b|2 dx as ε→ 0 .

Taking limits in (4.8) and using the relations (4.6) leads to

1
2

∫ (
|J − J̄ |2 + |∇xV + J̄ ∧ b|2

)
(t, x) dx



May 9, 2003 13:43 WSPC/103-M3AS 00264

Gyrokinetic and Quasineutral Limit for Vlasov–Poisson 681

≤
∫

|J in − J̄ in|2 dx

∫ t

0
exp(‖D(J̄)(s)‖L∞(T3)) ds

−
∫ t

0

∫
E(J̄) ·

(
(J − J̄) + (∇xV + J̄ ∧ b) ∧ b

)
(τ, x) dx

×
∫ t

τ
exp(‖D(J̄)(s)‖L∞(T3)) dsdτ . (4.9)

Extending (4.9) by a density argument to all vector fields J̄ ∈ C([0, T ], L2(T3))
satisfying ∇xJ̄ = 0, ∂x3 J̄ = 0, D(J̄) ∈ L1([0, T ], L∞(T3)), E(J̄) ∈ L1([0, T ],
L2(T3)) shows that J is a dissipative solution of the 2D1/2 incompressible Euler
equation (1.15).

4.3. Convergence proof in the case of local
thermodynamic equilibria

In the case of velocity profiles defined as minimizers of an entropy with given
temperature, the modulated Hamiltonian expected to converge to 0 must be
replaced by the modulated free energy

∫∫
(h(fε) − h(M1,J,1)− (fε −M1,J,1)h′(M1,J,1)) dvdx

+ ν

∫
|∇xVε + J ∧ b|2dx → 0 as ε→ 0 ,

where J is the solution of (1.15) with appropriate initial data and ν > 0 is the
Lagrange multiplier defined by the relation (2.8)

M1,0,1(v) = (h∗)′(λ− ν|v|2)

and the constraints
∫

M1,0,1(v) dv = 1 ,

∫
|v|2M1,0,1(v) dv = 3 .

Note that this implies the convergence of the current density
∫

fεvdv by the
following inequality:

Lemma 4.2. For each non-negative function f with finite relative entropy

|
∫

f(v − J̄) dv|2∫
fdv

≤ 1
ν

∫
(h(f) − h(M1,J̄,1) − (f −M1,J̄,1)h

′(M1,J̄,1)) dv .

Proof. Let Mf be the minimizer of
∫

h(g) dv
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with the same moments as f
∫

Mfdv =
∫

fdv = n ,

∫
Mfvdv =

∫
fvdv = J , and

∫
Mf

∣∣∣∣v −
J

n

∣∣∣∣
2

dv =
∫

f

∣∣∣∣v −
J

n

∣∣∣∣
2

dv = 3nθ .

By definition
∫

(h(Mf ) − h(M1,J̄,1)− (Mf −M1,J̄,1)h′(M1,J̄,1)) dv

≤
∫

(h(f) − h(M1,J̄,1) − (f −M1,J̄,1)h
′(M1,J̄,1)) dv . (4.10)

We deduce from (2.8) that

Mf = h′−1

(
λ(n, θ) − ν(n, θ)

∣∣∣∣v −
J

n

∣∣∣∣
2
)

which implies in particular that
∫

h(Mf)dv depends on n and θ only. Thus
∫

(h(Mf ) − h(M1,J̄,1)− (Mf −M1,J̄,1)h
′(M1,J̄,1)) dv

=
∫

(h(Mf ) − h(M1,J̄,1) + (ν|v − J̄ |2 − λ)(Mf −M1,J̄,1)) dv

= νn

∣∣∣∣
J

n
− J̄

∣∣∣∣
2

+ H̄(n, θ) (4.11)

where H̄ is non-negative. Combining (4.10) and (4.11) gives the expected
inequality.

As above, we establish the convergence result on the free-energy in the weak
sense only because a unique strong solution for general initial data does not exist
for the limiting equation. The key to the proof is the identity

d

dt

(∫∫
(h(fε) − h(M1,J̄,1) − (fε −M1,J̄,1)h

′(M1,J̄,1)) dvdx + ν

∫
|∇xVε + J̄ ∧ b|2dx

)

=
d

dt

(∫∫
(fε −M1,J̄,1)(−λ+ ν|v − J̄ |2) dvdx + ν

∫
|∇xVε + J̄ ∧ b|2dx

)

= ν
d

dt

(∫∫
fε|v − J̄ |2dvdx +

∫
|∇xVε + J̄ ∧ b|2 dx

)
.

Thus, by Corollary 4.2, for each vector field J̄ ∈ C∞([0, T ] × T3) satisfying
conditions (4.4)
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d

dt

(∫∫
(h(fε) − h(M1,J̄,1)− (fε −M1,J̄,1)h

′(M1,J̄,1)) dvdx + ν

∫
|∇xVε + J̄ ∧ b|2 dx

)

= −2ν
∫

D(J̄) :
(∫

(v − J̄)⊗2fε dv − (∇xVε + J̄ ∧ b)⊗2

)
(t, x) dx

− 2ν
∫

E(J̄) ·
(∫

(v − J̄)fε dv + (∇xVε + J̄ ∧ b) ∧ b

)
(t, x) dx

+ 2ν
∫

J̄3∇x · (J̄ ∧ b) ∂x3Vε(t, x) dx . (4.12)

The main difficulty consists of estimating the flux term

−2ν
∫

D(J̄) :
(∫

(v − J̄)⊗2fε dv − (∇xVε + J̄ ∧ b)⊗2

)
(t, x) dx

in terms of the modulated free energy, in order to conclude by a Gronwall type
inequality as before.

Proposition 4.3. Let T > 0 and (f in
ε ) be a family of non-negative functions of

L1(T3 × R3) such that
∫∫

f in
ε dvdx = 1 , sup

ε>0
E in

ε < +∞ .

For each ε > 0, let (fε, Vε) be a solution of the scaled Vlasov–Poisson equation
(1.1). Then, there exists a non-negative constant C such that for each divergence-
free vector field J̄ ∈ C∞([0, T ]×T3) and all t ∈ [0, T ],
∣∣∣∣
∫ t

0

∫∫
D(J̄) : (v − J̄)⊗2fε dvdxdt

∣∣∣∣

≤ C

∫ t

0
‖D(J̄)‖L∞(T3)

∫∫
(h(fε) − h(M1,J̄,1)− (fε −M1,J̄,1)h

′(M1,J̄,1)) dvdxds

+ C

∫ t

0
‖D(J̄)‖L∞(T3)

∫
|∇xVε + J̄ ∧ b|2 dxds + ηε(t) , (4.13)

where ηε converges to 0 in L∞([0, T ]) as ε→ 0.

Proposition 4.3 is based on the identity
∫∫

D(J̄) : (v − J)⊗2fε dxdv =
∫∫

(∂x1 J̄2 + ∂x2 J̄1)(v1 − J̄1)(v2 − J̄2)fε dxdv

+
∫∫

∂x1 J̄1[(v1 − J̄1)2 − (v2 − J̄2)2]fε dxdv

(4.14)
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which holds because J̄ is divergence-free. Then, as (∇xVε + v ∧ b) · ∇vfε = O(ε) in
some appropriate sense, we expect that
∫∫

D(J̄) : (v − J)⊗2fε dxdv ∼ −
∫

(∂x1 J̄2 + ∂x2 J̄1)(∂2Vε − J̄1)(∂1Vε + J̄2) dx

+
∫

∂x1 J̄1[(∂2Vε − J̄1)2 − (∂1Vε + J̄2)2] dx .

In order to establish such a claim, we have to integrate by parts both terms on the
right-hand side of (4.14), after truncating large values of the density.

Lemma 4.3. There exists a function g ∈ C1(R+) with
∫ ( |g′(r2)|2

|g(r2)| r6 + g(r2)r4

)
dr < +∞

such that the inequality

f(v)(1 + |v − J̄ |2)1f(v)≥2g( 1
2 |v−J̄|2) ≤

4
ν

(h(f)− h(M1,J̄,1)− (f −M1,J̄,1)h
′(M1,J̄,1))

holds for each J̄ and for each function f for which the right hand side is defined.

Proof. Define the convex function H by

H(x) =
1

M1,J̄,1
(h(M1,J̄,1(1 + x)) − h(M1,J̄,1)− xM1,J̄,1h

′(M1,J̄,1)) .

A direct computation shows that

H∗(y) =
1

M1,J̄,1
(h∗(y + h′(M1,J̄,1)) + h(M1,J̄,1)−M1,J̄,1(y + h′(M1,J̄,1))) ,

then, by Young’s inequality,
ν

2
(f −M1,J̄,1)(1 + |v − J̄ |2) ≤ M1,J̄,1

(
H

(
f −M1,J̄,1

M1,J̄,1

)
+ H∗

(ν
2
(1 + |v − J̄ |2)

))

≤ (h(f)− h(M1,J̄,1) − (f −M1,J̄,1)h
′(M1,J̄,1))

+ h∗
(
λ+

ν

2
− ν

2
|v − J̄ |2

)
+ h(M1,J̄,1)

+ M1,J̄,1

(
ν

2
|v − J̄ |2 − ν

2
− λ

)
. (4.15)

Define then g by

g(r) =
2
ν

(
h∗
(
λ+

ν

2
− νr

)
+ h(h′−1(λ− 2νr)) + h′−1(λ− 2νr)(2νr − λ)

)
.

(4.16)

Then (4.15) can be recast as

f(1 + |v − J̄ |2) ≤ 2
ν

(h(f) − h(M1,J̄,1) − (f −M1,J̄,1)h
′(M1,J̄,1)) + g

(
1
2
|v − J̄ |2

)



May 9, 2003 13:43 WSPC/103-M3AS 00264

Gyrokinetic and Quasineutral Limit for Vlasov–Poisson 685

from which we deduce that

f(v)(1+ |v− J̄ |2)1f(v)≥2g( 1
2 |v−J̄|2) ≤

4
ν

(h(f)−h(M1,J̄,1)− (f −M1,J̄,1)h
′(M1,J̄,1)) .

Moreover, the assumptions made on h guarantee that g defined by (4.16) verifies
the expected regularity and integrability conditions. Indeed

g(r) =
2
ν

h∗
(
λ+

ν

2
− νr

)
− 2
ν

h∗ (λ− 2νr) ∼
r→∞

2
∫ r

∞
(h′)−1

(
λ+

ν

2
− νs

)
ds,

g′(r) = −2(h′)−1

(
λ+

ν

2
− νr

)
+ 4(h′)−1(λ− 2νr) ∼

r→∞
−2(h′)−1

(
λ+

ν

2
− νr

)

and these, together with the assumption that

∀ p ≥ 0 ,

∫
|h′−1(−r2))|rp dr < +∞ ,

leads to the expected bound.

Equipped with this preliminary result, we can now prove Proposition 4.3.

Proof of Proposition 4.3. Introduce a smooth truncation γ ∈ C∞(R+, [0, 1])
such that

γ ≡
{

1 on [0, 2] ,

0 on [3, +∞[ .

Denote by fε a solution of (1.1) and by f̃ε = fεγ( fε

g ) where g and all its derivatives
are always taken at point |v − J̄ |2/2. Then,

ε∂tf̃ε + εv · ∇xf̃ε − (∇xVε + v ∧ b) · ∇vf̃ε =
f2

ε

g2
γ′
(

fε

g

)
g′(∇xVε + J̄ ∧ b) · (v − J̄)

+
f2

ε

g2
γ′
(

fε

g

)
g′(ε∂tJ̄ + εv · ∇xJ̄) · (v − J̄) .

(4.17)

Integrating (4.17) against (v1 − J̄1)(v2 − J̄2) leads to
∫

f̃ε

[
(v2 − J̄2)(∂1Vε + v2) + (v1 − J̄1)(∂2Vε − v1)

]
dv

= −ε∂t

∫
f̃ε(v1 − J̄1)(v2 − J̄2) dv − ε∇x ·

∫
f̃ε(v1 − J̄1)(v2 − J̄2) vdv

− ε

∫
f̃ε(∂tJ̄1(v2 − J̄2) + ∂tJ̄2(v1 − J̄1)) dv

− ε

∫
f̃ε(v · ∇xJ̄1(v2 − J̄2) + v · ∇xJ̄2(v1 − J̄1)) dv
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+ ε

∫
f2

ε

g2
γ′
(

fε

g

)
g′(∂tJ̄ + v · ∇xJ̄) · (v − J̄)(v1 − J̄1)(v2 − J̄2) dv

+
∫

f2
ε

g2
γ′
(

fε

g

)
g′(∇xVε + J̄ ∧ b)(v − J̄)(v1 − J̄1)(v2 − J̄2) dv ,

while integrating against (v1 − J̄1)2 − (v2 − J̄2)2 gives

2
∫

f̃ε[(v1 − J̄1)(∂1Vε + v2) − (v2 − J̄2)(∂2Vε − v1)] dv

= −ε∂t

∫
f̃ε[(v1 − J̄1)2 − (v2 − J̄2)2] dv − ε∇x ·

∫
f̃ε[(v1 − J̄1)2 − (v2 − J̄2)2] vdv

− 2ε
∫

f̃ε(∂tJ̄1(v1 − J̄1)− ∂tJ̄2(v2 − J̄2)) dv

− 2ε
∫

f̃ε(v · ∇xJ̄1(v1 − J̄1)− v · ∇xJ̄2(v2 − J̄2)) dv

+ ε

∫
f2

ε

g2
γ′
(

fε

g

)
g′(∂tJ̄ + v∇xJ̄) · (v − J̄)[(v1 − J̄1)2 − (v2 − J̄2)2] dv

+
∫

f2
ε

g2
γ′
(

fε

g

)
g′(∇xVε + J̄ ∧ b) · (v − J̄)[(v1 − J̄1)2 − (v2 − J̄2)2] dv .

Decomposing fε = f̃ε + fε(1− γ( fε

g )) leads to
∫

fε[(v2 − J̄2)2 − (v1 − J̄1)2] dv

=
∫

fε

(
1− γ

(
fε

g

))
[(v2 − J̄2)2 − (v1 − J̄1)2] dv

+
∫

fεγ

(
fε

g

)
[(v2 − J̄2)(−∂1Vε − J̄2)− (v1 − J̄1)(∂2Vε − J̄1)] dv

+
∫

fεγ

(
fε

g

)
[(v2 − J̄2)(v2 + ∂1Vε) − (v1 − J̄1)(v1 − ∂2Vε)] dv

=
∫

fε

(
1− γ

(
fε

g

))
[(v2 − J̄2)2 − (v1 − J̄1)2] dv

+
∫

f̃ε[(v2 − J̄2)(−∂1Vε − J̄2) − (v1 − J̄1)(∂2Vε − J̄1)] dv

− ε∂t

∫
f̃ε(v1 − J̄1)(v2 − J̄2) dv − ε∇x

∫
f̃ε(v1 − J̄1)(v2 − J̄2) vdv

− ε

∫
f̃ε(∂tJ̄1(v2 − J̄2) + ∂tJ̄2(v1 − J̄1)) dv
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− ε

∫
f̃ε(v · ∇xJ̄1(v2 − J̄2) + v · ∇xJ̄2(v1 − J̄1)) dv

+ ε

∫
f2

ε

g2
γ′
(

fε

g

)
g′(∂tJ̄ + v · ∇xJ̄) · (v − J̄)(v1 − J̄1)(v2 − J̄2) dv

+
∫

f2
ε

g2
γ′
(

fε

g

)
g′(∇xVε + J̄ ∧ b) · (v − J̄)(v1 − J̄1)(v2 − J̄2) dv

= I1 + I2 + ∂tI3 +∇xI4 + I5 + I6 (4.18)

and

4
∫

fε(v1 − J̄1)(v2 − J̄2) dv

= 4
∫

fε

(
1− γ

(
fε

g

))
(v1 − J̄1)(v2 − J̄2) dv

+ 2
∫

f̃ε[−(v1 − J̄1)(∂1Vε + J̄2) + (v2 − J̄2)(∂2Vε − J̄1)] dv

− ε∂t

∫
f̃ε[(v1 − J̄1)2 − (v2 − J̄2)2] dv − ε∇x

∫
f̃ε[(v1 − J̄1)2 − (v2 − J̄2)2] vdv

− 2ε
∫

f̃ε(∂tJ̄1(v1 − J̄1)− ∂tJ̄2(v2 − J̄2)) dv

− 2ε
∫

f̃ε(v · ∇xJ̄1(v1 − J̄1)− v · ∇xJ̄2(v2 − J̄2)) dv

+ ε

∫
f2

ε

g2
γ′
(

fε

g

)
g′(∂tJ̄ + v∇xJ̄) · (v − J̄)[(v1 − J̄1)2 − (v2 − J̄2)2] dv

+
∫

f2
ε

g2
γ′
(

fε

g

)
g′(∇xVε + J̄ ∧ b) · (v − J̄)[(v1 − J̄1)2 − (v2 − J̄2)2] dv

= I ′1 + I ′2 + ∂tI
′
3 +∇xI ′4 + I ′5 + I ′6 . (4.19)

It remains to estimate each term on the right-hand sides of (4.18) and (4.19). By
Lemma 4.3,

|I1| + |I ′1] ≤ C

∫
(h(fε) − h(M1,J̄,1) − (fε −M1,J̄,1)h

′(M1,J̄,1)) dv . (4.20)

By the Cauchy–Schwarz inequality, as
∫

f̃εdv ≤ 2
∫

gdv ≤ C,

|I2| + |I ′2| ≤ C|∇xVε + J̄ ∧ b|2 + C
|
∫

f̃ε(v − J̄) dv|2

1 +
∫

f̃εdv
.

Decomposing fε = f̃ε + fε(1− γ( fε

g )) leads to

|
∫

f̃ε(v − J̄) dv|2

1 +
∫

f̃εdv
≤

|
∫

f̃ε(v − J̄) dv|2

1 +
∫

fε dv
+

|
∫

f̃ε(v − J̄) dv|2
∫

fε(1− γ( fε

g )) dv

(1 +
∫

f̃εdv)(1 +
∫

fε dv)
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≤ 2
|
∫

fε(v − J̄) dv|2

1 +
∫

fε dv
+ 2

|
∫

fε(1− γ( fε

g ))|v − J̄ |dv|2

1 +
∫

fε dv

+ 4
∣∣∣∣
∫

g|v − J̄ |dv

∣∣∣∣
2 ∫

fε

(
1− γ

(
fε

g

))
dv

≤ 2
|
∫

fε(v − J̄) dv|2

1 +
∫

fε dv
+ 2
∫

fε

(
1− γ

(
fε

g

))
|v − J̄ |2 dv

+ 4
∣∣∣∣
∫

g|v − J̄ |dv

∣∣∣∣
2 ∫

fε

(
1− γ

(
fε

g

))
dv .

By Lemmas 4.3 and 4.2

|
∫

f̃ε(v − J̄) dv|2

1 +
∫

f̃εdv
≤ C

∫
(h(fε) − h(M1,J̄,1) − (fε −M1,J̄,1)h′(M1,J̄,1)) dv .

Thus,

(|I2| + |I ′2|) ≤ C

∫
(h(fε) − h(M1,J̄,1)− (fε −M1,J̄,1)h

′(M1,J̄,1)) dv

+ C|∇xVε + J̄ ∧ b|2 . (4.21)

In the same way,

|I6| + |I ′6| ≤ C|∇xVε + J̄ ∧ b|2 + C

∣∣∣∣
∫

f2
ε

g2
γ′
(

fε

g

)
|g′| |v − J̄ |3 dv

∣∣∣∣
2

with
∣∣∣∣
∫

f2
ε

g2
γ′
(

fε

g

)
|g′| |v − J̄ |3 dv

∣∣∣∣
2

≤ C

(∫
gγ′
(

fε

g

)
|v − J̄ |2 dv

)(∫ |g′|2
g

|v − J̄ |4 dv

)

≤ C

∫
(h(fε) − h(M1,J̄,1) − (fε −M1,J̄,1)h

′(M1,J̄,1)) dv

by Lemma 4.3. Then,

(|I6| + |I ′6|) ≤ C

∫
(h(fε) − h(M1,J̄,1)− (fε −M1,J̄,1)h

′(M1,J̄,1)) dv

+ C|∇xVε + J̄ ∧ b|2 . (4.22)

From the trivial bound f̃ε ≤ 2g combined with the estimates on g stated in
Lemma 4.3, we deduce that I3, I ′3, I4, I ′4, I5 and I ′5 converge to 0 in L∞([0, T ]×T3).
Then, as J̄ ∈ C∞([0, T ]×T3),

∫
(∂x1 J̄2 + ∂x2 J̄1)I ′5 dxds → 0 in L∞([0, T ]) ,
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∫
(∂x1 J̄1)I5 dxds → 0 in L∞([0, T ]) , (4.23)

∫
(∂x1 J̄2 + ∂x2 J̄1)∇xI ′4 dx → 0 in L∞([0, T ])

∫
(∂x1 J̄1)∇xI4 dx → 0 in L∞([0, T ]) (4.24)

and
∫ t

0

∫
(∂x1 J̄2 + ∂x2 J̄1)∂tI

′
3 dxds → 0 in L∞([0, T ]) ,

∫ t

0

∫
(∂x1 J̄1)∂tI3 dxds → 0 in L∞([0, T ]) . (4.25)

Combining estimates (4.20)–(4.25) with identities (4.14), (4.18) and (4.19) gives
the expected bound (4.13) on the flux term.

Combining (4.12) with the estimates in Lemma 4.2 and in Proposition 4.3 gives
the expected convergence.

Proof of Theorem 2.2. The global conservations (1.2) and the bounds on the
initial conditions (2.9) imply the existence of f ∈ L∞(R+, L1 ∩ L∞(T3 ×R3)) and
of V ∈ L∞(R+, H1(T3)) such that, up to extraction of a subsequence,

fε(1 + |v|2) ⇀ f(1 + |v|2) weakly-∗ in L∞(R+, L1(T3 × R3)) ,

∇xVε ⇀ ∇xV weakly-∗ in L∞(R+, L2(T3)) .

Taking limits in the Poisson equation shows that
∫

fdv = 1, while the local conser-
vations laws (1.4) and (1.5) give asymptotically

∇x ·
∫

fvdv = 0 and ∇xV = −
∫

fvdv ∧ b

in the sense of distributions.
Let J̄ ∈ C∞([0, T ]×T3) be any vector field verifying the conditions (4.4). From

(4.12) and (4.3) we deduce the existence of a non-negative constant C such that,
for all t ∈ [0, T ]
∫∫

M1,J̄,1H

(
fε − M1,J̄,1

M1,J̄,1

)
dvdx + ν

∫
|∇xVε + J̄ ∧ b|2 dx

≤
∫∫

M1,J̄in,1H

(
f in

ε −M1,J̄in,1

M1,J̄in,1

)
dvdx + ν

∫
|∇xVε + J̄ in ∧ b|2 dx

+ C

∫ t

0
‖D(J̄)‖L∞(T3)

(∫∫
M1,J̄,1H

(
fε −M1,J̄,1

M1,J̄,1

)
dvdx +

∫
|∇xVε + J̄ ∧ b|2 dx

)
ds
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−2ν
∫ t

0

∫
E(J̄) ·

(∫
(v − J̄)fε dv + (∇xVε + J̄ ∧ b) ∧ b

)
(s, x) dxds

+ 2ν
∫ t

0

∫
J̄3∇x(J̄ ∧ b)∂x3Vε(s, x) dxds + ηε(t) ,

where ηε → 0 in L∞([0, T ]) for all T > 0. Below, we denote nε =
∫

fε dv, Jε =∫
fεvdv and J =

∫
fvdv. Gronwall’s inequality and Lemma 4.2 imply that

ν

∫ |Jε − nεJ̄ |2

nε
dx + ν

∫
|∇xVε + J̄ ∧ b|2 dx

≤
(∫∫

M1,J̄in,1H

(
f in

ε −M1,J̄in,1

M1,J̄in,1

)
dvdx + ν

∫
|∇xV in

ε + J̄ in ∧ b|2 dx + ηε

)

× exp
(

C

∫ t

0
‖D(J̄)‖L∞

x
ds

)

−2ν
∫ t

0

∫
E(J̄) ·

(∫
(v − J̄)fε dv + (∇xVε + J̄ ∧ b) ∧ b

)
(s, x)

× exp
(

C

∫ t

s
‖D(J̄)(s)‖L∞

x
dτ

)
dxds .

(4.26)

A direct computation shows that
∫∫

M1,J̄in,1H

(
f in

ε −M1,J̄in,1

M1,J̄in,1

)
dvdx =

∫∫
M1,Jin,1H

(
f in

ε −M1,Jin,1

M1,Jin,1

)
dvdx

+ ν

∫∫
f in

ε |J in − J̄ in|2 dvdx .

Then, taking limits in (4.26) as ε→ 0 leads to

ν

(∫
|J − J̄ |2 dx + |∇xV + J̄ ∧ b|2 dx

)

≤
(

2ν
∫

|J in − J̄ in|2 dx

)
exp
(

C

∫ t

0
‖D(J̄)(s)‖L∞

x
ds

)

− 2ν
∫ t

0

∫
E(J̄)

(
(J − J̄) + (∇xV ∧ b − J̄ ′)

)
(s, x)

× exp
(

C

∫ t

s
(s)‖D(J̄)(s)‖L∞

x
dτ

)
dxds

by the same convexity argument as in the proof of Theorem 2.1. Extending
the stability inequality so obtained to all divergence-free vector fields J̄ ∈ C([0, T ],
L2(T3)) satisfying ∇x · J̄ = 0, ∂x3 J̄ = 0, D(J̄) ∈ L∞([0, T ], L∞(T3)), E(J̄) ∈ L1

([0, T ], L2(T3)), concludes the proof.
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5. General Initial Data: Study of the Coupling Between
Oscillating Terms

If (J̄ ,Φ) does not satisfy conditions (4.1), we must consider the general stability
inequality given by Lemma 4.1

d

dt

(
1
2

∫∫
|v − J̄ |2fε(t, x, v) dvdx +

1
2

∫
|∇xVε −∇x(−∆x)−1/2Φ|2(t, x) dx

)

= −
∫

D(J̄) :
(∫

(v − J̄)⊗2fε dv − (∇xVε −∇x(−∆x)−1/2Φ)⊗2

)
(t, x) dx

− 1
2

∫
(∇x · J̄)|∇xVε −∇x(−∆x)−1/2Φ|2(t, x) dx

−
∫

Eε(J̄ ,Φ) ·
(∫

(v − J̄)fε dv, (∇xVε −∇x(−∆x)−1/2Φ)
)

(t, x) dx ,

where the acceleration operator Eε(J̄ ,Φ) is defined by

Eε(J̄ ,Φ) =

(
∂tJ̄ + J̄∇xJ̄ +

J̄ ∧ b

ε
+

∇x(−∆x)−1/2Φ
ε

,

∂t∇x(−∆x)−1/2Φ− J̄(−∆x)1/2Φ− J̄

ε

)
.

By analogy with the previous results, we expect that the current Jε =
∫

fε vdv and
the electric potential Vε behave respectively as J̄ε and (−∆x)−1/2Φε where (J̄ε,Φε)
denotes the solution of Eε(J̄ ,Φ) = 0.

As Eε depends crucially on ε, solutions (J̄ε,Φε) of Eε(J̄ ,Φ) = 0 also depend
on ε. Then, in order to describe the asymptotic behavior of the family ((J̄ε,Φε))ε

(which is the problem we want to study), we need to have a good notion of solution
for the equation Eε(J̄ ,Φ) = 0. In particular, we will require that

• the life span Tε of these solutions are bounded from below: infε>0 Tε > 0;
• the solutions satisfy uniform bounds (implying that the family of solutions

indexed by ε is compact in some appropriate function space).

Indeed we will restrict our attention to smooth initial data (with smoothness to
be made precise later). For such initial data, the unique solution of Eε(J̄ ,Φ) = 0
can be decomposed as the sum of a non-oscillating part approximately governed by
the 2D1/2 incompressible Euler equation (1.15), and of terms oscillating at high-
frequency. Such a solution exists as long as does the strong solution of (1.15).

5.1. Construction of approximate solutions for Eε(J̄ ,Φ) = 0

Proposition 2.1 shows that the linear part of the equation Eε(J̄ ,Φ) = 0 generates
a group of isometries R(t) = exp(tR). Proceeding as in Schochet,27 we remove the
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fast temporal oscillations in the solution by considering instead of (J̄ε,Φε) the new
unknown

Ψε = R
(

t

ε

)
(J̄ε,Φε) . (5.1)

Thus Ψε is expected to have uniformly bounded time derivatives and to converge
strongly, up to extraction of a subsequence, in some function space. In order to
establish such a convergence result, we first have to determine the structure of the
equation governing the evolution of Ψε and then study its asymptotic behavior as
ε→ 0.

Lemma 5.4. (Van der Pol transform) Let (J̄ε,Φε) be a solution of the equation
Eε(J̄ , φ) = 0. Define Ψε by (5.1), then Ψε satisfies

∂tΨε + Q

(
t

ε
, Ψε, Ψε

)
= 0 , (5.2)

where the non-autonomous bilinear operator (a, b) .→ Q(t, a, b) is defined by its
Fourier coefficients

∀ k ∈ Z3 , FkQ(t, a, b) =
∑

l+m=k

∑

η∈[[1,4]]3

exp(itωη(k, l, m))sη(k, l, m)[Fla,Fmb] .

(5.3)

The phase ωη(k, l, m) is given by

ωη(k, l, m) = λη1(k) − λη2(l)− λη3(m) ,

where (iλj(k))j∈[[1,4]] are the eigenvalues of the symbol FkR of R. The bilinear map
(α, β) .→ sη(k, l, m)[α, β] — defined in (5.10) below — satisfies the estimate

‖sη(l + m, l, m)‖ ≤ C(|l| + |m|)

for some non-negative constant C and |k|2 = k2
1

a2
1

+ k2
2

a2
2

+ k2
3

a2
3
.

Proof. The equation Eε(J̄ ,Φ) = 0 is equivalent to the following system:

∂tJ̄ + (J̄ · ∇x)J̄ +
J̄ ∧ b

ε
+

∇x(−∆x)−1/2Φ
ε

= 0 ,

∂tΦ + (−∆x)−1/2∇x · (J̄(−∆x)1/2Φ) +
(−∆x)−1/2∇x · J̄

ε
= 0 ,

which can be rewritten

∂t(J̄ ,Φ) +
1
ε
R(J̄ ,Φ) + ((J̄ · ∇x)J̄ , (−∆x)−1/2∇x · (J̄(−∆x)1/2Φ)) = 0 .

Conjugating by R( t
ε) leads to

∂tR
(

t

ε

)
(J̄ ,Φ) + R

(
t

ε

)
((J̄ · ∇x)J̄ , (−∆x)−1/2∇x · (J̄(−∆x)1/2Φ)) = 0 .
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Then Ψε = R( t
ε )(J̄ε,Φε) satisfies

∂tΨε + R
(

t

ε

)
B
[
R
(
− t

ε

)
Ψε, R

(
− t

ε

)
Ψε

]
= 0 , (5.4)

where B is the symmetric bilinear operator defined by

B[Ψ,Ψ] = ((Ψ′ · ∇x)Ψ′, (−∆x)−1/2∇x · (Ψ′(−∆x)1/2Ψ4)) (5.5)

with the notation Ψ′ for the 3D vector (Ψ1,Ψ2,Ψ3).
Notice that R is translation invariant, i.e.

Fk(R(t)a) = Rk(t)Fka = exp(FkRt)Fka

we get on the Fourier side

∂tFkΨε = −Fk

(
R
(

t

ε

)
B
[
R
(
− t

ε

)
Ψε, R

(
− t

ε

)
Ψε

])

= −Rk

(
t

ε

)
Fk

(
B
[
R
(
− t

ε

)
Ψε,R

(
− t

ε

)
Ψε

])

= −Rk

(
t

ε

) ∑

l+m=k

Bl,m

[
Fl

(
R
(
− t

ε

)
Ψε

)
, Fm

(
R
(
− t

ε

)
Ψε

)]

from which we deduce

∂tFkΨε + Rk

(
t

ε

) ∑

l+m=k

Bl,m

[
Rl

(
− t

ε

)
FlΨε,Rm

(
− t

ε

)
FmΨε

]
= 0 , (5.6)

where Bl,m is defined by

Bl,m[ΨlΨm] =
1
2

(
i〈Ψl, m〉Ψ′

m + i〈Ψm, l〉Ψ′
l,

+ i|m|Ψm,4

〈
m + l

|m + l| , Ψl

〉
+ i|l|Ψl,4

〈
m + l

|m + l| , Ψm

〉)
(5.7)

where 〈Ψ, k〉 = Ψ1
k1
a1

+Ψ2
k2
a2

+Ψ3
k3
a3

.
In order to obtain the required form for the equation governing Ψε, it remains

to describe precisely the symbol of R. For each k ∈ Z3, the skew-symmetric matrix
Rk = FkR can be reduced to the diagonal form on C with purely imaginary
eigenvalues

iλ1(k) = i
√

1 + k∗ , iλ2(k) = −i
√

1 + k∗ ,

iλ3(k) = i
√

1− k∗ , iλ4(k) = −i
√

1− k∗ ,

where

k∗ =
(

k2
1

a2
1

+
k2
2

a2
2

)1/2(
k2
1

a2
1

+
k2
2

a2
2

+
k2
3

a2
3

)−1/2

. (5.8)
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The canonical basis of C4 is denoted by (Vj)j∈[[1,4]] and Aj = Vj ⊗ V T
j . Let Pk be

a unitary transition matrix such that

Rk = P ∗
k




4∑

j=1

iλj(k)Aj



Pk .

Then Rk(t) is also reducible to diagonal form on C with eigenvalues
(exp(itλj(k)))j∈[[1,4]]

Rk(t) = P ∗
k




4∑

j=1

exp(itλj(k))Aj



Pk .

Replacing in (5.6) leads to

∂tFkΨε +
∑

l+m=k

∑

η∈[[1,4]]3

exp(itωη(k, l, m))sη(k, l, m)[FlΨε, FmΨε] = 0 ,

where

ωη(k, l, m) = λη1(k) − λη2(l)− λη3 (m) (5.9)

and

sη(k, l, m)[α, β] = (P ∗
k Aη1Pk)Bl,m[P ∗

l Aη2Plα, P ∗
mAη3Pmβ] . (5.10)

From (5.7) we infer that ‖Bl,m‖ ≤ C(|l| + |m|) for some positive constant C.
Combining both results gives the expected bound on sη(k, l, m).

The formal limit Ψ of Ψε as ε→ 0 is obtained by formal time averaging and is
supposed to solve

∂tΨ+ Q∞(Ψ,Ψ) = 0 , (5.11)

where the non-autonomous bilinear operator (a, b) .→ Q∞(a, b) is defined by its
Fourier coefficients

∀ k ∈ Z3 , FkQ∞(a, b) =
∑

l+m=k
ωη(k,l,m)=0

sη(k, l, m)[Fla,Fmb] . (5.12)

In order to make precise the structure of the limiting Eq. (5.11), we need an accurate
description of the resonances, i.e. of the set {(l, m, η)|ωη(l + m, l, m) = 0}.

Lemma 5.5. (Structure of the limiting equation) For all η ∈ [[1, 4]]3 and all
k, l, m ∈ Z3, define ωη(k, l, m) by (5.9). Then there exists a set A ⊂ (R+

∗ )3 of
Lebesgue measure zero such that for all (a1, a2, a3) ∈ (R+

∗ )3 \ A,

• ωη(l + m, l, m) = 0 implies that l3 = 0 or m3 = 0 or l3 + m3 = 0,
• ωη(l + m, l, m) = 0 with l3, m3 8= 0 ⇔ η1 ∈ {3, 4} and λη2(l) + λη3(m) = 0,
• ωη(l + m, l, m) = 0 with l3 + m3, m3 8= 0 ⇔ η2 ∈ {3, 4} and λη1(l + m) = λη3(m),
• ωη(l + m, l, m) = 0 with l3 + m3, l3 8= 0 ⇔ η3 ∈ {3, 4} and λη1(l + m) = λη2(l).
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In particular, for such periodic boxes, any solution Ψ of (5.11) can be decomposed
in

Ψ = Ψ̄ + Ψosc ,

where E(Ψ̄) = 0 (which means that Ψ̄′ satisfies the incompressible 2D1/2 Euler
Eq. (1.15) while ∇x(−∆x)−1/2Ψ̄4 + Ψ̄′ ∧ b = 0), and Ψosc is governed by a linear
system of equations whose coefficients depend on Ψ̄.

Proof. The results concerning the resonances, i.e. the solutions of the dispersion
equation

ωη(l + m, l, m) = 0

come from algebraic properties of the functions k .→ λj(k) defined by (5.8): the
main argument is the small divisor estimate stated in Appendix B. Define

q(l, m) = Πη∈[[1,4]]3 ωη(l + m, l, m) .

By (5.9), q(l, m) is a polynomial with respect to the variables λj(k) (for j ∈ [[1, 4]]
and k ∈ {l, m, l + m}). Considerations of symmetry ensure that it is in fact a
polynomial in the σj(k)’s (j ∈ [[1, 4]], k ∈ {l, m, l + m}) where (σj)j∈[[1,4]] are the
elementary symmetrical functions in the (λj)j∈[[1,4]]. Computing these elementary
symmetrical functions shows that q(l, m) is a polynomial with respect to (l∗)2,
(m∗)2 and ((l+m)∗)2. Then there exist an integer N and a polynomial P such that

q(l, m) = |l|−N |m|−N |l + m|−NP

(
l1
a1

,
l2
a2

,
l3
a3

,
m1

a1
,

m2

a2
,

m3

a3

)
.

By Proposition B.1, there exists a set A ⊂ (R+
∗ )3 of Lebesgue measure zero and

Ω ⊂ Z6 such that for all (a1, a2, a3) ∈ (R∗
+)3 \ A there exists (C, s) such that

∀ (l, m) ∈ Ω , q(l, m) ≡ 0 ,

∀ (l, m) ∈ Z6 \ Ω , |q(l, m)|−1 ≤ C(1 + |l|)s(1 + |m|)s .
(5.13)

In particular, as |ωη(l + m, l, m)| ≤ 3
√

2 for all η ∈ [[1, 4]] and all l, m ∈ Z3, this
implies

∀ (l, m) ∈ Z6 \ Ω , ∀ η ∈ [[1, 4]] , |ωη(l + m, l, m)|−1 ≤ C(1 + |l|)s(1 + |m|)s .

In order to establish the characterization of the resonances, we have to describe the
set Ω. Consider (l, m) ∈ Z6. If l3, m3 and l3 + m3 are not equal to zero, l∗, m∗ and
(l + m)∗ tend to 0 as a3 → 0. Then, for each η, ωη(l + m, l, m) converges to an odd
number as a3 → 0. Thus q(l, m) 8≡ 0 and (l, m) /∈ Ω. Conversely, if l3, m3 or l3 +m3

is equal to zero, it is easy to check that q(l, m) ≡ 0. Thus,

Ω = {(l, m) ∈ Z6|l3 = 0, m3 = 0, or l3 + m3 = 0} . (5.14)

Combining (5.13) and (5.14) provides the first assertion in Lemma 5.5, i.e. a
necessary condition for a resonance to appear. To complete our description, we
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must determine exactly which (l, m, η) with (l, m) ∈ Ω and η ∈ [[1, 4]] satisfy
the dispersion relation. If l3 = m3 = l3 + m3 = 0, we easily obtain the various
(η1, η2, η3) leading to ωη(l + m, l, m) = 0. Then, by a symmetry argument, it is
enough to consider the case with l3 8= 0 and l3 + m3 = 0.

• If η1 = 3 or η1 = 4, then λη1(l + m) = 0 and the result is clear.
• If η1 = 1 or η1 = 2, λη1(l + m) = ±

√
2. Define

q′(l, m) = Π(η2,η3)∈[[1,4]]2(
√

2− λη2(l)− λη3 (m)) .

The same arguments as before imply the existence of A′ of Lebesgue measure
zero such that ∀ (a1, a2, a3) ∈ (R∗

+)3 \ A′, there exists (C, s) such that

∀ (l, m) ∈ Z6 \ Ω′ , ∀ (η2, η3) ,

|
√

2− λη2(l)− λη3(m)|−1 ≤ C(1 + |l|)s(1 + |m|)s

Ω′ = {(l, m) ∈ Z6|l3 = 0 or m3 = 0} .

(5.15)

Upon replacing A by A ∪ A′, also of Lebesgue measure zero, we cannot have
ωη(k, l, m) = 0 with l3, m3 8= 0 if η1 = 1 or η1 = 2.

This completes the characterization of resonances. Notice that, as a consequence
of (5.13)–(5.15), we obtain the existence of a set A of Lebesgue measure zero such
that ∀ (a1, a2, a3) ∈ (R∗

+)3\A there exists (C, s) such that

∀ (l, m, η) , ωη(l + m, l, m) = 0

or |ωη(l + m, l, m)|−1 ≤ C(1 + |l|)s(1 + |m|)s . (5.16)

We next turn to the second part of Lemma 5.5, showing how the results above on
resonances allow to decouple the equations governing Ψ̄ = P(Ψ) where P denotes
the projection on the kernel of R:

FkΨ̄ =

{
P ∗

k (A3 + A4)PkFkΨ if k3 = 0 ,

0 otherwise .
(5.17)

By (5.11), (5.12) and (5.10),

∂tFkΨ+
∑

l+m=k
ωη(k,l,m)=0

(P−1
k Aη1Pk)Bl,m[P−1

l Aη2PlFlΨ, P−1
m Aη3PmFmΨ] = 0 .

Then, if k3 = 0,

∂tFkΨ̄ +
∑

l+m=k,η1∈{3,4}
ωη(k,l,m)=0

(P−1
k Aη1Pk)Bl,m[P−1

l Aη2PlFlΨ, P−1
m Aη3PmFmΨ] = 0 .

The previous results on resonances show that if η1 ∈ {3, 4}, l3 + m3 = 0,

ωη(l + m, l, m) = 0 ⇔ λη2(l) + λη3 (m) = 0 .
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Considerations of symmetry as in Proposition C.1 show that

(P−1
k (A3 + A4)Pk)

∑

l+m=k
λη2 (l)+λη3 (m)=0

Bl,m[P−1
l Aη2PlFlΨ, P−1

m Aη3PmFmΨ]

= (P−1
k (A3 + A4)Pk)

∑

l+m=k
η2,η3∈{3,4}

Bl,m[P−1
l Aη2PlFlΨ, P−1

m Aη3PmFmΨ] .

Finally the equation for FkΨ̄ with k3 = 0 is rewritten

∂tFkΨ̄ + (P−1
k (A3 + A4)Pk)

∑

l+m=k

Bl,m[FlΨ̄, FmΨ̄] = 0

meaning that

∂tΨ̄ + P(B(Ψ̄, Ψ̄)) = 0 with the constraint Ψ̄ = P(Ψ̄) (5.18)

or equivalently that (Ψ̄′, Ψ̄4) verifies (4.1) and that Ψ̄′ satisfies the 2D1/2 incom-
pressible Euler equation (1.15). It remains to determine the equations governing
Ψosc = Ψ− Ψ̄.

• If k3 = 0,

∂tFkΨosc +
∑

l+m=k, η1∈{1,2}
ωη(k,l,m)=0

(P−1
k Aη1Pk)Bl,m[P−1

l Aη2PlFlΨ, P−1
m Aη3PmFmΨ] = 0 .

The previous results on resonances imply that

l3 + m3 = 0 , ωη(l + m, l, m) = 0 , η1 ∈ {1, 2}

⇔ l3 = m3 = 0 , η1 = η2 ∈ {1, 2} , η3 ∈ {3, 4}

or l3 = m3 = 0 , η1 = η3 ∈ {1, 2} , η2 ∈ {3, 4} .

By symmetry,

∂tFkΨosc+2
∑

l+m=k,η1∈{1,2}

(P−1
k Aη1Pk)Bl,m[FlΨ̄, P−1

m Aη1PmFmΨ] = 0 . (5.19)

• If k3 8= 0,

∂tFkΨosc +
∑

l+m=k
ωη(k,l,m)=0

(P−1
k Aη1Pk)Bl,m[P−1

l Aη2PlFlΨ, P−1
m Aη3PmFmΨ] = 0 .

The previous results on resonances imply that

l3 + m3 8= 0 , ωη(l + m, l, m) = 0 ,

⇔ l3 = 0 , η1 = η3 , η2 ∈ {3, 4} , m∗ = (l + m)∗

or m3 = 0 , η1 = η2 , η3 ∈ {3, 4} , l∗ = (l + m)∗ .
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Then, by symmetry,

∂tFkΨosc + 2
∑

l+m=k,η1∈{3,4}
m∗=(l+m)∗

(P−1
k Aη1Pk)Bl,m[FlΨ̄, P−1

m Aη1PmFmΨ] = 0 . (5.20)

Combining both results proves that Ψosc is governed by a linear system of equations
whose coefficients depend on Ψ̄.

In order to estimate the error made in replacing Ψε by the solution Ψ of the
limiting Eq. (5.11), we will need some regularity estimates on Ψ. The projection
Ψ̄ of Ψ on the kernel of R is smooth, at least locally in time, since Ψ̄ satisfies the
2D1/2 incompressible Euler equation. It remains to establish that Ψosc can also be
controlled in the Sobolev norms.

Lemma 5.6. (Regularity estimates) Consider a periodic box Qa1,a2,a3 with
(a1, a2, a3) ∈ (R+

∗ )3 \ A. Let Ψ be a solution of (5.11) on [0, T ] with smooth initial
data. Denote by Ψ̄ its projection on Ker(R) and by Ψosc = Ψ − Ψ̄. Then, for all
s ∈ N, there exists some non-negative constant C such that ∀ t ∈ [0, T ]

‖Ψosc(t)‖Hs(Qa1,a2,a3 ) ≤ ‖Ψin
osc‖Hs(Qa1,a2,a3 )

× exp
(

C

∫ t

0
‖Ψ̄(τ)‖Hs+7/2(Qa1,a2,a3 ) dτ

)
. (5.21)

Proof. We will obtain the propagation of regularity on Ψosc as an easy property
of B, after rewriting the limiting equation in a convenient form.

Indeed we consider the following decomposition of Ψosc:

Ψosc =
∑

n∈N
ψn ,

where

Fψ0 =
∑

k∗=1

(P−1
k (A1 + A2)PkFkΨosc) ,

Fψn =
∑

k∗=αn

(P−1
k (A3 + A4)PkFkΨosc) , ∀n ∈ N∗

and αn goes over the set {k∗ 8= 1/k ∈ Z3} (which is of course a countable set).
Checking that

∀ i, j ∈ N , i 8= j , {k ∈ Z3/k∗ = αi} ∩ {k ∈ Z3/k∗ = αj} = ∅ ,

we obtain

‖Ψosc‖2
Hs(Qa1,a2,a3 ) =

∑

n∈N
‖ψn‖2

Hs(Qa1,a2,a3) . (5.22)

Equations (5.19)–(5.20) of the limiting system can be rewritten as:

∀n ∈ N , ∂tψn + 2B(Ψ̄, ψn) = 0 . (5.23)
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In view of (5.22) and (5.23), Lemma 5.6 will be established if we prove that the
transport operator (∂t + 2B(Ψ̄, .)) propagates the Sobolev regularity. Let ψ be a
solution of

∂tψ + 2B(Ψ̄, ψ) = 0 . (5.24)

Differentiating (5.24) leads to

∀ s ∈ N3 , ∂tD
sψ + 2B(Ψ̄, Dsψ) + 2

∑

σ +=0,σi≤si

3∏

i=1

(
si

σi

)
B(DσΨ̄, Ds−σψ) = 0 .

Then, using the definition of B, we get

∂tD
sψ′ + (Ψ̄′ · ∇x)Dsψ′

= −(ψ′ · ∇x)DsΨ̄′ − 2
∑

σ +=0,σi≤si

3∏

i=1

(
si

σi

)
B′(DσΨ̄, Ds−σψ) ,

∂tD
s(−∆x)1/2ψ4 + ∇x(Ψ̄′Ds(−∆x)1/2ψ4)

= −∇x(ψ′Ds(−∆x)1/2Ψ̄4 − 2
∑

σ +=0,σi≤si

3∏

i=1

(
si

σi

)
(−∆x)1/2B4(DσΨ̄, Ds−σψ) .

As ∇xΨ̄′ = 0, this implies
1
2

d

dt
‖ψ′‖2

Hs(Qa1,a2,a3) ≤ C‖Ψ̄′‖Hs+1+3/2(Qa1,a2,a3 )‖ψ′‖2
Hs(Qa1,a2,a3 )

and
1
2

d

dt
‖(−∆x)1/2ψ4‖2

Hs(Qa1,a2,a3 )

≤ C‖Ψ̄‖Hs+2+3/2(Qa1,a2,a3 )(‖ψ′‖2
Hs(Qa1,a2,a3) + ‖(−∆x)1/2ψ4‖2

Hs(Qa1,a2,a3 )) .

We conclude by Gronwall’s lemma that

‖ψ(t)‖Hs(Qa1,a2,a3 ) ≤ ‖ψin‖Hs(Qa1,a2,a3 ) exp
(

C

∫ t

0
‖Ψ̄(τ)‖Hs+7/2(Qa1,a2,a3 )‖dτ

)
.

(5.25)

Applying estimate (5.25) to each ψn and using (5.22) gives the expected regularity
on Ψosc.

5.2. Error estimates

In the sequel, we assume that (a1, a2, a3) is chosen in (R+
∗ )3\A, where A is the

set of Lebesgue measure zero in Lemma 5.5. A consequence of this lemma is
the global existence of a unique solution for (5.11) and (5.12) with initial data
(J in,Φin) ∈ Cr(Qa1,a2,a3) (r > 1). Indeed the theory of the 2D1/2 incompressible
Euler equation (1.15) guarantees the global existence of a unique solution Ψ̄ for
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(5.18)–(5.5) with initial data P(J in,Φin) ∈ Cr(Qa1,a2,a3), while the theory of linear
differential equations gives the existence and the uniqueness of Ψosc satisfying (5.19)
and (5.20) with initial data (Id −P)(J in,Φin) as long as Ψ̄ is defined.

For all ε > 0, let Ψε be a solution of (5.2) and (5.3) with initial data (J in,Φin).
We expect that the asymptotic behavior of Ψε as ε→ 0 is described by the solution
Ψ of the formal limiting Eqs. (5.11), (5.12). Yet we cannot prove directly that

∂tΨ+ Q

(
t

ε
, Ψ, Ψ

)
⇀ 0

in a weak sense to be made precise. Then, using a standard method in singular
perturbation problems,27 we introduce a small quantity εyε such that

∂t(Ψ + εyε) + Q

(
t

ε
, (Ψ + εyε), (Ψ + εyε)

)
→ 0 ,

where the convergence here holds strongly in some appropriate sense. Of course,
Ψ + εyε has the same asymptotic behavior as Ψ.

Lemma 5.7. Let (J in, Φin) ∈ Cr0(Qa1,a2,a3) with r0 > 13/2. Denote by
Ψ ∈ L∞([0, T ], Hr) the solution of (5.11) and (5.12) with initial data (J in,Φin);
define yε by its Fourier coefficients

∀ k ∈ Z3, Fkyε = −
∑

l+m=k, |l|+|m|≤| log ε|,
η∈[[1,4]]3, ωη(k,l,m)&=0

exp
(

it
ε ωη(k, l, m)

)

iωη(k, l, m)
sη(k, l, m)[FlΨ, FmΨ] .

(5.26)

Then,

• there exists a non-negative constant C such that, for each r ≤ r0 − 7/2

‖yε‖L∞([0,T ],Hr) ≤ C| log ε|2s+1 ,

where s depends only on (a1, a2, a3) ∈ (R+
∗ )3 \ A.

• there exists δ ∈ C(R+) with δ(0) = 0 such that
∥∥∥∥∂t(Ψ + εyε) + Q

(
t

ε
, (Ψ + εyε), (Ψ + εyε)

)∥∥∥∥
L∞([0,T ],H2)

≤ δ(ε) .

Proof. The classical theory of the 2D1/2 incompressible Euler equation (1.15)
gives the following a priori bounds for the solution Ψ̄ of (5.18)–(5.5) with initial
data P(J in,Φin)

‖Ψ̄‖L∞([0,T ],Cr) + ‖∂tΨ̄‖L∞([0,T ],Cr−1) ≤ CT ,

where CT depends on T and on ‖(J in,Φin)‖Cr . By Lemma 5.6, Ψosc solves a linear
system that preserves all Sobolev norms. It is then easily checked that, for each
r ≤ r0 − 7/2

‖Ψosc‖L∞([0,T ],Hr) + ‖∂tΨosc‖L∞([0,T ],Hr−1) ≤ CT .
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Then, for all T > 0, there exists CT > 0 such that

‖Ψ‖L∞([0,T ],Hr) + ‖∂tΨ‖L∞([0,T ],Hr−1) ≤ CT . (5.27)

By (5.16), there exist non-negative constants (C, s) such that

∀ (l, m, η), ωη(l + m, l, m) 8= 0 ⇒ |ωη(l + m, l, m)|−1 ≤ C(1 + |l|)s(1 + |m|)s .

By Lemma 5.4,

|sη(l + m, l, m)| ≤ C(|l| + |m|) .

Combining these last two estimates leads to

|Fkyε| ≤ C
∑

l+m=k,|l|+|m|≤| log ε|

(1 + |l|)s(1 + |m|)s(|l| + |m|)|FlΨ| |FmΨ|

≤ C| log ε|2s+1
∑

l+m=k

|FlΨ| |FmΨ| .

Then

(1 + |k|2)r/2|Fkyε| ≤ C| log ε|2s+1
∑

l+m=k

(1 + |l|2)r/2|FlΨ|(1 + |m|2)r/2|FmΨ|

which, together with (5.27) gives the expected bound on ‖yε‖L∞([0,T ],Hr).
In the next step we check that Ψ + εyε approximately verifies both (5.2) and

(5.3). By (5.11), (5.12) and (5.26),

∂tFk(Ψ + εyε) = −
∑

l+m=k,
ωη(k,l,m)=0

sη(k, l, m)[FlΨ, FmΨ]

−
∑

l+m=k,|l|+|m|≤| log ε|,
ωη(k,l,m)&=0

exp
(

it

ε
ωη(k, l, m)

)
sη(k, l, m)[FlΨ, FmΨ]

− ε
∑

l+m=k,|l|+|m|≤| log ε|,
ωη(k,l,m)&=0

exp
(

it
ε ωη(k, l, m)

)

iωη(k, l, m)
∂tsη(k, l, m)[FlΨ, FmΨ]

from which we deduce that

∂tFk(Ψ + εyε) + FkQ

(
t

ε
, Ψ+ εyε, Ψ+ εyε

)

=
∑

l+m=k,|l|+|m|>| log ε|
ωη(k,l,m)&=0

exp
(

it

ε
ωη(k, l, m)

)
sη(k, l, m)[FlΨ, FmΨ]

+ εFkQ

(
t

ε
, yε, 2Ψ + εyε

)

−ε
∑

l+m=k,|l|+|m|≤| log ε|,
ωη(k,l,m)&=0

exp
(

it
ε ωη(k, l, m)

)

iωη(k, l, m)
∂tsη(k, l, m)[FlΨ, FmΨ] .
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The estimates on sη(l + m, l, m) and ωη(l + m, l, m) then give

(1 + |k|2)
∣∣∣∣∂tFk(Ψ + εyε) + FkQ

(
t

ε
, Ψ+ εyε, Ψ+ εyε

)∣∣∣∣

≤ C
∑

l+m=k,|l|+|m|>| log ε|

(|l| + |m|)−(r−3)(1 + |l|2)r/2|FlΨ|(1 + |m|2)r/2|FmΨ|

+ Cε
∑

l+m=k

(1 + |l| + |m|)3|Flyε| |Fm(2Ψ + εyε)|

+ Cε
∑

l+m=k,|l|+|m|≤| log ε|,
ωη(k,l,m)&=0

(1 + |l|)s(1 + |m|)s(1 + |l| + |m|)3|∂tFlΨ| |FmΨ|

which can be rewritten
∥∥∥∥∂tFk(Ψ + εyε) + FkQ

(
t

ε
, Ψ+ εyε, Ψ+ εyε

)∥∥∥∥
H2

≤ C| log ε|−(r−3)‖Ψ‖2
Hr + Cε‖yε‖H3‖2Ψ+ εyε‖H3

+ Cε| log ε|2s+3‖∂tΨ‖L2‖Ψ‖L2 .

Using the a priori estimates on Ψ and yε leads to the expected result.

As an immediate consequence of Lemma 5.7, we get the convergence as ε → 0
of the family (Ψε) to the solution Ψ of the limiting Eq. (5.11) and (5.12).

Corollary 5.3. Consider (a1, a2, a3) ∈ (R+
∗ )3 \ A where A is the set of Lebesgue

measure zero defined in Lemma 5.5. Let (J in,Φin) ∈ Cr0(Qa1,a2,a3) with r0 > 13/2.
Assume that, for all ε > 0, there exists a solution Ψε ∈ L∞

loc(R+, L∞((Qa1,a2,a3)) of
(5.2) and (5.3) with initial data (J in,Φin). Denote by Ψ ∈ L∞

loc(R+, Hr(Qa1,a2,a3)),
r > 3, the solution of (5.11) and (5.12) with initial data (J in,Φin). Then (Ψε)ε

converges to Ψ strongly in L∞
loc(R+, L2(Qa1,a2,a3)) as ε→ 0.

Proof. Define yε by (5.26). By Lemma 5.7 and Sobolev embeddings,

∂t(Ψε −Ψ− εyε) + Q

(
t

ε
, Ψε +Ψ+ εyε, Ψε −Ψ− εyε

)
= rε → 0

in L∞
loc(R+, L∞). Rewriting Q in terms of B defined by (5.5) leads to

∂t(Ψε −Ψ− εyε)

+R
(

t

ε

)
B
[
R
(
− t

ε

)
(Ψε +Ψ+ εyε), R

(
− t

ε

)
(Ψε −Ψ− εyε)

]
= rε

from which we deduce that
d

dt
‖Ψε −Ψ− εyε‖L∞ ≤ ‖rε‖L∞ + C‖Ψε −Ψ− εyε‖L∞‖Ψ+ εyε‖W 1,∞ .
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By Sobolev embeddings and the a priori estimates in Lemma 5.7, there exists CT

such that

∀ t ∈ [0, T ] , ‖Ψ‖W 1,∞ + ε1/2‖yε‖W 1,∞ ≤ CT .

Then, by Gronwall’s lemma and the initial bound ‖Ψin
ε −Ψin − εyin

ε ‖L∞ ≤ Cε,

Ψε −Ψ− εyε → 0 strongly in L∞
loc(R+, L∞(Qa1,a2,a3)) ,

which is the expected convergence.

5.3. Convergence proof for general initial data with
monokinetic profiles

The expected asymptotic behavior of
∫

fεvdv and ∇xVε is obtained by combining
the stability results on the Vlasov–Poisson equation (1.1) stated in Lemma 4.1 with
the asymptotic results on the equation Eε(J̄ε,Φε) = 0 coming from Lemmas 5.4
and 5.7.

Proof of Theorem 2.3. By a density argument, the stability inequality given by
Lemma 4.1 can be extended to all (J̄ ,Φ) ∈ L∞

loc(R+, L∞(Qa1,a2,a3)) such that D(J̄)
and Eε(J̄ , φ) belong to L∞

loc(R+, L∞(Qa1,a2,a3)). Consider (a1, a2, a3) ∈ (R+
∗ )3\A

where A is the set of Lebesgue measure zero defined in Lemma 5.5, and define

(J̄ε, Φε) = R
(
− t

ε

)
(Ψ + εyε) , (5.28)

where Ψ is the unique global solution of (5.11) and (5.12) with initial data (J in,Φin)
and yε is defined in terms of Ψ by (5.26). Then,

d

dt

(
1
2

∫∫
|v − J̄ε|2fε(t, x, v) dvdx +

1
2

∫
|∇xVε −∇x(−∆x)−1/2Φε|2(t, x) dx

)

= −
∫

D(J̄ε) :
(∫

(v − J̄ε)⊗2fε dv − (∇xVε −∇x(−∆x)−1/2Φε)⊗2

)
(t, x) dx

− 1
2

∫
(∇x · J̄ε)|∇xVε −∇x(−∆x)−1/2Φε|2(t, x) dx

−
∫

Eε(J̄ε, Φε) ·
(∫

(v − J̄ε)fε dv, (∇xVε −∇x(−∆x)−1/2Φε)
)

(t, x) dx

from which we deduce that
∫∫

|v − J̄ε|2fε(t, x, v) dvdx +
∫

|∇xVε −∇x(−∆x)−1/2Φε|2(t, x) dx

≤
(∫∫

|v − J̄ in
ε |2f in

ε dvdx +
∫
|∇xV in

ε −∇x(−∆x)−1/2Φin
ε |2 dx

)
e4

∫ t
0 ‖D(J̄ε)‖L∞ ds
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−
∫ t

0

∫
Eε(J̄ε, Φε) ·

(∫
(v − J̄ε)fε dv, ∇xVε −∇x(−∆x)−1/2Φε

)
(s, x)

× e4
∫ t

s ‖D(J̄ε)‖L∞ dτ dxds . (5.29)

By Lemma 5.7 and Sobolev embeddings, as R is a group of isometries,

∀ t ≤ T , ‖(J̄ε, Φε)(t)‖W 1,∞ ≤ ‖(Ψ + εyε)(t)‖W 1,∞ ≤ ‖(Ψ + εyε)(t)‖H3 ≤ CT ,

‖(J̄ in
ε − J in, Φin

ε − Φin)‖L∞ ≤ ‖(J̄ in
ε − J in, Φin

ε − Φin)‖H2 ≤ ‖εyin
ε ‖H2 ≤ Cε1/2 ,

and

Eε(J̄ε, Φε) = ∂t(J̄ε, Φε) +
1
ε
R(J̄ε, Φε) + B[(J̄ε, Φε), (J̄ε, Φε)]

= R
(
− t

ε

)(
∂t(Ψ + εyε) + Q

(
t

ε
, Ψ+ εyε, Ψ+ εyε

))

= R
(
− t

ε

)
rε

converges to 0 in L∞
loc(R+, H2(Qa1,a2,a3)). From (1.2) and the bounds on the initial

data (2.10), we deduce that
∫∫

(1 + |v|)fε dvdx +
∫

|∇xVε| dx ≤ C .

Then both terms in the right of (5.29) converges to 0 in L∞
loc(R+). Thus

∫∫
|v − J̄ε|2fε(t, x, v) dvdx

+
∫

|∇xVε −∇x(−∆x)−1/2Φε|2(t, x) dx → 0 in L∞
loc(R+) .

By (5.28) and Lemma 5.5, this is equivalent to the convergence stated in
Theorem 2.3.

6. Lack of a priori Compactness

All the results above lead to strong convergence of (
∫

fε vdv,∇xVε)ε as ε → 0 and
are based on restrictive assumptions on the sequence of initial data (smoothness
and convergence in a very strong sense). Whether it is possible to relax these as-
sumptions and obtain convergence in some weaker sense is a natural question. As
always, the difficulty lies in passing to the limit in nonlinear terms. As we explained
in Sec. 5, time oscillations can be handled provided that the current

∫
fε vdv and

the electric potential Vε verify some kind of compactness property with respect to
space variables. One might therefore attempt to prove that (1.1) propagates some
low regularity in the x variable. This section is aimed at showing why this strategy
is likely to fail.
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6.1. Non-propagation of low Besov regularity by (1.15)

This part elaborates on remarks originally made by DiPerna–Lions13 (see pp. 7
and 8), (with additional details to be found in Lions’ monograph,24 pp. 150–152).
These remarks show that the 3D Euler flow does not propagate W 1,p estimates in
the variable x for each 1 < p < ∞. Here we prove a slightly more general result,
with W 1,p replaced by the Besov space Bp,∞

s for arbitrarily small values of s > 0.
While the analogous statement with Bp,∞

s replaced by W s,p is most likely true —
and in any case mentioned by DiPerna–Lions13 — its proof would be somewhat
more technical than the argument for Bp,∞

s presented below. On the other hand,
establishing that a sequence of functions is bounded in Bp,∞

s is as natural a way
of proving that this sequence is relatively compact in Lp

loc or as proving that it is
bounded in W s′,p for some s′ ∈ (0, s). Thus, we have chosen to show that the 3D
Euler flow does not propagate Bp,∞

s regularity for small s > 0 as an indication of
the difficulty in proving compactness in the space variables for families of solutions
of the 3D incompressible Euler equation.

We first recall the definition of Bp,∞
s (see Stein,28 pp. 150–159 where Bp,q

s is
denoted by Λp,q

s ).

Definition 6.2. Let p ∈ (1, +∞) and s ∈ (0, 1); the Besov Bp,∞
s -norm is defined,

for each smooth function with compact support, by

‖f‖Bp,∞
s

= ‖f‖Lp + sup
z +=0

1
|z|s

(∫
|f(x + z)− f(x)|p

)1/p

.

The space Bp,∞
s consists of all Lp functions such that ‖f‖Bp,∞

s
is finite.

The next lemma contains some essential preparation for the non-propagation
result on 3D Euler.

Lemma 6.8. For all p ≥ 1 and all s ∈ (0, 1/p), there exist a sequence (Wn)n

bounded in Bp,∞
s (T2), and a sequence (Vn)n of C∞ functions bounded in Bp,∞

s (T)
such that the sequence Un defined by

Un : (x1, x2) ∈ T2 .→ Un(x1, x2) = Wn(x1 + Vn(x2), x2)

satisfies ‖Un‖Bp,∞
s (T2) → +∞ as n → +∞.

Proof. Pick W (x1, x2) = W 1(x1)W 2(x2) with W 1(x1) = sin(πx1) and W 2(x2) =
xβ

2 with β = s − 1
p . (In this discussion, T2 is identified with [0, 1)2.) Pick then

α = s/( 1
p − s) and for each n ≥ 10, define

Vn = the indicator function of
n⋃

k=1

[
2k − 1
nα+1

,
2k

nα+1

]
.
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First, observe that, for each z ∈ (0, 1)
∫ 1

0
|W 2(x + z)−W 2(x)|p dx

≤
∫ 1−z

0
|(x + z)β − xβ |p dx +

∫ z

0
|yβ − (y − z + 1)β |p dx

≤ zβp+1

∫ z−1−1

0
|(u + 1)β − uβ|p dx +

∫ z

0
yβp dx

≤ Czβp+1 (6.30)

which shows that W 2 ∈ Bp,∞
s (T) since s = β + 1

p .
Next we observe that, since Vn takes its values in {0, 1},

∫ 1

0
|Vn(x + z)− Vn(x)|p dx ≤

∫ 1

0
|Vn(x + z)− Vn(x)| dx

≤ 2
∫ 1

0
|Vn(x)| dx =

2
nα

; (6.31)

further, if 0 < z < n−α−1, then

|Vn(x + z)− Vn(x)| =






1 if x
2n⋃

l=1

[
l

nα+1
− z,

l

nα+1

]
;

0 otherwise .

Hence, for 0 < z < n−α−1,
∫ 1

0
|Vn(x + z)− Vn(x)|p dx ≤ 2nz ≤ 2z− 1

α+1 z . (6.32)

By using (6.32) if 0 < z < n−α−1 and (6.31) if n−α−1 < z < 1, in both cases one
arrives at the inequality

∫ 1

0
|Vn(x + z)− Vn(x)|p dx ≤ 2z

α
α+1

which implies that Vn is bounded in Bp,∞
s (T) since s = α

p(α+1) .
On the other hand, one has

|W (x1 + Vn(x2 + z), x2)−W (x1 + Vn(x2), x2)|

=
∣∣∣∣cos
(
π

2x1 + Vn(x2 + z) + Vn(x2)
2

)
sin
(
π

Vn(x2 + z)− Vn(x2)
2

)∣∣∣∣W
2(x2)

≥
∣∣∣∣cos
(
π

2x1 + Vn(x2 + z) + Vn(x2)
2

)∣∣∣∣ |Vn(x2 + z)− Vn(x2)|W 2(x2) .
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Pick zn = n−α−1, then
∫

T2
|W (x1 + Vn(x2 + zn), x2)−W (x1 + Vn(x2), x2)|p dx1 dx2

≥
∫ 2n−α

0
W 2(x2)

∫ 1

0

∣∣∣∣cos
(
π

2x1 + Vn(x2 + z) + Vn(x2)
2

)∣∣∣∣ dx1 dx2

=
∫ 1

0
| cos(πy1)| dy1

∫ 2n−α

0
W 2(x2) dx2 = 2

∫ 2n−α

0
xβp

2 dx2

=
2

βp + 1
(2n)−α(βp+1) =

21−αps

ps
z

αps
α+1
n

which shows that

1
zs

n

(∫

T2
|W (x1 + Vn(x2 + zn), x2) −W (x1 + Vn(x2), x2)|p dx1 dx2

)1/p

≥ 2
1
p−αs

(ps)1/p
z
− s

α+1
n → +∞ (6.33)

as n → +∞. Besides
∫

T2
|W (x1 + Vn(x2 + zn), x2 + zn) −W (x1 + Vn(x2 + zn), x2)|p dx1 dx2

=
∫

T
|W 2(x2 + zn)−W 2(x2)|p

∫

T
|W1(x1 + Vn(x2 + zn)|p dx1 dx2

≤
∫

T
|W 2(x2 + zn)−W 2(x2)|p dx2 ≤ Czps

n

by (6.30). This estimate and (6.33) eventually imply that

1
zs

n

(∫

T2
|W (x1 + Vn(x2 + zn), x2 + zn)−W (x1 + Vn(x2), x2)|p dx1 dx2

)1/p

→ +∞

as n → +∞, showing that Un is not bounded in Bp,∞
s .

The implications of Lemma 6.8 on the 3D incompressible Euler equations are
summarized in the next proposition — a variant of the remark due to DiPerna–
Lions.13

Proposition 6.4. Let p ≥ 1, s ∈ (0, 1/p) and T > 0. There exists a se-
quence of smooth divergence-free vector fields (J in

n )n that is uniformly bounded in
Bp,∞

s (T2, R3) and such that the sequence (Jn) of solutions of the incompressible
2D1/2 Euler equations (1.15) with initial data (J in

n ) satisfies

‖Jn(T, ·)‖Bp,∞
s (T2,R3) → +∞ as n → +∞ .
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Since solutions of the 2D1/2 Euler equations (1.15) are also solutions of the
3D incompressible Euler equations, Proposition 6.4 implies the non-propagation of
Bp,∞

s estimates in x for s > 0 arbitrarily small.

Proof of Proposition 6.4. Let T > 0 be a fixed positive time. Let W ∈ Bp,∞
s (T2)

and the sequence (Vn)n bounded in Bp,∞
s (T) be chosen as in Lemma 6.8. Then

consider

J in
n (x) =

(
1
T

Vn(x2), 0, W (x1, x2)
)

. (6.34)

Clearly

∇x · J in
n = 0

and

‖J in
n ‖Bp,∞

s (T2,R3) ≤
1
T
‖Vn‖Bp,∞

s (T) + ‖W‖Bp,∞
s (T2) ≤ C .

A simple computation shows that the solution of the 2D1/2 incompressible Euler
equation (1.15) with initial data J in

n is

Jn(t, x) =
(

1
T

Vn(x2), 0, W

(
x1 +

t

T
Vn(x2), x2

))
.

In particular,

Jn,3(T, x) = Un(x1, x2) .

with Un defined as in Lemma 6.8 by

Un : (x1, x2) ∈ T2 .→ Un(x1, x2) = W (x1 + Vn(x2), x2) .

By Lemma 6.8, ‖ Jn,3(T, ·) ‖Bp,∞
s (T2) → + ∞ as n → + ∞ and so does

‖Jn(T, ·)‖Bp,∞
s (T2,R3).

6.2. Nonpropagation of weak regularity by (1.1)

The Vlasov–Poisson system (1.1) shares with the 2D1/2 incompressible Euler equa-
tions the property stated in Proposition 6.4, i.e. the fact that Bp,∞

s regularity is not
propagated for low values of s. Consider indeed particle distributions of the form

fn,ε(t, x, v) = (1 + ε∇x(Jn(t, x) ∧ b))δ(v − J(nt, x)) ,

where Jn solves (1.15) with initial data J in
n as in (6.34). Since Jn represents a shear

flow, ∇xΠ = 0 in (1.15) and fn,ε is a measure-valued solution of (1.1) with

f in
n,ε(x, v) = (1 + ε∇x(J in

n (x)) ∧ b))δ(v − J in
n (x)) .
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By Proposition 6.4 the families
∫

fn,ε(T, x, v) vdv = Jn(T, x)(1 + ε∇x(Jn(T, x) ∧ b))) and

∇xVn,ε(T, x) = −Jn(T, x) ∧ b

are not uniformly bounded in Bp,∞
s (T2

x) as n runs through N∗ and ε runs through
(0; 1).

However, this class of examples is not satisfactory because it is based upon
dealing with monokinetic distributions. The usual methods to study propagation of
regularity in the Vlasov–Poisson system consist of estimating simultaneously deriva-
tives in the x and v variables. Alternative strategies, using for instance compactness
by velocity averaging, require that the family of distributions under consideration
be at least equi-integrable in the v variable.

Actually we can prove a stronger result, which claims that weak regularity
estimates cannot be propagated by (1.1).

Proposition 6.5. Let p ≥ 1, s ∈ (0, 1/p) T > 0 and K > 0. Consider the set

W =

{
f in smooth in v

∣∣∣∣ E
in +

∥∥∥∥
∫

f in vdv

∥∥∥∥
Bp,∞

s (T3)

+ ‖∇xV in‖Bp,∞
s (T3) ≤ K

}
.

Then

sup
0≤t≤T

ε>0,fin∈W

(∥∥∥∥
∫

fε(t) vdv

∥∥∥∥
Bp,∞

s (T3)

+ ‖∇xVε‖Bp,∞
s (T3)

)
= +∞ ,

where fε denotes any solution of (1.1) with initial data f in.

Proof. Assume that for each T > 0 and K > 0, there exists CT,K > 0 such that
any solution of (1.1) verifying

∥∥∥∥
∫

f in
ε vdv

∥∥∥∥
Bp,∞

s (T3)

+ ‖∇xV in
ε ‖Bp,∞

s (T3) ≤ K

satisfies the uniform estimate

sup
t∈[0,T ]

(∥∥∥∥
∫

fε(t) vdv

∥∥∥∥
Bp,∞

s (T3)

+ ‖∇xVε(t)‖Bp,∞
s (T3)

)
≤ CT,K . (6.35)

Let fn,ε be a solution of (1.1) with initial data

f in
n,ε(x, v) = (1 + ε∇x · (J in

n (x) ∧ b))M(v − J in
n (x)) ,

where M denotes the centered, reduced Gaussian distribution and J in
n is a sequence

of smooth vector fields satisfying the assumptions in Proposition 6.4 — for instance,
pick J in

n to be the initial data in (6.34).



May 9, 2003 13:43 WSPC/103-M3AS 00264

710 F. Golse & L. Saint-Raymond

By Theorem 2.2, for each t ∈ [0, T ],
∫

fn,ε vdv and ∇xVε converge to Jn and
−Jn ∧ b respectively as ε → 0, where Jn denotes the solution of (1.15) with initial
data J in

n . By Proposition 6.4,

lim
n→∞

‖Jn(T, ·)‖Bp,∞
s (T3) = +∞ ;

but this is in contradiction with (6.35). Hence the initial assumption is false.

As we insisted at the beginning of this section, this result indicates that taking
limits in the nonlinear terms requires at least a new idea to obtain compactness
properties.

Appendix A. Reduction of the Oscillation Operator R to
Diagonal Form

Consider R the oscillation operator defined in Proposition 2.1 and denote by R the
unitary group generated by R. Describing the asymptotic behavior of R( t

ε )Ψ for
Ψ ∈ L2(T3, R4) requires a rather good understanding of the structure of R and in
particular a precise description of its kernel.

Proposition A.1. Consider the bounded skew-adjoint operator defined on
L2(T3, R4) by

R : (j, φ) .→ (j ∧ b +∇x(−∆x)−1/2φ, (−∆x)−1/2∇x · j) .

The orthogonal projections on eigenspaces of R are pseudo-differential operators of
order 0. In particular, the projection on the nullspace of R is defined by

P : (j, φ) .→
(

1
2
∇x

′(−∆′
x)−1/2

∫
φdx3 ∧ b +

1
2
P ′
∫

j′ dx3,

∫
j3 dx3 ,

1
2

∫
φdx3 +

1
2
(−∆′

x)−1/2∇x
′ ·
(∫

(j ∧ b)′ dx3

))

with the notations ∇x
′ = (∂x1 , ∂x2), ∆′

x = ∂2
x1x1

+ ∂2
x2x2

and where P ′ is the L2
x1x2

-
orthogonal projection on divergence-free vector fields depending on the two variables
(x1, x2).

Proof. Denote by Rk (k ∈ Z3) the symbol of R

∀ k ∈ Z3 , Rk =





0 1 0 iκ1

−1 0 0 iκ2

0 0 0 iκ3

iκ1 iκ2 iκ3 0




,

κα =
kα

aα

[(
k1

a1

)2

+
(

k2

a2

)2

+
(

k3

a3

)2
]−1/2

.
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We recall the notations

|k|2 =
(

k1

a1

)2

+
(

k2

a2

)2

+
(

k3

a3

)2

, k∗ =
√

1− κ2
3 .

A straightforward computation shows that

Rk = P ∗
k DkPk

with

Dk =





i(1 + k∗)1/2 0 0 0

0 −i(1 + k∗)1/2 0 0

0 0 i(1− k∗)1/2 0

0 0 0 −i(1− k∗)1/2




,

Pk =
1

2k∗





−iκ2 +
√

1 + k∗κ1 iκ1 +
√

1 + k∗κ2 k∗(1 + k∗)−1/2κ3 k∗

−iκ2 −
√

1 + k∗κ1 iκ1 −
√

1 + k∗κ2 −k∗(1 + k∗)−1/2κ3 k∗

−iκ2 +
√

1− k∗κ1 iκ1 +
√

1− k∗κ2 k∗(1− k∗)−1/2κ3 k∗

−iκ2 −
√

1− k∗κ1 iκ1 −
√

1− k∗κ2 −k∗(1− k∗)−1/2κ3 k∗




,

with the convention (1−k∗)−1/2κ3 =
√

2 whenever k3 = 0. Then Pk and P−1
k = P ∗

k

are order zero pseudo-differential operators that satisfy the uniform bound

∀ k ∈ Z3 , ‖Pk‖L∞‖P−1
k ‖L∞ ≤ 2 .

It remains to obtain a precise description of the nullspace of R. It is easily seen that

λη(k) = 0 ⇔ η ∈ {3, 4} and k3 = 0 .

Then P is given by its symbol

∀ k ∈ Z3 , Pk =

{
P−1

k (A3 + A4)Pk if k3 = 0
0 if k3 8= 0 .

with the notations of Sec. 5. For k such that k3 = 0, we compute

Pk =
1
4





0 0 iκ2 iκ2

0 0 −iκ1 −iκ1

0 0
√

2 −
√

2

0 0 1 1









0 0 0 0
0 0 0 0

−iκ2 iκ1

√
2 1

−iκ2 iκ1 −
√

2 1





=
1
2





κ2
2 −κ1κ2 0 iκ2

−κ1κ2 κ2
1 0 −iκ1

0 0 2 0

−iκ2 iκ1 0 1





which is the expected symbol for the projection P on the nullspace of R.
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Appendix B. Small Divisor Estimate

In order to describe the coupling of the various oscillating components by the
nonlinear terms, a basic tool is the study of the resonances, i.e. of solutions
(l, m, η) ∈ (Z3)2 × [[1, 4]]3 of the dispersion equation

ωη(l + m, l, m) = λη1 (l + m)− λη2 (l)− λη3(m) = 0 ,

where (iλj(k))j∈[[1,4]] denote the eigenvalues of Rk for all k ∈ Z3. These eigenvalues
are the roots of a polynomial with polynomial coefficients in the variables k1/a1,
k2/a2 and k3/a3, implying the following small divisor estimate.16

Proposition B.1. Consider P (l, m), a polynomial in a−1
3 with coefficients that

are polynomials in l, m. Then, there exist A ⊂ R+
∗ of Lebesgue measure zero and

Ω ⊂ Z6 such that

∀ (l, m) ∈ Ω , P (l, m) ≡ 0

∀ a3 ∈ R∗
+ \ A, ∃ (C, s) s.t. ∀ (l, m) ∈ Z6 \ Ω, |P (l, m)|−1 ≤ C(1 + |l|)s(1 + |m|)s .

Appendix C. Symmetry Properties of the Bilinear Operator B
In order to determine the structure of the limiting equation, we use the symmetry
properties of the bilinear operator B summarized below.

Proposition C.1. For all l, m ∈ Z3, define Bl,m by

Bl,m[ΨlΨm] =
1
2

(
i〈Ψl, m〉Ψ′

m + i〈Ψm, l〉Ψ′
l, −i

〈
m + l

|m + l| , |m|Ψm,4Ψl + |l|Ψl,4Ψm

〉)

with the notation 〈Ψ, k〉 = Ψ1
k1
a1

+Ψ2
k2
a2

+Ψ3
k3
a3

. For each k ∈ Z3, define Rk by

RkΨk =
(
Ψk,2 + i

k1

a1|k|
Ψk,4, −Ψk,1 + i

k2

a2|k|
Ψk,4, i

k3

a3|k|
Ψk,4, i〈Ψ, k〉

)
.

Denote by iλj(k) its eigenvalues ordered as in (5.8) and by Pk the transition matrix

Rk = P−1
k




4∑

j=1

iλj(k)Aj



Pk .

Then, for each Ψ and each k ∈ Z2 × {0},

(P−1
k (A3 + A4)Pk)

∑

l+m=k
λη2 (l)+λη3 (m)=0

Bl,m[(P−1
l Aη2PlFlΨ), (P−1

m Aη3PmFmΨ)]

= (P−1
k (A3 + A4)Pk)

∑

l+m=k
η2,η3∈{3,4}

Bl,m[(P−1
l Aη2PlFlΨ), (P−1

m Aη3PmFmΨ)] .

Proof. For each k ∈ Z2 × {0}, the set of (l, m, η2, η3)’s satisfying l + m = k and
λη2(l) + λη3(m) = 0 is decomposed as follows
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• {l3 = m3 = 0 and η2, η3 ∈ {3, 4}},
• {l3 = m3 = 0 and {η2, η3} = {1, 2}},
• {l3 = −m3 8= 0 and {η2, η3} = {1, 2}},
• {l3 = −m3 8= 0 and {η2, η3} = {3, 4}}.

Then, in order to prove Proposition C.1, it is enough to see that in the last three
cases

(P−1
k (A3 + A4)Pk)Bl,m[P−1

l Vη2 , P
−1
m Vη3 ] = 0 .

In these three cases, λ = −λη2(l) = λη3 (m) 8= 0 and l3 = −m3, so that in particular
l∗ = m∗ and |l| = |m|. Hence, with the notations as in the proof of Proposition A.1,

〈P−1
m Vη3 , l〉 =

iM2 + λM1

2m∗ L1|l| +
−iM1 + λM2

2m∗ L2|l| +
M3

2λ
L3|l|

= −〈P−1
l Vη2 , m〉 .

and

〈P−1
m Vη3 , m〉 = λ

m∗|m|
2

+
M2

3

2λ
|m| = −〈P−1

l Vη2 , l〉

so that

Bl,m[P−1
l Vη2 , P

−1
m Vη3 ] = i

〈P−1
l Vη2 , m〉

2m∗





i(M2 − L2) + λ(M1 + L1)

−i(M1 − L1) + λ(M2 + L2)

0

0




,

multiplying by P−1
k (A3 + A4)Pk = Pk, we obtain

(P−1
k (A3 + A4)Pk)Bl,m[P−1

l Vη2 , P
−1
m Vη3 ] = 0

which is the result expected.
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transport avec des coefficients irréguliers, Séminaire sur les Equations aux Dérivées
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