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Let u=u(x,v) satisfy the Transport Equation u+v-d,u=f, xe R, veR",
where f belongs to some space of type L”(dx ® du(v)) (where u is a positive boun-
ded measure on RY). We study the resulting regularity of the moment
ju(x,v)dp(v) (in terms of fractional Sobolev spaces, for example). Counter-
examples are given in order to test the optimality of our results.  © 1988 Academic

Press, Inc.

I. INTRODUCTION

We are concerned with the regularity of the mean value (with respect to
the velocity) of the solution of Transport Equations. Let u be the solution
of

u+v-o.u=f xeR", veR”,

where f = f(x, v) is a given function. Assume that f belongs to some space
of the type L?(dx ® du(v)), where u is a positive bounded measure on R”.
The very fact we are examining in this paper is the following: generally
speaking, the quantity ju(x, v) du(v) is more regular than u(-, v) for any
fixed v: integrating with respect to v brings some regularity in the x-depen-
dence. This remark has already been formulated in terms of a compactness
lemma [GPS] (see also [DL]). In this article, we present a more complete
analysis of the following question: knowing the regularity of f (i.e., that f
belongs to some L7(dx® du(v))), what is the resulting regularity for
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REGULARITY OF A TRANSPORT EQUATION 111

j u(x, v) du(v)? In particular, the answer to this question will provide a
generalization of the compactness lemma stated in [GPS].
The main result in this paper is the following

THEOREM. Assume that there exists a positive constant C such that

Supess u({veR/|v-e|<e})<Ce  foralle>0.

ce SN~

Then, the operator fb——»_fu(x, v) du(v) is continuous from L*(dx® du(v))
into H'*(R").

The proof relies on a Fourier analysis of the cancellation of singularities
for the operator f — j u(x, v) du(v), very similar to the one already used in
[GPS]. The very principle of this proof seems to be the following.

Let & denote the Fourier variable dual to x, and let C(v) be a revolution
cone in the &-space, centered of ve R\ {0}. We can produce an estimate of
[l -, U) p1(ceyy in terms of Supg . gr p({vs.t. £¢ C(v)}).

From our analysis of the L?-case, we shall derive the “general” case (i.e.,
when feL”(dx®du(v)) with 1<p< +0o0) by interpolation. Severe
pathologies arise when p=1 or p= +oc. However, we are able to produce
weak compactness results when f belongs to some space of type
L'(dx; L”(du(v))) or L'(du(v); L”(dx)), with p> 1, by solving the Trans-
port Equation for [u(x,v)du(v) in terms of f, integrating u along the
characteristics.

Generalizations of these results may be of some help to understand
approximations of kinetic equations { BGPS].

The outline of this paper is as follows: in Section 2, we prove various
generalizations of the above theorem; in Section 3, we study weak com-
pactness results; and Section 4 is devoted to counterexamples, and the
special case where x lives in a one-dimensional space.

II. REGULARITY RESULTS

1. The Case of RY

Let u be a positive measure on R" satisfying the condition

There exist two constants C >0 and 0 <y <2 such that
SupNess p({veRY/|v-e| <e})< Ce? for all £>0. (2.1
ee SN
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112 GOLSE ET AL.

Throughout this article, we use the notation
7= 1) dutw),

for any fe L'(du(v)). In the sequel, we shall denote by C various positive
constants. Our main result is

THEOREM 1. Assume (2.1). Let u=u(x, v) be such that u and v - 0,.u both

belong to L*(dx @ du(v)). Then the moment ii(x) = | u(x, v) du(v) belongs to
H'?, and we have the inequality

2
([[1at0~ 2007 1x= 3177 dx )

SC(llull 2)' =72 (o - 0 12)". (22)

Proof of Theorem 1. Let £ denote the Fourier variable dual to x; we
define ¢(-, v} as the Fourier transform (with respect to x) of u(-, v). The
assumption on ¥ may be formulated as

¢ and (v- &) ¢ belong to L*(dé ® du(v)). (2.3)
In the sequel of the proof, we shall use the following lemma:

LEMMA. Let v be a positive bounded measure on R satisfying the con-
dition

v([—e e]) < Ce. (24)

Then we have

f " ()< Car 2, (2.5)

-1

Proof of the Lemma. Integrating by parts we have

[* sy = w12 +2 [ wts) dsfs>

In the above equality, we then use the fact that ¥(s) < Cs? (by (2.4)), and
we let 4 go to + oo: thus we obtain (2.5). |
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Let us go back to the proof of Theorem 1. We obviously have

2 2
[1er g<2f|f ot e duto)| e
v-é|lz2x

+2

By Cauchy-Schwarz inequality, we obtain

[ 0(& ) du(v)

2
dé.  (2.6)

J|~~.5| < €172 @(&, v) du(v)

2

U\l 1217 0%, v) du(v)

< (J«-:» 1&17/1v- €12 du(v))-([ lv- & [p(&, v)|? dy(v)). (2.7)

Moreover, we can write

[ du=ier 2 dutwe gy

lv-&l=zx

<CIE 2 @El) 2 =Co 2

according to (2.5) applied to the image of u by the orthogonal projection
on the direction ¢ (see assumption (2.1)). Substituting this into (2.7) yields

2
<G 2 [ Jo-&F lo) du(o) (2.8)

[ 1er o duw)
lo-élza

Applying again Cauchy-Schwarz inequality, we have

2

[ e oo dut)

([ wrae) ([ erae) e
lv- ¢ <a lo & <=

and
[ geraum=ter|  duwy<cow
lo-&l < lo-&l<a

by (2.1). Therefore

U » E1" @(¢, v) du(v) sCanl(plzdu(v). (2.10)
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Hence, with (2.8) and (2.10), (2.6) yields

[1er Ufp(é, v) du(v)| dE<Cor 2 [[ 1o &2 (&, v)I* du(o) ¢

+ o [[ (& )1 du(w) de. (2.11)

This is valid for any positive a. Therefore, by choosing

—172

a=([[10-¢r 10te. o dutorde) (1ot o0 duwr )

we obtain
/2
[1er |<p(é)|2d¢<C(Jf PRI v)|2du(v)dé)

<(J ot on auwr ae)

Finally, using Plancherel’s identity, and the (classical) inequality

] 100 —a()1x— 9 * 7 dxdy< € [ 1217 1900 2,

we deduce (2.2) from the above inequality. ||
We can generalize Theorem 1 to any L’ space, with 1< p<oo, as
folows.

THEOREM 2. Assume (2.1). Let u= u(x, v) be such that u and v - 0,u both
belong to LP(dx®du(v)), with 1<p<oo. Then the moment u(x)=
fu(x, v) du(v) belongs to W*? for any s satisfying 0 <s<inf(1/p,1—1/p) 7y,
and we have the inequality

1/p
(ﬂ Iﬂ(x)—ﬁ(y)l”/IX—yl””" dx dy) <Clully o-ully. (212)

Proof of Theorem 2. For any 1< p< +00, we can define a bounded
linear operator 7, from L?(dx ® du(v)) into L?(dx), by Tf =i, where u is
the unique solution in L?(dx ® du(v)) of the Transport Equation

u+v-o.u=f, xeR", veR"™

According to Theorem 1, T is continuous from L*(dx® du(v)) into H'>.
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Therefore, by a classical interpolation result, T is also continuous from
L?(dx ® du(v)) into W*>?, for any 0 <s<inf(1/p, 1 —1/p)y (see [BL, Tr]).
In particular, we have the inequality

l/p
(I 10— a0 f1x =31 @xay) <l 4 o0,

We apply this inequality to u,(x, v)=u(ix,v) for any /4>0; after the
change of variable x+ Ax, we obtain

1/p

(It =t ix = 1+ ) < €t 21 -,

which holds for any A>0. By choosing A= |u}l,./llv-é.ull,,, we obtain

(2.12). 1§

Our method can also be applied to the L' case, and yields the following
result.

PROPOSITION 3. Define the operator T from L'(dx® du(v)) into L'(dx)
by Tf =i, where u is the unique solution in L'(dx® du(v)) of the Transport
Equation

u+v-0.u=f xeRY, ve RV

If K< LY (dx®du(v)) is bounded and uniformly integrable, then T(K) is
compact in LL _(dx).

loc

Proof of Proposition 3. Let R be the resolvent (1+v-3,)"" of the
Transport operator in L'(dx ® du(v)). For any fe K, and o >0, we define

Lo g = 1{(x,v):l_f(x.v)l<oz}’ W, =1~ Ao re

We can write

u=Rf =9+,

where ¢ = R(f - w, ;) and Y = R(f -y, ;). Clearly, we have
[160c+m)—g(e) dx <2 [ 170, | dx du(v).
Since K is uniformly integrable, for any ¢ >0, there exists a >0 such that

[160c+ ) = gix) dx <,
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for any fe K, and any he R". With the a chosen above, and since K is
bounded in L' (dx®du(v)), the set {f-x,, feK} is bounded in
L*(dx®du(v)). According to Theorem 1, the set {y sty =R(f X )
f€eK} is bounded in H2 In particular, for any bounded set S of R”,

J 180+ 1) =P (x)] dx 0

when /4 - 0, uniformly with respect to fe K. By coupling this with the
above analogous result on ¢, we obtain that T(K) is compact in L] (dx).
In particular, if K is weakly compact in L'(dx ® du(v)), then T(K) is com-
pact in L! (dx). However, the operator T is not weakly compact (see

loc

Section IV).

2. Bounded Domains

Until now, we were dealing with functions u defined on the whole
x-space R™. Here is a localized version of the above results.

Let X be a regular bounded convex open set in R”. We denote by dZ the
surface measure on dX, and by n(x) the unit outward normal vector to X
at xe 0X. We define

F'=0XxRY,
ry={(x,v)el;n(x)-v>0},
I'_={(x,v)e;n(x)-v<0},

Iy={(x,v)el;n(x)-v=0}.

Assumption (2.1) ensures the usual condition on the characteristic set Iy,

j dE(x) du(v) = 0.

Let us denote by do the measure
do = |v-n(x)| dX(x) du(v).

We are now ready to give a result similar to Theorems 1 and 2, but for
functions a priori defined in X.

THEOREM 4. Assume (2.1). Let u=u(x, v) be such that u and v - 0,u both
belong to L*(X xR"™; dx®du(v)), and u|, belongs to L°(I'_;do), for
l<p< +w. Then the moment [u(x,v)du(v) belongs to W*(X) with
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s=92if p=2and 0<s<inf(1/p, 1 —1/p)y if p# 2. Moreover, we have the
inequality

l/p
<C<(1u||U+|lv-6xu|iU+<L |ul”da> ) (2.13)

[ u(-, v) du(o)

wep

Proof of Theorem 4. 1t consists in proving that such a function u is the
restriction to X of a function to which Theorems 1 and 2 can be applied.
The key of the proof relies in the following lemma.

LemMMA. (Extension of u). Let us define for 1 < p< +w

W?(X)= {u(x, v)s.t. uand v -0 u both belong to L?(X x RY; dx ® du(v))};

Wr(X)={ue W/(X)st.ul eLP(I_;ds)}.
There exists a continuous extension operator

I wr (X) - W?(R"Y) (ie., (ITu)| y =u).

Proof of the Extension Lemma. Let u=u(x,v) be defined as the

solution of
utv-du=f inX; u, =g;

we know that ue W7 (X)iff fe L/ (X x RY; dx® du(v)) and ge LP(I"_; do).
Let us first extend f to RY x R™:

f(x,v) if xe X,
0 otherwise.

F(x, v)={

We begin by defining a distribution U= U(x, v) on R x RY as follows. If
(x,v)¢ {(y+1,v), yeX, teR*}, then U(x, v) =0. Otherwise, there exists
a unique 7, ,€ R* such that (x—t, v, v)e . In this case, we set

Ulx,v)=e "g(x—1,,0,0)+ j e "Flx—t, v)dt
0

Clearly, U satisfies
U+v-0,U=F

in the sense of distributions. Now, we shall define ITu as a smooth trun-
cation of U, the truncation being dependent on X. The domain X being
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bounded, let us pick a positive R such that X< B,. Let us define
€ 2(R") in the following way:

¢=0 outside B,z;

p=1 in Bg;

O0<ep<l.

Then we define
(ITu)(x, v) = @(x) U(x, v).

It is easy to check that I7 is a continuous extension operator from W7 (X)
into W?(R"™). To prove Theorem 4, it is enough to apply Theorems 1-2 to
. |

Remarks. (1) The extension lemma that we present here was first
proved by Cessenat, following previous results on the trace spaces
associated to W*(X) (see [C, DL]); we have given here a self-contained
proof for the sake of completeness.

(2) 1In Theorem 4, we could have prescribed u|~_to be in L(I", ; do)
instead of the same condition on u|, . Anyway, according to [C], if

We(X)={ue WP(X)s.t. u| eL”(I',;do)},
we know that W7 (X)= W% (X).

From Theorems 1-4, we derive the following compactness result:

COROLLARY 5. Assume (2.1). Then, for any p such that 1 < p < oo, the
operator T defined by

n=fu3m@w)

is compact from W’ (X) into L*(X; dx), and from WP(X) into L*(w; dx), for
any w such that o c X.

Proof of Corollary 5. To prove that T is compact from W% (X) into
L?(X; dx), we only have to apply the Rellich-Kondrachov theorem [A].
Then if w is such that w < X, we can define € 2(RY) such that

Y=1 in w;
y=0 outside X;

o<y <l
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We then define u(x, v) = W(x)u(x, v), ue W?(R"), so that we can apply
Theorems 1-2 to u. We conclude with the Rellich-Kondrachov
theorem.

Remarks. (1) In the case of space dimension 1 (ie, N=1), the
regularity results presented in Theorems 1-4 are far from being optimal.
This will be discussed in Section IV.

(2) So far, the Transport operators considered in Theorems 1-4 were
“stationary.” But evolution Transport operators can also be treated within
the same framework. Indeed, we only have to notice that for u=u(s, x, v),
where x and v belong to RY and ¢ belongs to R, the condition

(0,+v-0,)ue LP(dt®dx® du(v))

is equivalent to
v -0.ue LP(dx' ®du'(v')),

where x'=(f,x), v'=(v",v) with v"eR, and du'(v')=34,®du(v)
Therefore, Theorems 1-4 can be applied to evolution Transport operators
mutatis mutandis. In particular, we have to check that the measure p’
satisfies (2.1), which means that y itseif has to satisfy

supess p{veRY;, —e"—e<v-e< —e"+¢} < Ce'. (2.14)
ceRVe"cR
lel +e"2 =1

(3) In Theorem 4, it is not necessary to assume that u belongs to
LP(X x RY; dx ® du(v)). Indeed

Wh(X)={u(x,v)st.v-0 . uel”(XxRY;
dx®du(v))and u|,-_e LP(I"_; do)}

for any bounded convex open set in RY.

ITT. Weak COMPACTNESS RESULTS

Now, we try to extend the above regularity and compactness results to
cases where the above ideas, namely coupling the use of a Fourier analysis
of singularities with standard interpolation theorems, can no longer be
applied. In this section, we shall always assume that N> 1, 2 will denote
an arbitrary vector of S¥~!, and M” will denote the Marcinkiewicz space
(see [BB, BL]).!

' M?= L7* in terms of Lorentz spaces.
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For any [feL'(dx®du(v)), there is a unique solution
up€ L'(dx ® du(v)) of

u+v.6xu=f (31)

which can be represented as
us(x, u)=roe”f(x——sv, v) ds. 3.1y
0

PROPOSITION 6. Assume that du(|v| ) < dv(|v| 2)& dQ, where dS? is the
uniform surface measure on S¥~, and v a positive bounded measure on R*
such that

fw dv(x)/x < +00.
(1]

Then for any p, 1 < p< +o0, the operator T:f—»juf(-, v) du(v) is con-
tinuous from L'(dx; L?(du(v))) into M, where

r=Np/(1+(N—-1) p).
Proof of Proposition 6. First assume that p= +oo. We have
[ue oy du@)<[avo)) [* [ o= flx—shl2 pl@)d@ds.  (32)
0 JsN-i
Now, we make the change of variables
(s, v, )= (s, ),  p=x—s[v|2;

(3.2) is then transformed into
[ u/(x, 0) du(v)

< [ar(1ol)/1ol [ £, 101 Ge= p)1x— pl) e =M1 — y Y=ty (33)

Define

k(y)=1/Iy" " (34)

From (3.3), we notice that

[ urtx, 0) duv)

< Ck * sungv Lf(-, v)l. (3.5)
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Recall that keM"®™-D  Since we have assumed that
fe L'(dx; L*(du(v))), we obtain the announced result from (3.5) (see
[BB]). By interpolation, we obtain the general case where 1<p< +

(see [BL]). §

Remarks. (1) As a consequence of Proposition 6, the operator T is
weakly compact from fe L'(dx; L?(du(v))) into L (dx), for p>1 and
s<r=Np/(1+(N—-1)p).

(2) It is easy to see that the operator ff—»jgo e’ f(x—sv,v)ds is

continuous from L!(du(v); L*(dx)) into L?(dx; L'(du(v))), for 1 < p< +o0.
In particular, T is weakly compact from L'(du(v); L”(dx)) into L; (dx) for
l<p< +ooand 1<s<p.

Finally, let us notice that the following embedding inequalities are
impossible:

&l RNy S C[llv-0 ul L*(dxs LNdu(ory + [l L‘l(dx;L‘(d;t(t')))] (3.6)
and

Ha“ LP(RN) < C[HU : axu“ LY (du(v); L% (dx)) + “Ll” L‘l(d.\*;L‘(du(u)))]’ (36)/

where 1 < ¢ < p. Indeed, assume that (3.6) holds; we apply it to u;(x, v)=
u(4x, v) for any 4> 0, and we make the change of variables x — Ax; with an
adequate choice of 4, as in the proof of Theorem 2, we obtain that the
following inequality holds:

&l r@hy S C(flo- axu”LX(dx:LI(du(r))))qN(pi DPINT )

“(Jlull L’l(dx;Ll(du(v))))q(N T PVPIN N, (3.7)

If we assume that (3.6)" holds, we obtain in the same way that

[t Yy S C(llv -0 ul Ll(du(u);u(dxn)qmp TN 4D

: (”u” L"(dx;Ll(du(v))))q<N VPN q))' (37),

Choose u,(x, v)=g,(v) f(x,) @(x’) for veS" ' and x=(x,,x'), x,eR,
x'eRY™!, with g,(v)=0, fsv-1 g(v)dv=1, g,—6,. P is the north pole,
ie, P=(0,.,0,1) and fe 2(R" ). Then

nv'axus”Lf’(L,ﬂ)_’ SN e NO@/Ox ylf 1 as ¢ —0,

”U'axua”Li(L;“;_’ (RANER LT as ¢~ 0.
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Fixing ¢ 20, ¢ #0, (3.7) and (3.7)' give
/11 S CUF Yo =W+ | £ g+ ol +an, yfe D(R),  (38)

and (3.8) is wrong by a dimensional argument, thus contradicting (3.6) and
(3.6)".

IV. SpPEcIAL CASEs AND COUNTEREXAMPLES

1. The Case of Space Dimension 1

In this paragraph, we keep assumption (2.1) on the measure u, and we
assume that N=1. Then, the regularity results in Theorems 1-3 are no
longer optimal. Assumption (2.1) is translated here as

u is a bounded positive measure on R such that
([ —e e])<Ce, for 0<y<, for all ¢>0. 4.1)

(We have eliminated the cases where y> 1, which are obvious; see the
remark below.)

LEMMA 7. Assume (4.1). Let u=u(x, v) be such that both u and v-0,.u
belong to L™ (dx ® du(v)). Then the moment ii(x) = | u(x, v) du(v) belongs to
C°?, with the inequality

sup |i#(x) —a#(y)/Ix = yI" < C, Jull 1=7 -l 0 cu] = (4.2)

X#E Yy
(C, being a universal positive constant depending on y).

Proof of Lemma 7. Proceeding as in the lemma in the proof of
Theorem 1, we obtain

f', du(v)/lv] < 2Cy)/(1=p)a?~!, >0,

Then, we write

[ u(x, 0) du(w) — [ u(, v) du(v)

<

ol <«

<2C|u)l 1o &7 +2Cy/(1 = y) 0+ Ot =[x — pl ™ (4.3)

juCe,0) o) o)+ | du(@lot [ 1o uts, ] s
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for any a > 0. Then we choose

a=p/(1 =) v dyull L= |x— y| llu]
and (4.3) implies inequality (4.2). 1

Remarks. (1) If y=1 in (4.1), then, under the assumptions of
Lemma 7, | u(x, v) du(v) does not live in any nice space (as it may be seen
from carrying the above proof in this special case); we thus have to say
that p satisfies (4.1) for any 0 <y < 1, with the resulting inequality (4.2).

(2) In the case where y> 1, we obviously have
Jdu(v)/lvl < + 0.

Therefore, under the assumptions of Lemma 7, ju(x, v) du(v) belongs to
W' =(R,), with the inequality

SC(Null oo + 1o -0 ull - ). (4.4)

wlx

[ ut-,v) dutv)

This is of course optimal: take u=49,.

Lemma 7 and these two remarks obviously allow improvements on the
regularity results for | u(x, v) du(v) which were given in Theorems 1-3. We
refer to [BL,Tr] for the appropriate interpolation results. Results
analogous to those of Section III can also be obtained in quite the same
way; but we will not bother to do so. Let us rather consider the following
case.

LemMMa 8. Keep assumption (4.1). Let us consider a sequence
u" = u"(x, v) such that u" is bounded in L”(du(v); L'(dx)) for some p> 1 and
v-0,.u" is bounded in L'(dx ® du(v)). Then, the sequence | u"(x, v)du(v) is
compact in L] (dx).

loc

The proof of Lemma 8 follows exactly the same arguments as in the
proof of Lemma 7 and the classical compactness criterion in L} {dx)
(see [A]).

2. Counterexamples

In this section, we show that our results are, in some sense, optimal by
giving counterexamples in the limit cases.

ExampLE 1. In our first example, we consider the solution u, of (3.1). If
f belongs to K, a bounded subset of L'(dx ® du(v)), we show that the
family (i), x is not necessarily weakly compact in L'(dx).
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Thus consider a sequence f,(x,v), xeR"™, veR"Y 0<|v|L]1, f,—6
weakly, as n— o0, where 6 denotes the Dirac mass at x=0,
v=voe{0<|v[]<1}. We choose for u the uniform measure on
{v; 0<v < 1}. The corresponding solution u,, of (3.1), satisfies

f u,(x,v)dv= H: Sulx—tv,v) e~ dt dv.

Thus
[u"(x, v) @(x) do dx —— f‘” e~ o(tvg) dt,
0

for any ¢ € 2(R"), and this proves our claim, since the weak limit of #, is a
measure with support on the line {fv,, te R* }.

ExaMPLE 2. Our second example deals with the case where f is boun-
ded in L*(dx ® du(v)) and we prove that i, need not be equicontinuous.

Now, we choose for pu the uniform measure on S~ !, Consider the
solution u of (3.1) for f(x, v)= g(x) k(v), ge L*(R"), ke L*(S"~"). Then,
we have

Jute ordo=|  g(y)eYix— yIN = k(= )/l = 1) dy.

Setting I (z)=e~""/|z|¥~ ' k(z/|z]), the family [u(x,v)dv is equicon-
tinuous for all g such that || g||,« <1 if and only if there exists a modulus of
continuity p such that

| Fe(x + h) — T (x)]] Lim?) < p(h).

This does not hold uniformly for ||k]j .~ <1, with the same p. Therefore, &,
is not equicontinuous for |gl|,» <1, k]| .» <1 and our claim is proved.
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