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Abstract

We establish a Stokes-Fourier limit for the Boltzmann equation considered over
any periodic spatial domain of dimension 2 or more. Appropriately scaled fami-
lies of DiPerna-Lions renormalized solutions are shown to have fluctuations that
globally in time converge weakly to a unique limit governed by a solution of
Stokes-Fourier motion and heat equations provided that the fluid moments of
their initial fluctuations converge to appropriaté initial data of the Stokes-
Fourier equations. Both the motion and heat equations are recovered in the limit
by controlling the fluxes and the local conservation defects of the DiPerna-Lions
solutions with dissipation rate estimates. The scaling of the fluctuations with
respect to Knudsen number is essentially optimal. The assumptions on the colli-
sion kernel are little more than those required for the DiPerna-Lions theory and
that the viscosity and heat conduction are finite. For the acoustic limit, these
techniques also remove restrictions to bounded collision kernels and improve
the scaling of the fluctuations. Both weak limits become strong when the initial
fluctuations converge entropically to approprih%initial data. (© 2002 John
Wiley & Sons, Inc.

NogakrwdNE

Communications on Pure and Applied Mathematics, Vol. LV, 0336—-0393 (2002)
© 2002 John Wiley & Sons, Inc.

Contents

Introduction 337
Boltzmann Equation Preliminaries 340
Formal Scalings and Derivations 344
Analytic Setting 351
The Weak Limit Theorems 356
The Strong Limit Theorems 360
Establishing the Acoustic Limit 362



STOKES-FOURIER AND ACOUSTIC LIMITS 337

8. Establishing the Stokes Limit 369
9. Control of the Conservation Defects 380
10. Control of the Stokes Fluxes 387
11. Concluding Remarks 391
Bibliography 392

1 Introduction

The endeavor to understand how fluid dynamical equations can be derived from
kinetic theory goes back to the founding works of Maxwell [23] and Boltzmann [9].
Most of these derivations are well understood at several formal levels by now, and
yet their full mathematical justifications are still missing. Here we establish a so-
called Stokes-Fourier fluid dynamical limit for the classical Boltzmann equation
considered over any periodic spatial domain of dimension 2 or more. In the same
setting, we also significantly extend our previous result that established the so-
called acoustic limit [5].

The Stokes-Fourier system is the linearization about the zero state of an in-
compressible Navier-Stokes-Fourier system. It govémsl, 0), the fluctuations
of mass density, bulk velocity, and temperature about their spatially homogeneous
equilibrium values. After a suitable choice of units, these fluctuations satisfy the
incompressibility and Boussinesq relations

(1.1) Vx-u=0, p+6=0,
while their evolution is given by the motion and heat equations
dU—+ Vep=vAu,  ux 0 =u"(x),

1.2) D+2
2

wherev > 0 is the kinematic viscosity and > 0 is the thermal conductivity.

This is one of the simplest systems of fluid dynamical equations imaginable, being

essentially a system of heat equations. It may be derived directly from the Boltz-

mann equation as the formal limit of moment equations for an appropriately scaled

family of Boltzmann solutions as the Knudsen number tends to zero.

Here we establish the Stokes-Fourier limit, henceforth referred to as simply
the Stokes limit, in the physical setting of DiPerna-Lions renormalized solutions
of the Boltzmann equation [15]. Whether such solutions always satisfy the local
conservation laws of momentum and energy that one would formally expect to be
satisfied has been an outstanding open problem since that work appeared. In our
earlier work with Bardos on the Stokes limit [3], the local momentum conserva-

tion law was therefore assumed. The present work both removes this rather large
assumption and enlarges the class of collision kernels from that considered in [3].

X0 =KkA 0,  O(X,0 =0"x)),
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The present work also improves upon the result given in our later work with
Bardos [4]. Without assuming local momentum conservation, that work recov-
ered the Stokes motion equation by using energy and relative entropy estimates to
remove the local momentum conservation law defect in the limit, but at the cost
of being restricted to bounded collision kernels (such as is the case for Maxwell
molecules). It required, moreover, that the fluctuations be scaled to be an order
smaller than the square of the Knudsen number. This is far smaller than what one
expects to be optimal from formal derivations of the Stokes equations, namely, that
the fluctuations should only be required to be of an order smaller than the Knudsen
number [2]. (One formally derives the incompressible Navier-Stokes system when
the fluctuations are of the same order as the Knudsen number.) Here we recover
both the motion and the heat equation of the Stokes limit by controlling the local
conservation defects of the DiPerna-Lions solutions with dissipation rate estimates.
Our scaling of the fluctuations with respect to Knudsen number is how essentially
optimal.

Recently Lions and Masmoudi [22] elegantly recovered the Stokes motion
equation. They showed that DiPerna-Lions renormalized solutions satisfy the for-
mally expected local momentum conservation up to the divergence of a nonnega-
tive definite, matrix-valued defect measure. They control this measure by an en-
tropy bound which shows that the measure vanishes in the Stokes limit. Their scal-
ing of the fluctuations with respect to Knudsen number is also essentially optimal.
(They also use this defect measure and entropy bound to get an improved partial
result for the incompressible Euler limit.) However, as in all the other results men-
tioned above, they do not recover the heat equation. There are two reasons for this.
First, it is unknown whether DiPerna-Lions solutions satisfy local energy conser-
vation up to the divergence of a defect measure or how to control such a measure
in the Stokes scaling should it exist. Second, even if local energy conservation
were assumed, the techniques they used to control the momentum flux would fail
to control the heat flux. We therefore do not use their approach here. Rather, the
dissipation rate estimates that we develop here to control the heat flux and remove
the local energy conservation defects of DiPerna-Lions solutions do the same for
the motion equation.

The acoustic system is the linearization about the homogeneous state of the
compressible Euler system. After a suitable choice of units, in this model the fluid
fluctuations(p, u, 0) satisfy

do+Ve-u=0, p(x,00=p"(x),
(1.3) QU+ Ve(p+0)=0,  ux,0) =u"x),

D ,
EateJrvX-u:o, 0(x,0) =6"(x).
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This is also one of the simplest systems of fluid dynamical equations imaginable,
being essentially the wave equation. Like the Stokes system, it may be derived
directly from the Boltzmann equation as the formal limit of moment equations
for an appropriately scaled family of Boltzmann solutions as the Knudsen number
tends to zero.

In earlier work with Bardos [4, 5] we established the acoustic limit in the setting
of DiPerna-Lions renormalized solutions. That work removed the local momentum
and energy conservation law defects with energy and relative entropy estimates, but
at the cost of being restricted to bounded collision kernels, and with a scaling of
the fluctuations with respect to Knudsen number that was far from optimal. The
dissipation rate estimates developed here to remove the local conservation defects
of DiPerna-Lions solutions both allow the restriction to bounded collision kernels
to be dropped and improve the scaling of the fluctuations from being of an order
smaller than the Knudsen number to being of an order smaller than the square root
of the Knudsen number. While this scaling is a considerable improvement, it is
still far from what one formally expects to be optimal, namely, that the fluctuations
merely vanish with the Knudsen number. This gap must be bridged before one can
hope to fully establish the compressible Euler limit.

For both the Stokes and acoustic limits we show that appropriately scaled fami-
lies of DiPerna-Lions solutions have fluctuations whose weak limit points are gov-
erned for all time by solutions of the corresponding fluid equations Wdtmitial
data. Conversely, we show that every initial data for the fluid equations have
scaled families of DiPerna-Lions initial data whose fluctuations converge entropi-
cally (and hence strongly ih') to an appropriate limit associated to thé fluid
initial data. Moreover, every corresponding scaled family of DiPerna-Lions solu-
tions has fluctuations that converge entropically to a unique limit governed for all
time by the solution of the fluid equations. In this sense we obtain a uniqueness
result for DiPerna-Lions solutions in both the Stokes and acoustic limits.

The next section contains preliminary material regarding the Boltzmann equa-
tion. Section 3 gives the formal scalings that lead from the Boltzmann equation
to the acoustic and Stokes limits. Section 4 reviews the DiPerna-Lions theory of
global solutions [15] and the theory of fluctuations [3]. Propositions that are essen-
tially found in these works are fully stated for completeness, but their proofs are
omitted. Section 5 presents precise statements of our main results. Section 6 rein-
troduces the notion of entropic convergence and uses it to strengthen the limits in
our main results. Section 7 gives the proof of the acoustic limit modulo an estimate
that removes the local conservation defects. Section 8 gives the proof of the Stokes
limit modulo two estimates: one that shows convergence of the fluxes, and one that
removes the local conservation defects. Section 9 establishes the estimates that
control the local momentum and energy conservation defects for both the Stokes
and acoustic limits. There are three new estimates given here—all derived using
Young’s inequality techniques. Section 10 establishes the estimates that control
the momentum and heat fluxes for the Stokes limit. The key estimate is new. It
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controls the fluxes with the dissipation rate rather as well as the relative entropy. In
fact, it controls moments with respect to every power of the velocity for the Stokes
limit. Section 11 makes some concluding remarks.

2 Boltzmann Equation Preliminaries

Our starting point is the Boltzmann equation. In this section we collect the
basic facts we need. These will include its nondimensionalization and its formal
conservation and dissipation laws.

2.1 The Boltzmann Equation

Here we will introduce the Boltzmann equation only so far as to set our notation
and to make precise some of our assumptions regarding the collision kernel. While
our notation is essentially that of [3], our assumptions on the collision kernel are
weaker and more natural than those of [3]. More complete introductions to the
Boltzmann equation can be found in [10, 12, 13, 17].

The state of a fluid composed of identical point particles confined to a spa-
tial domainQ c RP is described at the kinetic level by a mass densitgver
the single-particle phase spaR€ x Q. At any instant of time¢ > 0 and point
(v,xX) € RP x @, F(v, x,t)dvdx is understood to give the mass of the parti-
cles that occupy any infinitesimal volunge dx centered at the poinv, X). To
remove complications due to boundaries, we tékéo be the periodic domain
TP = RP/LP, wherelL.P ¢ RP is any D-dimensional lattice.

If the particles interact only through a conservative interparticle force with a
finite range, then at low densities this range will be much smaller than the interpar-
ticle spacing. In that regime all but binary collisions can be neglected Bher?,
and the evolution oF = F(v, X, t) is governed by the classical Boltzmann equa-
tion [13]:

(2.1) &%F +v-ViF =B(F,F), F(v,x,0 =F"@,x)>0.
The Boltzmann collision operatétacts only on the argument of-. Itis formally
given by
(2.2) B(F,F) = // (F{F' — F1F)b(®, v1 — v)dwdv,
§D-1xRD

wherev; ranges oveRP endowed with its Lebesgue measdrig, while w ranges
over the unit spherBP~! = {w € RP : |w| = 1} endowed with its rotationally
invariant unit measurdew. The F], F’, F;, andF appearing in the integrand des-
ignateF (-, x, t) evaluated at the velocitieg, v’, v1, andv, respectively, where the
primed velocities are defined by

(2.3) vVi=n—ow-(v1—v), V=v4+oo-(v1—v),

for any given(w, vy, v) € SP~1 x RP x RP. Notice that wherD = 1 these reduce
to v; = v andv’ = v1, wherebyB vanishes identically. This reflects the restriction
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to D > 2. Quadratic operators likB are extended by polarization to be bilinear
and symmetric.

The unprimed and primed velocities are possible velocities for a pair of par-
ticles either before and after, or after and before, they interact through an elastic
binary collision. Conservation of momentum and energy for particle pairs during
collisions is expressed as

(2.4) vdvr=v v, P4 o= 0P+ R

These equations have the trivial solutioh = v, andv’ = v. Equation (2.3)
represents the general nontrivial solution of th&e+ 1 equations for the B
unknownsvy, v, v1, andv in terms of the ® — 1 parametersw, v1, v).

The collision kerneb is a positive, locally integrable function. The Galilean
invariance of the collisional physics implies thmalhas the classical form

b(w, v) = [v|Z (e - 0], [v]),

whered = v/|v| and X is the specific differential cross section. This symmetry
implies that the quantity’ b(w, v) dw will be a function of|v| only. The DiPerna-
Lions theory requires thdt satisfies

2. lim ——— — —
(2.5) \u\»oo1+|v|2 / b(w, v1 — v)dwdv; =

SP-1xK

for every compact seé€ c RP. In addition, we assume that there exist constants
Cp € (0, 00) andp € [0, 1] such thab satisfies

1 B
(2.6) f b(w, v)dw < Cb(1+ §|v|2> almost everywhere
D—

This condition implies (2.5) whenevgr < 1. It holds for somes < % for those

b that are classically derived from a so-called hard interparticle potential with a
small deflection cutoff; see [13, chap. 11.4,5]. In particular, condition (2.6) holds
with 8 = 0 for Maxwell molecules anfl = %for hard spheres. Some of our results
impose additional conditions dn These conditions also hold for thols¢hat are
classically derived from a hard interparticle potential with a small deflection cutoff.

2.2 Nondimensionalized Form

We will work with the nondimensionalized form of the Boltzmann equation
that was used in [3]. The form is motivated by the fact that the Stokes (1.1)-
(1.2) and acoustic (1.3) systems can be formally derived from the Boltzmann equa-
tion through a scaling in which the densiyis close to a spatially homogeneous
Maxwellian M = M (v) that has the same total mass, momentum, and energy as
the initial dataF™. By an appropriate choice of a Galilean frame and of mass and
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velocity units, it can be assumed that this so-called absolute Maxwlibas the
form

(2.7) M@) = —— ex Lp
. (U)Z(ZT)D/Z p(—§|v|>.

This corresponds to the spatially homogeneous fluid state with density and tem-
perature equal to 1 and bulk velocity equal to 0, and is consistent with the form of
both the Stokes system given by (1.1-1.2) and the acoustic system given by (1.3).

It is natural to introduce the relative densiy,= G(v, X, t), defined byF =
MG. Recasting the initial-value problem (2.1) fGryields

1 .
(2.8) G +v-VyG=-9(G,G), G(v,x, 0 =G"v,x),
€
where the collision operator is now given by

(29) Q(G, G) = / (G;_G/ — GlG)b(a), V1 — v)da) Ml dvl,

§b-14RD
with the nondimensional collision kernielbeing normalized so that
(2.10) /// b(w,vi —v)do MidvyMdv=1.

SD-1xRDP xRD

The positive, nondimensional parameteis the Knudsen number, which is the
ratio of the mean-free-path to the macroscopic length scale determined by setting
the volume ofTP to unity [3].

This nondimensionalization has the normalizations

(2.11) fdw:l, /Mdv:l, fdx:l,
§D-1 TD

RD

associated with the domair®® 1, RP, and TP, respectively, (2.10) associated
with the collision kerneb, and

// G"M dvdx =1, // vG"M dvdx =0,

RD xTDP RD xTD

1 - D
// §|U|2GmM dUdXZE,

RPxTD

(2.12)

associated with the initial da@™.

BecauseM dv is a positive unit measure dd°, we denote byé&) the average
over this measure of any integrable functioe- & (v),

(2.13) (&) =/g(v)|v| dv.

RD
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Because

du = b(w, v1 — v)dw My dvy M do
is a positive unit measure d@P~! x RP x RP, we denote by(E) the average
over this measure of any integrable functi&n= E(w, vy, v),

(2.14) (8) = /// E(w, vy, v)du .

SP-1xRP xRD
The measurdyu is invariant under the coordinate transformations
(2.15) (,v1,v) = (@,v,v1), (@, v1,0) = (0,v],0).

These, and compositions of these, are callgesymmetries.

2.3 Formal Conservation and Dissipation Laws

We now list for later reference the basic conservation and entropy dissipation
laws that are formally satisfied by solutions to the Boltzmann equation. Derivations
of these laws in this nondimensional setting are outlined in [3] and can, up to
notational differences, be found in [12, sec. I1.6-7)], [17, sec. 1.4], or [10].

First, if G solves the Boltzmann equation (2.8), tHersatisfies local conserva-
tion laws of mass, momentum, and energy:

3 (G) + Vx - (vG) =0,

(2.16) o (vG) + Vi - (v ®vG) =0,
1 1

8t<§|v|2G>+Vx-<v§|v|ZG> =0.

Integrating these over space and time while recalling the normalizations (2.12) of
G'"" yields the global conservation laws of mass, momentum, and energy:

/(G(t))dx = /(G‘”)dx =1,

TD TD
(2.17) /(vG(t»dx = /(vG‘”)dx =0,
TD TD

1 5 ([t 2ain\y, D
/<§|U| G(t)>dx_f<2|v| G >dx_ >
TD TD

Second, ifG solves the Boltzmann equation (2.8), th@nsatisfies the local
entropy dissipation law

(2.18) 3 ((Glog(G) — G+ 1)) + Vx- (v(Glog(G) —G + 1)) =

1//1 GG -
- E<<Z log <@>(61G — GlG)>> < 0.



344 F. GOLSE AND C. D. LEVERMORE

Integrating this over space and time gives the global entropy equality

t
(2.19) H(G(t)) + %f R(G(s))ds = H(G"M),
0
whereH (G) is the relative entropy functional
(2.20) H(G) = /((G log(G) — G + 1))dx
TD

andR(G) is the entropy dissipation rate functional

(2.21) R(G) =/<< Iog(G/G )(G G — 1G)>>dx.
TD

3 Formal Scalings and Derivations

Fluid dynamical regimes are those where the mean free path is small compared
to the macroscopic length scales, i.e., where the Knudsen numb&emall. For-
mal derivations of the compressible Euler system are rather direct. Formal deriva-
tions of other fluid dynamical systems, such as the compressible Navier-Stokes
system, are more subtle. (Indeed, some situations cannot be described by directly
using the compressible Navier-Stokes system. These are referred to as “ghost ef-
fects” in [26] and are somehow related to the discussion in [6]). Hilbert [19] pro-
posed that at the formal level all derivations of fluid dynamics should be based
on a systematic asymptotic expansiorkinA somewhat different asymptotic ex-
pansion ine, now called theChapman-Enskog expansiomas proposed a bit later
by Enskog [16]. The Chapman-Enskog expansion yields at successive orders the
compressible Euler system and the compressible Navier-Stokes system; see [18].

Justification of these formal approximations has proven difficult in part because
many basic well-posedness and regularity questions remain open for both these
fluid systems and the Boltzmann equation. The problem is exacerbated by the fact
that to bound the error of the asymptotic expansions requires the control of suc-
cessively higher-order spatial derivatives of the fluid variables, thereby requiring
unphysical restrictions to a meager subset of all physically natural initial data and
possibly to finite periods of time. For example, Caflisch used a method based on
the Hilbert expansion to justify the compressible Euler system from the Boltzmann
equation [11]. His result requires smooth initial data and holds for as long as the
limiting solution of the compressible Euler system is smooth. Because solutions
of the compressible Euler system are known to become singular in finite time for a
very general class of initial data (see [24]), such a result is about the best one can
hope for by appealing to such an expansion.

Two approaches to circumvent these difficulties have emerged recently. First,
some authors have studied direct derivations of linear or weakly nonlinear fluid
dynamical systems, such as incompressible Stokes, Navier-Stokes, and Euler sys-
tems|[1, 2, 3,6, 7, 8, 10, 14, 21, 22, 25, 27], about which more is known. Second,
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some authors have abandoned the traditional expansion-based derivations in favor
of moment-based formal derivations [2, 3, 6, 7, 10, 21, 22], which put fewer de-
mands on the well-posedness and regularity theory. In [5] we embraced both of
these approaches when first establishing the acoustic limit in a far more restrictive
setting. We do so again here when establishing the Stokes limit and extending the
acoustic limit.

Both the Stokes (1.1)—(1.2) and the acoustic (1.3) systems can be formally de-
rived from the Boltzmann equation through a scaling in which the density
close to the absolute Maxwellidvi. More precisely, we consider families of solu-
tions parametrized by the Knudsen numbdhat have the form

(3.1) GM"=1+569", G.=1+56.0,
where the fluctuationg andg, are bounded whilé, > 0 satisfies
(3.2) 8 >0 ase — 0.

The common practice of past works was to &et= €™ for somem > 0, but
we will not do so here in order to clarify how close the scalings in our analytical
results are to those that are formally optimal. Toward this end, we outline moment-
based formal derivations of both the Stokes and acoustic limits in this more general
setting. They go further than the derivations given in [2] and [5], respectively.

In these derivations we assume tgatonverges formally tg, where the limit-
ing function is inL>°(dt; L?(M dv dx)), and that all formally small terms vanish.
For example, we express the global conservation laws (2.17), which are the same
for both derivations, in terms af, and then formally le¢ — 0O to obtain

1
(3.3) /(g(t))dx =0, /(vg(t))dx =0, /<§|v|2g(t)>dx =0.
TD TD TD
Henceforth, the two derivations differ.

3.1 Acoustic Formal Derivation

It is most natural to derive the acoustic limit first because its derivation is sim-
pler and requires no additional assumptions regarding either the scaling or the colli-
sion kernel. One considers a family of formal soluti@hsto the scaled Boltzmann
initial-value problem

1 :
(3.4) *Ge +v - VyGe = —Q(Ge, Ge),  Ge(v, X, 0) = Glgn(va X),
€

whose fluctuationg, are given by (3.1) for som& > 0 that vanishes with as in
(3.2). The derivation has two steps.

The first step determines the form of the limiting functignObserve that by
(3.4) the fluctuationg, satisfy

(35) E(atge +v- nge) + Lge = 86 Q(ges ge) s
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where the linearized collision operat8ris formally defined by
(3.6) L£g=-29(1,0).

We defineL to be the unique nonnegative, self-adjoint extension &M dv)

of this formal operator. By letting — 0 in (3.5), one finds thatg = 0. It
is known (see, for example, [12, chap. 1V.1]) that the null spacé &f given by
Null(£) = Spar{l, vi, ..., vy, [v|?}. Because the limig is assumed to belong to
L°°(dt; L?(M dv dx)), we conclude thag has the form of a so-called infinitesimal
Maxwellian, namely,

1 D
3.7 = . ol 21wz = =
@7 a=p+u-vto(3ui-3)
for some(p, u, 6) in L>®(dt; L2(dx; R x RP x R)).
The second step shows that the evolutiofofu, 9) is governed by the acoustic
system (1.3). Observe that the fluctuatigpgormally satisfy the local conserva-
tion laws

8t<ge> + VX . <vge> - O,

(3.8) 9 (vge) + Vx - (v ®vg.) =0,
1 1

at<§|v|zgg> + Vi - <v§|v|zg€> =0.

By lettinge — 0 in these equations and using the infinitesimal Maxwellian form
of g given by (3.7), one then finds thét, u, ) solves the local conservation laws
of the acoustic system (1.3). By the formal continuity in time of the densities in
(3.8), one finds that

(3.9) (p",u", 0" = lim <<g;”>, (vg"), <<5|v|2 - 1)9'2>) :

provided we assume that the limits on the right-hand side exist in the sense of
distributions for somép™, u™, 6™ € L?(dx; R x RP x R).
The above formal derivation can be stated more precisely as follows:

THEOREM3.1 (Formal Acoustic Limit Theoreml)et G, be a family of distribution
solutions of the scaled Boltzmann initial-value proble8m) with initial data G"
that satisfy the normalization(®.12) Let G" and G. have fluctuations'and g
given by(3.1)that are bounded families for sonig > 0 that vanishes witlk as in
(3.2). Alsa

(i) Assume that the local conservation la{88) are also satisfied in the sense
of distributions for every g
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(i) Assume that the family. gonverges in the sense of distributionsas- 0
to g € L>®(dt; L3(M dvdx)). Assume furthermore th#tg. — Lg, that
the moments

(Ge),  (vg), (e@vg), (vvl’g),
converge to the corresponding moments

@, (g), (wevg), (vvg),

and that every formally small term vanishes, all in the sense of distributions
ase — 0.

(iii) Assume that for som@™, u", #'") € L?(dx; R x RP x R) the family ¢
satisfieq3.9)in the sense of distributions.

Then g is the unique local infinitesimal Maxwellig®. 7) determined by the so-
lution (p, u, 8) of the acoustic systefd.3) with the initial data(p™, u™, ™) ob-
tained from(3.9).

3.2 Stokes Formal Derivation

The acoustic system differs from the Boltzmann equation in one very important
respect. Stationary solutions of the acoustic system (1.3) are exactly those that
formally satisfy the incompressibility and Boussinesq relations (1.1). The acoustic
system overTP therefore has stationary solutions that vary in space, while the
Boltzmann equation oveFP does not. It is clear that the time scale at which the
acoustic system was derived was not long enough to see the evolution of these
solutions.

It was shown in [2] that by considering the Boltzmann equation with a longer
time scale, one can give formal moment derivations of three fluid dynamical sys-
tems, depending on the limiting behavior of the ratige ase — 0.

e Whens./e — 0, one considers time scales of ordee land an incom-
pressible Stokes system is derived.

e Whens,. /e — 1 (or any other nonzero number), one considers time scales
of order Ve, and an incompressible Navier-Stokes system is derived.

e Whené,. /e — oo, one considers time scales of ord¢s.l and an incom-
pressible Euler system is derived.

The common practice of past works was to&et €™, in which casen > 1 leads
to Stokesm = 1 to Navier-Stokes, and @ m < 1 to Euler. Each derivation yields
motion and temperature equations that, when supplemented by the incompressibil-
ity and Boussinesq relations, govern the evolutiofmfu, 6).

In particular, to derive the Stokes system one considers a family of formal so-
lutions G, to the scaled Boltzmann initial-value problem

1 .
(3.10) €G, +v- VG, = “9(G,,G,), Gc(v,x,0)=G"(v,x),
€
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whose fluctuationg, are given by (3.1) for som& > 0 that satisfies

8e
(3.11) — —> 0 ase — 0.
€

The derivation has six steps.

The first step shows that the limitirggis an infinitesimal Maxwellian. Observe
that by (3.10) the fluctuationg satisfy

1 S
(3.12) €0t0c +v - Vx0Qe + gﬁge = ;Q(ge, Oe) -

After multiplying this equation by and lettinge — 0, we argue as in the first step
of the acoustic limit derivation to concludghas the form (3.7) for somg, u, )
in L>®°(dt; L?(dx; R x RP x R)).

The second step shows that, u, 6) satisfy the incompressibility and Boussi-
nesq relations. Observe that the fluctuatignformally satisfy the local conserva-
tion laws

€0t(de) + Vx - (vge) =0,

(313) €8t<vgé>+vx‘ (U@Ugé) :O,
1 1

€8t<§|v|2g6> + Vx - <U§|U|zge> =0.

By lettinge — O in these equations and using the infinitesimal Maxwellian form
of g given by (3.7), one then finds that

VX’UZO, Vx(p+0)zo.

The first equation is the incompressibility relation, while the second gay$9 is
a function of time only. By global energy conservation laws of (3.3) one thereby
concludes that

2 1,
p+9—/(p+0)dx_5/<§|v| g>dx_0.
TD

TP
Hence,(p, u, 0) satisfy the incompressibility and Boussinesq relations (1.1).

Notice that the Boussinesq relation implgss an infinitesimal Maxwellian of the
form

1 D+2
3.14 =u- ol Zv2 = =—=Z
314 g =u-vt0( G- 257)
for some(u, 6) in L>(dt; L2(dx; RP x R)).
The next three steps show that the evolutiop®) is governed by the motion
and heat equations. The difficulty here is that when the local conservation laws are

written so that the time derivatives are order 1, the fluxes become ofdef his
difficulty is overcome by the following strategy [2]. Observe that the momentum
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and a linear combination of the mass and energy local conservation laws from
(3.13) can be expressed as

1 1 1
0t (vge) + —Vy - (AQ) + _VX<_|U|296> =0,
€ € D

3.15
(3.15) 1 , D+2 1
(| 5lvl°— —5— )9 )+ =Vx-(Bg) =0,
2 2 €
where the matrix-valued functiofsand the vector-valued functidd are defined by
1 ., 1 , D+2
(3.16) A(v)_v®v—5|v| I, B(v)_élvl v — > V.

It is clear thatA € L?(M dv; RP*P) andB e L?(Mdv; RP). Asis common
when studying incompressible fluid dynamical limits, the momentum equation will
be integrated against divergence-free test functions. The last term in its flux will
thereby be eliminated, and one only has to pass to the limit in the flux terms of
(3.15) that involveA and B, namely, in the terms

1 1
—(Ag) —(Bg.) .
€ €

There is a chance that these terms have a limit because each eAtandB is in
Null(£)* while g. converges ta, which is in Null£). The next two steps show
that these terms indeed have a limit.

The third step evaluates the limit for moments of the fd¥gg.) /e for every

& e Dom(£)NNull(£)*, where DongL) ¢ L2(M dv) is the domain of.. Because
L is formally symmetric, one has

(3-18) (Eé:gd = (fﬁgd .
Upon multiplying (3.12) by and integrating, one obtains

(3.17)

1 Se
(3.19) €0t(§0e) + Vx - (v8Qe) + E(Sﬁge) = ;(SQ(ge, 0e)) -

By lettinge — 0 in this equation and using the infinitesimal Maxwellian form of
g given by (3.14), one finds that, in the sense of distributions,

1
(3.20) ;(ﬁégd — —(§v-VxQ) = —(§A) : Vxu — (§B) - Vy0,

where the matrix-valued functioA and the vector-valued functioB are defined
by (3.16).

The fourth step determines the limit of the flux terms (3.17). At this point we
assume that for some> 0 the operatoL satisfies the coercivity estimate

(3.21) 0(€%) < (L&) for everyé € Dom(L£) N Null(£)* .

This estimate holds for every linearized collision operator that arises from a clas-
sical hard potential with a small deflection cutoff. This assumption is equivalent
to assuming that the Fredholm alternative holdsdpnamely, that Rand€) =
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Null(£)*. In particular, it implies that unique¢ € L2(M dv; RP*P) andy e
L2(M dv; RP) exist which solve
Lo =A, ¢ecNulL)! entrywise

(3.22) N _
Ly =B, ¢ e Null(£)" entrywise

Then by lettingt in (3.20) be the entries @f andyr, one finds that

%(Agd —> — (@A) : Vxu= _V(qu + (VXU)T) )
(3.23) 1
Z(Bgd - —(Yy ®B) - Vx0 = —kVy0,

where kinematic viscosity and thermal conductivity are given by

1
(3.24) v (p:Lp), k= 5(1// LYy .

~ (D-1(D+2
In this step the coercivity assumed in (3.21) has been used only to assert the exis-
tence ofp andy,, something that could have been asserted by assuming much less.
The full power of coercivity will be used in the sixth step.

The fifth step shows that the evolution @f, 9) is governed by the Stokes mo-
tion and heat equations (1.2). The fluctuatigndormally satisfy the local con-
servation laws (3.15). Hence, when lettiag— O in these equations, we use
the infinitesimal Maxwellian form ofy given by (3.14) to evaluate the limiting
densities while we use (3.23) to evaluate the limiting fluxes. We find (inat)
satisfies (1.2). If we lefl denote the orthogonal projection fron?(dx; RP) onto
divergence-free vector fields, then by the formal continuity in time of the densities
in (3.15), one finds that

in pin ; in 1 2 in
(3.25) ", o )_!@o(n<vgf>’<(D+2|v| 1)96 >)
provided we assume that the limit on the right-hand side exists in the sense of
distributions for someu™, 6" € L2(dx; RP x R).
The sixth step determines the limit of the differencegpffrom its infinitesi-
mal Maxwellian,Pg., whereP is the orthogonal projection from?(M dv) onto
Null(£), which for everyg € L2(M dv) is given by

s 0g o (Lt 2o (Fop D
626 Pa=@+0e-v+{(50e-1)a)(Ghe- 7).

The Fredholm alternative impliqs that for everye L2(M dv) there is a unique
& € Dom(£) that solvesCé = PLe with P¢ = 0, whereP+ = 7 — P. Hence, for
everyé e L2(M dv) one has

(EPLe) = (9. PLE) = (9. LE) .
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One thereby sees thatas—> 0, (3.20) yields
1 -
;<s7ﬂg€> — — (EA) : ViU — (£B) - Vy0

=—(E¢) : Vxu— (EY) - Vi
Hence, ag — 0 we have the distribution limit

(3.27)

1
(3.28) ZPtg. > —¢:Vu—v - V0.
€

The right-hand side is exactly the first correction to the infinitesimal Maxwellian
that one obtains from the Chapman-Enskog expansion with the Stokes scaling.

The above formal derivation can be stated more precisely as follows:

THEOREM 3.2 (Formal Stokes Limit Theoreml)et b be a collision kernel for
which £ satisfies the coercivity estimaig.21) Let G, be a family of distribution
solutions of the scaled Boltzmann initial-value problgmi0)with initial data G"
that satisfy the normalization®@.12) Let G" and G, have fluctuations ' and
0. given by(3.1) that are bounded families for sondg > O that scales witte as
(3.11) Alsa

(i) Assume that the local conservation la{@s13)and the moment equation
(3.19)for everyé e L?(M dv) are also satisfied in the sense of distribu-
tions for every g.

(i) Assume that gconverges in the sense of distributionseas> 0to g €
L°°(dt; L2(M dvdx)). Assume furthermore thatg. — Lg, that for ev-
ery & € L?(Mdv) the momentgég,.) converge to(£g), and that every
formally small term vanishes, all in the sense of distributions as 0.

(iii) Assume that for som@™, ™) e L2(dx; RP x R) the family ¢ satisfies
(3.25)in the sense of distributions.

Then g is the unique local infinitesimal Maxwelliéh14)determined by the solu-
tion (u, 0) of the Stokes systefh.1){(1.2) with v and« given by(3.24)and initial
data (u'", 6™) obtained from(3.25) Moreover, the familyPg, of the deviations
of g from the infinitesimal Maxwellians satisfies the lig8t28)in the sense of
distributions.

4 Analytic Setting

In order to mathematically justify the fluid dynamical limits that were derived
formally in the last section, two things must be made precise: (1) the notion of
solution for the Boltzmann equation and (2) the sense in which the solutions fluc-
tuate about the absolute Maxwellian. Ideally, the solutions should be global while
the bounds and scalings should be physically natural. We therefore work in the
setting of the DiPerna-Lions theory of renormalized solutions. The theory has the
virtues of considering the physically natural class of initial data, and consequently,
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of yielding global solutions. These solutions have been used to study the incom-
pressible Navier-Stokes limit [3, 21] and the incompressible Euler limit [10, 22]
with only partial success, the acoustic limit [4, 5] and the Stokes limit [4, 22] with
considerable success, and the linearized Boltzmann limit [20] with complete suc-
cess. These works have developed the theory introduced in [3], which uses the
relative entropy and the entropy dissipation rate to control the fluctuations about
the absolute Maxwellian.

We present the basic facts we need about these theories in the following general
setting that allows a unified analysis of many aspects of both the acoustic and
Stokes limits. The scaled Boltzmann initial-value problems for both the acoustic
(3.4) and Stokes (3.10) limits can be put into the general form

1 .
(41) TfatGE +U'VXG€ = _Q(GEaGE)’ Gg(vaxa O) = Glen(vsx)’
€

where Y. is the time scale being considered. One sets- 1 for the acoustic
limit and 7. = ¢ for the Stokes limit.

4.1 Global Solutions

DiPerna and Lions [15] proved the global existence of a type of weak solution
to the Boltzmann equation over the whole sp&éefor any initial data satisfying
natural physical bounds. As they pointed out, with only slight modifications their
theory can be extended to the periodic Bk

The DiPerna-Lions theory does not yield solutions that are known to solve the
Boltzmann in the usual weak sense. Rather, it gives the existence of a global
weak solution to a class of formally equivalent initial-value problems that are
obtained by dividing the Boltzmann equation in (4.1) by normalizing functions
N =N(G) > 0:

1Q(G. G)

(4-2) (T +v - VOI'(G) = EW,

G(v,x,0) = G"(v,x) > 0,

wherel'(Z) = %(Z). Here each normalizing functioN is a positive-valued,
continuous function ovef0, co) that for some constar€y < oo satisfies the
bound

1 - Cn
N(Z) — 1+ Z

(4.3) for everyZ > 0.

Their solutions lie irC ([0, co); w-L1(M dv dx)), where the prefixib-" on a space
indicates that the space is endowed with its weak topology. They sathad is
a weak solution of (4.2) provided that it is initially equal@', and that it satisfies
(4.2) in the sense that for eveYye L>°(dv; C1(TP)) and evenyty, t,] C [0, oo)
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it satisfies

t2
(4.4) ref(F(G(tg))Y)dx— IG/(F(G(tl))Y)dX—/ /(F(G)v -V Y)dx dt
t1
TD

TP TP
1% []O(G,G)
= E/ﬁ /<7N(G) Y>dxdt.
TD

They show that ifG is a weak solution of (4.2) for one sudt, and if G satisfies
certain bounds, then it is a weak solution of (4.2) for every fdcfhey call such
solutionsrenormalized solutionef the Boltzmann equation (2.8).

Specifically, cast in our setting, their theory yields the following:

PRoPOSITION4.1 (DiPerna-Lions Renormalized Solutiorisjt b satisfy condition
(2.5). Given any initial data @& in the entropy class

(4.5) E(Mdvdx) = {G">0: H(G") < oo},

there exists at least one & 0in C([0, oo); w-L*(M dv dx)) that is a weak so-
lution of (4.2) for every normalizing function N. Moreover, G satisfies the global
entropy inequality

t
(4.6) H(G()) + ! f R(G(s))ds < H(G™),
0

€T,

a weak form of the local conservation law of mass

4.7) 7.0 (G) + Vx - (vG) =0,

the global conservation law of momentum

(4.8) /(vG(t))dx: /(vGi”)dx,
TP TP

and, finally, the global energy inequality

(4.9) /<}|U|ZG(t)>dX§ /<}|v|26i”>dx.
2 2
TD TD

DiPerna-Lions renormalized solutions are not known to satisfy many proper-
ties that one would formally expect to be satisfied by solutions of the Boltzmann
equation. In particular, the theory does not assert either the local conservation
of momentum in (2.16), the global conservation of energy in (2.17), the global
entropy equality (2.19), or even a local entropy inequality; nor does it assert the
uniqueness of the solution. Nevertheless, as stated here, it provides enough control
to establish the Stokes limit. Specifically, we do not need the strengthening of the
theory recently given by Lions and Masmoudi in [22].
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4.2 Fluctuations

In order to derive fluid dynamical equations from the Boltzmann equation for
regimes near an absolute Maxwellian, be they the acoustic, Stokes, or incompress-
ible Navier-Stokes equations, one needs a proper setting in which these limits hold.
While L2-based spaces are natural for these fluid equations, natural settings for the
Boltzmann equation are log(L) spaces. These different types of spaces were
reconciled in the limit of small fluctuations about an absolute Maxwellian in [3].

We will consider familiess, of DiPerna-Lions renormalized solutions to (4.1)
such thatG"" > 0 satisfies the entropy bound

(4.10) H(GM") < Cns?

for someC™ < oo ands, > O that satisfies the scaling (3.2). For this scaling the
DiPerna-Lions entropy inequality (4.6) becomes

t
@1)  HG.W)+ o [ RG.e)ds < HGH < .
e J0
wheren? = et.. One has). = /2 for the acoustic limit ang, = ¢ for the Stokes
limit. We will therefore assume that satisfiess < . < €2

The relative entropy functionai given by (2.20) has an integrand that is a
nonnegative strictly convex function & with a minimum value of 0 aG = 1.
Thus for anyG,

(4.12) H(G)>0 and H(G)=0 ifandonlyifG=1.

It thereby provides a natural measure of the proximitgdb that equilibrium. We
therefore consider the familigg® andg. of fluctuations abouG = 1 defined by
the relations

(4.13) G"=1+6.d", G.=1+36.0..

One easily sees th&t asymptotically behaves like half the square of tfenorm
of these fluctuations as— 0. Hence, (4.11) is consistent with these fluctuations
being of order 1. Just as the relative entrépygontrols the fluctuationg,, the dis-
sipation rateR given by (2.21) controls the scaled collision integrands defined by

1
b
Once again, (4.11) is consistent with these scaled integrands being of order 1. The
following shows more.

(414) Qe (G/elG/e - Gelee) .

LEMMA 4.2 (Fluctuations Lemmal.eté. > 0 vanish withe as(3.2). Let G, > 0
be a family of functions in GO, oo); w_—Ll(M dv dx)) that satisfies the entropy
bound(4.11) with GI" = G.(0). Let d", g., and g be given by(4.13)+(4.14)
Define

2 1 1
4.15 Ne=>+>Gc=1+250..
(4.15) 313 + 359
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Then, adopting the notation = 1 + |v|2, we have the following

(i) The family g is bounded in E°(dt; L1(o M dv dx)), relatively compact in
w-Li.(dt; w-L1(o M dvdx)), and relatively compact im-L*(oc M dv dx) point-

[o]
wise in t for each t= 0.

(i) The family g/N, is relatively compact inv-L (dt; w-L(odu dx)).

loc
- (i) 1f g™ is aw-L(o M dvdx) limit point of the family § ase — 0, then
g" € L2(M dvdx), and one has

1 s NV S .
(4.16) > /(g'” ydx < I'E'L'Qf S—SH(GL”) <Ccn,

TD
(iv) If gisaw-Li (dt; w-L1(oM dvdx)) limit point of the family g and g
is jointly a w-L} (dt; w-L1(odu dx)) limit point of the family g/N, ase — 0,

loc

then ge L*°(dt; L2(M dvdx)), q € L?(du dx dt), and q inherits the symmetries
of g.. Moreover, for almost every+ 0 one has

1 , o
(4.17) 5 [ (a?dx = lminf 5 H(G.0).

TD
while for every t> 0 one has

t
(4.18) }/ /((q(s)z))dx ds< liminf
4 0 e—0
TD

1 t
R(G, ds.
nzagfo (G.(9)) ds

(v) The family g satisfies the nonlinear estimates

2 .
(4.19) /<%>(t)dx <2C" foreveryt>0,
2
(4.20) GEI—E = O(Jlog(.))) in L*°(dt; LY(M dvdx)) ase — 0.
(vi) Let g be asir(iv); then g has the form of an infinitesimal Maxwellian,
1 D

for some(p, u, ) € L®(dt; L2(dx; R x RP x R).

Assertion (i) is essentially proposition 3.1(1) of [3]. Assertion (ii) is proposi-
tion 3.4(1) of [3]. Assertion (iii) is essentially contained in proposition 3.1(2) of
[3]. Assertion (iv) consolidates proposition 3.1(2) and proposition 3.4(2) of [3].
Assertion (v) consolidates proposition 3.2(3) and proposition 3.3 of [3]. Estimate
(4.20) is the key nonlinear estimate from [3]. Assertion (vi) is proposition 3.8 of
[3]. Itis a consequence of assertions (i), (ii), and (v).

It should be noted that in this propositi@B. is only required to satisfy the
entropy bound (4.11), whil& is only required to satisfy (3.2). — 0 ase — 0,
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which is minimal. In particularG, is not required to solve the Boltzmann equation
in any sense.

This result shows that the initial entropy bound (4.10)@h provides a no-
tion of smallness that insures the family of fluctuatigpsvill have limit pointsg,
and that these limit points will be ib>(dt; L?(M dv dx)), both of which were as-
sumed in the formal theorems. It shows moreover that the entropy inequality (4.11)
is enough to conclude that every limit point must be an infinitesimal Maxwellian,
which was the conclusion of the first step in the proof of each formal theorem. We
therefore employ this notion of smallness in the results below.

5 The Weak Limit Theorems

In striving to mathematically justify any fluid dynamical limit, the goal should
be to obtain results that reflect the best physical understanding of the problem. In
the context of justifying the Stokes and acoustic limits, we take the formal theorems
of Section 3 as our best physical understanding of the problem. Their proofs simply
make more precise the traditional balance arguments of kinetic theory, which date
to Maxwell [23]. Our goal is therefore to remove as many assumptions as possible
from these formal theorems while leaving their conclusions unchanged for as large
a class of solutions as physics allows. More specifically, our goals are to

e work within the class of DiPerna-Lions renormalized solutions,

e use only global bounds on fluctuations in terms of the relative entkbpy
andg,,

e make the requirements on héwscales withe as close as possible to those
required by the formal theorems,

e eliminate all the assumptions labeled (i) and (ii) in the formal theorems,
and

e minimize any assumptions on the collision kerhdleyond those required
for the DiPerna-Lions theory and those required by the formal theorems.

With these goals in mind, we now state our main results precisely.

5.1 Weak Stokes Limit Theorem

We state our main result for the Stokes limit first, because it comes closest to
what is expected from the corresponding formal result, Proposition 3.2. Its proof
will be given in Section 8.2.

THEOREMb5.1 (Weak Stokes Limit Theorem)et b be a collision kernel that sat-
isfies conditiong2.5)2.6) and for which satisfies the coercivity estimg{&21)
and the domain condition

(5.1) DomL) C {& € LA(Mdv) : (&%) < oo}.

Let G" be a family in the entropy class(El dv dx) that satisfies the normal-
izations(2.12) and the entropy boun.10)for some C' < oo and$, > 0 that
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scales withe as
e

(5.2) 8¢ > 0 and =llog®.)|? - 0 ase -0
€

for the B that arises in conditior{2.6).
Assume, moreover, that for sorag”, 6™) € L?(dx; RP x R) the family of
initial fluctuations ¢' given by(4.13)satisfies

o . 1 A
) in giny _ | I in 2_1 in
(5.3) v, 6v) 6ILT10< (Ug€>,<<D+2|v| )Q6 >>
in the sense of distributions, wheeis the orthogonal projection from3cdx; RP)
onto divergence-free vector fields.
Let G, be any family of DiPerna-Lions renormalized solutions of the Boltzmann

equation(3.10) that have @ as initial values. Then, as — 0, the family of
fluctuations g given by(4.13)satisfies

1 D42
54 g —u-v+0(z2-22) inw-Ll dt: w-LioMdvdx)),
2 loc

2
1, T
€

loc

(dt; w-LY(eM dvdx)),

where(u, ) € C([0, 0o); L2(dx; RP x R)) is the unique solution of the Stokes
system(1.1)1.2) with v and « given by(3.24) and with initial data (u", 6")
obtained from(5.3). In addition, one has that

M(vg:) - u in C([0, 00); D'(T®; RP)),

5.6
(56) << 1 |v|2—l>ge>—>9 in C([0, 00); w-L1(dx; R)),

and that(u, 0) satisfies

(5.7) /udx:O, /0dx=0.

TP TP

This result improves upon earlier Stokes limit results in three ways. First, it
establishes the heat equation. No earlier work had done this because of difficulties
that arise in controlling the heat flux and in proving that local energy conservation
holds in the limit. Only the results in [5] and [21] established the motion equation
without assuming the local momentum conservation law is satisfied by DiPerna-
Lions solutions.

Second, its scaling assumption (5.2) is better. The scaling assumption in [5] is
essentially

Se
5 — 0 and —2|Iog(8€)| —-0 as ¢ —~0,
€

which differs from (5.2) by at least a factor ef The assumption in [21] is essen-
tially (5.2) but withg = 1.
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Third, this result places conditions dnthat are both weaker and more natu-
ral than those in [5] and [21]. The result in [5] assuniedas bounded, which
excludes all the classical collision kernels except the one for Maxwell molecules.
The result in [21] assumed the conditions introduced in [3]. These are extremely
complicated and are not easy to verify for any classical collision kernel save the
one for Maxwell molecules.

The assumptions made by this result differ from those made by the formal result
(Proposition 3.2) in a number of ways. Here we make three additional assumptions
regarding the collision kerndd, namely, that it satisfies the DiPerna-Lions condi-
tion (2.5), that it satisfies the bound (2.6), and that D6satisfies (5.1). These
are all natural assumptions in that they are satisfied for classical hard potentials
with a small deflection cutoff. The assumed bound (2.6) and the assumed coerciv-
ity estimate (3.21) are technical in nature and can be weakened at the expense of
giving up some of the theorem’s conclusions.

A more significant difference is that here the scaling assumption (5.8) isn
generally more restrictive than the one in the formal result (3.11). However, it is
not much more restrictive. Indeed, wh&n= ¢™ they both require the same thing,
namely, thatm > 1. In this sense, assumption (5.2) is essentially optimal. Of
course, assumptions (3.11) and (5.2) become identical Wwhen0, which is the
case for Maxwell molecules. The difference between the two assumptions when
B > 0 is important, however, because it reflects technical difficulties that likely
must be overcome in any complete result for the incompressible Navier-Stokes
scaling.

Of course, the biggest difference between this result and the formal result is
the absence of any assumptions here regarding either the convergence or the com-
pactness of the family of fluctuatiorgs. The only convergence assumption made
here is that the family of initial fluctuationg" satisfies (5.3) in the sense of dis-
tributions. By assertions (i) and (iii) of the fluctuations lemma (Proposition 4.2),
we may always pass to a subfamilygf that satisfies this assumption. The ques-
tion of exactly whatu™, #™) can be realized as a limit (5.3) will be addressed in
Section 6.

Finally, we remark that the limits asserted in (5.4)—(5.5) capture the first and
second nontrivial terms in the Chapman-Enskog expansion. What makes it re-
markable is the fact that the first limit need not be strong before obtaining the
second. Conditions under which both these become strong limits will be given in
Section 6.1.

5.2 Weak Acoustic Limit Theorem

We now state our main result for the acoustic limit. It does not come as close to
what one expects from its corresponding formal result, Theorem 3.1, as our main
result for the Stokes limit did. But it is far better in this regard than our previous
result [5]. Its proof will be given in Section 7.1.
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THEOREM 5.2 (Weak Acoustic Limit Theorem)et b be a collision kernel that
satisfies the condition2.5)2.6).

Let G" be a family in the entropy class(El dv dx) that satisfies the normal-
izations(2.12) and the entropy boun#.10)for some &' < oo and$, > 0 that
satisfies

Se
(5.8) s¢ — 0 and 1/2|Iog(8€)|/3/2 —0 ase —>0
€

for the B that arises in conditiorf2.6).
Assume, moreover, that for some”, U, 6") € L?%(dx; R x RP x R) the
family of fluctuations § given by(4.13)satisfies

(5.9) (p",u", ") = lim (<g'!‘>, (vge", <(5|v|2 - 1) g':‘>>
in the sense of distributions.

Let G. be any family of DiPerna-Lions renormalized solutions of the Boltzmann
equation(3.4)that have @' as initial values.

Then, ag — 0, the family of fluctuations.ggiven by(4.13)satisfies

1 D
(5.10) g. — p+uU-v +9(§|v|2 - E) in w-Lib (dt; w-L*(c M dvdx)),

where(p, u, 8) € C([0, 00); L%(dx; R x RP x R)) is the unique solution of the
acoustic systeril.3) with initial data (o™, u'™, ") obtained from(5.9). In addi-
tion, one has that

1
(511) <<gé>’ (ng>v<(B|v|2_l>g6>> e (,O,U,Q)
in C([0, co); w-L1(dx; R x RP x R)) and that(p, u, ) satisfies

(5.12) fpdx:o, /udx:o, f@dx:o.

TP TD TP

This result improves upon the acoustic limit result in [5] in two ways. First, its
scaling assumption (5.8) is much better. The scaling assumption in [5] is essentially

Se
3 >0 and —Jlog(é:)| — 0 ase — 0,
€

which differs from (5.8) by at least a factor e¥2. Second, it places conditions on
b that are far weaker. The result in [5] assunheslas bounded, which excludes all
the classical collision kernels except the one for Maxwell molecules.

The assumptions made by this result differ from those made by the formal re-
sult (Proposition 3.1) in several ways. Here we assume that the collision kernel
satisfies conditions (2.5)—(2.6). These assumptions are satisfied for classical hard
potentials with a small deflection cutoff. The assumed bound (2.6) is technical in
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nature and can be weakened to embrace the classical soft potentials without giving
up any of the theorem’s conclusions.

One very big difference is that here the scaling assumption (5.8) @nfar
from the one in the formal result (3.2). Whépn = €™, it requires thatm >
%, whereas the formal one requires > 0. This more restrictive requirement
arises from the way in which we remove the local conservation law defects of
the DiPerna-Lions solutions. This rather significant gap must be bridged before
one can hope to fully establish the compressible Euler limit and may have to be
bridged before the incompressible Euler limit is fully established.

Another big difference between this result and the formal result is the absence
of any assumptions here regarding either the convergence or the compactness of
the family of fluctuationsy.. The only convergence assumption made here is that
the family of initial fluctuationgg™ satisfies (5.9) in the sense of distributions. By
assertions (i) and (iii) of the fluctuations lemma (Proposition 4.2), we may always
pass to a subfamily of" that satisfies this assumption. The question of exactly
what (o™, u™, #) can be realized as a limit (5.9) will be addressed in Section 6.

6 The Strong Limit Theorems

In earlier studies the notion antropic convergencdirst introduced in [3],
was used as a natural tool for obtaining strong convergence results for fluctuations
about an absolute Maxwellian [4, 5, 10, 20, 21, 22]. With it, the entropy inequality
can be used not only to produce bounds on the fluctuations but also to measure the
distance of the fluctuations from their asymptotic state. It plays a similar role here
for the Stokes and acoustic limits.

DEFINITION 6.1 LetG, > 0 be a family inL*(M dv dx) and letg, be the corre-
sponding fluctuations as in (3.1). The familyis said toconverge entropically of
order§, to g € L2(M dv dx) if and only if
(6.1 g —g inw-L'(Mdvdx) and Iing(s—le(Gé) = / %(gz)dx.
€—> € TD

It is clear that ifg. converges entropically of ordég, thenG, satisfies the en-
tropy boundH (G,) = 0(83). This definition requires that the bound asserted by
Proposition 4.2 on the2-norm ofg by a liminf be sharpened to an equality with a
limit. It was shown in proposition 4.11 of [3] that entropic convergence is stronger
than norm convergence in'(c M dv dx). It was shown in proposition 3.4 of [5]
that given any. > 0 that satisfies (3.2) and aiy, u, 6) € L?2(dx; R x RP x R)
that satisfies the normalizations (5.12), the associated infinitesimal Maxwellian
(3.7) has families of fluctuationg. that converge to it entropically of ordég.
In particular, everyL? initial data for either the Stokes or acoustic system can be
realized as a limit (even a strong limit) as in (5.3) or (5.9), respectively.
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Loosely stated, the results of this section are the following: GivenLzripi-
tial data for either the Stokes or acoustic system and any sequence of DiPerna-
Lions solutions whose initial fluctuations converge entropically to the infinitesimal
Maxwellian associated with the? fluid initial data, we prove that at every positive
time the fluctuations of the DiPerna-Lions solutions converge entropically to the
infinitesimal Maxwellian associated with the uniqlué solution of the fluid sys-
tem. The key points are that the limit of the DiPerna-Lions Boltzmann dynamics
mapsontothe L? fluid dynamics and that the limit is strong.

6.1 Strong Stokes Limit Theorem

In parallel with the last section, we state our result for the Stokes limit first. It
turns the weak limits asserted by Theorem 5.1 into strong limits by simply assum-
ing that the initial fluctuations converge entropically to an appropriate infinitesimal
Maxwellian. Its proof will be given in Section 8.3.

THEOREM®6.2 (Strong Stokes Limit Theorem)et b ands. be as in Theorerf.1
Given any(u™, #'") in L?(dx; RP x R) that satisfies

V,-u" =0, /u"‘dx: 0, /9"‘dx=0.
TP TP
Let G" be any family in the entropy class(H dv dx) that satisfies the normal-
izations(2.12)and whose family of fluctuationg’gonverge entropically of order
3. ase — 0to the infinitesimal Maxwellian
- - 1 D+2
in _ in gn( = 2 .
g u"-v+ (2|v 5 )
Let G, be any family of DiPerna-Lions renormalized solutions of the Boltzmann
equation(3.10) that have @' as initial values. Then, as — 0, the family of
fluctuations g given by(4.13)satisfies

1 D+2
(6.2) g.(t) = ut) v+ 9(t)(§|v 2 _ T+> entropically of orders,
forevery t> 0,
1 D+2
(63) g —>u-v+ 0(§|v 2_ T+> in Lp.(dt; LY(c M dvdx)),
5 1 .
(6.4) EI— > (VU (V)T @+ V0 W in Li(dts Lo dudx)),

where(u, 8) € C([0, o0); L2(dx; RP x R)) is the unique solution of the Stokes
system(1.1)+1.2) with v andx given by(3.24)and initial data(u™, 6™).

This result shows that every physically natural solution of the Stokes system
is a strong limit of renormalized solutions of the Boltzmann equation. In contrast
with earlier results [3, 4, 22], it asserts entropic convergence everywhere in time
rather than almost everywhere.
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6.2 Strong Acoustic Limit Theorem

We now state the corresponding result for the acoustic limit. It turns the weak
limits asserted by the weak acoustic limit theorem, Proposition 5.2, into strong
limits by simply assuming that the initial fluctuations converge entropically to an
appropriate infinitesimal Maxwellian. Its proof will be given in Section 7.2.

THEOREM 6.3 (Strong Acoustic Limit Theorem)et b ands. be as in Theo-
rem5.2 Given any(p™, u™, 6™ e L?(dx; R x RP x R) that satisfies

/,o"‘dx:O, /u"‘dx:O, /9"‘dx=0.

TD TD TD
Let G" be any family in the entropy class(B dv dx) that satisfies the normal-

izations(2.12)and whose family of fluctuationg'gonverge entropically of order
8. ase — 0to the infinitesimal Maxwellian

, , , (1 D
in _ in in gin( = 2 )
g'=p +U v+ (zlvl 2)

Let G. be any family of DiPerna-Lions renormalized solutions of the Boltzmann
equation(3.4) that have @' as initial values. Then, as — 0, the family of
fluctuations g given by(4.13)satisfies

(6.5) ge(t) — p) +ut) v+ 8(t)(%|v|2 — %) entropically of orders,

forevery t> 0,

1 D .
(66) g — p+uU-v+ 0<§|v|2 — E) inLE.dt; LY(cM dvdx)),
where(p, u, 8) € C([0, c0); L_2(d_x; R x RP x R)) is the solution of the acoustic
system with initial datgoe™, u™, 6").

Analogous to the corresponding Stokes result, this result shows that every phys-
ically natural solution of the acoustic system is a strong limit of renormalized
solutions of the Boltzmann equation. This fact is perhaps more striking in this
setting because physically natural solutions of the acoustic system are generally
quite weak, being an orbit of a strongly continuous unitary group b¥éix; R x
RP x R). Also like the Stokes result, one way it improves upon the earlier result
in [4, 5] is by asserting entropic convergence everywhere in time rather than just
almost everywhere.

7 Establishing the Acoustic Limit

Here we give proofs of both the weak and strong theorems for the acoustic limit
that were stated in the previous two sections. We give these proofs first because
they are more straightforward than those of any theorem leading to an incompress-
ible model such as the Stokes system.
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7.1 Proof of the Weak Acoustic Limit Theorem

Our proof of the weak acoustic limit Theorem 5.2 closely follows that of the
formal acoustic limit Theorem 3.1. That proof has two steps: (1) showing that
limiting fluctuations are infinitesimal Maxwellians and (2) passing to the limit in
the local conservation laws. The analogue of the first step has essentially already
been realized by assertion (vi) of the fluctuations lemma, Lemma 4.2.

The analogue of the second step is not as easy to realize because DiPerna-Lions
solutions are not known to satisfy the momentum and energy local conservation
laws. We therefore have to recover these local conservation laws in the limit. This
is done by taking the velocity moments of the renormalized Boltzmann equation
with respect ta and|v|? and showing that the resulting conservation defects vanish
ase¢ — 0. This is the same basic strategy that we used in our previous work [5],
except that the means by which we assert that the conservation defects vanish are
based on the entropy dissipation rate control in the present paper, while only the
energy and entropy control were used in [5].

Framework for the Proof

For the acoustic limit one considers the Boltzmann equation (4.1)wwith 1.
One then has that. = €2, whereby the fluctuationg. andg. given by (4.13)—
(4.14) are
G.—1 G.,G. — GG,

and =
S G €125,

(7.2) g =

By assertion (i) of the fluctuations lemma, the famlyis relatively compact in
w-Lik (dt; w-LY (o M dv dx)). We will show that the familyg. is convergent by
showing that all of its subsequences converge to the same limit point.

Consider any subsequence of the fangly still abusively denoted.. It will
also be relatively compact im-L} .(dt; w-L*(c M dv dx)). We will show that this
sequence is convergent by showing that it has a unique limit point. Indegdyédet
anyw-Li (dt; w-L1(o M dv dx)) limit point of the sequenceg.. Assertion (vi) of
the fluctuations lemma states tlggits an infinitesimal Maxwellian given by (4.21)
for some(p, u, 0) that belongs td_*(dt; L?(dx; R x RP x R)). By passing to
the limit in the renormalized Boltzmann equation, we will show tiaatu, ) must
be a weak solution of the acoustic system (1.3) with initial dath u", 6™) that
is uniquely obtained from (5.9). Such weak solutions of the acoustic system are
in C([0, c0); L2(dx; R x RP x R)). Moreover, they are uniquely determined by
their initial data. The limiting infinitesimal Maxwelliag is thereby uniquely de-
termined. Howeverg was an arbitraryu-Llf)c(dt; w-L(e M dv dx)) limit point
of an arbitrary subsequence of the original fangly We can then conclude that
the original familyg. converges t@ in w-L.(dt; w-L*(c M dvdx)) ase — 0,

which would establish (5.10).
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Approximate Local Conservation Laws

All that remains to be done to establish (5.10) is to show tpat, 6) is the
aforementioned weak solution of the acoustic system by passing to the limit in ap-
proximate local conservation laws built from the renormalized Boltzmann equation
(4.2). We choose to use the normalization of that equation given by

2 1 2 1
7.2 r'z)=3log| =+ =2 NZ)==-+=Z.
(7.2) (2) 0%3+3), (2)=3+3
After settingr. = 1 and dividing byé., equation (4.2) becomes

1 5
(7.3) 0tYe + V- Vygye = i // g—éb(a), vy — v)dw My dv,
where
3 1 1
7.4 .= —log{1+ =80 )], Ne=1+ =6.0.
(7.4) v &0%:+389) + 359
When the moment of the renormalized Boltzmann equation (7.3) is formally taken
with respect to any € Spar{l, v,, ..., vy, |v|?}, one obtains
1/ Qe

(7.5) 0t (Cve) + Vx - (vye) = 7z §We .

This fails to be a local conservation law because the so-called conservation
defect on the right-hand side is generally nonzero. The idea of the proof is to show
that asx — 0 this conservation defect vanishes, while the left-hand side converges
to the left-hand side of the local conservation law correspondingg to

It can be shown from (4.4) that every DiPerna-Lions solution of (7.3) satisfies
(7.5) in the sense that for evegye C(TP) and evenyty, t;] C [0, co) it satisfies

(7.6) /x(éye(tz»dX—/x((m(h))dx:

“Iv dxdis [ LIl 9 Nax gt
A/ xX - (vVe) +/tl /Xm s“N—e .

We analyze this equation term-by-term before passing to the limit.

Removal of the Conservation Defect

The fact that the conservation defect term on the right-hand side of (7.6) van-
ishes ag — 0 follows from the scaling assumption (5.8), the fgcis bounded,
the fact¢ is a collision invariant, and the key new estimate

1/ ac\\ _ ~(3llog(s)|?’?
(7.7) m«(ne» = O(T + O(écllog(ée)1)
in LE.(dt; L1(dx)) ase — 0. Given this estimate, the argument is as follows: The

scaling assumption (5.8) directly implies that the first term on the right-hand side
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of (7.7) vanishes as — 0. The second term also manifestly vanishes as 0.
Therefore, becausge is bounded irnL*°, one sees that

2 1/ q 2 1/ q
/ﬁ/Xm«mi»d"dtf”x”“"/ﬁ/617«%»

ase — 0. All that remains is to establish estimate (7.7); but this follows from the
conservation defect Theorem 9.1.

(7.8) dx dt— 0

Control of the Flux Term

The flux term on the right-hand side of (7.6) contains the sequarge). To
control this term, first observe that when one sets %Seg6 in the elementary
inequality

2

2
(log(1+2)° < 112

one obtainsy? < g?/N.. The nonlinear bound (4.19) of Proposition 4.2 then
shows that the sequengeis bounded irL>°(dt; L(M dv dx)) with

foreveryz > —1,

/(yf(t))dx <2C™" for everyt > 0.

Because the sequengeis bounded irL*®(dt; L?(M dv dx)) andvz € L?(M dv),
the sequence

(7.9) (vZye) s relatively compact inu-LﬁJc(dt; w-L2(dx)) .

Control of the Density Terms

The density terms on the left-hand side of (7.6) contain the seqyenge We
use the Arzela-Ascoli theorem to establish that this sequence is relatively compact
in C([0, 00); w-L2(dX)).

First, because the weak form of (7.3) implies that the time-dependent function

t > /(er(t))dx is continuous for every € L®(M dv; C}(TP)),

the above bound and a standard density argument then imply that the seguisnce
bounded inC([0, oo); w-L2(M dv dx)). The sequencg y.) is therefore bounded
in C([0, o0); w-L2(dx)) because the sequengeis bounded in

C([0, o0); w-L2(Mdvdx)) and ¢ € L3(Mdv).

In particular, this implies that the sequenge. ) is equibounded.

Next, observe that the sequenge.) is also equicontinuous because the first
term on the right-hand side of (7.6) can be bounded as

1/2

to .
/ /vxx ey dx dt] < [Vl (0126226 2ty — ta]
t1
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while the second term vanishes by (7.8). The Arzela-Ascoli theorem then implies
the sequence

(7.10) (cye) s relatively compact it€ ([0, co); w-L2(dx)).

Passing to the Limit

Lemma 4.2(i) allows us to pass to a subsequence of the seqgerstél abu-
sively denoted),, such that as — 0

(7.11) g —> g in w—Llloc(dt; w-LY{ (oM dvdx)).

Now consider the associated subsequencébserve that when one sets=
%éege in the elementary inequalities

2
O0<z-log(l+2 < 12 for everyz > —1,
one obtains ,
1.9
O = e = Ve = _86_6 .
=0 — Y 3%\,
The nonlinear estimate (4.20) of Lemma 4.2 then shows that
(7.12) gc — ¥ — 0 inL®(dt; LY(cMdvdx)) ase — 0.
This limit and assertion (iv) of Lemma 4.2 imply thatas> 0
(7.13) Ye = @ inw-Li (dt; w-L2(M dvdx)).

Then (7.9) and (7.10) imply that as— 0
(veye) = (v2g)  inw-Li(dt; w-L3(dx)),
(Lye) — (¢9) in C([0, 00); w-L%(dX)) .

Moreover, because the initial fluctuatiog¥ satisfy (5.9), one sees from (7.12)
that

. . 1 . N
w15 (oSt 1)) o on

in w-L2(dx) ase — 0, where we defing/" = v, (0).
Now taking limits in (7.6) ag — 0 leads to

t2

(7.16) / X (£9(t))dx — / X (£g(t))dx = / / Vyx - (vrgydx dt,
t1

which is the weak form of the local conservation law

3(¢9) + Vx - (v£g) = 0.

When one set§ = 1,v,,...,v, and (3|v|?> — 2) into this equation and uses
the infinitesimal Maxwellian form ofy given by (4.21), the resulting system for
(p, u, 8) coincides with the acoustic system (1.3) with initial dgtél, u™, 6™)
given by (5.9). This establishes (5.10).

(7.14)
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When one then sets=1,v,, ..., v, and(%lvl2 — 1) into the second line of
(7.13) and combines it with (7.12), the limits (5.11) follow.

Finally, by settingy = 1 andt; = 0 in (7.16) with¢ = 1,v,,...,v,, and
(%|v|2 — 1), one sees that for evety> 0

f@g(t»dx _ /<cg<0>>dx o,

because of the normalizations (2.12). This establishes (5.12) and concludes the
proof.

7.2 Proof of the Strong Acoustic Limit Theorem

The fact thatg" — g™ entropically of orders, ase — 0 implies thatg"
satisfies (5.9). The weak acoustic limit theorem therefore implies that the family
ge, Which is contained irC ([0, co); w-L*(M dv dx)), converges in the topology
of w-LL (dt; w-L1(oM dv dx)) to the infinitesimal Maxwelliag given by (5.10),
which belongs t&€ ([0, oo); L?(M dv dx)). The definition of entropic convergence

(6.1) requires us to show that for every- 0 one has

(7.17) g (t) = gt) inw-L*(Mdvdx) ase — 0

and

7.18 l lHGt— ltzd

(7.18) g'lﬂa_g (E())—/§<g()>x.
']TD

This is done by a squeezing argument.

First, becausédp, u, 6) is the weak solution of the Cauchy problem for the
acoustic system (1.3) with initial data™, u™, 6™), it satisfies the energy equality

/(p(t)2+IU(t)|2+%9(t)2>dx:/(,o"‘2+|ui”|2+gei”2)dx_
TP D

Upon taking limits in the entropy inequality (4.11), using the assumed entropic
convergence of the initial data, and employing the above energy equality, for every



368 F. GOLSE AND C. D. LEVERMORE

t > 0oneisledto

_ 1 1 .
"T 'sup s H(Gc () = lim 5 H(G)

56
1/ in2
=5 [ (g")dx
ZTD
1 . . D .
(7.19) — é/ <p|n2+|u|n|2+59m2)dx
TD

_1 2 >, D
- 2/<p(t) + U+ o) )dx

'ﬂ"D
1
=z t)?)dx.
5 [ o
TD
This inequality gives one direction of the equality (7.18).

Next, observe that (5.11) of the weak acoustic Theorem 5.2 states that for every
¢ € Spanl, v,,...,v,, |v|?} one has

(¢ye) — (¢g) in C([0, o0); w-L?(dx)) ase — 0.

Let P be the orthogonal projection from?(M dv) onto Null(£); the above con-
vergence statement actually says that

(7.20) Py. — g inC([0, o0); w-L?(M dvdx)) ase — 0.

Now lett > O be arbitrary but fixed. The elementary inequality

1 1\\?
> (3 Iog(l + §Z)) <1+ 2log(l+2 —z foreveryz> —1
implies that for every > 0 one has

1 1 in
(7.21) ; / (O < SHG.0) = C7.

The family y.(t) is thereby relatively compact im-L2(M dv dx). Let § be any
w-L2(M dv dx) limit point of the familyy. (t). By Fatou’s lemma and (7.21), one
sees that

11 . 2 o1
(7.22) E/(g ydx < |I£nJQf/(y€(t) ydx < "?L'Qf %H(Gg(t)).

On the other hand, becauBe, (t) — g(t) by (7.20), we have
(7.23) PG = lim Py(t) = gt) in w-L2(M dvdx).



STOKES-FOURIER AND ACOUSTIC LIMITS 369

Hence, by employing the orthogonal decomposifica P§+P*§ = g(t) +P*§
in combination with the bounds (7.19) and (7.22), we arrive at

1 A B !
5 [ a0 3 [ (@ 9 <limint SHG.0)

< lim sup(si2 H(G.(t))

e—0 €

1 2
< §/<g<t> dx.

This chain of inequalities immediately implies tlfat § = 0 and that the equality
(7.18) is satisfied.

The fact thatP+§ = 0 combines with (7.23) to show thgt = g(t). The
unigueness of the limit poirg thereby implies that

Ye) = g(t) inw-LY(cMdvdx) ase — 0.

Becausay, — y. — 0in L*(dt; LY(c M dvdx)) ase — 0, the above limit shows
that (7.17) is also satisfied. Therefore we conclude ghé) — g(t) entropically
of orderé, for everyt > 0.

Finally, by proposition 4.11 of [3] and dominated convergence, this also implies
thatg. — g strongly inL}_(dt; L(c M dv dx)) as announced.

loc

8 Establishing the Stokes Limit

Here we give proofs of both the weak and strong theorems for the Stokes limit.
There are three main ingredients:

e control of the fluctuations of both the phase-space densities and the colli-
sion integrands,

e removal of the local conservation law defects, and

e convergence of the momentum and heat fluxes.

The fluctuation controls needed here were developed in [3]. Some of these
controls are of the same nature as those used for the acoustic limit and have already
been recalled in Lemma 4.2. The additional fluctuation controls from [3] needed
for the Stokes limit are gathered below in Lemma 8.1. Conservation law defects are
handled in the same way as for the acoustic limit, by appealing to the conservation
defect theorem, Theorem 9.1, which is stated and proved in the next section. The
last item on the list above is particular to the Stokes limit and, along with the
method to handle conservation defects, rests upon another new estimate on the
collision integrand, whose proof is deferred until Section 10.
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8.1 Control of the Stokes Fluctuations

For the Stokes limit one considers the Boltzmann equation (4.1) avith €.
One then has that = ¢ whereby the fluctuationg. andg. given by (4.13)—(4.14)
are

A e =
(8.1) g S

The a priori estimates below are natural amplifications of Proposition 4.2 that result
becausé&s, are renormalized solutions of the Boltzmann equation with: €.

G -1 . _ GLG.-GCaGC.

LEMMA 8.1 (Stokes Fluctuations Lemmagt b be a collision kernel that satisfies
conditions(2.5)+2.6) and for which. satisfies the domain conditiqb.1).

Let G, > 0 be a family of renormalized solutions of the scaled initial-value
problem(3.10)with initial data G" that satisfy the entropy bour(é.10)for some
C" < oo and . > O that satisfieg3.2). Let g¢ and g be the corresponding
fluctuations and scaled collision integran(&1).

Let g be aw-L} oc(dt; w- LY(M dv dx)) limit point of the family g and q be
jointly a w- L,Oc(dt w-L1(du dx)) limit point of the family g/N, ase — 0. Then

(i) ge L®dt; L2(M dvdx)) and ge L?(dudx dt) satisfy

(8.2) v-Vyg = // gb(w, v1 — v)dw My duv; .
§D-14RD

(i) g has the form of an infinitesimal Maxwellian

1, D
(8.3) g—p+u-v+e<§|v| —5>,
where(p, u, 8) e L>®(dt; L2(dx)) N L?(dt; H(dx)) satisfy
(8.4) Vy-u=0, Vy(p+6)=0,

while g satisfies the relations

(8.5) (Pq) = v(VxU + (Vx)T),  (¥a) =k Vyh
and the inequality

(8.6) / /—v|qu+(VXu) 12 + k| Vy0]?dx ds< —/ / ydx ds

for every t> 0, wheregp andyr are given by(3.22)while v and« are given
by (3.24)

Assertion (i) is essentially proposition 4.1 of [3], while assertion (ii) strengthens
assertion (vi) of Lemma 4.2. It consolidates propositions 4.2, 4.3, and 4.6 of [3].
The proof of each of these assertions rests on the key nonlinear estimate (4.20).
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8.2 Proof of the Weak Stokes Limit Theorem 5.1

Our proof of the weak Stokes limit theorem, Theorem 5.1, closely follows that
of the formal Stokes limit theorem, Theorem 3.2. That proof has six steps:

(1) showing that limiting fluctuations are infinitesimal Maxwellians,

(2) establishing the incompressibility and Boussinesq relations,

(3) evaluating the limit for moments of the foriég.)/e for every & e
Dom(£) N Null(£)*,

(4) finding the limit of the flux terms in (3.15) that invol&and B,

(5) showing that the limiting dynamics is governed by the Stokes motion and
heat equations (1.2), and

(6) finding the limit of the difference of. from its infinitesimal Maxwellian.

The analogue of the first step has already been realized by Lemma 4.2(vi).
The analogues of the remaining steps are not as easy to realize because DiPerna-
Lions solutions are not known to satisfy most of the convervation laws that were
used extensively in the proof of Theorem 3.2. We therefore have to recover these
conservation laws in the limit. As we did for the acoustic limit, this is done by
taking the velocity moments of the renormalized Boltzmann equation with respect
to v and|v|? and showing that the resulting conservation defects vanish-as0.

Framework for the Proof

The family g. is relatively compact inv-L} (dt; w-L*(c M dvdx)) by asser-
tion (i) of the fluctuations lemma. We will show that the famgy is convergent

by showing that all of its subsequences converge to the same limit point.
Consider any subsequence of the fangly still abusively denoted.. It will

also be relatively compact im-Li (dt; w-L1(c M dvdx)). We will show that

this sequence is convergent by showing that it has a unique limit point. Indeed,

let g be anyw-L{ . (dt; w-L1(c M dvdx)) limit point of the sequence.. As-

sertion (vi) of the fluctuations lemma states thas an infinitesimal Maxwellian

given by (4.21) for somép, u, ) that belongs td_>°(dt; L?(dx; R x RP x R)).

By the analogues of steps 2 through 5 above, we will show ¢hatl, 6) is a

weak solution of the Stokes system (1.1)—(1.2) with initial daf8, 6™) that is

uniquely obtained from (5.3). Because such weak solutions of the Stokes system

are uniquely determined by their initial data, the limiting infinitesimal Maxwellian

g is thereby uniquely determined. However, becayisas an arbitraryo-L; .(dt;

w-L1(c M dv dx)) limit point of an arbitrary subsequence of the original fam-

ily g., we can conclude that the original famity converges tay in w-L} _(dt;

loc
w-L1(o M dvdx)) ase — 0, which would establish (5.4).

Approximate Local Conservation Laws

All that remains to be done is to show that, u, 9) is a weak solution of the
Stokes system by passing to the limit in approximate local conservation laws built
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from the renormalized Boltzmann equation (4.2). We choose to use the normaliza-

tion of that equation given by
2 1_\?
N(Z) = +=Z) .

lZ 33
After settingr, = ¢ and d|V|d|ng bys., equation (4.2) becomes

(8.7) rz) =

(8.8) eat’i—i + v - Vy Eli =/ %b(a) v1 — v)dw M1 dvg

whereN, = 1+ 15.g..
When the moment of the renormalized Boltzmann equation (8.8) is formally

taken with respect to any € Sparfl, v, ..., v, |v|?}, one obtains
g\ 1 g\ 1/ a
©9 o) 2o ) = e

This fails to be a local conservation law because the so-called conservation de-
fect on the right-hand side is generally nonzero. In this section we show that this
conservation defect vanisheseas> 0.

It can be shown from (4.4) that every DiPerna-Lions solution of (8.8) satisfies
(8.9) in the sense that for evegye C(TP) and evenyty, t,] C [0, co) it satisfies

©10) | x <;—<t2)><t1x_ / x<¢%(t1)>dx: |
[ v foeosane [ [ 2o

We analyze this equation term by term before passing to the limit.

Removal of the Conservation Defect

The fact that the conservation defect term on the right-hand side of (8.10) van-
ishes ag — 0 follows from the scaling assumption (5.2), the fgcis bounded,
the fact¢ is a collision invariant, and the key new estimate

3 Sc)log(s.)|P/?
(8.11) (XN =o i Gl + O(8c/10g(8:)1)
N2 €
inLE.(dt; Ll(dx)) ase — 0. Given this estimate, the argument is as follows: The

scaling assumption (5.2) directly implies that the first term on the right-hand side
of (8.11) vanishes as — 0. The second term manifestly also vanishes as 0.
Therefore because is bounded irL*°, one sees that

[ [releehocol v [T

ase — 0. All that remains is to establish the estimate (8.11), but this follows from
Theorem 9.1.

(8.12) dx dt— 0




STOKES-FOURIER AND ACOUSTIC LIMITS 373

Control of the Flux Term

In what follows, we seek to take limits in (8.10) when= v; fori = 1, 2,
., Dor¢ = (3Jv|*> — BE2). With the latter choice, the flux term on right-hand

side of (8.10) involves
o)
e\ N

Because there exists € Dom(L£) such thatB = L, this sequence is relatively
compact inw-Li (dt; w-L1(dx)). Furthermore, for any subsequenceggfsuch
that the same subsequencegpf N, converges to a limit point in w-L%_(dt;
w-LY(odu dx)), one has

loc

1/5 9
8.13) (ey)— —twa)
e\ N,
in w-Li . (dt; w-L1(dx)). Both this statement and the compactness stated before

will be established later in Theorem 10.1.

With the former choice, i.e., if one chooses= v; fori = 1,2,..., D, one
consolidates the resulting equations (8.10) by taking successively as test function
x the components of a divergence-free vector flglé C1(TP; RP). Adding the
resulting equalities gives

®14) [U <v—(t2)>dx—/u.<v%(tl)>dxz
fﬁ/gvxu.< ge>dxdt+A/ << >>dxdt

v, U - <A:‘ff > VU - <v ® UEI—>

€ €

because

sinceVy - U = 0. Again, by Theorem 10.1, the sequence

1/, 9
A=
€< NE>
is relatively compact im-L L (dt; w-L1(dx)), and for any subsequencegfsuch

that the same subsequencegpf N, converges to a limit poing in w-Li (dt;
w-LY(cdu dx)), one has

1/ 9
(8.15) —<A—g > — —(¢q) .
e\ N



374 F. GOLSE AND C. D. LEVERMORE

Control of the Density Terms

In what follows, we seek to take limits in (8.10) when= v; fori = 1, 2,
,Dor¢ = (3]v> — BE2). The corresponding density terms on the left-hand
side of (8.10) are

9 Loz_P+2\9
(8.16) H<v Ne> and <<2|v > N/
We use the Arzela-Ascoli theorem to establish that these sequences are relatively
compact inC ([0, co); w L2(dXx)).

First, becausé®\, = £ + G, > 2,

% _39

N2 — 2N,
so that, by the nonlinear estimate (4.19), the sequgna¥. is bounded irL>°(dt;
L2(M dv dx)) with

2 .
f<%(t)>dx < 3C" foreveryt > 0.

On the other hand, the weak form of (8.9) implies that the time-dependent function

- frgole

is continuous for eachl € L>®(M dv; CX(TP)). Therefore, the bound above and
a standard density argument imply that the sequepn¢®l. is also bounded in
C([0, 00); w-L2(M dvdx)). In particular, this implies the sequences (8.16) are
equibounded.

That the sequences (8.16) are equicontinuous is less obvious than in the case
of the acoustic limit. For the first sequence, this is seen from (8.14), because the
second term in the right-hand side vanishes by (8.12) while the first term

t2
//VX < >dth—>O
t1

as|t, — t;| — O uniformly ine, by the relative compactness of the sequence

_H<Agg
€ N

€

> inw-Li.(dt; w-L1(dx)).
For the second sequence, i.e.,

1.2 D+2)a
'Y 2 IN./

this is seen by an analogous argument bearing on (8.10) and based instead on the
relative compactness of the sequence

1/, 9
E<BW> in w-Lik (dt; w-LY(dx)) .

€
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Passing to a Converging Subsequence

By assertions (i) and (i) of Lemma 4.2, one can find a sequepee 0 such
that

O, —> 0 in w-Lﬁ)C(dt; w-LY(cM dvdx)),
(8.17) Oen

o4 in w-Li (dt; w-LY(odu dx)),

Observe that because

the nonlinear estimate (4.20) implies that

(8.18) g — % 0 inL®dt Lo M dvdx)) ase — 0.

€

This limit together with assertion (iv) of Lemma 4.2 imply that

Oen

N g inw-Li.(dt; w-L2(M dvdx)).

The analogous statement fgieif] also holds.

The arguments in the last two subsections then imply that
(8.19)

H<v gﬁn > ~ (vg) in C([0, 00): w-L%(dx)),
D +2\ g. 1, D+2 _ —
(B0 222)8) - {(Rr- 222l i nwon,
as well as
1 an 1
—<AN >—> —{(oq)) in w- Lloc(dt; w-L~(dXx)),
(8.20) 61” .
e_<B Ef” > — —(¥q)  inw-Li.(dt; w-L1(dx)).

Moreover, becausg" satisfies (5.3), one sees from (8.18) that

Oey 1 %\ .,
(8.21) n< Nm>—>u <(D+2|U|2_1>W>_)9m’

in w-L2(dx). In the rest of the proof, we abuse the notatiprandg, to designate
the subsequences, andq,,.
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Recovering the Strong Boussinesq Relation

By assertion (ii) of the Stokes fluctuations lemma, Lemma@®i$,of the form
of a local infinitesimal Maxwellian (8.3) parametrized by its associated (fluctuation
of) velocity field u, macroscopic density, and temperaturé. Choosingt; = 0,
¢ = |v|?, andy = 1in (8.10) shows that

in to 1
/<|v|2§l—i(t2)>dx—/<|v|2|glzn>dx=/0 /;<<|v|22|—i>>dx dt.

By the conservation defect theorem, Theorem 9.1, the right-hand side of this equal-
ity vanishes withe uniformly ast, runs through any bounded interval of time. Fur-
ther, the arguments in the last three paragraphs show that the second term in the
left-hand side of this equality converges to

f<|v|zgi">dx= 0

because of (2.17); hence, the sequence

/<|v|2%>dx—> 0 inLZ(dt).

€

Becausa). /N, — gin w-L% _(dt; w-L1(dx)),

loc

/<|v|z%>dx—> f(|v|zg)dx in LX.(dt).

/<%|v|zg<t)>dx = /(,0 +0)(t)dx=0

for almost everyt > 0. Thus, for almost every > 0, the functionx — (p +
0)(x, 1) defines an element df?(dx) that is orthogonal to the constants; on the
other hand, by (8.4), it satisfies

Hence,

Vx(p +6) =0.
Then, a classical argument based on Fourier series shows that
(8.22) p+6 =0 foralmosteveryx,t) e TP x [0, 00).

By assertion (vi) of Lemma 4.2, this implies thais in fact of the form (5.4) as
predicted by the weak Stokes limit Theorem 5.1.

Recovering the Stokes Dynamics
Leté € Dom(L£); because of the convergences in (8.17),

1 e
(8.23) Z<E$|g|_> — —{(§q) = —(5v - Vx0)
in w-Li (dt; w-L(dx)) by the moment Theorem 10.1 and assertion (i) of the

Stokes fluctuations lemma. Singés a local infinitesimal Maxwellian of the form
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(5.4), the right-hand side of the convergence above can be evaluated explicitly.
Doing so leads to reformulating the convergence above as

1 5
(8.24) —<£§Ej—> — —(EA) : Vyu— (EB) - V,0
€ e
in w-Lis (dt; w-L1(dx)).

In particular, let in (8.24) designate one of the entries of either v defined
in (3.22). This gives the limit of the fluxes of momentum and energy as follows:

}<A%> S @A) Vol = —u(Val + (V)T

(8.25) 1
—<B%> — — (Y @ B) - Vi = —«V,0,
e\ N,
in w-Li.(dt; w-L1(dx)), where the viscosity and the thermal conductivity are

given by (3.24).

Lett > O be arbitrary, and consider the equality (8.14)tio= 0 andt, = t,
whereU e CY(TP) designates an arbitrary divergence-free vector field. Taking
limits in this equation gives, on account of (8.19), (8.21), and (8.25), that

) t
/U -(vg(t))dx—/U uMdx = —v/ /VXU s Vyudxds.
0

Likewise, consider equality (8.10) for = 0 andt, = t, with

(1 , D+2
o= (30-277),

Taking limits in this equation gives, by using again (8.19), (8.21), and (8.25), that

1 D+2 D+2 .
/x<(§|v|2— il )g(t)>dX——;r x0"dx =

2
t
0

This and the explicit form ofy provided by (5.4) show thawu, 8) € C([0, c0);
w-L2(dx; RP x R)) is the unique solution of the Cauchy problem (1.2) with initial
data(u’, 6™ € L?(dx; RP x R).

Recovering the Deviation from Maxwellians

Finally, sincel is self-adjoint onL?(M dv), using the tensap and the vector
Y defined in (3.22) puts the convergence (8.24) in the form
1g

<(£§)<—— 4+ ViU : ¢+ Vy0 - 1//)> — 0
€ N
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in w-Lii (dt; w-L1(dx)). By the definition (3.22), botlp andy are entrywise

orthogonal to Null£). Hence, the convergence above means that

1 2
Pt L Ve —Vo -y
€ N,

in w-Li (dt; w-L1(dx; w-L%(M dv))). Since, as recalled at the beginning of this
proof,g. — g./N. — 0in L*(dt; L*(c M dv dx)), the convergence above implies
in turn that (5.5) holds, which concludes the proof.

8.3 Proof of the Strong Stokes Limit Theorem 6.2

The fact thatg" — g™ entropically of orders, ase — 0 implies thatg"
satisfies (5.3). The weak Stokes limit theorem, Theorem 5.1, therefore implies that
the family g, which is contained ir€ ([0, c0); w-L1(M dv dx)), converges in the
topology ofw-LL (dt; w-L1(o M dv dx)) to the infinitesimal Maxwelliag given
by (5.4), which belongs t&€ ([0, co); L2(M dvdx)). The definition of entropic
convergence (6.1) requires us to show that (7.17) and (7.18) are satisfied for every
t > 0. In addition, we will show that for everty> 0 one has

(8.26) Ilm% R(G,)ds= - // ndx ds.

First, becauseu, 0) is the weak solution of the Cauchy problem for the Stokes
system (1.1)—(1.2) with initial data'™, '), it satisfies the energy equality

1- 2, D+2
2/(IU(t)l +— o(t) )dx

TD
t 1
(8.27) +/ /[évlvxw(VXU)T|2+K|vx9|2]dxds

oTD

1 . D+2

=< [ (u"P+ 9'”2>dx.
TG
'ﬂ"D

Upon taking limits in the entropy inequality (4.11), using the assumed entropic
convergence of the initial data, and employing the above energy equality, for every
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t > 0oneisledto

. 1 1 t
lim sup(—H(GE(t)) + —— R(Gé)ds>

e—>0 852 62862 0
<nmiH@%
T e=0 862 €
1 )
— _/<gln2>dx

2
TD

— %/ (|uin|2+ D;_20In2>dx
(8.28)

TD

1 , D+2
_2/<wm|+—3—mn)m

TD

trri
+/./[EWVN+{%MfF+KWMF}MdS
0
TD

< 5/<g<t>2>dx+3ff<<q2»dxds
-2 4 Jo '
TD

TDb
Next, observe that (5.6) of Theorem 5.1 states that-as 0 one has

M(vg) — (vg) in C([0, 00); D'(TP; RP)),

1 2 1 2 ; AU DT
<(D +2|v| 1)g€> — <(D +2|v| 1)g> in C([0, c0); w-L*(dx; R)) .

On the other hand, by (7.12) and (8.18)¢as> 0 one then has

M{vy.) — (vg) in C([0, oo); w-L%(dx)),

<(D i— 2|v|2 - 1)V6> - <<D i_ 2|v|2 - 1>9> in C([0, 0o); w-L%(dXx)).

Now let?, denote the projection df?(M dv dx) onto the incompressible fluid
modes that for eac € L?(M dv dx) is defined by

. ~ 1 2 AN/l , D+2
7’|9—H(vg)‘v+<(D+2|v| l)g>(5|v| > )

whereTl is the orthogonal projection df?(dx; RP) onto divergence-free vector
fields. By constructioriP, is an orthogonal projection over the spacgM dv dx).
The last convergence actually says that

(8.29) Pive — g inC([0, 00); w-L%(M dv dx)) ase — 0
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Now lett > 0 be arbitrary but fixed; the bound (7.21) then shows that the family
ve(t) is relatively compact inv-L?(M dv dx). Let § be anyw-L?(M dv dx) limit
point of the familyy. (t). By Fatou’s lemma and (7.21), one sees that

11 . 2 .1
(8.30) E/(g ydx < Ilren_JQf/(yé(t) ydx < Ilrén_J(rJlf gH(Ge(t)).
On the other hand, becauBgy. (t) — g(t) by (8.29), we have
(8.31) Pg= IimOP. Ye(t) = g(t) inw-L2(Mdvdx).

Hence, by employing the orthogonal decomposiica P, §+P;-§ = g(t)+P;-§
in combination with the bound (8.30), we arrive at

1 1 ~ .. 1
@32) [@efdx+ [(Proddx < imin FHEW).

By combining inequalities (8.28) and (8.32) with inequality (4.18) of Lemma 4.2,
one can conclude th@®'§ = 0 and that equalities (7.18) and (8.26) are satisfied.

The fact thatP;"g = 0 combines with (8.31) to show thgt = g(t). The
unigueness of the limit poirg thereby implies that

Ye) = g(t) inw-LY} (oM dvdx) ase — 0.

Becausa. — y. — 0in L*°(dt; LY(¢c M dvdx)) ase — 0, the above limit shows
that (7.17) is also satisfied. Therefore we conclude ghéd — g(t) entropically
of orderé, for everyt > 0.

Finally, by Proposition 4.11 of [3] and dominated convergence, this also im-
plies thatg. — g strongly inLj,.(dt; L'(c M dvdx)) as announced. Moreover,

equality (8.26) and the relations (8.5) imply that
1
(8.33) q= 5(vxu + (VW) D+ Vy0 - W

A further consequence of equation (8.26) is that the convergence (6.4) is strong in
Li.(dt; LY (odu dx)). The proof of this statement is given [3, pp. 738—-739] and is
similar to that of proposition 4.11 of [3]; namely, the fact that entropic convergence
implies strong convergence In'(c M dv dXx).

9 Control of the Conservation Defects

In this section we derive the conservation defect bounds (7.7) and (8.11) that
were used in the acoustic and Stokes scalings, respectively, to establish momentum
and energy conservation laws from the scaled Boltzmann equation in the limit as
¢ — 0. These bounds are obtained as special cases of a more general result that
can be viewed as an extension of the theory of fluctuations [3]. Just as for the
fluctuations lemma (Lemma 4.2), here we work in a setting in whijcts only
required to satisfy (3.2f. — 0 ase — 0, while G, is only required to satisfy the
entropy inequality (4.11). In particula@. is not required to solve the Boltzmann
equation in any sense. We prove the following:
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THEOREM 9.1 (Conservation Defect Theorerhgt the collision kernel b satisfy
the bound(2.6) for someg < [0, 1]. Lets. > O vanish asc — 0. Lett. >
0 be bounded ag — 0 and sety. = (er.)Y2. Let G. > 0 be a family of
functions in Q[0, oo); w-LY(M dv dx)) that satisfies the entropy bourfd.11)
Let g, g., and N be given by(4.13) (4.14) and (4.15) respectively. Let €

Sparfl, v, ..., vp, |v|2}. Then for n= 1 and n= 2 one has the estimate
O \\ B/2

(9.1) <<C W» = O(5:110g(8:)177%) + O(nedellog(de) )

in Li.(dt; L1(dx)) ase — 0.

Remark.Given this result, the acoustic defect bound (7.7) is obtained from (9.1)
by settingn. = €2, n = 1, and dividing the result by/?, while the Stokes defect
bound (8.11) is obtained by setting = ¢, n = 2, and dividing bye.

9.1 Proof of the Conservation Defect Theorem 9.1

The casen = 1 is treated first. The proof simply exploits the-symmetries
(2.15) and the fact that is a collision invariant to decompose the defect into three
parts, each of which is then shown to vaniskeas- 0. The case& = 2 proceeds
similarly, with each part being dominated by the same function that dominates
the corresponding part from the= 1 case. The estimates on these dominating
functions are obtained from the entropy inequality (4.11) through the bound on
the dissipation rate and the use of Young's inequality in the style of [3]. They are
proven in the next subsection.

For the case = 1, begin with the elementary decomposition

S 2 A AR o ]

By using thedu-symmetries and the fact thatis a collision invariant, the second
term on the right-hand side of (9.2) can be recast as

el -2 ronse)

03 1 1 1
( . ) B Z<<(€1+C)<N61N€ - Ne/lNe/)q€>>

1 N/ N/ — Nz N,
=il o e )

Now observe that

2 1
N Ng — NetNe = 556 (9;1 + 0, — Q1 — ge) + 5(62162 - GdGe)

2., 1
= —583(g€1g€ - g€1g€) + éne(seqe )
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whereby (9.3) decomposes as
e \_ 1, 9c19 — 9e1Ge
()= oo Wi o)

+ L Se{{(C1+¢) 4

12’76 e (f1+¢ Ne/lNe, NelNe .
By again using thel-symmetries and the fact thatis a collision invariant, the
integrals in the terms on the right-hand side of (9.4) can be brought into the forms

949, =98 \ /.., . .. 910
firotitiite) oot

_ ¢'0.,0.
R v

5 ¢q?
S S—— R || . —\
e+ o) = A )
Upon combining (9.2), (9.4), and (9.5), we arrive at the decomposition
qe _ 1 aegel 2 ’ Sezgélgé
(o) = slemme ) - sl o
1 neséqu
" 6<<§ NZ NN >>
Because for every € Sparfl, v, ..., v, |v|?} there exists a constaf < oo

such thatz| < Co whereo (v) = 1+ |v|?, the result for the cage= 1 will follow
upon first establishing the bounds

(9.4)

(9.6)

5egel
9.7 . = O(8.|log(s.)|#/?),
(9.7) " NN (8clog(s.)1”/?)
829/ g/

9.8 2% g, = O(8|log(s.)|P/?) .
(9.8) o NélNéNelNeq (8¢ 1l0g(80)1P72)
(9.9) o—lﬁgﬁ—-=o(a|mm 50)1)

. NélNéNelNe n€ € nE € )
in LE.(dt; L1(du dx)) ase — 0 and then observing that

168 109(ne8e)| < nedellog(ne)l + nedellog(de)|
= O(5c[l0og(8:)177%) + O(neselog(Se)l) -

But the bounds (9.7)—(9.9) follow directly from Lemmas 9.2, 9.3, and 9.4, respec-
tively, which are stated and proved in the next subsection.

The casen = 2 follows similarly. Begin with the elementary decomposition

o o) = C el (o)
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By using thed u-symmetries and the fact thatis a collision invariant as we did in
(9.3), the second term on the right-hand side of (9.10) can be recast as

Oe 1 NN/ = NaN. /1 1
11 == <l e :
(9 ) <<§ NEZlNez >> 4<<(§1 " é-) Ne/lNe/ N€1N€ N€1NE " Ne/lN/ %

€

Because the second factor in parentheses is invariant undeutsgmmetries,

this factor is just carried along when we proceed as we did in going from (9.3) to
(9.5). Upon combining the result with (9.10), we arrive at the analogue of (9.6),
the decomposition

qe _ 1 35961 1 1
<<§N_€2>> B 3<<§ NelNeqé(Ne * NelNe>>>
2( , 829,49 1 1
612 ) 5<<§ N/ NN, qe(NelNg " NglNg)»

1 8.0 1 1
*alennan: (e )
6\" N/;N/NegNe \Neg N N/ N/

Because the factors in parentheses are bounded functions, by arguing as was done
for the casen = 1, the result for the cage= 2 will also follow upon establishing
(9.7)—(9.9). The proof of Proposition 9.1 will therefore be complete upon proving
Lemmas 9.2, 9.3, and 9.4.

9.2 Dissipation Rate Control Lemmas

The proofs of Lemmas 9.2, 9.3, and 9.4 all crucially use the fact that the entropy
inequality (4.11) implies that the dissipation r&esatisfies the bound

1 [ .
— | R@G,dt<cCn.
n353/0 (Godt=

More specifically, following [3], these proofs use the definitionRof2.21) and of
Je (4.14) to re-express this bound as

1 *© 1 n€66q€ i
9.13 - GG, ))dxdt<C",
01 ) [ (e (58]0 s
where the functiom is defined over > —1 by
(9.14) rz) =zlog(l+ 2).

The functionr is strictly convex ovee > —1.

The proofs of Lemmas 9.2 and 9.3 are each based on a delicate use of the
classical Young inequality satisfied lbyand its Legendre duat,*, namely, the
inequality

pz<r*(p)+r(z) foreverype Randz> —1.
Upon choosing

686 €
and z— 7e%l%|
o GelGe
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and noticing that (|z|) < r(z) for everyz > —1, for every positivax andy one
obtains

o ne&y o UeSeqe
9.15 | < —=r* GG, + ——=r GG, .
OA5) Yiad = a5 < 2 ) 1O 252 (eelee) :

This inequality will be the starting point for the proofs of Lemmas 9.2 and 9.3.

These proofs also use the fact, recalled from [3], tha$ superquadratic in the
sense

(9.16) r*(xp) < A%r*(p) foreveryp > 0andx € [0, 1].
LEMMA 9.2 Let g, 8¢, Nes G, G, and N be as in Propositio®.1 Then

85951
o
Nel Ne

g = O(8c/1og(:)1#%)  in L (dt; LY(dpdx)) ase — 0.

PrROOF For the proof of this lemma we first set

_10
Y=5 N

1
Nel

_ }Glgell
" 3NN

(9.17)

in (9.15) and then apply the superquadratic property (9.16) with

_ 77586|gel|

A=
o N1 Ne

and p:%,

where we note that < 1 wheneven, < ga. This leads to

1o 1 1 |
66 Ne Nel q€
1 921 o o Nebele
. < ———r" = |GG, + —=r GG,
(9.18) = a N3 N2 (3) ! +J@¥ (GdGe !

3 g2 4a 1 (158G
< 2 Ga,.(2 + Zr (10 GG, .
23 Nel 3 7762862 4 Gelee

By the elementary inequality

1 2 2 2
1+§|v1—v| = A+ 1vHA+ %) =010,
the bound (2.6) on the collision kerrigimplies

(9.19) /b(a), v, —v)dw < Cbafcrﬁ .
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LetT € [0, o0) and integrate both sides of (9.18) with respea tod x dtover the
setSP~1 x RP x RP x TP x [0, T]. By using (9.19) one then obtains

oo [/l

Iqel»dx dt<

23a //<Ulgﬂ>dXd‘<f’ﬁf*(%)>+4ac‘".

Interpolation between the nonlinear entropy estimates (4.19) and (4.20) shows that

B N2 B2
(9.21) /<"1—9€1>dx:/<"—gf>dx: O(llog(s.) %)
Nel Ne

in L*°(dt), while (aﬂr*(%o)) < oo because*(p) = O(eP) asp — oo; therefore
Lemma 9.2 follows from (9.20) by optimizing over and multiplying the result
by s.. O

LEMMA 9.3 Let g, é, %, G, O, and N be as in TheorerB.1 Then

’ 862 g;lg;

N/ NN N, O(8cllog(8)17/?) in Lige(dt; L*(dp dx)) ase — 0.

PrROOF For the proof of this lemma, we first set

_ 15.0'Ig,/19.]

9.22 =
( ) 9 N/; NZNeaNe

in (9.15) and then apply the superquadratic property (9.16) with

_ 1 nS2gallel p=2"
3aN/;N/N;N, 3

where we note that < 1 whenevern, < 2i7a. This leads to

15.0'1g4/19.|
9 N/; N/Ne1Ne

1 829/59/2 OJ (o4 negeqe
< € Je € r* GE G Ge Gg
~ 3o N/ZN/2NZ N2 (3) 1 25 1252 (Gdeg) !

9? g,% o’ da 1 (160
< ——<=r*| — —r GG, .
~ 8 N2 (3) + 1282 4 <G€1G€) !

Let T € [0,00) and integrate both sides of the above inequality over the set
SP~1 x RP x RP x TP x [0, T] with respect tadx dx dt. By using (9.19) with

|0 |
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primed velocities, one then obtains

1 501010
02 5[ [{Rinis o lJoxers

27a / /<Gl gEl>dXd“< wr*(%)>+4adﬂ,

Because (9.21) holds ih*°(dt) while aﬁr*( o)) < oo, Lemma 9.3 therefore
follows from (9.23) by optimizing ovex and multlplylng the result by.. O

Finally, Lemma 9.4 is an analogue for the scaled collision integrgnads the
nonlinear entropy estimate (4.20) for the fluctuatigps It arises from the dissi-
pation rate bound (9.13) exactly as (4.20) arises from the relative entropy bound
(4.11).

LEMMA 9.4 Let B, é, N, e, e, and N be as in Propositio®.1 Then
g
N/, N/ N1 N,

ProoF. The idea will be to exploit estimates that were used in the proof of
proposition 3.4 of [3] to establish the nonlinear estimate (4.20) from the relative

entropy bound. Specifically, that proof uses a Young-type inequality for the convex
functionh defined by

(0 + o1) = O(llog(n8o))  in L (dt; LY(dudx)) ase — 0.

h(z) = 1+ 2log(1+2) —z foreveryz > —1.
Becausé andr satisfy the elementary inequality
(9.24) h(z) <r(z) foreveryz> —1,
the dissipation control (9.13) implies that

Ne0c Qe in
n§53/ / <<( de) “G€>>dx‘“f4c |

Upon applying the argument in the proof of Proposition 3.3 of [3], one obtains the
Young-type inequality

(9.25)

GelGe

1 Nebele 7
@ h<G€lG€> + C eXp(l—G(O + Ul)) s

whereC is a positive constans(z) is defined by
12
2
1+3z°
and O< A(y) < 1is defined implicitly for every € (0, 1) by
1— Alog(A) — (1— A)log(l — A) + Alog(y) =

656 €
(9%)AMJ)(G+Q)%2(H q)s

s(z) =
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It follows from this definition that

(9.27) %y) = O(Jlog(y)|) asy — O.

Let T € [0, oco) and integrate both sides of the inequality (9.26) over the set
SP~1 x RP x RP x TP x [0, T] with respect to the measure

Gea Ge
—d dx dt.
Ne1 Ne

By using the bound (9.19), the fa¢t? exp(%a)) < o0, and the asymptotics
(9.27), one then obtains

T 2
q 1 _
(9.28) /O /<<(0+01) GG, + GG N51N6>>dx dt= O(llog(nese))

ase — 0. Upon using thal-symmetries of the collision integrand and the ele-
mentary inequality

GaG. + G/,G. < 3#(NaN, + Ny N)),
we see that the left-hand side of (9.28) satisfies

T qz 1
2 : dx dt
/o /<<(0+01)G61G5+G/€1G/€ N61N6>> X
T 2
q 1 1
= . dx dt
[ e vaeras (o ) )
T 2 / /
= Qe N7 N/ + NeaNe
_/ f<<(o+al) GiG. +G;lG/ NN NG N, )9

A T S

The announced estimate therefore foIIows from (9.28). O

10 Control of the Stokes Fluxes

In order to control the renormalized momentum and heat fluxes, the proof of
the weak Stokes limit given in Section 8.2 asserted the limits (8.15) and (8.13).
Moreover, it asserted we can control every moment of the form

1 O
oo

for anyé € Dom(£). This assertion was crucial in the proof of (5.5). The proof of
these assertions was deferred to this section. They follow from the following:

THEOREM 10.1 (Moment Theorem).et the collision kernel b satisfy the bound
(2.6) for someg € [0, 1] and letDom(L£) satisfy condition(5.1). Consider the
Stokes scaling. = ¢, n. = ¢, andé. > 0 satisfying(5.2)ase — 0.
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Let G, > 0be a family of functions in GO, oo); w-L*(M dv dx)) that satisfies
the entropy boun@4.11) Let g, g, and N be given by4.13) (4.14) and(4.15)
Then for everg € Dom(£) one has that

(10.1) %<(£§) %> is relatively compact inv-L} . (dt; w-L*(dx)).

If in addition there exists g L?(du dx dt) such that

(10.2) % —q in w—Llloc(dt; w-LY(odpdx)) ase — 0,

€

then for everyg € Dom(£) one has the limit
(10.3) %<(£g)%> S —(Eq) inw-LE (dt; LY(dX) ase — 0.

The proof of this theorem is given in Section 10.2 after establishing two pre-
liminary lemmas.

10.1 More Fluctuation Lemmas

The proof of Proposition 10.1 rests on two lemmas. The first gives an elemen-
tary L2-like bound on the scaled collision integrangis The second is the key
estimate. It enables one to control the linear part of the scaled collision integrands.
Both these lemmas can be viewed as extensions of the theory of fluctuations de-
veloped in [3]. We again work in the general setting of Proposition 9.1; nagely,
is only required to satisfy (3.2§. — 0 ase — 0, while G, is only required to
satisfy the entropy inequality (4.11).

We first give the analogue for the scaled collision integrapdsf the nonlinear
bound (4.19) for the fluctuatiorgs .

LEMMA 10.2 Let 8, 8¢, ne, G, G, and N be as in Propositio®.1 Then

34 in
(10.4) / ,/«N NlNe €1>>dxdt§ EC .

PrRoOOF. Start from the dissipation rate bound (9.13) and use the elementary
inequality
2

1+ %z
to obtain the bound

dxdt<cC",
L e s

When this is combined with the elementary arithmetic inequality

34
G.,G. + GG, < > — NN N/N/

(10.5)

<r(z) foreveryze (-1, )

€' Vel

it leads to the announced bound. O
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We now give the key new estimate. It gives laficontrol that is much better
than theL! control of estimates in earlier works. It is essential in controlling the
heat flux in the Stokes limit. Indeed, it supplants all the Stokes limit estimates in
section 5 of [3]. It can also be used to give a much more elegant proof of assertion
(vi) of the fluctuation lemma (Lemma 4.2) than is found in [3].

LEMMA 10.3 Let 8, 4., e, G, G, @and N be as in Theorem®.1L One has the
bound
(OF _i gél +g_é_£_% -0 86“09(86)"3
Ne/]_ Né Nel Ne Ne Ne/]_ Né Nel Ne Ne
in L>(dt; LY(dx; L3(dw))) ase — 0.

PROOF. The key to the argument is the computation

1 GG, ~GuGe 1(g, o %1 G

Ne 86 Nél Né Nel Ne Ne Nél N/ Nel Ne

_1(9aF0%-0%1-6 ga+0  Gato
ne\ N N/NN. NN, NN,

+1<ggl+g; 91 g;) 1(gel+ge Ge1 &>

Ne Ne

NN NG N
5_6 gélg; — 0e10c
Ne NélNé NelNE
_ (16(Gert90) 8 949, 1e(94 +0) e Gere
- (5 NaNe 7o NGNZ 9 NN/ ZNelNe)
286 gélgé 286 1 86 gélgé 1 86 gelge

37¢ NN/ 37 NegNe e NGNZ - NZNZ e NN
which results in the identity

9% 179y L% 91 O

N/;N/NegNe e \N/; N/ N N,

1/ 1 1 1 8¢ 910,

10.6 =z 5 2) NN
( ) 3<N51Ne + Nel * Ne )776 Ne/lNe/

1 1 1 1 1)
|ttt -2 _6%
3 NelNe/ Nel N¢

However, the bound (9.19) on the collision kerhslfields

/o N 21 5 24 4 B2
S ) o TR ) oo [ (58 o
N/; N/ Ne1 Ne N2
This and (9.21) imply that

919
Ng N

Oc10e
Nel Ne

= O(|log(s0)I),

= O(Jlog(s0)I),
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in L°(dt; L1(dx; L?(du))) ase — 0. On the other hand,
1 1 1 13 1 1 1 13
+—+—-2/<—, + =2
NeaNe N N 4 N/yN, - N N/ 4
Bringing these last two estimates in (10.6) concludes the proof of Lemma 10.3.

10.2 Proof of the Moment Theorem

With the above preliminary results at our disposal, we give the proof of Theo-
rem 10.1.

PROOF OF THEOREM10.1: Letf € Dom(£). The domain condition (5.1) then
impliesé € L?(dw). One also hasg. /N, € L®(du dx dt) for everye because
|g./Ne| < 3/e. Thus, by applying thelu-symmetries (2.15), one obtains the
identity

gél g—;_ﬁ_% _ ! r_ i % _ &
<<§<N21+Né Ne1 NE>>>—<<(51+5 &1 S)N€>>— <(£S)N€>.

This identity and Lemma 10.3 applied with the Stokes scaling (i.e., witk ¢
andé, satisfying (5.2)) imply that

1 O O
10.7 - —— _ 0
(107 feoi )+ (e NZN NN, )~
in L°°(dt; L1(dx)) ase — 0. On the other hand, Lemma 10.2 implies that the
family

(10.8) m is relatively compact ino-L2(du dx dt)
whereby the family
(20.9) <<§ m» is relatively compact inv-L2(dx dt) .

This fact combined with (10.7) yields (10.1).
Finally, to prove (10.3), first observe that

1 3 1
<——<— and ——— — 1 du-almost everywhere
N/ N/Ng — 28 N/; N/ N1

With the weakL?! convergence (10.2) af./N., these last two properties and the
product limit theorem of [3] imply that

(10.10)
N/,N,Ne:N.

By (10.8), the convergence (10.10) holdsunL?(du dx dt). In particular, this
implies that

0

—q in w—L|1OC(dt; w-LY(odpdx)).

e R 12
<<SW>> — (&q) inw-L°(dx dt)ase — O.
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When this limit is combined with (10.7), it proves (10.3). 0

11 Concluding Remarks

Perhaps the hardest problem left open in this paper is the mathematical justifi-
cation for the acoustic limit for all scalings for which its formal derivation holds,
that is to say, whenever the size of the fluctuations of number defasignish in
the limit ase — 0. Although the role of the entropy dissipation is by now fairly
well understood in the derivation of hydrodynamic equations of parabolic type (as
shown by the essentially complete derivation of the Stokes limit), this role remains
to be fully assessed in hydrodynamic limits leading to hyperbolic equations. The
acoustic limit might be a possible starting point in this direction.

A somewhat less difficult open problem is the full mathematical justification for
the incompressible Navier-Stokes limit. This is the major goal of the program pro-
posed in [3] to tie the global theory of DiPerna-Lions for the Boltzmann equation
to the global theory of Leray for the Navier-Stokes system. One step in that di-
rection would be to remove the logarithmic term that appears in the Stokes scaling
condition (5.2), thereby justifying the Stokes limit for all scalings for which its for-
mal derivation holds, namely, whenewersatisfies (3.11). Of course, this gap will
certainly be bridged by any full justification of the incompressible Navier-Stokes
limit.

Otherwise, it would be interesting to know how the acoustic and Stokes limits
can be unified in the domain in which they are both known to be valid, that is,
when$, satisfies the Stokes scaling condition (5.2). Based on formal arguments,
one expects the fluid fluctuations to be governed by what might be calledthe
pressible Stokes systemhich is the linearization about a homogeneous state of
the compressible Navier-Stokes system. After a suitable choice of units, in this
model the fluid fluctuationép,, u., 6.) satisfy

atpe +VX - Ue :O,
L2
(11.1)  OtUe + Vx(pe +60) = €vVx - | Ve + (VxU) T — 5V - Uel |
D
Eat@ + Vy - Ue = ek Ayb, ,

with initial data (o™, u™, ") e L2(dx; R x RP x R). Notice that unlike the
Stokes and acoustic systems, in this system the Knudsen nundpgears ex-
plicitly, whereby the solutions also depend ©even though the initial data does
not. It is a relatively easy exercise to show that solutions of this system converge
to those of the acoustic system (1.3) with the same initial data as 0. It is

only a bit harder to show that on time scales of ordgt, kolutions of this system
converge (generally weakly) to those of the Stokes system (1.1)—(1.2) with initial
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data
2

l—[uin’ ein _
( D+2 D+2
It is therefore natural to ask whether this system governs the asymptotics of so-

lutions of the Boltzmann equation (3.4) uniformly over time scales(ef?) or
longer.

pi”> ase — 0.
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