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THE MILNE PROBLEM FOR THE RADIATIVE TRANSFER
EQUATIONS (WITH FREQUENCY DEPENDENCE)

FRANCOIS GOLSE

ABSTRACT. We study the following stationary frequency dependent transport
equation:

wlef + oW, T)[f — B.(T)] =0, z>0,v>0, pel-1;1[,

// (v, T)[Bu(T) — f] du%" =0,
Rt x]-1;1]

fO,pv)=e(v), v>0 v el
where B, is the well-known Planck function appearing in astrophysics. We are
able to describe the asymptotic behavior of f and T for z large, when o (v, T)
is of the special form o(v,T) = o(v)k(T). Our method relies mainly on the
monotonicity of the nonlinearity. The proof does not use any linearization of
the equation; in particular, no smallness assumption on the data ¢ (in any
sense) is required.

RESUME. Nous étudions 1’équation de transport stationnaire avec dépen-
dance en fréquence:

ﬂazf'*‘U(V;T)[f—Bu(T)] =01 I>0, V>01 /“e]_lvl[’

// o(v, T)[Bu(T) — f] dud?” =0,
Rt x]-1;1{

FO,pv) =p(p,v);  v>0,uel0l]

Lorsque o (v, T') est de la forme particuliere o (v, T) = o(v)k(T), nous savons
décrire le comportement asymptotique de f et T pour z grand. Notre méthode
repose principalement sur la monotonie de la non-linéarité. La preuve n’utilise
aucune linéarisation de ’équation; en particulier, nous n’avons besoin d’aucune
hypothese de petitesse (d’aucune sorte) sur la donnée .

1. Introduction. We are concerned with the following nonlinear frequency
dependent, stationary transport equation:

pozf +o(w,T)[f —B,(T)] =0, forz>0,rv>0, pel-1;1],
Ay
(1-1) /I oy P DIBT) - Al =0
fO,p,v)=p(v), v>0, ueo;ll.
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126 FRANCOIS GOLSE

This problem is usually known as the Milne problem—this denomination being
actually used for a broader class of half-space problems in transport theory. Equa-
tions (1-1) describe a plane parallel stellar atmosphere in local thermodynamical
equilibrium. An introduction to this theory can be found in [10 or 15].

Let us describe the notations in equation (1-1): z denotes the space variable,
z € Rt; v denotes the frequency variable, v € RT; u denotes the angular variable,
u € [—1;1]. Indeed, the situation is monodimensional, and u denotes the projection
of the speed of photons onto the principal direction (once the speed of light in the
atmosphere has been normalized to 1). The two unknowns of (1-1) are

f = f(z,u,v), density probability of photons at position z, with velocity
described by the parameter u, and with frequency v;

T = T(z), proportional to the fourth power of the material temperature, at
position z.

The function B, is known in astrophysics as the Planck function; after a suitable
normalization it can be expressed as

(1-2) B,(T) = (150° /n*)[exp(v/T~*/*) — 1]
so that
(1-3) /R BUT)dv=T.

The function o(v,T) is the opacity of the matter at temperature given by T for
radiations of frequency v. Very few general informations about ¢ can be obtained;
we only can ensure that o > 0, but, usually, ¢ is strongly oscillating with respect
to both v and T. In a wide range of physical applications, we also have

(1-4) forae. T >0, o(w,T)~v?

(see the example known as the Kramer opacity described in [2]). Although (1-4)
is not essential mathematically speaking, it will require some refinements of the
general features of our method to study (1-1).

The results in this paper are valid only for o(v, T) of the special form o(v,T) =
o(v)k(T); however, we shall require no monotonicity assumption as in the previous
papers on this topic: see [2, 14, 17 and 19]. In particular, our assumptions will
allow o to oscillate with respect to both v and T.

The main goal of this paper is to prove the following

“THEOREM” . Assume that o(v,T) is of the form o(v,T) = o(v)k(T). Then,
(1-1) admits a unique bounded solution. When x is going to infinity, this solution
converges in some sense to some Planckian state (B, (), ), with exponential speed
if inf, o(v) > 0, and with subezponential speed if o(v) satisfies (1-4).

(We use the denomination “exponential speed” if the error term is of order
exp(—~yz) (with v > 0), and “subexponential speed” if the error term is of order
exp(—nz®) (with 0 < a < 1).)

To our knowledge, till now, this kind of result on half-space problems has been
proved only for linear cases. Several methods have been used: ergodic theory in
[5], Wiener-Hopf techniques in [9], and more recently, energy methods in a series
of papers: [1, 2, and 3]. In [2], the nonlinear case (1-1) is treated, but only when o
is a function of T alone (“grey” problem). This special feature allows a reduction
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to the linear case, by using an implicit change of variables, introducing the optical
depth:

(1:5) /0 “o(Te)) de

instead of z as the good space variable. Of course, this technique would be totally
irrelevant here, since the optical depth depends on the frequency (for the non-grey
problem). However, we shall use this change of variables (1-3) at the end of the
paper, to reduce the case where o(v,T) = o(v)k(T) to the case where o is a function
of v alone.

The linearization of (1-1) around a fixed Planckian state has been studied in [13
and 19]; the asymptotic states for the linearized (1-1) can be computed almost ex-
plicitly by following a method initiated by Chandrasekhar (see the chapter in [10]
devoted to the H-function), and fully developed in [18]. Whether it is possible to
consider the linearization of (1-1) around a Planckian state as an approximation of
(1-1) will be discussed at the end of the paper. This question is of significant impor-
tance as regards the numerical computation of the asymptotic state (B, (a), a) as in
the “Theorem”. The method we intend to follow in order to prove the “Theorem”
is inspired from the one used in [3] for the linear Milne problem:

wozu+Lu=0, z>0, uel-1;1],
(1-6) { u(0,p) = p(k), neO;1],
with
(1-7) (Lu)(o) = ule) - [ atau) B

One of the main features of problem (1-1) is the genuinely nonlinear coupling be-
tween 4 ,v, and T, due to o(v,T). Even in the case where o is of the form
o(v,T) = o(v)k(T), this coupling subsists in some sense: the good invariant quan-
tity for bounded solutions is

Loyl du
(18) / 1 /0 L@,

the analogue for (1-6) being f_ll w?u(z, ) du/2; this means that v can in no way be
regarded as a mere parameter in the transfer equation. Another striking difference
between (1-1) and (1-6) is the strong L? coercivity of L, when restricted to (Ker L)~;
there is no equivalent property for (1-1). Yet, beside the change of variable (1-5),
the main tool we are going to use is the L! accretiveness of the nonlinear “collision”
operator. In particular, the strategy of this paper would have to be modified in
order to fit in with other nonlinear Milne problems, as the computation of the
Knudsen layers for the Boltzmann equation [6, 7] or the interface layers in the
semiconductors theory, since the collision operator in both of these cases is by no
mean accretive.

Let us indicate another motivation for studying problems like (1-1). When com-
puting radiative transfer phenomena in very opaque media; one is naturally led
to a nonlinear form of the diffusion approximation (for linear transport operators,
see [3, 5, 11]) called the Rosseland approximation. This approximation has been
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described in [12 and 16], and a first rigorous proof of its validity has been given
in [2]. Still, as explained in [2, 12, 16], this approximation is valid in the interior
only. To extend the approximation near the boundary, we are led to study the
asymptotic behavior of (1-1). Then it remains to match the interior approxima-
tion to the boundary layer. This last problem seems rather technical because of
the nonlinearities in the radiative transfer equations, and is not considered in this
article.

The outline of the paper is as follows. In §2, we present a basic review of the
prerequisites and previous results useful for our purposes. In §3, we give the proof
of the exponential decay when o(v,T) = o(v) > oy, > 0. In §4, we give the proof of
the subexponential decay when o(v,T) = o(v) ~ v™#. In §5, we extend the result
of §83 and 4 to the case where o(v,T) = o(v)k(T).

In §6, we consider the possibility of using the linearized version of (1-1) around
a Planckian state (as in [13, 19]) to compute the asymptotic states of (1-1).

In the Appendix, we give an existence and uniqueness result for (1-1), and also a
weak asymptotic result, valid for o(v,T) = o(v). All these results were proved by
Sentis for more general opacities; however, Sentis’ proof is quite long and technical,
and the assumption o(v,T) = o(v) will allow important reductions, especially for
the uniqueness part.

2. Basic review. We consider problem (1-1), where the opacity is of the special
form o(v,T) = o(v):

(1) woof +o(W)[f — Bu(T)] =0, forz>0, v>0, pue]|-1;1;
(2-1) (if) ((c()[Bu(T) = f])) = 0;
(iif) f(O,p,v) =p(u,v),  v>0, pe€JO;1[;
with the following notations which will be in use throughout this paper:

{{9)) =/_1 /000 9(u,v) dv dTM, for g€ L'(]-1;1] x R*);

V=L'(-1;1] x RH)NL®(-1;1[xR™).

Let us now recall the results of Sentis for this problem (see [19]). In this section,
we shall need the following assumptions on o:

(2-2) 0 >0, 0 € L°R"), and for any 6 > 0, B,(0)/o(v) € L*(R™).

We begin with the following lemma which asserts that (2-2) defines T' as nonlinear
nondecreasing function of f:

LEMMA 1. For any u € L'(]-1;1] x R)*, and under assumptions (2-1),
there exists a unique nonnegative constant T,, such that ({(oc(v)[B,(Ty) — u])) = 0.
The mapping u — T, is continuous and strictly increasing on L'(] —1;1[xR*)*.

In view of Lemma 1, we introduce the following nonlinear operator on
LY([-1;1] x RT):

(2-3) Qu =o(v)[u— B,(T,)], with domain D(Q) = L*(]-1;1[ x RT)™.

Q is continuous from D(Q) into L!(]—1;1[ x R*), and we have obviously the
following property:

(2-4) Qu =0 < there exists @ > 0 such that u = B,(a).
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Therefore, problem (2-1) may be rewritten as
(i) ubsf +Qf =0,
(2-5) (ii) T(z) = Tj(z,.,)> z >0,
(iii) (O, 4,v),  v>0, pe]O;1f.
The results of Sentis on (2-1) are summarized in the following theorem:
THEOREM 2 [19]. We make assumption (2-2).
(a) (ezistence and uniqueness): Assume that 0 < < B, (0); then there exists a
unique solution of (2-1), (f,T), in the class L°(R*; V)T N L®(R+)*.
(b) (mazimum-minimum principle): If o € V' satisfies
© < By,(0) (resp. ¢ > B,(0)), a.e inp andv,
then the bounded solution of (2-1), (f,T), satisfies
T<0 (resp. T>0) ae inz
and
f<B,(0) (resp. f>B,(0)) a.e inz,u,v.

(c) (“weak™ asymptotic behavior): Let (f,T) be a bounded solution of (2-1) then
there exists @ > 0, and a sequence T, — +00, such that

(2-6) T(zn) = a and f(zp,.,.) = Bu(a);
a.e. in yu and v, and in L*(]—1;1] x R7T).

REMARK. Uniqueness holds only in the class of bounded functions; even for the
linear half-space problems considered in [3 and 5], there exist several unbounded
solutions of the same equation. For example, u(z, u) = —3F(z — u) is a solution of
(1-6) with macroscopic flux

1
F=/ pu(z, p) dy“-
-1
As well as for (1-6), bounded solutions of (1-1) (with o satisfying the monotonicity
assumptions of [19]) are of macroscopic flux equal to zero. However, this is not a
common feature of the Milne problems; the one considered in [1] (for the linearized
Boltzmann equation) is of slightly different structure. Because of the special form
of the opacity considered in this paper (o(v,T) = o(v)k(T)), (2-1) admits an
additional invariant macroscopic quantity.

PROPOSITION 3 (INVARIANT QUANTITIES). If f € L®(R*;V)* satisfies
(2-5)(i)(iii) ¢n the sense of distributions, then we have
(i) () (z) =0, forz>0,
(i) (/o)) (z) =C, forz>0

(where C 1is a positive constant).

(2-7)

PROOF OF PROPOSITION 3. Integrating (2-1) with respect to p and v, and
taking (2-1)(ii) into consideration yields

dg((uf)) =0, ie. {{uf))(z) =Cu
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for some constant C;. Then, we multiply (2-1)(i) by u/o, and we integrate it with
respect to y and v to obtain

dz(((4*/0)f)) = =Cy, ie. (((4*/0)f))(z) =C = Ciz
for some constant C. And since f is in L®°(R*; V), this last relation ensures that
Ci=0. O
For the proof of Theorem 2, we refer to the Appendix.
3. The case where o(v,T) = 0(v) > 0, > 0 In this section, we are concerned
with problem (2-1), where the opacity satisfies the following hypothesis:

(3-1) there exist two constants 0 < o, < op < 400
such that, for a.e. v >0, 0, < 0(V) < oM.

Moreover, we assume that
there exists 0 < fpr < +00

such that 0 < p(u,v) < B,(0nm), a.e. in 4 and v.
Therefore, we may use Theorem 2, and, until the end of this section, (f,T) will be
the bounded solution of (3-1), and (B, (), @) the weak asymptotic value of (f,T)
predicted by Theorem 2(c). Proposition 3 can be rewritten as follows:

(3-2)

for any 6 > 0, we have
(3-3) (@) {{u(f — Bu.(9)))) =0,
(@) {{(L?/e@DIf = B.(9))) = ({(Bu(@) — (B.(6))/30)).
Now, we state the main result of this section.

THEOREM 4. Under assumptions (3-1)—(3-2), we have

(@) IIf - BV(a)||L1(u,u) < Ce e,

(b) |T(z) — a| < C'e 7,
where 0 < v < 0, /3, and C = C(Orr,001,0m,7) and C' = C'(Opr,001,0m,7) are
two positive constants.

From now on, we introduce the following notation which will be of constant use
in the sequel:

Vg =sgnt(f —g) —sgn™ (Ty — Ty), forany (f,9) eVt x VT,
Y50 =Y¥y,B,(0)

We begin the proof with the following lemma which states, roughly speaking, that
Q is T-accretive (see [4 and 14]); in fact the following result is a little more explicit:

LEMMA 5. For any (f,g) € VT x VT, we have
(35) (f—9)¥se <0, and [B,(Ty)— B,(Ty)](—¥s4) >0, a.e. inp andv.
Therefore the operator Q is T-accretive since we have
{((Qf —Qg)sen™ (f - 9)))

= ({oW)(f = 9)¥1,9)) + ({c(W)[Bu(Ty) — Bu(Ty)l(-¥1,))) <O.
Moreover, if ((u(f — g))) =0, then we also have the following formula:
((ul(f = 9) — (Bu(Ty) — Bu(T,)) sen™ (f — 9)))

= ((u(f — 9)¥1q)) + ((u[Bu(Ts) — Bu(To)(=¥1.0))),

(3-4)

(3-6)

(3-7)
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PROOF OF LEMMA 5. We have
{{(Qu) - sgn™ (u — B, (9))))
(@) = ({o(v)(u — B, (0))"))
= {{o(V)(By(Tu) — By (6)) sgn™ (u — B, (6))))-
According to (3-1)(ii) and to the fact that sgn™ (T, — ) does not depend on u and
v, we have
{({c(V)(By(Tu) — By ( )) sgnt (T — 0)))
+ {(o(V)(u — By (0))(—sgn™ (Tu — 0)))) =

By adding (a) to (8), and assuming (3-5) to be true, we obtain (3-6). Then, if
((u(f — g))) =0, we obtain (3-7) in the same way. It remains to prove (3-5). But,
we have that

(8)

ry <zt (=z-sgnt(z)), wheneverz€ Rand0<y< 1.

According to this remark, the first inequality in (3-5) is obvious; to obtain the
second one, we need the following supplementary remark: since B, is increasing
for v > 0, we have

sgnt([B,(T,) — B, ()] =sgnt (T, —0). O

REMARK. We can see from the result of Lemma 5 how weakly the operator @
is coercive. Both of the terms in the right-hand side of (3-9) only force v and T, to
be on the same side of B, (0) and 6 respectively. This is in strong contrast with the
linear cases considered in [1 and 2], where the strong coerciveness of the analogue
of operator @ is essential to obtain the exponential decay: for the example (1-6),
L is strongly coercive when restricted to (Ker L)*. In the present case, we must
follow another route, namely to obtain exponential decay on enough moments of
the solution.

PROOF OF THEOREM 3. We divide this proof into three steps. We begin with

Step 1. Decay for the term ((u(f — B,(0))*)). We multiply property (2-1)(i) by
sgnt (f — B,(0)), where § > 0, and use (3-6). By integrating with respect to u and
v, we obtain

da((u(f — Bu(9)) ")) = —({(QF) - sen™ (f — B,(9)))) < 0.

Thus, ({(u(f — B,(0))*))(z) is a decreasing function of z. Moreover, according to
Theorem 2(c)

{(u(f = By () ") (zn) = ((u(Bu(e) — B,(9))7)) =0.

Therefore, we have

(3-8) {{u(f = Bu(0)")) 20
Then we multiply (3-1)(i) by sgn* (f — B, (0))e®®, and use (3-4) again. By inte-
grating with respect to 4 and v, we obtain
da[((u(f — By (8))7))e’?] = 8¢°*((u(f ~ B,(9))"))
(3-9) + ({0W)(f = Bu(0))vs,0))€>”
+ ((o()(Bu(Ty) — Bu(0))(—v1,)))e’® = 0.
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According to (3-3)(i) and to (3-5), we may write

(3-10)  ((u(f = Bu(0))F)) = ({u(f = Bu(0)¥1.6)) < ({(f — Bu(0))r,6))-
By using (3-10) and integrating (3-9) on [0; X], we obtain

x

(u(f = Bu(0)) ") (X)X + /O (0m = 8)({(f = By (0))y.0))e*de

(3-11) + /O$<<0'(V)(BV(Tf) — B, (0))(=%5,)))e**d€

< (ulf = BL()*))0) < b
Now, we choose 0 < § < g,,; (3-11) gives the following conclusions:

(@) ((u(f = Bu()"N(X) < Om,

@) [~ B0 lsgn (f — B(0) —sea (T - )
(3-12) < Onm/(om — 6),

(i) /0 (o) (B.(Ty) - B.(0))

x [sgn* (Ty — 0) — sgn™ (f — B,(0))]))e’¢ € < 0.

Now, we are going to use the results in (3-12) to obtain exponential decay on the
second moment;:

{(W?/o)f = Bu(a)]F)).
Step 2. Decay for the term {{(u%/o(v))[f — B.()]*)). Multiplying (3-1)(i) by
p/o(v), we obtain

(3-13) (42 /0(v))3zf + ulf = B, (Ty)] = 0.

Then, we multiply (3-13) by sgn*t[f — B, (a)]e®®, and we integrate it with respect
to u and v to obtain

(42 /o ())f = Bu()]*))e*] = 8€° ({(u*/o(v))[f = Bu(a)]*))

+ ((u(f = Bu(@)¥s,a))e*® + ((#(Bu(Ty) = Bu(@))(¥1,0)))€” = 0.
Now, we make the following remark, which is completely similar to (3-10). Accord-
ing to (3-3)(ii) and (3-10)(i), we have the following inequality:

(3.15) {2 /aWIf = Bu(@)]F)) = (((4* /o ())(f = Bu())¥s,a))
< (/om){(f = Bu(@))¥r,a))-

(3-14)

Then, according to (3-5) and (3-12)

/ “(ulf = Bu(a))bra))e d&‘ < Opt /(0 — 6)

and

/ C(UBA(T) = B (0)) (V7.a))e€ d&‘ < Oatfom.
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Moreover, taking (3-15) into consideration, and integrating (3-14) with respect to

z, we obtain
<<%[f - Bu(a)]+>> (X)etX

~ 8 [ - Bul@)wra))est de

O'mo

- /z((u(f — By ()$r.a))e® dé
0

- “(BTy) = Bu(a))(—bsa)))eSde
< (/oW = Bu(@F))(0) < a1 /om-

According to the three inequalities above, we obtain

317) (B /oW)If = Bu(@)N(X) < (0m/0m)[3 + 28/ (0m — 6)le™%.

We claim that now, we have enough information to obtain the exponential decay
as predicted by Theorem 3.

Step 3. End of the proof. First, notice that, according to (3-3)(ii) and (3-17), we
have

(3-16)

{2 /oW)If = Bu(@)))(X) = 2(((1?/o(V))[f = Bu(a)]T))(X)
< (a1 /om)[3 + 26/ (0m — 6)]e~X.

Now, we turn to prove Theorem 4(a). We remark that, for 0 < € < 1, we have

(If = Bu( /ﬂ|>e/+°°|f B, ( |dz/
et
s—f/ﬂ»/m—zv B, (o) dv 2

" /lu|<e /O+°° /= BV(Of)IdV 7

Taking into account (3-17) and the maximum principle derived from (3-2), we have

(17 - Bt X) <2 (220 [s4 2] oo 4 20t

Om

(3-18)

for every 0 < e < 1.

5X/3

We now take ¢ = ¢ so that we obtain

(3-19) UIf = Bo(@)])) (X) < 2 (”M9M> [3 ) G_m] J5X/3.

Om Om —60Mm

It is now very easy to obtain Theorem 4(b). Indeed, according to (2-1)(ii), we have

{({e()[Bu(Ty) = Bu(a)])) = {(o(W)[f = Bu(@)]));
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multiplying this equality by sgn(Ty — «) yields
{o()|Bu(Ty) = Bu(@)])) < {{o()|f = Bu(a)l))

and therefore, we have
|T¢(X) = af = ({(|Bu(Ty) = Bu(a)))(X) < (onm/om){(|f — Bu(a)]))
(3-20) < 20% 00 1 2 o—6X/3.

14—+ —-
Om oM Om—20

The proof of Theorem 4 is now terminated. O

REMARK. (1) An estimate on the constants C' and C’, as given in this proof,
may be of some interest in the future, to compute effectively the asymptotic state
(a, Bu(a)).

(2) Even if o was not bounded above, we would have, by using the same method
as in Step 3

(3-21) <<;-(17)|f - B,,(a)|>> < 20 <1 + é + U—m—2:~3> e~0X/3,

Even if (3-20) gives no result on the decay of Ty, we notice that it gives the natural
weight for the exponential decay of f, namely 1/o.

4. The case where o(v,T) = o(v) =~ oov™? (8 > 0;v — +00). In this section,
we look at problem (2-1), with the following assumption on the opacity:

there exists three positive constants o, o, 8 such that
(4-1) 0 < o(v) < onr, and o(v) = ogv = for v — +o0;
o is continuous with respect to v.

In particular, (4-1) ensures that (2-2) holds, so that the invariant analysis set
out in Proposition 3 is still valid. We keep assumption (3-2) on the incoming
radiative intensity ¢, and the notations (f,T) and (B, («a), ) respectively for the
bounded solution of (2-1) and its weak asymptotic limit predicted by Theorem 2(c).
Conclusions (3-3) remain therefore valid. The main result in the present section is:

THEOREM 6. Assume (4-1), (3-2). Therefore, there exists three positive con-
stants A\, K, K' such that

If@,,) = Bu(@L,, < Ke™, |T(z) —al < Ke™*, forz>0;
where p=1/(1+ f).

Before starting the proof of Theorem 6, let us make a few remarks. The intro-
duction of assumption (4-1) was motivated by the existence of opacities vanishing
at very high frequencies. We refer to [2], where the example of the so-called Kramer
opacity is given:

o(v,T) = C(1 — e ¥/T)/(V*VT).

Even if Theorem is certainly more pertinent than Theorem 4 in a physical view-

_point, the essential features of the method are already contained in the proof of
Theorem 4. In that sense, Theorem 6 is derived from the proof of Theorem 4 in
the same spirit as the proof of subexponential decay for the Boltzmann equation
with a soft potential (see Caflisch [8]).
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PROOF OF THEOREM 6. We follow the same route as in the proof of Theorem
4. Since the proof uses a great deal of arguments already contained in the proof of
Theorem 4, we are going to point out only the alterations brought by (4-1).

Step 1. Decay for the term ((u(f — B,(a))*)). By proceeding as in the proof
of Theorem 4, we easily obtain that (3-8), (3-9), (3-10) are stiil valid. For A > 0,

let us define y(A) = 0¢/2A? and z(A) = Aﬁ"'l/aoaif. According to (4-1), and for
A large enough, o(v) > v(A), for v € [0, A]. By proceeding as in (3-11), we easily
obtain, using (3-2) and the maximum principle

(42) (S = Bu(o)) ) (a(A)) T D=

/ - (/ / AN(f = Bu(a ))wf,a%"du> ' Mége

z(A)
+ /0 (o) [Bo(Ty) = Bu(a)](~pa)) " @ede
<C+ / " ( /A e 4B, (0r)(A) du> e1Wége
0

+o00
< C +4e7A)(A) / B, (0x) dv,
A

where C is positive constant. Now, we have

+oo

B, (0n)dv ~ 0 /4A3exp( for A — +00.

—A
A 0M1/4

According to the above definitions of z(A) and ~(A), the above inequality yields

(1) {(u (f -B, ( ) ) (2(A))er A=A < ¢,
B, (a))*))(2) < Cexp|—(00z)?/205¢");

(43) (i) /E(A) (/ / A)(f — Bu(« ))'(pfa—2ﬁ dl/) Aége < C;

z(A)
() [ (eIBAT) - B@))-sr)e WS de<C.

Step 2. Decay for the term (((u?/o)(f — B,())*")). By proceeding as in the
proof of Theorem 4, we easily obtain that (3-13) and (3-14) are still valid. Then
we want to write an inequality similar to (3-16) in the proof of Theorem 4. Taking
6 = v(A), we have

(4-4)  ({(/0)(f = Bu(@) " N2(A/2)? D" WD + [ + I + I; SO+ Iy + I,
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~
i
Il
O\s
N
~
»
=
\
I
(s}

v (@) ) (€)eAE dg,
<(A/2) [ ;A2 1 .
& =/ /o / [_V(A)%] (f — Bu(@))¥f,0 %ﬁ dy) 1€ ge

A2 1 "
/ / uBy(Ty) — Bu(a)l(=¥1,a) =~ dl/) A€ ge,

0 -1
z(A/2) A/2 1
Iy =/ / / ’Y(A)(f — B, (a)¥f,a au dv | @€ ge,
0 0 -1 O 9

z(A/2) A2
15=/0 (/ / [Bu(Ty) = Bo(@))(~¥s0 )%‘@) QWE g,

Now, we are going to use the conclusions (4-3) of the previous step to find adequate
estimates on the quantities Iy, Iz, I3, I4, Is.

z(a/2)
I; < / (u(f - Bu(a))+))(g)ew(Aﬂ)éeh(A)—*1(A/2)]£. d¢
0

A/2) ﬂ
<c / " e gg < € <%0 (é> |
0 1(4/2) = 00 \ 2

according to (4-3)(i);

~(A)
Ls S 0w -2@A)

/z(A/2) (/A/Z/ A/ - Bo(o ))d)fa du) e’y(A)Edf <C

. 1(4) c_ 20 (A
=¢ (033,1/2 o)) —v(A))) = 3@ = % (2) ’

according to (4-3)(ii);

A

A

2(A/2)
B sw s [T )BT - Bu@l(-vra))e Ve e

O0<v<A/2 o(v)
C < &
7(A4/2) T o0

o(A/2) +00
/ e1(Aege MBV(HM) dv  (by the maximum principle)
0 a2 1(A/2)

4B, (0 dv

<

A\?
<§-> , according to (4-3)(ii);

Iy

IN

eV(A)z(A/2) /+oo
7(4/2)
4e7(A)z(A/2)

v(A/2)

A/2

01/4(A4/2)% exp(—A/20),"), for A — +cc.
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According to the choice of the functions z(A4) and ~(A), we easily obtain
c 20 (A
Li<—m< = | = .
*=1(472) T oo (2)
In the same way

z(A/2) 400
Is < / eY(Aege 4B, (0pr) dv
0 A2 )

4e71(A)z(A/2)
Y(A4)
< C/v(A).
From (4-4) and the five estimates above, we deduce that
(/o) (f = Bu(e)) ") (2(4/2)e? W42 < € + CAP,
where C is a positive constant.

Or*(4/2)° exp(~A/26031%), for A — +oo,

Therefore we have

{((u/a)(f = Bu(a)) ")) (x(A/2)) < Ce~(1(A)/2)2(A/2),
i.e.
(4-6) (2 /0)(f = Bu())T))(X) < Cexp[—(z00)? /2820504,

As we have pointed out at the beginning of the present section, conclusions (3-3)
are not modified by assumption (4-1). Therefore, as in the proof of Theorem 4 (see
(3-18)), we have

(2 /0)1f = Bu(@IN(z) = 2048 /0)(f = Bu(e))*))(z)
<C exp[—(mo)p/2ﬂ+20§;/4]

according to (4-6). From now on, the third step of the proof of Theorem 4 can be
applied to the present situation, without any change, so that we obtain

(4-7) I(z,.,-) = Bu(e)llLy, < Ke™**,

for some positive constants K and a. Now, from (4-7) we are going to derive the
predicted asymptotic behavior of T, as in the proof of Theorem 4, i.e. by using
equation (2-1)(ii). We have

(eW)(Bu(Ty) = bu()))(2) < omlf(z,.,.) = Bu(@)lzy, < orKe .
For z large enough, o(v) < 0¢/22” for v € [0, z]; therefore
{({|B.(Ty) = By(a)))(z) = [Ty — al(=)

+oo
< K%—Ma:ﬂ exp(—az®) +/ 2B, (0pr) dv
x

(4-8) o
200m 1/4 3 -
~ KM B —az”) + 20 .
" z” exp(—azf) + 20, = exp(01/4)

From (4-8)
IT; - o|(z) < K'e(=2/2)="
so that the decay predicted by Theorem 6 is obtained by taking A =a/2. O
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REMARK. For effective numerical computations, problem (2-1) will be de-
scretized by introducting a finite number of groups (in frequency). Therefore, the
discretized o will satisfy assumption (3-1), so that the discretized Milne problem
will always be ruled by Theorem 4. This remark is the reason why we have not
estimated accurately K, K’ and A as given by Theorem 6. These constants will not
appear in numerical computations.

5. The case where o(v,T) = o(v)k(T). In this section, & is a positive function
defined on R* such that

(5-1) there exist 2 constants 0 < ky, < kpr < 400 such that k,, < k(T) < kas,
ke C'(RY).

Now, we assume that the opacity is of the special form: o(v,T) = o(v)k(T), so
that we can rewrite problem (1-1) as:

(1) /"‘8zf +U(V)k(T)[f - BV(T)] =0, for z > 0, v>0, pe ]—1; 1[,
(5-2) (i) (eW)[BL(T) - M) =
(ili) £(O,p,v) =p(p,v),  v>0, peO;1f.

In this section, we keep assumption (3-1) or (4-1) on ¢ and definition (2-3). But we
can no longer apply Sentis’ result [19] because we have no monotonicity assumption
on k. However, we are going to prove that, in some sense, problems (2-1) and (5-2)
are equivalent. Indeed, let (f1,Ty) be the solution of (2-1), and (f,T) be a solution
of (5-2); we have the representation formula (at least formally):

(5-3)  flamy) = f1</ K(T(s)) ds, , v ) (/ k(T )

This representation formula will be the key for our proof. Indeed, in view of (5-1),
(5-3) gives that (f,T) and (f1,T1) have the same asymptotic behavior for z — 4-o0.

This same kind of representation formula as (5-3) has already been used in [2] to
study the nonlinear Milne problem in the “grey” case (where o(v,T) is a function
of T only). The argument that will be used here is very much the same as in [2];
it consists in using (5-3) to build a solution of (5-2) with the help of the solution
(fl,Tl) of (2-1)

Now, let us state the main result of this section:

THEOREM 7. Under assumptions (5-1), (3-1) or (4-1), and (3-2), there exists
a unique bounded solution (f,T) of (5-2). For this solution, the representation
formula (5-3) holds. In particular, there exists a Planckian state (o, B, (o)) such
that

if (3-1) holds, || f(2,.,-) = Bu(@)|lL1(u) < Ce™7'* and |T(z) — o < Ce™ 2 for
z > 0, where ¥ = kpy, C and ~ being the same as in Theorem 3;

if (4-1) holds, || f(z,.,.) = Bu()lzy , < Ke ' and |T(z) —a| < Ke ', for
z >0, where A = Mk, A\, K, and p being the same as in Theorem 6.

The proof of Theorem 7 follows the same route as in [2] (for the nonlinear Milne
problem in the grey case); therefore we are only going to sketch the proof of it.
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PROOF OF THEOREM 7. The representation formula (5-3) gives

k(T (z)) =k <T1 ( /O " K(T(s)) ds>> .

We define y(z) = [ k(T(s))ds; so that we have for y the following differential
equation:
(5-4) Y (2) =k(Tu(y())),  y(0)=0.

Now, we claim that existence and uniqueness for (5-2) is equivalent to existence
and uniqueness for the O.D.E. (5-4). Indeed, if y is a solution of (5-4), one easily
checks that

flz,mv) = fi(y(z), u,v), T(z) = Ti(y(x))
is a solution of (5-2).
Then, if we have two solutions of (5-2), namely (f,T) and (f,T), let us define

u(z) = /O “KT(s)ds and [ (ymv) = ey wr), Ta(y) = T(e)

(where g is the reciprocal function of u, which exists according to (5-1)). We can
prove that (f,T;) is solution of (2-1), for which we have the uniqueness result of
sentis [19] stated here as point (a) in Theorem 2. Therefore f = fi, and Ty =T1,
and y is also a solution of (5-4). Moreover,

i(:l:, 12 V) = [l(y(ﬂv),%”), I(III) = Zl(y(z))

so that uniqueness for (5-2) reduces to the uniqueness of the solution of (5-4).
FEzistence for (5-4). We only need to prove that T is continuous. According to
the results of §5, we have the following bounds:

”g”L°°(a:,p,) < Ca ”,ua:tg”L“(:t,y) <C
where g(z, u) = f(;” o(v) f1(z, u,v) dv. Therefore, we may write

1 d 1 d
/ oz, ) 2 — / g(y, )£
_1 2 1 2

du 1
s/ lg(z, 1) — g(y, 1) 7+-/
lul<e € Jlul>e

< C+(Cfe)lz —y| < 20|z — y|'/2.

Therefore, ((o(v)f1)) € C*/?(R*). From (2-1)(ii), we obtain that T} is continuous.
Uniqueness for (5-4). We are going to use a very simple lemma the proof of
which can be found in [2].

LEMMA. Let F € Cy(R1), F > 1, and assume that |F'(y)| < max(1;y~1/2);
then the O.D.E. y'(z) = F(y(z)), y(0) =0 has a unique solution.

Y
/ |udz9(€, u)ld€’ %ﬁ

According to assumption (4-1), we only have to prove that
|dyT1(y)| < max(1;y7"/3).

We mimic the proof given originally in [3] for an analogous result. We choose
for zo € ]0;1[ a function p € C([0,2]) such that suppp C [z0/2;2], p = 1 on
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[z0,1], and |dzp| < C/z for some constant C' independent of z. We introduce
g=p0zf1, S=pd,Ti. We have
L1, (9) = udzg +o(v)(g — B, (T1)){{o(v) B, (T1))) " {{o(v)g))
= —dgpo(v)(f1 — Bu(T1)),
S = {({(o)B,(T1)) " {lew)g), 9(0,u) = g(2,1) =0.
Now, it is fairly classical that 0 does not belong to the spectrum of Ly, in
Lo([0;2] x [-1;1); L N L= (v))
(see [11]). From this remark we deduce very easily that
L= ([0;2]x[=1;1]; L' NL* (v))

< Clldzpo(v)(f1 = Bu(T1))ll Lo (jos21x [~ 1;1);L2nLee (1)) < C/To-
To prove the estimate on S, we write, for 0 < z < 1

Kewani< [ [Tlowl
C

/ /wilo(u)%f _m) < Y
lul>lzol2 Jo K P 2 7 x|V

The remaining details are sheer routine and can be found in [2].

Therefore, we have proved existence and uniqueness of a bounded solution of
(4-2), satisfying the representation formula (5-3).

In view of (5-1) and (5-3) the asymptotic behavior of (f,T) is now obvious.
0

REMARK. The quantity foz k(T(s))ds has a physical meaning; it is called the
optical depth.

llgll

b

dv
2

6. Linearization of (2-1) around a fixed Planckian state. One may
think of problem (2-1) as the equation defining the boundary layers arising in the
Rosseland approximation (for which we refer to [12 and 16]). Therefore, one may
be interested in finding a simple way to compute effectively o (as in Theorem
4) in terms of the incoming density ¢, without computing the whole solution of
(2-1). For linear Milne problems, such computations are well known, and have
inspired much literature. The initial remark was due to Chandrasekhar [10], and a
modern interpretation in terms of factorization properties for Riccati equation was
given in Sentis [19]. In the same way, one may linearize problem (2-1) around a
fixed Planckian state, and, by using Chandrasekhar’s techniques, perform the same
computation on the linearized problem (2-1): this work has been done by Sentis in
[19]. Some improvements can be found in [13]. Now, the question is: can we hope
to use Chandrasekhar’s techniques on the linearized (2-1) to compute a?

Assume that we linearize (2-1) around a given Planckian state (8, B, (8)). Thus
we set

f=B,(B)+g; T=B+s.
Then we have
udzg +a(v)(g — BL(B)({o(v)B,(8)~{{o(1)g)) = O(g*),
(6-1) S = ((o()BL(B)) (o (v)g)),
9(0,p,v) = p(p,v) = Bu(B), v>0, pel0;1].
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If we drop the inhomogeneity in O(g?), we can compute easily 3 such that g — 0
and S — 0 for £ — oo, by using Chandrasekhar’s techniques [19]. By doing this,
we claim that we commit an error of order O|(||g||L=)?]; see [5].

Indeed, there is sort of a feedback effect: even if O(g%?) — 0 exponentially fast
for = going to oo, the values of the source term at finite distance perturb the value
of 8.

The conclusion is the following: such a computation will be valid only if we
know that ||g||r is small a priori, for example by using the maximum principle on
(2-1) if By (0m) < ¢ < B,(0p) with 0ps — 6, small; in that case we will obtain an
approximation of o with error of order (65 — 0,,)2.

Appendix. Proof of Theorem 2. This proof is divided into three steps: first,
we prove the existence of a solution of (2-1) satisfying the maximum principle; then,
we prove that any solution of (2-1) in L*°(R; V) has the weak asymptotic behavior
predicted in point (c) of the theorem. We finish the proof with the uniqueness part.

Step 1. Existence of a solution of (2-1) satisfying the mazimum principle. As-
sume that the incoming radiative intensity ¢ satisfies:

(A1) B,(0m) < o(u,v) < By(0prr), for ae. pand v.
Then we define a sequence (fn,Ty) by the following iterative scheme:
fo=Bu(0m),
T,=Ty,, forn>0:
(A2) for n > 0, fn+1 is the unique bounded solution of

WOz fry1 + U(V)fn+1 = U(V)Bu(Tn),

fa1(0,8,v) = o(p,v), weO;1[, v>0.
By using the maximum principle for the linear transport equation defining f,4+; in
terms of T,, we obtain, after a straightforward induction:

Bu(aM)=fOZf122fn2fn+122Bu(0m),
O =To2T12>2 2Ty 2Tps1 >+ 2 0.

Therefore, f = limy— oo fr and T' = lim, 00 Ty, are a solution of (2-1) in the sense
of distributions; moreover, in view of (A2), we have

(A4) B,(0m) < f<B,(0p) and 0, <T <0y, forae z,uuv.

Step 2. Weak aymptotic behavior for a solution of (2-1) in L®(R*;V). We
begin with the following lemma:

LEMMA. Let A > 0 and g = g(z) € L®(RT)*. Assume that ¢ € L>°(]0;1[)*.
Let u be the unique bounded solution of

uigu + Au = Ag(z), forz>0, pe[-1;1];
u(0,p) = P(u), for pel0;1f.
Then lim_  u(z,p) > lim__  g(z) for a.e. p.
PROOF OF THE LEMMA. We can write, for z > 0 and ¢ > O:

T
w(z, 1) = Y(u)e H + / 2e-*<f-s)/“g(s) ds
0

s [

0

(A3)

(A5)

(%) e_)\t/#[g(z - t)l{uga:}] dt;



142 FRANCOIS GOLSE

o0
u(z,—p) = / %e-m-”/ﬂg(s) ds
T

)\
=/ Ze Mk g(z 4 t) dt.
o M
The announced result follows from Fatou’s lemma. 0
Now let (f,T) be a solution of (2-1) in L*®(R*;V) x L®(R™"). We define
v(p,v) = lim f(z,p,v) and o= lim T(z).

— 00 Ir—00

According to the above lemma, we have

(A6) v(u,v) 2 By(a) a.e. in p.

Since f — T is nondecreasing (cf. Lemma 1), we deduce from (A6)

(A7) T, > «a.

Let 6 be defined by
G(T) = {{(e(¥)Bu(T)))-

G is increasing and continuous and one-to-one on R*. Since, by definition, we have
Ty =G~ ({{e@) M),

by using Fatou’s lemma again, we obtain

(A8) a>T,

Therefore, T, = «, and from (A6) we deduce that v = B,(a). The remaining
details are routine.
Step 3. Uniqueness. Let f and g be two solutions of (2-5) in L®(R*;V). We
thus can write
ng) =) e~ 9)%)
+ ((e(W)[Bu(Ty) — Bu(Tg)l(—¥y,9))) = 0.
Therefore, according to Lemma 5, ({u(f — g)*)) is a nonincreasing function of z;

from the boundary condition, (f — g)|z=0 = 0 if u > 0. Thus, ({(u(f —g)*))(z) < 0.
According to the previous step, there exists a sequence z,, such that

g(z)n — By(B) for some f.

From the beginning of the proof of Theorem 4, we know that [u(g — B,(8))™]
> 0. Thus, {{(u(f — g)*))(z) = 0. We deduce from this the following facts:

(A10) (f = 9)lz=0 =0; [Bu(Ty) — Bu(Tg)|(—¥s,4) =0, a.e. inz,v.

We multiply the equation satisfied by f — g by u/o; after integration with respect
to u and v, we have

dz({(*/0)(f = 9))) + {(u(f = 9)7)) + ((ulBu(Ty) = Bu(Te)l(=¥,))) = 0;

ie. (((u%/o)(f—g)t)) = C (where C is a constant). From (A10) we obtain C = 0.
Therefore, f = g a.e. in z, u, v. O
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