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Abstract

In the first part of this paper, we study the half space boundary value problem for the Boltzmann
equation with an incoming distribution, obtained when considering the boundary layer arising in the
kinetic theory of gases as the mean free path tends to zero. We linearize it about a drifting
Maxwellian and prove that, as conjectured by Cercignani [4), the problem is well-posed when the drift
velocity u exceeds the sound speed c, but that one (respectively four, five) additional conditions must
be imposed when 0 < u < ¢ (respectively —¢c < u < 0 and u < —¢).

In the second part, we show that the well-posedness and the asymptotic behavior results for
kinetic layers equations with prescribed incoming flux can be extended to more general and realistic
boundary conditions.

1. Kinetic Layer Problems with Incoming Flux

1.1. Introduction. We consider the boundary layer problem arising in the
kinetic theory of gases when the mean free path tends to zero. The resulting
half-space problem for the Boltzmann equation is

(1.1.1) sl% =Q(F,F), x>0, ¢=(4,4,6) R,

where Q is the collision operator defined by
(112) Q(F F)= [ (F()F(&) - F()F()a(n — § o) dndo

with

7=1-((n-§) 0o,
(1.13)

g=£(+((n-8)0)o
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We restrict ourselves to collision kernels for hard sphere gas satisfying the
angular cut-off assumption as proposed by Grad [9]:

(1.1.4) q(V, ) = oV .

We are interested in solutions F such that

(1.1.5) lim F(x, £) = M(£),
where

_ 2
(1.1.6) M (§) = (—27%3726"1’{‘ K_zzi“:f_l}

is the Maxwellian distribution whose parameters (p,, ¥, T,,) describe the mac-
roscopic flow to which we match the boundary layer. Linearizing around M_ in
the form F = M, + ML/%f, equation (1.1.1) has the form

(1.1.7) gl% +L,f=0
with
(1.1.8) Lyf=2MZV%Q(M,,, MY*f).

It is clear that no changes arise if u,, has components along the axis orthogonal
to x, but that the x-component of u_, denoted by u, can provide significant
changes.

Shifting the velocities by changing ¢, to §; + u, equation (1.1.7) can be
rewritten as

(1.1.9) (£1+u)§—,f;+;f=o
with
(1.1.10) Lf = 2M~12Q( M, M'/%f)
and

2
(1.1.11) M) = (2";*:)3/26@{_ g%}

We look for bounded solutions of (1.1.9) with a given distribution ¢ of incoming
particles at x = 0:

(1.1.12) £0.8) =9(£), & +u>o0.
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Equations (1.1.9), (1.1.12) with ¥ = 0 have been studied by Bardos, Caflisch,
Nicolaenko [2] and Cercignani [4]. They proved that the problem is well posed
when the mass flux defined by [§ M'/?f(x, §) d¢ (which is a constant in x) is
specified. When u # 0, Cercignani [4] conjectured that the number of additional
conditions to ensure the well-posedness of the problem depends on the value of u
compared to the Mach number of the flow at infinity ¢ = {$7T,, and that it is
simply related to the signature of the quadratic form

(1.1.13) P(f,f) = [ (& +u)f2d

(which can be viewed as the linearized entropy flux), in the nullspace N(L) of L.
More precisely, when « > /3T, , the problem is well posed for any incoming

distribution ¢. When 0 < u < @ , it is well posed when looking for solutions
with vanishing mass flux (which is no longer constant) at infinity. The conjecture
claims also that, when — 3T, < u <0, (respectively u < — /3T, ), one has to
give four (respectively five) additional conditions.

The proof of a similar conjecture was given by Arthur and Cercignani [1] and
Greenberg and Van der Mee [10] in the case of the linearized Bhatganar-Gross-
Krook (BGK) model.

Cercignani’s conjecture can be supported by formally looking at the com-
pressible Euler equations for (p, v, T') linearized around the constant velocity #,
(u # 0, + {3T,). It is a hyperbolic system with characteristic values A; = A, =

AN=u, Ag=u+ 3T, , Ag=u~— @ The values of the conserved quanti-
ties along the corresponding characteristics are determined by the initial condi-
tions for incoming characteristics and boundary conditions for outgoing ones.
For example, when u > ‘/:}Tw , there are five outgoing characteristics and one has

to give the values of (p, v, T') at the boundary. When 0 < u < ‘lng , there is one
incoming characteristic and one has to impose four boundary conditions.

The aim of this work is to give a rigorous proof of Cercignani’s conjecture for
equations (1.1.9), (1.1.12). It is based on energy type estimates and on the
construction of a solution as the limit, as B — oo, of solutions f; defined in the
slab [0, B]. The main new tool to handle such a problem, since it is related to
the determination of admissible boundary conditions for a hyperbolic system,
will the linearized entropy flux (the entropy for the Boltzmann equation being the
H function):

J@&+u)f(x 80 at.

Essentially, we shall have to choose a boundary condition at x = B for f, such
that the projection of the limit solution on N(L) has a positive linearized entropy
flux at infinity.

The following subsections are organized as follows: in subsection 1.2, we give
some preliminaries and state the main results; in subsection 1.3, the problem in



412 F. CORON, F. GOLSE, AND C. SULEM

the slab [0, B] is studied; the solution in [0, oof is constructed in subsection 1.4;
subsection 1.5 is devoted to the problem of uniqueness; in subsection 1.6, we deal
with the special cases u = + {37, and in subsection 1.7, we reformulate the
invariant relations in a more general and intrinsic way.

1.2. Preliminaries and results. The linearized operator L defined in (1.1.8) is
non-negative and selfadjoint on L2(R?). Due to the interaction law (1.1.4), it can
be split as

(1.2.1) L=v(§) -
where the collision frequency »(£) satisfies, for hard sphere balls,
(122) vo(1 + I£) < v(£) < (1 + €D,

v, and », being constants which depend on T, and K a compact operator on
L?*(R?) which can be defined by

(1.2.3) Ko(§) = fR,k(ﬁ,n)v(n)dn
with
(1.2.4) [ @ dnscarig”

The domain of L is

(1.2.5) D(L) = {fe L*R?), »(§)"*f € L}(R?)}

and its nullspace N(L) is a five-dimensional subspace spanned by X, a=
0,1,---,4, with

%,o(8) = —ﬁ,—Z—MW,

-]

%,(8) = s

]

%,(8) = |/ - AL ) 2,

IE' )M1/2’

X,(¢) = Fel

%, (¢) = ‘/__ £+ |€| )Ml/z.
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The collision invariants have been chosen in such a way that
(1.2.6) P(X,. %) =0, a#B,
and that

ff(uxpd£=0, a#B,

that is the X_ have been constructed in order to form an orthogonal basis of
N(L) with respect to both the usual scalar product and P. Note that

P(Xx” Xl) =pcou’ i=091’2a
(1.2.7) P(Xy, Xy) = o (u+ 3T.,),

P(Xh 5(4) = pw(u - \/é_i)

Consequently, the signature o of the restriction of the quadratic form P to N(L)
is:

(5,0) if u> 3T,

4,0) if u=y3T,,

4,1) if 0<u<)3T,

0

(L1 if u=0,
1,4 if — 3T, <u<Q,
0,4 if u= - 3T,

©0,5) if u<-—yiT,.
For convenience, we denote X, = X,/ \/IP(Xu, Xa)l in the nondegenerate
cases. We recall that any function f can be split in a unique way as

where g, € N(L) is its hydrodynamic part and w € R(L) = N(L)* its kinetic
part. We also have, for some p > 0,

2
(1.2.9) forall fe D(L), fmefdg > uj;av(f)wf dt.
Finally, we introduce the notations
(1.2.10) 12 = [ f(&) e,
R
(1.2.11) = [ fx ) dxdg,
and

(1.2.12) 112, = [ supef(x, £)’v(£) dé.
R’ x>0
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The space of functions f equipped with the norm |f||,, is denoted by
L*®R3 LY(RY)).

Let us now state the results.

Consider the system

(1.2.13) (u+ 51)% + Lf =0, x>0,

(1.2.14) - f(0,¢) = (), u+§ >0.

We are going to consider any function ¢ satisfying one of the following two
conditions:

(1.2.15) f (&, +u)o(§) dt sk, < oo,
£ +u>0
(1.2.15) f v(£)o(£) dt <k, < oo.
§+u>0
Denote
I=1{0,1,2,3,4),

(1.2.16) I*= {a, P(X,, X,) > 0},
(12.17) I"= {a, P(X,, X,) <0},
(12.18) 1°= (e, P(X,, X,) = 0}).

THEOREM 1.2.1. Let A, be given real constants for a« € I~ and ¢ satisfy-
ing (1.2.15), then the system (1.2.13)—(1.2.14) has a unique solution f € L=(dx,
L2(j&, + u| d§)) such that
(1.2.19) P(f,X,) =2, ael, x>0.
Moreover, we have
(1.2.20) P(f,X,) =0, acl® x>0,
and there exists a unique q® € N(L) such that

(1.2.21) f—q® € L=(e"* dx, L*(|¢, + u|dt)),

for small enough vy > 0. °
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In addition, if ¢ satisfies (1.2.15),
(12.21) f— g™ € L®(e™ dx, L*(v df)).

Although the difference between the weights [£; + u| and »(£¢) does not
appear relevant at the present stage, it will be of significant importance in Section
2 for accomodation boundary conditions.

In the following subsections 1.3, 1.4 and 1.5, we shall restrict our attention to
cases where the quadratic form P is nondegenerate.

1.3. The approximate problem in the slab [0, B]. Consider the problem
d
(1.3.1) (u+£1)m§ + Lfy =0, 0<x<B,

(132) f5(0, &) = ¢(£), u+§ >0

One has to impose a boundary condition at x = B. Notice that, when u = 0, a
natural condition is. a reflection condition (see [2], [4])

(133) fB(B9£) =fB(B’ Rg)’

where £ = (§,, §,, §3) and R§ = (—§,, §,, §,). It ensures existence of a solution
such that P(fj, fz)(B) = 0. This property is preserved when taking the limit as
B — «. The aim of the lemma below is (in the nondegenerated cases u # 0,
+ 3T, ) to write boundary conditions at x = B which ensure P(f3, fz)(B) 2 0;
they will provide existence of a solution fp such that certain quantities indepen-
dent of x (namely P(fp, X,) for @ € I7) vanish at x = B. These properties will
be preserved when passing to the limit as B — oo.

LEMMA 1.3.1. Assume that P is nondegenerate; then there exists a linear
subspace G of L*(|¢, + u| d§) such that

(i) for all g € G, P(g, g) =z 0 and G is maximal with respect to this property,
(ii) forallge Gandall a €I, P(g,X,) =0,
(iii) forall a € I*, X, € G.

Proof: First decompose the space ¥ = L(|§, + u| d¢) into
V=N(L)o W,

where W is the orthogonal complement of N(L) with respect to the form P. Let
S be the set of subspaces of W where P is positive. The subspace G is
constructed as follows:

G=span{ X, i€I"} + X, Xcw,

where X is a maximal element of S. To prove the existence of X it is sufficient,
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by Zorn’s lemma, to prove that S is inductive. Clearly, if 4 is a totally ordered
subset of S, the subspace of all linear finite combinations of vectors belonging to
a set of A4 is an upper bound for 4. Now, G satisfies properties (ii) and (iii) of the
lemma. To prove that it is maximal, use a contradiction argument: suppose that
P is positive on a subspace G, C V that contains G and denote by Gj its
projection (orthogonal with respect to P) on W. For any g € G,, one has

g=g'+ X kX, + Y kX, g’ € Gi.
iel* ier”
Clearly, g’ + L, -k, X, € Gy; thus P(g’, g') = 0. But X is maximal and hence
G]{ =X and X, -k, X; € G,. Computing P(X,.;-k, X, X, .-k, X,), one ob-
tains that k; = 0 for i € I". Thus G; = G and G is maximal.
To construct a solution of

(1.3.4) (u+§1)%ff + Lfp=0, 0<x<B8B,
(1.35) 1500, &) = o(%), u+§ >0,
(1.3.6) f3(B,¢) €G,

we consider the penalized system (we drop the indices B)

(1.3.7) (u+§1)%fx—e + Lfe+eft =0, 0<x<B,
(1.3.8) £40,¢) = ¢(£), u+§ >0,
(1.3.9) fi(B,¢) eG.

It is classical to prove that (1.3.7)-(1.3.9) has a unique solution with »/%f¢ &
L([0, B] X R?). To get uniform estimates with respect to &, one first writes

(1.3.10) v(§)wh drdt < i—k,,.

f[o, BIXR?

To show that g, remains bounded in L?([0, B] X R?), one uses a contradiction
argument: suppose that

(1.3.11) A= f gk dxdf > 00, &0,
[0, B} xR?
and denote g¢ = f¢/A°". It is bounded in L*([0, B] X R?) and satisfies

dg* 1
(13.12) (u+ &) 5 +egt+ s Lw. =0,
Thus,

(1.3.13) (u+§1)%- >0, e-0.
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Using a compactness theorem of Golse, Perthame, Sentis [8], there exists a
subsequence of g*® such that g,. (thus g*) strongly converges in L*([0, B] X R®)
and for a.e. x to a function Z = Zﬁ_obBXp € N(L) independent of x. To prove
that Z is identically 0, one multiplies equation (1.3.12) by X, and integrates over
u + £ > 0 and (0, x); setting

(1.3.14) P*(f,8) = f ot E)1(©)8(8) dt,

+4§

one has

1 1
P+(qg., Xa) + A—P*(wf., Xa) + :‘—l—f

[ (bw) X dxdg
e ev0
(1.3.15)

u+§,>0

* . o
+s/(; j;+£1>0g X,dedg = 7P (9, X,).
Taking the limit as ¢ = 0, we see that P*(Z, X,) = 0. Noticing that the form
P* is positive definite on N(L), we have by = 0; thus Z = 0, which contradicts
lllg+lll = 1. Consequently, ¢,. remains bounded in L([0, B] X R?). We can pass
to the limit as ¢ — 0 and obtain a solution f; of (1.3.4)-(1.3.5) such that
»12f, € L([0, B] X R?).

Let us check that fg satisfies (1.3.6). From the positivity of the quadratic
form P on G and the property of maximality of G, one obtains that G is a closed
(convex) subspace of L2(|¢, + u|d¢). 1t is thus weakly closed. To prove that
fs € G, it is sufficient to prove that the sequence f° remains bounded in
L2()¢, + u| d¢) uniformly in e. In view of the previous estimates and equation
(1.3.7), v and (¢, + u) 3, f° remain bounded in L%((0, B) X R®). Thus, the
function

(1.3.16) g(x) = fi& +ulf(§)" as

is bounded in WY(0, B). The injection from W0, B) into C(I) being
continuous, we have proved that

(1.3.17) I/ N eze, 4w aey < s

independently of e.

UNIFORM ESTIMATES WITH RESPECT TO B FOR THE SOLUTION fp OF
(1.3.4)=(1.3.6).

PROPOSITION 1.3.1. The solution f5 of (1.3.4)-(1.3.6) which can be written in
the form

4
(1.3.18) : fa=wg+qp=wy+ 3 al(x)X,

a=0
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satisfies the uniform estimates

1

(1.3.19) fo"jmv(s)wg dEdx 5 zky,

(1.3.20) 1a2(x)] £ Co(1 + Vx + | 2wyll),

(1.3.21) [ (& + )X de =0, el
n3

and, for any v < p/C, (where C| is a positive constant depending on p),
B
(1.3.22) fo ezvxfngy(s)wg d¢dx < C,.

Proof: Estimate (1.3.19) is obtained as usual by multiplying equation (1.3.4)
by f, and integrating over [0, B] X R>. To obtain (1.3.20), one multiples equa-
tion (1.3.4) by X, and integrates over u + §; > 0 and [0, x]:

P+(qB9 Xa) + P+(wB’ Xu) = P+(¢’ Xm)

(1.3.23) +f0"fu+el>01,(w,)xa dt dx.
One has
LXL+EI>OLWBX¢d£dx
. 12 172
(1.3.24) _s_(fo L+€l>0vw§d£dx) (0L+€1>OVX§dde)

fiA

. . vy
qﬁ( [l +£l>0pw,,d£dx) s Lo R,

and similarly,

(1.3.25) |P*(wg, X)| < CllIv* *wyll.
Thus,

(1.3.26) 1P*(wp, X )l £ C(1+ Vx + [ 2wsll),
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where C depends only on ¢ and p. P* being positive definite on N(L), one
immediately obtains (1.3.20).

Multiplying equation (1.3.4) by X, and integrating over £, one sees that the
quantities P(fy, X,) are independent of x. From the boundary conditions
(1.3.6), these constants, denoted by k2, are equal to 0 for a € ™.

The form P being nondegenerate, there exists a unique ¢§ € N(L) such that
(1'3'27) P(q;o? Xa) = P(fB! Xa) = kf

The function fp = f; ~ ¢ satisfies

(1.3.28) ‘(u+£1)%% + Lwg = 0.

Thus,

%(/(u + fl)fpzehx df): _ 7‘/(;8_/';3(11 + ﬁl)fszezvx dt dx
(1.3.29)

B 2,2yx
+/(; /Rsvwge dé¢dx £ 0.

From the definition of ¢J, it is clear that ¢¥ € G. Thus fx(B,{) € G and
P(f,f5)XB) 2 0. Also,

(13.30) [ (u+&)30.0dis [ (u+£)(e - a5)(8) db.
R? u+§) >0

The coefficients of g5 of the basis { X} can be written in the form

(1.331) P(q§°, Xa) = j(;l(P(wB, Xa) + P(qB9 Xa)) dx

and are thus bounded independently of B by estimates (1.3.20)-(1.3.21). Conse-
quently, :

(1332) [+ 8)H0.8 s C,
Now,

P(f.s,f-a) = P(WB’ wg) + ZP(WaaQB - q5)
(1.3.33) ’

+P(q5—~ 45,498~ 45)-
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Using (1.3.27), a simple computation gives

(1.3.34) P(gs— 95,95~ 45) = —P(wp, 45 ~ 47)
and

4
P(WB’ qB - qoBo) = Z P(WB’ Xa)P(qB - q?’ Xa)P(Xa’ Xa)

a=0
(1.3.35)
4
== Z P(WB’ Xa)zP(Xa’ Xa)'
a=0
Thus,

(1336)  ["P(fy. fy)e* ™ dx ClvofBeZY"f (1 + &) w dt dx.
] 0 R3
Therefore estimate (1.3.22) holds for 0 < y < Cy»,. This completes the proof of
Proposition 1.3.1.
1.4. Construction of a solution in [0, c0]. We now prove the existence part of

Theorem 1.2.1 in the nondegenerate cases.

Proof: First notice that we can restrict our attention to the case where the
constants A, are equal to zero. Indeed, consider f defined by

(1.4.1) f=g+ Y AX,

acl”

where g is the solution of

(142) (& + u)g—‘% + Lg =0,

(14.3) 8(0,§) =¢(¢8) - X AKX, £ >0,
as]”

(1.4.4) [ +u)X gat =0, ael;

f is a solution of (1.2.13), (1.2.14), (1.2.19).

The solution f is constructed as the limit, as B — oo, of the solutions f, of
(1.3.4)~(1.3.6): from estimates (1.3.19)-(1.3.22), there exists a sequence B, — o0
such that

wy — w weakly in L*(e™ @ vd£),  al - a, weakly in L, (dx)

and f=w+ L% ,a,X, is a weak solution of (1.2.13) in L} (dx ® vdf). It
satisfies

(1.4.5) P(f,X,) =k, ael,
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where the constants k, are the limits of kZ as B — co. They are finite because
the k2 are bounded uniformly with respect to B. By construction, k, = 0 for
ac .

Let g® € N(L) be defined by

(1.4.6) P(g®,X,) =k,

One has

(1.4.7) P(g™ ~ ¢, X,) = P(w, X,);
thus,

(1.4.8) q® — q € L*(e™ dx ® vd§),

and estimate (1.2.22) is proved.
L™ ESTIMATE WHEN ¢ SATISFIES (1.2.15). The function f = f — ¢* satisfies

equation (1.2.13). Following [4], we use the integral form of (1.2.13) and denote
A =r(§)/(& + u); we have

(148)  FO. 00N = f(x. DM = [ g KT (s, e ds.

First consider the case §; + u < 0 and let x go to infinity. Equation (1.4.9) has
the form

(1.4.10) e?f(y,¢) = —fwg'l;_qu(s’ £)ereA-1Xs=» gg.
y

Thus we have

. N o . 220 g 12 4 1 12
41 v , , v .
(a11) e s ( [Tk, 0% ) ()
Consequently, using (1.2.22),

f; L (€)1 de

(1.4.12) < C(fef(,me(s’f)zez”‘i’dﬁ)

= C*.
For the case §, + u > 0, one takes x = 0 in (1.4.9):
ePf(y,£) = (¢ — q°)(§)e O

(1.4.13) , 1
+f0 me(S,f)eyse(x—yxs_y)ds.
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For y small enough, (A — y) is always positive:

e/ (y, £)1 5 K¢ = g=)(§) e

2 0\ c
(/ s, 6 e ds ) Gt

And so, using relation (1.2.22),

(1.4.14)

(1.4.15) fe 7+ 1, )P d 5 €

1tu

Combining (1.4.12) and (1.4.15) we obtain the estimate (1.2.21).

L™ ESTIMATE WHEN ¢ SATISFIES (1.2.15").  First consider the case §; + u# < 0.
To estimate the right-hand side of (1.4.10), one separates the cases —1 < §, + u
<0and § + u< -1 For § + u < -1, one writes

I./):wa_i:_qu(s’ g)ewe(k—‘r)(s*y) ds|
(1.4.16)

< G [TKis. g7 )m

For —1 < §, + u < 0, one splits up the neighborhood of y:

(1.4.17) f°°= f’“+ f°°

yte
with
+ qu(s £)e7‘e(" YN~ y)dsl
(1.4.18)
L 292v g )l/’
gcsm( [TKiG, 7%
and
y+e ,,1/2 - )5
[ ks, eren ”d’l
(1.4.19)

2

e I-a
62 + ul*v(£)

ulef(s £)e™).
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Thus, for a < 3,

/ o(8) suple™f(y, &) dg
—1<§ +u<0 y
(1.4.20) < C%:- fo " f Ki(s, £)%e? ds
. R’

1 .
+C52a N SR e
f—1<£1+u<0|$1 + u‘Za spl f( §)e | £

The second term of the right-hand side of (1.4.20) is given by

1 - 2
L : omﬂs“p(f"(i’")f(s’")e“dn) d
—1<§+u< 1 s

(1.4.21) < (/slip|f'(s, n)e”|? dn)f_

< Cllfll2,» @<
Combining (1.4.20) and (1.4.21), one gets

1 1
1<t +u<0]é; + uj2e 1+ 1§

d§.

M=

. C . -
(1.4.22) [t usof [, < alle? il + Cel il -

For the case §; + u > 0, one uses (1.4.13).
Again, for §; +u > 1,
1/2

Y v -
¥, (A—y)s~»)
/(;g_l_’_qu(s,Qe e dsl

(1.4.23)
< C(fome'(s, £) e ds)m

ForO0<§ +u<l,
1/2

j(;y_€§:+ —Kf(s, £)ere® e ds
(1.4.24)
C o 1/2
s o5 [K s v )
and
y 2
f 21V_+7Kf(s,£)e"e““*"”’d31
(1.4.25) e

= Ce* ! l-a
1§ + “Ia”(g)

sup|Kf (s, £)e”|.
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Thus

[eruzol s [, (16 = a=12(6) a6)
(1.4.26) 1rea

C _ o
+ ;ﬁille”‘flll + Ce £l -
Combining (1.4.22) and (1.4.26), we get

- C - o F
(14.27) 1fll2,y 2118 = 4¥ 20 ag evu>0 + Tl TN+ Cellf N2,

Choosing ¢ such that Ce* < 1 and using estimate (1.2.22), and the fact that the
coefficients of ¢* of the basis { X,} are finite, one has estimate (1.2.21).

1.5. Uniqueness.

THEOREM 1.5.1.  Let f € L™(dx; L(|¢; + u| d$)) be such that

(1.5.1) &+ 0L 1=, x>0,
(1.5.2) £(0,8) =0, £ >0,
(1.5.3) f(xs1 +u)X fdt =0, el
Then f = 0.

Proof: First we write

4
(1.5.4) f=w+q=w+ Y a,(x)X,(§).

a=0

One has

@ss) PN - PENO + [Tf (4 +i)w s 0.

Using (1.5.3), we have, fora € I,

(1.5.6) a,(x) = P(X,, w);
thus,
P(f,f)=P(w,w)+ X P(w, Xa)z
(1.5.7) asl”
+ I (act P(wy, X)) - z Plw, X,),
and
(1.5.8) P(f,f) 2 P(w,w)— ¥ P(w,X,)"

aclt
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By the hypothesis, P(f, f) € L*(R*); thus »/?*w, € L}R*X R’). It
follows that there exists a sequence x, — co such that P(X,, w)(x,) =0
and P(w, wy)(x,) = 0. But P(f, f)(x) is a decreasing function of x and
P(f, £)0) < 0 because of (1.5.2). Thus P(f, f)(x) is identically equal to 0.
Consequently, w is also identically equal to 0 and g is a constant (with respect
to x). This constant is equal to 0 from the condition at x = 0. Thus the function
f is identically 0.

Remark 1.5.1. In the case 0 < u < 3T, , the condition P(f, X;) =0 is
equivalent to m, = [§,fM/2d{ = 0 as x ~ oo because f » 0 as x — co. Itisin
this form that Cercignani [4] conjectured that the problem was well posed.

1.6. The degenerated cases ¥ = 0, + /3T, . We are now interested in the
special cases u = 0, + /3T, , where the quadratic form P is degenerate.

LEMMA 1.6.1. If fis a bounded solution of (1.2.13), it satisfies
(1.6.1) P(f,X,)=0 forall acI’.

Proof: Notice that, for u = 0, + 3T, ,

(1.6.2) foralla € I°andall pe1, P(X,, X;) =0,
but N(L)* = R(L) and thus
(1.6.3) (¢, +u)X, € R(L), ael®

.Following [4], if f is a bounded solution of (1.2.13), it satisfjes, for any a € [ o

0= LP(f, LM(h + WX)) + [LL (& +w)X,) dE
(1.6.4)

= %P(f’ L'l((fl + u)X,,)) + P(f7 Xa),

because L is selfadjoint. Moreover, the quantities P(f, X,) are constant. If such
a constant were not zero, it would imply that the corresponding scalar product
P(f, L™Y(¢, + v)X,)) which appears in (1.6.4) has a linear growth which is in
contradiction with the assumption that f& L®(dx, L*(|§, + u|d£)). Thus,
P(f,X,)=0,forac Il

LEMMA 1.6.2. The matrix A defined by

P(X,, Xz), a€l*VI°% Belf,

1.6.5) A, =
(16.5) Ao P(X L7 (& + u)Xp)), a€I*UI® Bel

is invertible.
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Proof: We write 4 in the form of four blocks defined above. Since the X,
form a P-orthogonal set, the upper right block is zero. Moreover, the submatrix
A, for (a, B) € I° X I° defines a positive symmetric quadratic form because L
is selfadjoint and satisfies the coercivity property (1.2.9). Then the matrix A4 is
invertible.

We are now going to prove Theorem 1.2.1 in the case where P is degenerate.

Proof: To prove the existence of a solution, let us come back to subsections
1.3-1.4, and make slight modifications to fit the degenerate cases. First we adapt
Lemma 1.3.1 by replacing I~ by I"U I% in (ii) and I* by I*U I° in (iii). The
construction of a solution fp of (1.3.4)-(1.3.6) by considering the penalized
system is extended without modifications. We thus have a solution f, satisfying
estimates (1.3.19)-(1.3.20). Using Lemma 1.6.2, it is possible to construct g5 €
G N N(L) such that

(1.6.6) P(X,,q%)=P(X,, f;) forall aclI*

P(L7Y (& + w)X,), q5)
(1.6.7)

= P(L7Y(& + u)X,), fz) forall ael®.

Notice that the last quantity is constant (see equation (1.6.4) and use the fact that
P(f, X_), which is constant, is equal to zero for a € I® at x = B because
f(B,*) € G).

Equations (1.6.6)—(1.6.7) together with estimates (1.3.19)—(1.3.20) and a trick
similar to (1.3.31) prove that the coefficients of g¥ of the basis of N(L) remain
bounded independently of B. In order to estimate the second term of the
left-hand side of (1.3.31), we notice that, from the definition of ¢, ¢ — g% is
controlled in terms of wg. Thus, for y small enough, we have estimate (1.3.22).

The construction of a solution in [0, cof and the L* estimate are extended to
the degenerate cases without modifications.

We prove uniqueness as in subsection 1.5, foliowing the proof of Theorem
1.5.1. Equalities (1.5.4)-(1.5.6) still hold and we use Lemma 1.6.1 to prove that
(1.5.7) is also true in the degenerate case. We complete the proof as in subsection
1.5.

L7. An abstract formulation of the invariant relations. In Theorem 1.2.1, we
have proved that, for any A, @ € I, there exists a unique bounded solution of
(1.2.13)~(1.2.14) satisfying

(1.7.1) P(f,X) =1, acl.

This condition clearly depends on the choice of the basis X, in N(L).
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If we look carefully at the above proofs, it appears that the essential point to
ensure that problem (1.2.13), (1.2.14), (1.2.19) is well posed is the positivity of the
entropy flux at infinity. This, however, is independent of the spectral decomposi-
tion of the quadratic form P restricted to N(L), and can be formulated without
reference to any special basis like the X, in the previous subsections.

THEOREM 1.7.1. Let H be a subspace of N(L) on which the form P is positive
and which is maximal with respect to this property. For any | € N(L), there exists
a unique solution f of (1.2.13)-(1.2.14) in L*(dx; L*(v d§)) such that
(1.7.2) lim (f—1) € H.

X— 00

Before turning to the proof of this theorem (which is an extension of the

proof given in the previous subsections), let us give some remarks and lemmas.

Remark 1.7.1. Such subspaces H exist. Take for example H = span(X,,
acI®UTY).

This theorem generalizes Theorem 1.2.1: choose H given above and define
l=%,c-A X, Moreover, it is by no means a straightforward consequence of
our previous results even in the nondegenerate case. To justify this last statement,
it is sufficient to construct a subspace H that contains an isotropic vector # of P
(for example, in the case 0 < u < \/%, h=X,+ X, with e« € I" and
B € I™). Such a space cannot be obtained by a direct application of our previous
arguments. )

In the same way, for ¥ = 0, the results of Bardos et al. [2] and Cercignani [4]
are not, strictly speaking, corollaries of Theorem 1.2.1. However, they can be
included, together with Theorem 1.2.1 in the same frame and stated as Theorem
1.7.1. Moreover, it turns out that the abstract condition defined below in Lemma
1.7.1 and the constructions of [2] and {4] are the same in the special case # = 0.
Indeed, the subspace

(1.7.3) G = {f € L*(1t)| d¢), f3(B, £) = fz(B, R¢)}

satisfies condition (i) of Lemma 1.3.1. Let us check the maximality property: first,
if f€ G, then P(f, f)=0. Let

(174) F= {fe L2(|§1| dg)’ fB(B’g) =fB(B’ Ré)a P(f: f) 2 O}
For f € F, decompose f = f*+ f~, with
fH(&) = 3(f(§) + /(RE)) and  f(&) = 3(f(£) + f(RE));

f€ Fand fte F lead to f~€ F. For any even function # and any real number
A, 0 + Af € F, therefore,

0< P(f,f)=4A fe U

Thus f~= 0, and G is maximal.
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We state now some remarks concerning the quadratic form P.

Let H be a subspace of N(L) that contains the elements of the nullspace
N, (P) = N(L) N N(L)*? restricted to N(L) of P, and
(1.7.5) H'P={feN(L)/forall h € H, P(f,h) =0}
its orthogonal complement with respect to P in N(L). One has
(1.7.6) H=(H?)"*".
Let H be as in Theorem 1.7.1. Then the dimension of the subspace H is
determined by u and is equal to Card(7° U I'"). Indeed H necessarily contains
the nullspace of P, because it is maximal, and thus the X, for a € I°. Now
consider the restriction of P to the subspace H' of H where it is definite. From

the positivity of P on H and the maximality of H, one gets

Hnspan(X,,a € I7) = {0},
(1.7.7)

H* nspan(X,,a € I'") = {0}.

Moreover, for H satisfying the assumptions of Theorem 1.7.1, the subspace G of
Lemma 1.3.1 is constructed as follows:

(1.7.8) G=H+ X, Xcw,

where X is a maximal element of S (W and S being defined in the proof of
Lemma 1.3.1).

The goal of the next lemma is to formulate the statement f(B,*) € G in
terms of invariant quantities.

LemMa 1.7.1. Iff(B,*) € G, then
(1.7.9) f(B,?) € G= (forallh € H*?, P(h, f)(B) =0),
the inverse assertion being true if f(B, *) € N(L).
Proof of Theorem 1.7.1. Let us return to the proof of Theorem 1.2.1 and

modify it as necessary. For the existence proof, we take / = 0. Estimates (1.3.4) to
(1.3.20) are still valid and one has to replace equation (1.3.21) by

(1.7.10) f (& + u)fyhdt =0, forall he H*.
RJ

To prove estimate (1.3.22), one has to construct g¥. Let us solve, in N(L), the
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system
(1.7.11) P(q3. h) = P(f,h) forall he N(L),
(1.7.12) P(g5, L7((& + u)h))) = P(f, h)

forall he N, (P)

Equation (1.7.11) represents five minus dim N, (P) nontrivial equations. For any
h & N (P) and n &€ N(L), one has P(h,n) = 0. Thus, (§, + u)k belongs to
N(L)* and L~}(£; + u)h) is defined. The function g% which belongs to the
five-dimensional space N(L) is then defined by five equations. To prove that the
system (1.7.11)~(1.7.12) is well posed, let us consider the associated homogeneous
system referred to as (1.7.11")-(1.7.12") and prove that it has only the trivial
solution. Equation (1.7.11") ensures that the solution denoted by 43 € N, (P)
and equation (1.7.12") with /1 = §§ leads to

(1.7.13) [+ w)agL (4 + w)dp) dE =0

and thus, from the coercivity property (1.2.9), to 43 = 0.

Equation (1.7.11), together with Lemma 1.7.1 and the above remarks, ensures
that g5 € H and thus the first term of the left-hand side of (1.3.29) computed at
x = B is positive.

Computations similar to (1.3.31)-(1.3.35) ensure that g7 is bounded uni-
formly with respect to B and that (¢ —~ g5 )} x, ) can be controlled by wy(x, *)
in L*(» d¢)-norm.

The proof of uniqueness is obtained as before.

2. Accomodation Boundary Conditions

2.1. Introduction and main results. Space vehicle aerodynamics has raised a
new interest in understanding the presumably complex interaction between a
rarefied gas flow and a body surface. In this context, the special case of specular
reflection

F(x,8) = F(x,§ - 2(¢*n,)n,)

(where n, is the exterior unit normal vector at point x of the wall) appears rather
academic. In particular, one has to take into account: matter ablation at the wall,
thermalization of molecules impinging the wall, etc. To this end, one is led to
introduce the following type of boundary conditions (see Cercignani [3] and
Ferziger-Kaper [7]):

Fon€) = [ ARG = £ xR, £) 48 + S(x,8)

(2.1.1)
£°n,>0.



430 F. CORON, F. GOLSE, AND C. SULEM

The term S(x, ¢) in the right-hand side of (2.1.1) is to model the surface emission
in the flow due to the wall deterioration and the scattering kernel R(¢ — &, x) is
to model the complex reflection mechanism at the wall (including for example
thermalization processes). A special case of (2.1.1) is the well-known Maxwell
boundary condition given by

R(¢#-¢x)=(1-a)8(¢ — ¢+ 2n,¢) +alt n M,
(2.1.2) ‘
§'n,>0,¢n,<0,

where M,, is the thermalization Maxwellian at the wall, and « is the “accomoda-
tion coefficient”.

In this work, we shall mainly consider the boundary condition (2.1.1), with
additional assumptions on the scattering kernel that can be derived from physical
arguments (see [3]):

(2.1.3a) R(¢—-&x)20,

(2.1.3b) /

§on

R(¢ - ¢, x)de=1, ¢n,<0;
>0

x

there exists a Maxwellian state M, such that
€ n M, (§)R(E - &, x)

=t n M, (§)R(—¢—> —¢,x), £+n,>0,8*n,<0.

(2.1.3c)

Condition (2.1.3c¢) is referred to as “the law of reciprocity” and ensures that M,
satisfies the boundary condition (2.1.1) with S(x, ¢£) = 0. The following ad-
ditional property can be derived from the above properties (see [3]).

PROPOSITION 2.1.1. For any function F satisfying the boundary condition
(2.1.1) with a null source term (S(x, £) = 0), one has

(2.1.4) fg en FM;'dt <0

with equality if and only if
either Fis a.e. proportional to M,
or R(& — &) is proportional to a Dirac mass.
The proof of this proposition is given in [3]. Throughout the present work, we

shall exclude the latter situation, corresponding to the case of a specular
reflection (i.e., (2.1.2) with a = 0).
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Let us now state our main result. We consider the half-space problem:
(2.1.5) 63 4 15=o, x>0,

(where L is the linearized collision operator around the Maxwellian state M,,
and F= M, + ML%f; see Section 1) supplemented with the transformed
boundary condition derived from (2.1.1) and the prescribed mass flux condition:

(2.06) [ 0. 0M () dg =,

where A is a given constant. Notice that, since M, satisfies the boundary
condition (2.1.1), it is equivalent to require that M1/2f satisfies (2.1.1), i.e.,

M,*(§)
M,/ (§)

1§ - n

"on, <0 (¥ nyl

(212) f(x,£) = fe R(§ — £, x) f(x, &) dg + s(x, £),

§+n,>0,
where s = M 1/2S. We have

THEOREM 21.1. For any constant N, and any source term s(§) in
L2(&, > 0; |¢,] d§), there exists a unigue solution f of the problem (2.1.5), (2.1.1),
(2.1.6) in L®(dx; L*(|¢,] d¥)). This solution f has the following asymptotic behavior
as x — +00: there exists a unique ;° in the nullspace of L such that

f=ap € L*(e™ dx; L*(|4,| d§))
for any small enough y > 0.

The following subsections are organized as follows:
In subsection 2.2, we prove a compactness property for the Albedo operator.
In subsection 2.3, we give the proof of Theorem 2.1.1.

2.2. Compactness of the Albedo operator. The compaciness of the Albedo
operator is a somewhat general property for half-space problems in kinetic theory
(in the simple case of the transport equation with isotropic scattering, a computa-
tional proof using for example Chandrasekhar’s calculus can be given; see
Chandrasekhar [5]).

LEMMA 2.2.1. Let us consider the equation (2.1.5), together with the mass flux
condition

(2.2.1) Jauf (x, MY(§) d = m,.
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The Albedo operator A is defined by

(2.2.2) A: f(0,8) = (0, —¢), £ >0.
The operator A is compact on L* (£, > 0, |¢,| d§).

Proof: Denote by ¥ the space for half-densities on which A is defined:
V= L&, > 0, |£,] d¢)). Let £,(0, +) be a sequence of V that converges weakly

to f(0, ), associated to solutions f,(x, £) of the problem (2.1.5)-(2.2.1) and
f(x, &), respectively. Notice that the continuous mapping

£0,) = g2

is of finite rank, and therefore compact from V into N(L) C L%(» d§) (see
Section 1). Thus, there exists a sequence of ¢7° that converges strongly to q/

We recall that, following our assumptions, the sequence f,(x, £) — is
bounded in L?(dx ® » d¢), which in turn implies that

(2.2.3) &;%(f,. -a3) +v(fu-a7)

is bounded in L?(dx ® d§) since K is in particular bounded in L?*(d£). From
th1s we deduce that K(f, - q°) converges to K(f - q°) strongly in
2 (dx; L*(d$)) (using the fact that K is compact on L*(d¢) and the averaging
results of Golse, Lions, Perthame and Sentis; see Dautray-Lions [6]).
We then use the classical integral representation for the solution of
(2.1.5)-(2.2.1): introducing g, = (f, — ¢°) — (f — ¢/°), we have

(2.2.4) g,(0,¢) = —jowlg%le‘”/"l'(Kg,.)(s, £) ds, § <0.

We point out that

coe*2“-"/(€1l
f'E 1183(0,€) dé < fe <0|s1|( fo -————ds)

2
1< 1 lgll

(225) { [ (K5, ) )

s Cf” [(Ke)(s. &) dt as

We know that Kg, — 0 strongly in L3 (dx; L*(d¢)) and Kg, is umformly
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bounded in L?(e?* dx ® d§). Thus, we have
8,(0,7) =0
in L%(£, < 0; |¢,| d£), which proves the announced compactness.

LEMMA 2.2.2. Consider equation (2.1.5) together with zero mass flux condition

Jeuf(x, ) MY (8) dg = 0.
The corresponding albedo operator

A 1(0,8) = £(0,-8), £ >0,
is a contraction on L*(§, > 0; |§,| d§).

Proof: The linearized entropy flux P(f, f) goes to zero at infinity (see [2]
and Section 1) and is nonincreasing with respect to x. Therefore, P(f, f)}(x = 0)
> 0, and thus

1 4of Nl 2qenaey < 1/l 2gey1a)5

whence the announced conclusion follows.

2.3. The fixed point result. We first introduce a suitable framework to
reduce the existence part in Theorem 2.1.1 to a fixed point result. Let IT be the
orthogonal projection in ¥ on (R M!/2)* and denote by # the operator defined
by

@3y s~ [ Hlree - 0558w e

R acts on L2(¢; d§; &, > 0) and, from (2.1.4), & is a contracting mapping since
M, satisfies the boundary condition (2.1.1) with S = 0, M1/? is an eigenvector of
2 for the eigenvalue 1.-Moreover, according to the law of reciprocity (2.1.3c), #
is a selfadjoint operator on L2(§, > 0; £, d£) equipped with the natural scalar
product, and % induces a strictly contracting mapping on (R M}/?)+ | that is
[|#x]| < ||x]l, for any x € (R M2/2)*. We consider the following problem:

Lol +Lv=0, x>0,
(P) v(0,¢) = BM/2 + RoTlu +5, ¢ >0,

JeMiag = fe EMsde,
1>
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where B is to be fixed later, in order to satisfy (2.1.6). Consider the mapping T
defined by

(2.32) Tu(g) = v(0, ~£), £ > 0.

is continuous on V (see [2]). Then we have the following result:

PROPOSITION 2.3.1. For any B € R, the mapping T has a unique fixed point
inV.

Before going into the proof, let us show that the existence part of Theorem
2.1.1 follows from Proposition 2.3.1.

Let v € V be a fixed point of T with a parameter 8 that will be chosen later.
There exists a function f € L®(dx; L2(|§,;) d¢)) which is a solution of (P); in
particular, f satisfies

(2.3.3) f0,-§) =u($), £>0,
(2.3.4) £(0,£ > 0) = BMY? + RoTlu + 5.

Introducing the decomposition u = ITu + CM1/? in the latter equation, using
the fact that M!/? is invariant under the action of ®, and knowing the
prescribed mass flux of f in terms of s as imposed in system (P), we conclude
that B = C, the coordinate of u on M}/2. To obtain exactly equation (2.1.6) for
the mass flux, we notice that

/ & MYf(0,¢) dE = - f &MY 2udt
§, <0 £>0
(2.3.5)

=-cf aMyag
§>0
thus, it is enough to adjust the parameter 8 in order to fit A.
Now we prove Proposition 2.3.1.

Proof of Proposition 2.3.1. Consider vy, = v — A§; M2/? with

A f€,>0£1M;}:/23d£
" fy»ofiM, dE

it is clear that v, solves problem (P) with s replaced by s — A§, M]/? and zero
mass flux condition. Therefore,

Tu = Ay BMY? + RoTlu + 5 — N§;ML2} + NE ML
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Observe now that the Fréchet derivative of the (affine) operator T is equal to
Ay o Z <11 which, by Lemma 2.2.2 is a strictly contracting mapping on ¥, and,
by Lemma 2.2.1, is compact. Therefore, N(I — (A, ° %  II)*) = 0, which proves
the announced conclusion by the Fredholm alternative.
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