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Abstract: Consider the domain

Zε = {x ∈ Rn | dist(x, εZn) > εγ},

and let the free path length be defined as

τε(x, ω) = inf{t > 0 | x − tω ∈ Zε} .

The distribution of values ofτε is studied in the limit asε → 0 for all γ ≥ 1. It is shown
that the valueγc = n

n−1 is critical for this problem: in other words, the limiting behavior
of τε depends only on whetherγ is larger or smaller thanγc.

1. Introduction

The Lorentz gas is a model system of Statistical Mechanics consisting of a large number
of like point particles moving freely in a domain of the space where spherical obstacles
are disposed with some given distribution. Collisions between two (or more) particles are
rare events since these particles have diameter 0. Hence, only collisions involving one
particle and one obstacle are taken into account. They are described by some adequate
reflection law, the exact nature of which will be of no significance in the present work;
the most classical example of such reflection law is of course the case of “specular
reflection”. The model considered in the present work is the case where the obstacles
are periodically distributed; in other words, the centers of the obstacles form a lattice in
the spaceRn, which, for simplicity, is assumed to be homothetic toZn. Finally, each
particle is assumed to move with speed 1 in the interval of time between two consecutive
collisions with the obstacles. It is the purpose of the present work to study some aspects
of the large scale dynamics of such a system.

Thus, letn ∈ N∗ denote the space dimension and let
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Zε = {x ∈ Rn | dist(x, εZn) > εγ} , (1.1)

for all 0 < ε < 1
2 andγ ≥ 1. The “free path length” (or equivalently “exit time”, since

the particles move with speed 1 between two consecutive collisions with the obstacles)
is defined as follows, for allx ∈ Zε andω ∈ Sn−1:

τε(x, ω) = inf{t > 0 | x + tω ∈ ∂Zε} . (1.2)

εεγ

Fig. 1.The billiard table

Clearlyτε is a Borelian function for all 0< ε < 1
2 and allγ ≥ 1. The present paper

studies the distribution of values ofτε asε → 0, which is one of the main features of
the evolution of the Lorentz gas model associated to the domainZε as explained above.

However, this problem is well posed only after a phase space equipped with a Borelian
probability measure is defined. The most natural choice in this respect is the following
one. LetYε = Zε/εZn: topologicallyYε is a punctured torus; letQε = dxdω−meas (Yε×
Sn−1). Our choice of a phase space isYε ×Sn−1 with the Borelian probability measure
µε defined by

dµε(x, ω) =
1

Qε
dxdω . (1.3)

Clearlyτε(x + εk, ω) = τε(x, ω) for all (x, ω) ∈ Zε × Sn−1 and allk ∈ Zn so thatτε

defines a Borelian function onYε × Sn−1. It is then natural to study the distribution of
τε with respect to the probability measureµε. We recall its definition:

Definition. The distributionφε of τε with respect toµε is the push-forward of the
measureµε underτε. In other words,φε is the unique Borelian probability measure on
[0, +∞[ such that, for all0 < a < b < +∞,

φε(]a, b[) = µε({(x, ω) ∈ Yε × Sn−1 | a < τε < b}) . (1.4)
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The main results in this paper bear on the limiting behavior ofφε asε → 0 and on
how it depends on the parameterε. These results are presented without proof in the next
section (Sect. 2). The proofs are relegated to the subsequent sections (Sects. 3 to 5).

We shall conclude this section with a very elementary observation. In the case where
particles impinging on the obstacles are specularly reflected, it is natural to consider the
map which, to the position and velocity of any particle leaving the boundary of some
obstacle associates its position and velocity immediately after the next collision with an
obstacle. It is defined by

(x, ω) 7→ (x′ = x + τε(x, ω)ω; ω′ = ω − 2ω · n(x′) n(x′)), (1.5)

wheren(x) denotes the inward unit normal at pointx ∈ ∂Zε. Let then

Σ+
ε = {(x, ω) ∈ ∂Yε × Sn−1 | ω · n(x) > 0} . (1.6)

Since any two obstacles inZε are congruent moduloεZn, the map (1.5) defines a map
B : Σ+

ε → Σ+
ε (sometimes called the billiard map: see for example [Ch1-2]). Let

0ε = ω · nxdS(x)dω − meas (Σ+
ε ); a Borelian probability measureνε is defined onΣ+

ε

by

dνε(x, ω) =
1
0ε

ω · nxdS(x)dω . (1.7)

The probability measureνε is invariant underB, and hence a second choice of a phase
space for the Lorentz gas isΣ+

ε equipped with the probability measureνε, the dynamics
being given by the iterates of the billiard mapB. This is usually the phase space and
dynamics studied in most of the literature devoted to billiards (see [Ch1-2] and the
references therein). The first phase space (Yε × Sn−1, µε) is the suspension of (Σ+

ε , νε)
under the functionτε and the Lorentz gas flow mod.εZn (i.e. onYε × Sn−1) is the
suspension flow of the mapB under the functionτε.

In [Ch1-2], the following quantity, called the “geometric mean free path” in [DDG2],
is considered:

lε =
∫

Σ+
ε

τε(x, ω)dνε(x, ω) . (1.8)

As explained in [Ch2] (Sect. 2), it is a natural notion of mean free path because it is
the time average of free paths lengths along typical trajectories whenever the mapB is
ergodic. There is an explicit formula for it, (see [Ch1] Sect. 3.2 or [DDG2] for a quick
proof):

lε =
Qε

0ε
=

1
|Bn−1|ε

n−γ(n−1) + O(εγ) . (1.9)

This formula clearly points at the special value

γc =
n

n − 1
(1.10)

as being critical. Indeed, asε → 0,

• if γ > γc, lε → +∞ asε → 0, which seems to indicate a purely ballistic behavior for
the Lorentz gas;

• if 1 ≤ γ < γc, lε → 0 asε → 0, corresponding to a hydrodynamic limit;

• if γ = γc, lε → |Bn−1|−1 > 0 asε → 0, corresponding to the so-called “Boltzmann-
Grad limit”.
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However, it does not seem possible to extract any information about the distribution of
free path lengthsφε defined in (1.4), which is our main object of study here, from the
explicit formula (1.9). This simply reflects the fact that the billiard under consideration
in this paper does not have the “finite horizon property” (the functionτε is not uni-
formly bounded onΣε) and hence the first phase space (Yε × Sn−1, µε) contains more
information than the second phase space (Σ+

ε , νε).
Let us close this introductory section with some references. In the caseγ = 1,

Bunimovich, Sinai and later Chernov ([BS1-2, BSC1-2]) established the diffusion limit
for the Lorentz gas with finite horizon. If the specular reflection condition is replaced by
an accommodation reflection condition, a simpler proof, based on PDE methods, leads
to a similar diffusion limit: see [BDG]. The Boltzmann-Grad limit (γ = γc) has been
studied by many authors, in the case where the distribution of obstacles is not periodic
as considered here but random: see [Gal, Sp, BBS]. These papers prove that the limiting
number densityf of gas particles satisfies a linear transport equation with absorption
and scattering of the form

∂tf (t, x, ω) + ω · ∇xf (t, x, ω) + σf (t, x, ω) = σ

∫
Sn−1

k(ω, ω′)f (t, x, ω′)dω′ . (1.11)

The methods developed in these papers do not apply to the periodic case under consider-
ation in this paper. In fact the limiting behavior of the periodic Lorentz gas in the critical
scalingγ = γc is qualitatively different from the one described by (1.11): see Sect. 2,
Remark 2.

2. Main Results

With the definitions and notations of Sect. 1, we first state the main theorem in this
paper:

Theorem A. 1) If γ > γc, φε → 0 vaguely asε → 0;

2) If 1 ≤ γ < γc, φε → δ0 weakly asε → 0;

3) If γ = γc, any vague limit pointφ of the family(φε) is a probability measure and
satisfies

lim sup
t→+∞

tφ([t, +∞[) < +∞ ;

4) If γ = γc andn = 2, any vague limit pointφ of the family(φε) satisfies

lim inf
t→+∞ tφ([t, +∞[) > 0 .

We recall the terminology for the various topologies on the space of Borelian prob-
ability measures onR+ (see [Bil]). The weak topology is the topology defined by the
family of seminormsµ 7→ |〈µ, f〉| for all bounded continuousf ’s, while the vague
topology is the one defined by the subfamily of these same seminorms corresponding to
continuousf ’s with compact support.

Point 1) in Theorem A was proved in [DDG2] (see [G, DDG1] for an alternative
proof). Point 2] was essentially proved in [DDG1] (although stated in a different manner
there; see [DDG2]) whenn = 2. It then remains to prove point 2) for alln > 2 and
points 3) and 4).
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Remark 1.Whenn > 2 andγ = γc, we can prove that

lim inf
ε→0

tn−1φ([t, +∞[) > 0 ,

but we don’t know whether this or point 3) in Theorem A is optimal: see [GW].

Remark 2.Point 4) in Theorem A or Remark 1 show the difference between the limiting
dynamics of the Lorentz gas in the periodic and the random cases. In the random cases
studied in [Gal, Sp and BBS], the limiting number density is proved to satisfy an equation
of the type (1.11); in particular, the free path length is exponentially distributed (σ being
the parameter in the exponential law). In the periodic case, the distribution of free path
lengths has only algebraic decay, as shown by Theorem A 4) or Remark 1.

Theorem A depends essentially on the following technical estimates. Before stating
them, we need some notations. Letr ∈]0, 1/2[ and consider

Z = {x ∈ Rn | dist (x, Zn) > r} ; Y = Z/Zn ; (2.1)

Q = dxdω − meas (Y × Sn−1) ; dµ(x, ω) =
1
Q

dxdω ; (2.2)

τ (x, ω, r) = inf{t > 0 | x + tω ∈ ∂Z} ; T (ω, r) = sup
x∈Y

τ (x, ω, r) . (2.3)

Clearlyτ is Zn-periodic and can be considered either as defined forx ∈ Z or forx ∈ Y .

Remark 3.T (ω, r) is the quantity referred to as the “ergodization time” in [D1].

With these definitions and notations, we can state

Theorem B. For all n ∈ N∗ there existsC(n) > 0 such that

dω − meas({ω ∈ Sn−1 | T (ω, r) > t}) ≤ C(n)
rn−1t

. (2.4)

This estimate is sharp in the casen = 2: indeed

Theorem C. Letn = 2. There existsC ′ > 0 such that, for allt > 1
r .

µ({(x, ω) ∈ Y × S1 | τ (x, ω, r) > t}) ≥ C ′

rt
. (2.5)

Remark 4.Theorem B shows thatτ (·, ·, r) ∈ L∞(Y ; L1,∞(Sn−1)). Theorem C shows
that, at least ifn = 2, τ (·, ·, r) /∈ L1(Y × Sn−1). Hence the mean free path in the sense
of the first phase space considered in Sect. 1 (that is, (Y × Sn−1, µ)), defined as∫

Y ×Sn−1

τ (x, ω, r)dµ(x, ω) = +∞

does not contain any information on the Lorentz gas, being infinite for allr ∈]0, 1/2[.
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As an aside result, we improve an upper bound forT due to H.S. Dumas [D1]. We
first recall the notations for diophantine vectors: for allK > 0, s ∈ R, let

D(s, K) = {ω ∈ Sn−1 | ∀k ∈ Zn \ {0} , |ω · k| ≥ K|k|−s} . (2.6)

We recall that
∀K > 0 , ∀s < n − 1 , D(s, K) = ∅ , (2.7)

(which is a variant of a result due to Dirichlet, see [Ca] chapter I, Theorem VI), and that

∀s > n − 1 , dω − meas (D(s, K)c) = O(K) . (2.8)

Theorem D. For all n ∈ N∗ ands > n − 1, there existsC(n, s) > 0 such that, for all
K > 0 and allω ∈ D(s, K),

T (ω, r) ≤ C ′′(n, s)
Krs

.

We refer to [D2], [ChGa] for an application of this type of estimate.

3. Proof of Theorem B

Formulation of the ergodization time problem.For allx ∈ R, let‖x‖ = infk∈Z |x − k|.
Let

F = {ω ∈ Sn−1 | ∀1 ≤ i ≤ n , ωn ≥ |ωi|} ; (3.1)

later, we shall need the following mapping:

A : F → [−1, 1]n−1 , ω 7→ A(ω) =

(
ωi

ωn

)
1≤i≤n−1

. (3.2)

Let� ∈ [−1, 1]n−1 andR ∈]0, 1/2[; defineN (�, R) as the smallest positive integer
N such that

∀z ∈ [0, 1]n−1 , min
l∈Z , |l|≤N

max
1≤i≤n−1

‖zi − l�i‖ ≤ R . (3.3)

Clearly, if � ∈ A(F ) and ifN ≥ N (�, R), one has

∀x ∈ [0, 1]n−0 , min
l∈Z , |l|≤N

max
1≤i≤n−1

∥∥∥∥xi − xn
ωi

ωn
− l

ωi

ωn

∥∥∥∥ ≤ R . (3.4)

If ω ∈ F , thenωn ≥ 1√
n

. Therefore, ifT ≥ √
n(N + 1),

∀x ∈ [0, 1]n−0 , min
|t|≤T

max
1≤i≤n

‖xi − tωi‖ ≤ R , (3.5)

by specializingt to be of the formt = xn+l
ωn

. This argument shows that

∀ω ∈ F , T (ω, r) ≤ 2
√

nN

(
A(ω),

r√
n

)
. (3.6)

Let φ be a nonnegativeC∞ function onRn−1 supported in [−1, 1]n−1, positive
on ] − 1, 1[n−1 and letφR(z) =

∑
k∈Zn−1 φ z+k

R for all R ∈]0, 1/2[. Let (σl)l∈Z be a
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nonnegative doubly infinite sequence such thatσl > 0 if and only if |l| < N . Then
N ≥ N (�, R) if and only if

∀z ∈ [0, 1]n−1 , SN (z) =
∑
l∈Z

σlφR(z − l�) > 0 . (3.7)

ForSn(z) = 0 if and only ifφR(z − l�) = 0 for all l ∈ Z such that|l| ≤ N ; obviously
φR(z − l�) = 0 if and only ifmax1≤i≤n−1‖zi − l�i‖ > R.

It is then convenient to expressSN in terms of the Fourier coefficients ofφR:

∀z ∈ [0, 1]n−1 , SN (z) =
∑

ξ∈Zn−1

φ̂R(ξ)ei2π〈ξ,z〉 ∑
|l|≤N

σle
−i2πl〈ξ,�〉 , (3.8)

In particular, if one takesσl = (1− |l|
N ) for |l| ≤ N andσl = 0 if |l| > N , the inner

sum in (3.8) is a Fejer kernel, that is to say

SN (z) =
∑

ξ∈Zn−1

φ̂R(ξ)ei2π〈ξ,z〉FN (〈ξ, �〉) , (3.9)

with

FN (z) =
∑

|l|≤N

σle
−i2πlz =

1
N

sin2 πNz

sin2 πz
. (3.10)

Suppose now thatN ≤ N (�, R); then there existsz0 ∈ [0, 1]n−1 such thatSN (z0) = 0.
Hence

φ̂R(0)FN (0) = −
∑

ξ∈Zn−1\{0}
φ̂R(ξ)ei2π〈ξ,z0〉FN (〈ξ, �〉) ,

which implies

NRn−1 ≤ 1

φ̂(0)

∑
ξ∈Zn−1\{0}

|φ̂R(ξ)|FN (〈ξ, �〉) . (3.11)

Using the Fejer kernel as above is reminiscent of [M] (chapter 5, Theorem 9).

The weakL1 type estimate.We now come to the main result of this section, Theorem
B’ below. It is a slight generalization of Theorem B to the case where the probability
measure onSn−1 is not the normalized Lebesgue measure.

Let m be a probability measure onSn−1. We assume the existence of 0< c ≤ 1
andK > 0 such that

(H) m∗(r) = sup
e∈Sn−1

m({α ∈ Sn−1 | |〈α, e〉| ≤ r}) ≤ Krc .

Obviously, the Lebesgue measure onSn−1 satisfies (H) withc = 1.

Theorem B’. B’. Let m be a probability measure onSn−1 satisfying the assumption
(H) above. Then there exists a constantC(m, n) > 0 (depending only on the dimension
n and the measurem) such that

m({ω ∈ Sn−1 | T (ω, r) > t}) ≤ C(m, n)
tcrn−c

.
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Proof. Let us first restrict our attention toω ∈ F . This can be done without loss of
generality: indeed,Sn−1 can be covered by the images ofF under finitely many elements
of the orthogonal groupOn(R); moreover, if a probability measure satisfies (H), its push-
forward under an element of the orthogonal group still satisfies (H).

If ω ∈ F and N ≤ N (A(ω), R), then� = A(ω) must satisfy (3.11)). Hence,
applying Chebyshev’s inequality shows that

m({ω ∈ F | T (ω,
√

nR) ≥ 2
√

nN}) ≤

m

ω ∈ F | 1

φ̂(0)

∑
ξ∈Zn−1\{0}

|φ̂R(ξ)|FN (〈ξ, A(ω)〉) ≥ NRn−1




≤ 1

φ̂(0)NRn−1

∑
ξ∈Zn−1\{0}

|φ̂R(ξ)|
∫

F
FN (〈ξ, A(ω)〉)dm(ω) . (3.12)

This shows that
m({ω ∈ F | T (ω,

√
nR) ≥ 2

√
nN})

≤ 1

φ̂(0)NRn−1

∑
ζ∈Zn−1\{0}

|φ̂R(ζ)| · sup
ξ∈Zn−1\{0}

∫
T1

FN (z)dmξ(z) , (3.13)

where, for any measurable subsetU of T1,

mξ(U ) = m({ω ∈ F | 〈A(ω), ξ〉 ∈ U mod.Z}) . (3.14)

In other words,mξ is the push-forward ofm under the mapF → T1 defined by

ω 7→ 〈A(ω), ξ〉 mod.Z =
1

αn

n−1∑
i=1

αiξi mod.Z .

We shall appeal to the next lemma to estimate the integrals appearing in the right-hand
side of (3.13).

Lemma 1. Let m be a probability measure onSn−1 satisfying (H), and letmξ be
associated tom as in (3.14). Then there exists a positive constantC0(m, n) depending
only on the dimensionn and the measurem such that

0 ≤
∫

T1

FN (z)dmξ(z) ≤ C0(m, n)N1−c|ξ|1−c . (3.15)

We defer the proof of Lemma 1 to after that of Theorem B’. It follows from (3.15)
and the estimate (3.12) that

m({ω ∈ F | T (ω,
√

nR) ≥ 2
√

nN}) ≤ C0(m, n)
N cRn−1

1

φ̂(0)

∑
ξ∈Zn−1\{0}

|φ̂R(ξ)||ξ|1−c .

(3.16)
But then, the functionφ being smooth, one has, for alll > 0, the existence ofKl > 0
such that

|φ̂R(ξ)| ≤ KlR
n−1(1 + |Rξ|)−l . (3.17)

Hence, choosingl > n − c and observing that
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Rn−1
∑

ξ∈Zn−1

|Rξ|1−c(1 + |Rξ|)−m ∼
∫

Rn−1

|x|1−c(1 + |x|)−mdx < +∞, (3.18)

we obtain that

m({ω ∈ F | T (ω,
√

nR) ≥ 2
√

nN}) ≤ C ′(m, n)
N cRn−c

which completes the proof of Theorem B’. �
Proof of Lemma 1.We proceed as in [GLPS]

I =
∫

T1

FN (z)dmξ(z) ≤ N

∫
‖z‖≤δ

dmξ(z) +
C1

N

∫ 1−δ

δ

dmξ(z)
z2(1 − z)2

(3.19)

with C1 = supz∈[0,1] z
2(1− z)2/ sin2 πz. Then, the definition (3.14) and the assumption

(H) on the measurem show that

mξ({z ∈ T1 | ‖z‖ ≤ δ}) ≤
∑

|k|≤√
n|ξ|+1

m({ω ∈ F | |
n−1∑
i=1

ωiξi − kωn| ≤ ωnδ})

≤
∑

|k|≤√
n|ξ|+1

K

(
δωn√|ξ|2 + k2

)c

≤ K ′δc|ξ|1−c , (3.20)

for someK ′ > 0. Hence,

I ≤ K ′
2Nδc|ξ|1−c +

2C1

N

∫ 1−δ

δ

(
1
z2

+
1

(1 − z)2

)
dmξ(z) . (3.21)

Then, integrating by parts and using (H) leads to∫ 1

δ

dmξ(z)
z2

=

[
1
z2

∫ z

0
dmξ(t)

]1

δ

+
∫ 1

δ

2
z3

(∫ z

0
dmξ(t)

)
dz ≤ C2|ξ|1−cδc−2 . (3.22)

Proceeding in the same manner with the other integral in the right hand side of (3.21)
leads to

I ≤ K ′
2Nδc|ξ|1−c + C3N

−1δc−2|ξ|1−c . (3.23)

Optimizing inδ leads to the choice ofδ = 1/N and hence,

I ≤ C0(m, n)N1−c|ξ|1−c (3.24)

as announced. �
The following bound for averages of sufficiently small powers of the ergodization

time follows from Theorem B’ by using a classical interpolation argument.

Corollary B”. Under the assumptions of Theorem B’, one has, for all0 < β < 1∫
Sn−1

T (ω, r)cβdm(ω) ≤ 2C(m, n)β

(1 − β)rβ(n−c)
.
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4. Proof of Theorem C

In this section, only the case ofn = 2 is considered. Letr ∈]0, 1/2[; the notationsZ, Y ,
µ andτ are as in (2.1)-(2.3). A unit vectorω ∈ R2 will be called irrational if and only
if ω1/ω2 ∈ R \ Q.

Definition. An open stripS of R2 of widthl is a subset ofR2 which can be mapped onto
R×]0, l[ with l > 0 by a displacementD (i.e. a rotation composed with a translation).
The middle third ofS is the open strip ofR2 which the same displacementD maps onto
R×] 1

3l, 2
3l[. The boundary∂S consists of two parallel straight lines whose direction is

determined by a unit vectorV of R2; ±V will be called the direction of the stripS.

Channels.

Definition. A channel inZ is an open strip included inZ of maximal width.

The idea of considering channels in the context of the periodic Lorentz gas seems
to be due to Bleher [Bl] (who used instead the term “corridor” ) — see also [Da].

It is well-known that, ifω ∈ S1 is irrational, for allx ∈ R2, the setx + Rω + Z2 is
dense inR2. Hence a channel inZ must have a rational direction. For, ifC is a channel
in Z with directionω, any pointx ∈ C must satisfy the conditionx+Rω ⊂ Z, implying
that dist (Z2, x + Rω) > r, which is obviously not satisfied ifx + Rω + Z2 is dense in
R2. However any rational unit vector is not necessarily a direction of a channel inZ as
shown by the next lemma.

Lemma 2. Let (p, q) ∈ Z2 \ {0} with p and q coprime, and letω0 = 1√
p2+q2

(p, q). A

necessary and sufficient condition for a channel of directionω0 to exist is that√
p2 + q2 <

1
2r

. (4.1)

The set of all such unit vectors is denoted byAr. If ω0 ∈ Ar, the width of any channel
of directionω0 is

W (ω0, r) =
1√

p2 + q2
− 2r . (4.2)

Proof. Let S be a channel with directionω0 included inR2 \ Z2; its boundary∂S is
the union of two parallel linesL andL′, each of which contains infinitely many integer
points. Letqx− py = a be an equation forL andqx− py = a′ an equation forL′. Since
bothL ∩ Z2 andL′ ∩ Z2 are non-empty, botha anda′ belong topZ + qZ = Z sincep
andq are coprime. Then

dist (L, L′) =
|a − a′|√
p2 + q2

∈ 1√
p2 + q2

N∗ . (4.3)

But sinceS must not contain any integer point, the distance betweenL andL′ must be
minimal among the distances between lines of directionω0 containing infinitely many
integer points, which means that

dist (L, L′) = inf
1√

p2 + q2
N∗ =

1√
p2 + q2

. (4.4)
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The same argument shows that ifL andL′ are two distinct parallel lines tangent to∂Z,

dist (L, L′) ∈ 1√
p2 + q2

N∗ ∪
(

1√
p2 + q2

− 2r

)
N∗ . (4.5)

If C is now a channel inZ, its width is

inf
1√

p2 + q2
N∗ ∪

(
1√

p2 + q2
− 2r

)
N∗ = W (ω0, r)

as predicted by (4.2). Since a channel inZ has positive width,p andq must satisfy (4.1)
if there exists a channel with directionω0. Conversely it is easily seen that ifL andL′
are two distinct parallel lines tangent to∂Z with dist (L, L′) minimal, thenL andL′
define an open channel inZ. �

R

α
0

( p  +  q  )2 -1/22

( p  +  q  )2 -1/22 -R

Fig. 2.Channels inOR with (p, q) = (2, 5)

The Lower Bound for the Tail of the Distribution of Exit Times.The main result of this
section is the

Theorem C’. There exists a positive constantC such that for allA >> 1, 0 < r < 1
andt > 1/r,

dxdω-meas ({(x, ω) ∈ Z × S1 | |x| < 1√
2
A andτ (x, ω, r) ≥ t}) ≥ C

A2

rt
.

Proof. Let ω0 ∈ Ar, and consider a channelC with directionω0. Then letC′ be the
middle third ofC. The forward or backward trajectory of any point belonging toC′ in a
directionω ∈ S1 cannot exitC in time less thant provided thatω belongs to an arc of
S1 centered atα0 and of length

θ0 = 2 arcsin

(
1
3t

(
1√

p2 + q2
− 2r

))
≥ 2

3t

(
1√

p2 + q2
− 2r

)
. (4.6)
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Therefore the setE′(α0) =
(C′ ∩ {x | |x · ω0| < 1

2A}) × ]ω0 − θ0/2, ω0 + θ0/2[ (i.e.,
only segments ofC′ of lengthA are considered) has the following properties:

if (x, ω) ∈ E′(ω0), thenτ (x, ω, r) ≥ t; (4.7)

and
dxdω − meas (E′(ω0)) = A · 1

3W (ω0, r) · θ0 . (4.8)

θ /20

θ /20

A

T

Fig. 3.Construction of the setE(ω0)

Given ω0, there are infinitely many stripsC′, (and correspondinglyE′(ω0)’s), all
beingZn-translates of each other; consider next a squareQ ⊂ R2 of sideA >> 1
centered at the origin, with one side parallel to the directionω0, and define

E(ω0) =

( ⋃
k∈Zn

E′(ω0) + k

)
∩ (Q × S1) , (4.9)

(that is, the union is taken over all such translates). LetN (A, ω0, r) be the number of
channels of directionω0 intersecting with the squareQ; since

N (A, ω0, r) ≥ 1
4A
√

p2 + q2 , (4.10)

any setE(ω0) corresponding toω0 ∈ Ar satisfies

dxdω − meas (E(ω0)) ' N (A, ω0, r) · A · 1
3W (ω0, r) · θ0 ≥ A2m(p, q, r) (4.11)

with

m(p, q, r) =
1

18t
(1 − 2r

√
p2 + q2)

(
1√

p2 + q2
− 2r

)
, (4.12)

according to the inequalities (4.6) and (4.10).
The result will now follow by summing over allω0 ∈ Ar, at least if it can be

established that the corresponding setsE′(ω0) are disjoint. To this end, consider another
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rational directionω1 = 1√
p′2+q′2

(p′, q′) ∈ Ar. The angle betweenω0 andω1 is given by

the expression

arcsin

(
|qp′ − pq′|√

p2 + q2
√

p′2 + q′2

)
≥ arcsin

(
2r√

p2 + q2

)
. (4.13)

Thus, fort > 1/3r, the arc ofS1 centered atω0 and of lengthθ0 cannot intersect the
arc ofS1 of the same length centered atω1, for any rational directionω1 ∈ Ar different
from ω0. Now, if one varies the directionω0 in the classAr, it follows that⋃

ω0∈Ar

E(ω0) ⊂ {(x, ω) ∈ Z × S1 | |x| < 1√
2
A andτ (x, ω, r) ≥ t}, (4.14)

and the left side of the inclusion above is a finite disjoint union. Hence

dxdα-meas({(x, ω) ∈ Z × S1 | |x| < 1√
2
A andτ (x, ω, r) ≥ t}) (4.15)

≥
∑

ω0∈Ar

dxdω − meas (E(ω0)) ≥ S (4.16)

with

S =
∑

(p, q) ∈ B(0, 1
4r )

G.C.D.(p, q) = 1

A2m(p, q, r) . (4.17)

Observe that ifp2 + q2 ≤ 1
16r2 , then

m(p, q, R) ≥ 1
72t

1√
p2 + q2

(4.18)

so that

S ≥ A2

72t

∑
(p, q) ∈ B(0, 1

4r ) \ {0}
G.C.D.(p, q) = 1

1√
p2 + q2

. (4.19)

We interrupt the course of the proof to recall the following very simple

Lemma 3. Letf be a homogeneous function of degree 0. Then

∑
(p, q) ∈ B(0, ρ) \ {0}

G.C.D.(p, q) = 1

f (p, q)

[
ρ√

p2 + q2

]
=

∑
(p,q)∈B(0,ρ)\{0}

f (p, q) (4.20)

(we recall the notation[·] for “integer part of”).



504 J. Bourgain, F. Golse, B. Wennberg

Applying this to the case wheref is the constant function equal to 1, one sees that∑
(p, q) ∈ B(0, 1

4r ) \ {0}
G.C.D.(p, q) = 1

1√
p2 + q2

≥ 4r · ]{(p, q) ∈ B(0, 1
4r ) \ {0}} . (4.21)

Putting all this together shows that

dxdω − meas ({(x, ω) ∈ Z × S1 | |x| < 1√
2
A andτ (x, ω, r) ≥ t}

≥ A2r

18t
· ]{(p, q) ∈ B(0, 1

4r ) \ {0}}
(4.22)

from which Theorem C’ easily follows. �

Finally, Theorem C’ clearly implies Theorem C of Sect. 2.

5. Proof of Theorem A

As we said in Sect. 2, we only have to prove points 2), 3) and 4). An obvious scaling
argument shows that

τε(εx, ω) = ετ (x, ω, εγ−1) . (5.1)

Therefore, applying Theorem B and (5.1) leads to

φε([t, +∞[) ≤ dω − meas

{
ω ∈ Sn−1 | T (ω, εγ−1) ≥ t

ε

}

≤ C(n)
t
ε (εγ−1r)n−1

=
C(n)
trn−1

εn−γ(n−1) . (5.2)

This proves immediately the inequality in point 3]. Likewise, ifn = 2 andγ = 2, for all
t > 1,

φε([t, +∞[) = µ

({
(x, ω) ∈ Y × S1 | τ (x, ω, ε) >

t

ε

})
≥ C ′

t
, (5.3)

which establishes point 4].
If φ is a vague limit point of (φε) and ifχ is a bounded continuous function onR+,

one has, for allt > 0,∫
R+

χ(z)dφε(z) =
∫

R+

a(tz)χ(z)dφε(z) +
∫

R+

(1 − a(tz))χ(z)dφε(z), (5.4)

wherea is a continuous function supported in [0, 2], equal to 1 on [0, 1], and such that
0 ≤ a ≤ 1. Hence∣∣∣∣∫

R+

(1 − a(tz))χ(z)dφε(z)

∣∣∣∣ ≤ ‖χ‖L∞φε([t, +∞[) ≤ ‖χ‖L∞
C(n)
trn−1

εn−γ(n−1). (5.5)

If γ = n
n−1, (5.5) shows that
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R+

(1 − a(tz))χ(z)dφε(z) → 0 ast → +∞, uniformly in ε. (5.6)

Hence, for all bounded continuous functionχ onR+, one has∫
R+

χ(z)dφε(z) →
∫

R+

χ(z)dφ(z), (5.7)

which shows thatφ is a limit point of (φε) in the weak topology; applying (5.7) toχ ≡ 1
shows thatφ is a probability measure. This completes the proof of point 3).

As for point 2), if 1≤ γ < n
n−1, (5.4) shows that∫

R+

(1 − a(tz))χ(z)dφε(z) → 0 asε → 0, for all t > 0. (5.8)

Hence, for allt > 0,

lim sup
ε→0

∣∣∣∣∫
R+

χ(z)dφε(z)

∣∣∣∣ ≤ sup
z≥0

|a(tz)χ(z)| ≤ sup
0≤z≤1/t

|χ(z)| . (5.9)

If f is a bounded continuous function onR+ and if, for all z ≥ 0, one setsχ(z) =
f (z) − f (0), (5.9) shows that∫

R+

f (z)dφε(z) → f (0)φε(R+) = f (0) , asε → 0. (5.10)

This proves point 2].

6. Proof of Theorem D

We consider a fixed directionω ∈ Sn−1 and let� := A(ω) as in (3.2). Without loss
of generality, we can assume thatω ∈ F (see (3.1) for a definition ofF ). Assume that
0 < T < T (ω, R); hence, ifR = r√

n
, N = [T/2

√
n] < N (�, R), which, according to

(3.11), implies

1 ≤ 1

φ̂(0)

∑
ξ∈Zn−1\{0}

|φ̂R(ξ)|
Rn−1

FN (〈ξ, �〉)
N

. (6.1)

There existsC0 > 0 such that

sin2(πNz)

N2 sin2(πz)
≤ C0

1 +N2‖z‖2
. (6.2)

On the other hand, we recall thatφR satisfies the regularity estimate (3.17). Putting
together (3.17), (6.2) and (6.1), ifN < N (�, R), for all l > 0 there exists a constantCl

such that

1 ≤
∑

ξ∈Zn−1\{0}

Cl

(1 +R|ξ|)l(1 +N2‖〈ξ, �〉‖2)
. (6.3)

Let now
EM,δ = {ξ ∈ Zn−1 \ {0}

∣∣∣ |ξ| ≤ M , ‖〈ξ, �〉‖ ≤ δ} . (6.4)
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In order to analyze the sum in the right hand side of (6.3), it will be useful to estimate
]EM,δ (the number of elements inEM,δ).

At this point, we need to introduce the assumption that the directionω satisfies a
Diophantine condition. Lets > n− 1 andK > 0 be such thatω ∈ D(s, K) (see Sect. 2
for the definition ofD(s, K)).

Lemma 4. Letω ∈ D(s, K), and consider the associatedEM,δ.

i. If δMs < (4n)−s/2K, thenEM,δ = ∅.

ii. There exists a constantC2 > 0 such that for allδ > 0 satisfyingδMs ≥ (4n)−s/2K,
one has

]EM,δ ≤ C2M
n−1K− (n−1)

s δ
(n−1)

s .

Proof of Lemma 4.We shall only prove ii]; the proof of i] follows the same lines but is
slightly simpler. Letξ1 andξ2 be two different vectors inEM,δ. Then

‖〈ξ1 − ξ2, �〉‖ ≤ ‖〈ξ1, �〉‖ + ‖〈−ξ2, �〉‖ ≤ 2δ . (6.5)

On the other hand, suppose that

‖〈ξ1 − ξ2, �〉‖ = |〈ξ1 − ξ2, �〉 − k| ;

in addition one has the identity resulting from the definition (3.2) of�:

|〈ξ1 − ξ2, �〉 − k| =
1

|αn| |〈(ξ1 − ξ2, −k), α〉| .

Then,

‖〈ξ1 − ξ2, �〉‖ ≥ K

|αn| |(|ξ1 − ξ2|2 + k2)−s/2 ≥ K

(
√

n + 2)s
|ξ1 − ξ2|−s . (6.6)

Therefore, putting together (6.5) and (6.6) leads to

|ξ1 − ξ2| ≥ 1√
n + 2

(
K

2δ

)1/s

.

The conclusion follows easily from the pigeonhole principle. �
Next we estimate the right-hand side of (6.3). SetK ′ = 1

4(4n)−s/2K; one has then

Σ =
∑

ξ∈Zn−1\{0}

Cl

(1 +R|ξ|)l(1 +N2‖〈ξ, �〉‖2)

=
∑

0<R|ξ|<1

Cl

(1 +R|ξ|)l(1 +N2‖〈ξ, �〉‖2)

+
∑
i≥0

∑
2i≤R|ξ|<2i+1

Cl

(1 +R|ξ|)l(1 +N2‖〈ξ, �〉‖2)
.

These sums are estimated by using the distribution of values of〈�, ξ〉, as follows:
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Σ ≤
∑

K′Rs<2−j<1

Cl(N2−j)−2 · ]ER−1,21−j

+
∑
i≥0

Cl2
−il

∑
2−(i+1)sK′Rs<2−j<1

(N2−j)−2 · ]E2i+1R−1,21−j .

Observe that these summations are truncated according to the first statement in Lemma 4
above. Now we inject in the sums above the estimate provided in point ii] of Lemma 4:

Σ ≤ ClC2K
− n−1

s N−22
n−1

s R1−n
( ∑

K′Rs<2−j<1

2j(2− n−1
s )

+ 2n−1
∑
i≥0

2i(n−1−l)
∑

2−(i+1)sK′Rs<2−j<1

2j(2− n−1
s )
)

≤ ClC2K
− n−1

s N−22
n−1

s R1−n(K ′1/sR)−s(2− n−1
s ) + 2n−1

∑
i≥0

2i(n−1−l)(2(i+1)sK ′−1R−s)(2− n−1
s )


≤ ClC2K

− n−1
s N−22

n−1
s R−2s

1 + 22s
∑
i≥0

2i(2s−l)

K ′−(2− n−1
s )

= ClC2K
− n−1

s

(
1 +

22s

1 − 22s−l

)
N−22

n−1
s R−2sK ′−(2− n−1

s ) .

To summarize: lets > n − 1 andK > 0 be chosen small enough thatD(s, K) 6= ∅.
Let l > 2s; for example choosel = 3s. There exists a constantC(n, s) > 0 such that if
N < N (�, R) with � = A(ω) andω ∈ D(s, K), then

1 ≤ Σ ≤ C(n, s)2K−2N−2R−2s . (6.7)

Inequality (3.7) can be recast as

N ≤ C(n, s)
KRs

,

which, together with (3.6), establishes Theorem D. �

Remark.This method of proof gives the same order of magnitude for the ergodization
time as the method based on approximating rotation angles by their continued frac-
tion expansion which was used in [D1,DDG1] to treat the two dimensional case. This
observation could lead to the belief that the result of Theorem D is sharp.
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