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Abstract: Consider the domain

Z. ={x € R" | dist(zx,eZ"™) > "},
and let the free path length be defined as

Te(z,w) =inf{t > 0|z —tw € Z.}.

The distribution of values of. is studied in the limitas — 0 for ally > 1. Itis shown
that the valuey. = .= is critical for this problem: in other words, the limiting behavior
of 7. depends only on whetheris larger or smaller tha#...

1. Introduction

The Lorentz gas is a model system of Statistical Mechanics consisting of a large number
of like point particles moving freely in a domain of the space where spherical obstacles
are disposed with some given distribution. Collisions between two (or more) particles are
rare events since these particles have diameter 0. Hence, only collisions involving one
particle and one obstacle are taken into account. They are described by some adequate
reflection law, the exact nature of which will be of no significance in the present work;
the most classical example of such reflection law is of course the case of “specular
reflection”. The model considered in the present work is the case where the obstacles
are periodically distributed; in other words, the centers of the obstacles form a lattice in
the space&R™, which, for simplicity, is assumed to be homothetica®. Finally, each
particle is assumed to move with speed 1 in the interval of time between two consecutive
collisions with the obstacles. It is the purpose of the present work to study some aspects
of the large scale dynamics of such a system.

Thus, letn € N* denote the space dimension and let
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Z. ={x € R"|dist(x,eZ™) > &7}, (1.2)
forall0< e < % andy > 1. The “free path length” (or equivalently “exit time”, since
the particles move with speed 1 between two consecutive collisions with the obstacles)
is defined as follows, for alt € Z, andw € S~

Te(z,w) =inf{t > 0|x +tw € 0Z.}. 1.2)

Fig. 1. The billiard table

Clearly . is a Borelian function for all 0< e < % and ally > 1. The present paper
studies the distribution of values of ase — 0, which is one of the main features of
the evolution of the Lorentz gas model associated to the dofMaas explained above.
However, this problemis well posed only after a phase space equipped with a Borelian
probability measure is defined. The most natural choice in this respect is the following
one. LetY, = Z. /eZ™:topologicallyY; is a puncturedtorus; 1€}, = dzdw—meas ¥. x
S™~1). Our choice of a phase spacéisx S™~! with the Borelian probability measure
e defined by

1
dpe(z,w) = —dadw . 1.3)
Q-
Clearly r.(z + ek, w) = 7.(z,w) for all (z,w) € Z. x S"~tand allk € Z" so thatr.

defines a Borelian function ori x S™~1. Itis then natural to study the distribution of
7. With respect to the probability measyie. We recall its definition:

Definition. The distribution¢. of 7. with respect tou. is the push-forward of the

measureu. underr.. In other wordsg. is the unique Borelian probability measure on
[0, +oof such that, for all0 < a < b < +oo,

¢=(a,0D) = pe({(z,0) € Yo x S" Ha < 7. < b}). (1.4)
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The main results in this paper bear on the limiting behavias.ofisc — 0 and on
how it depends on the parameteihese results are presented without proof in the next
section (Sect. 2). The proofs are relegated to the subsequent sections (Sects. 3 to 5).

We shall conclude this section with a very elementary observation. In the case where
particles impinging on the obstacles are specularly reflected, it is natural to consider the
map which, to the position and velocity of any particle leaving the boundary of some
obstacle associates its position and velocity immediately after the next collision with an
obstacle. It is defined by

(z,w) — (@ =z +7.(z,w)w,w =w— 2w - n(z) n(z")), (1.5)
wheren(z) denotes the inward unit normal at poine 0Z.. Let then
2 ={(z,w) € Y. x 8" w-n(x) > 0}. (1.6)

Since any two obstacles i are congruent moduleZ™, the map (1.5) defines a map
B : Y& — X7* (sometimes called the billiard map: see for example [Ch1-2]). Let
I, =w-n,dS(z)dw — meas £7); a Borelian probability measure is defined on¥*
by
dve(z,w) = Fiw ‘nzdS(x)dw . @7
€

The probability measure. is invariant unde3, and hence a second choice of a phase
space for the Lorentz gasls’ equipped with the probability measurg the dynamics
being given by the iterates of the billiard m&p This is usually the phase space and
dynamics studied in most of the literature devoted to billiards (see [Ch1-2] and the
references therein). The first phase spate{ S™~1, 11.) is the suspension of{}, v.)

under the functionr. and the Lorentz gas flow modzZ™ (i.e. onY. x S"71) is the
suspension flow of the map under the functionr.

In[Ch1-2], the following quantity, called the “geometric mean free path” in [DDG2],
is considered:

l. = / Te(z, w)dv.(xz,w) . (1.8)
B2
As explained in [Ch2] (Sect. 2), it is a natural notion of mean free path because it is
the time average of free paths lengths along typical trajectories whenever thB imap
ergodic. There is an explicit formula for it, (see [Ch1] Sect. 3.2 or [DDG2] for a quick

proof):
Qe _ 1

l =
€ 1"5 |Bn—l|
This formula clearly points at the special value

"D+ 0. (1.9)

Ve = (1.10)

as being critical. Indeed, as— 0,

o if v > ., 1. — +ooase — 0, which seems to indicate a purely ballistic behavior for
the Lorentz gas;

o ifl <~ <~,.l. — 0ase — 0, corresponding to a hydrodynamic limit;

o if y=1.,1. — |B" 7! > 0ass — 0, corresponding to the so-called “Boltzmann-
Grad limit”.
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However, it does not seem possible to extract any information about the distribution of
free path lengthg,. defined in (1.4), which is our main object of study here, from the
explicit formula (1.9). This simply reflects the fact that the billiard under consideration
in this paper does not have the “finite horizon property” (the functiofms not uni-
formly bounded or¥.) and hence the first phase spake x S™ 1, u.) contains more
information than the second phase spatg, ¢.).

Let us close this introductory section with some references. In the casel,
Bunimovich, Sinai and later Chernov ([BS1-2, BSC1-2]) established the diffusion limit
for the Lorentz gas with finite horizon. If the specular reflection condition is replaced by
an accommodation reflection condition, a simpler proof, based on PDE methods, leads
to a similar diffusion limit: see [BDG]. The Boltzmann-Grad limit € ~.) has been
studied by many authors, in the case where the distribution of obstacles is not periodic
as considered here but random: see [Gal, Sp, BBS]. These papers prove that the limiting
number densityf of gas particles satisfies a linear transport equation with absorption
and scattering of the form

Df(t,2,0) w0 - Vo flt, 0 0) + o f (1, 2,0) = o / ko) (2, ) . (L11)
Sn—l

The methods developed in these papers do not apply to the periodic case under consider-
ation in this paper. In fact the limiting behavior of the periodic Lorentz gas in the critical
scalingy = ~. is qualitatively different from the one described by (1.11): see Sect. 2,
Remark 2.

2. Main Results

With the definitions and notations of Sect. 1, we first state the main theorem in this
paper:

Theorem A. 1) If v > 4., ¢. — Ovaguely ag — 0;
2) If 1 <5 <. ¢ — dp weakly ax — 0;

3) If v = ., any vague limit point of the family(¢.) is a probability measure and
satisfies
lim supto([t, +oof) < +o00;

t—+o0o

4) If v = v, andn = 2, any vague limit poin® of the family(¢.) satisfies

lim inf £6([¢, +oc) > 0.

We recall the terminology for the various topologies on the space of Borelian prob-
ability measures oRR* (see [Bil]). The weak topology is the topology defined by the
family of seminormsu — |{u, f)| for all bounded continuoug’s, while the vague
topology is the one defined by the subfamily of these same seminorms corresponding to
continuousf’s with compact support.

Point 1) in Theorem A was proved in [DDG2] (see [G, DDG1] for an alternative
proof). Point 2] was essentially proved in [DDG1] (although stated in a different manner
there; see [DDGZ2]) when = 2. It then remains to prove point 2) for all > 2 and
points 3) and 4).
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Remark 1.Whenn > 2 andy = ~., we can prove that

liminf ¢" ([t +oc]) > 0,

but we don’t know whether this or point 3) in Theorem A is optimal: see [GW].

Remark 2.Point 4) in Theorem A or Remark 1 show the difference between the limiting
dynamics of the Lorentz gas in the periodic and the random cases. In the random cases
studied in[Gal, Sp and BBS], the limiting number density is proved to satisfy an equation
of the type (1.11); in particular, the free path length is exponentially distributeding

the parameter in the exponential law). In the periodic case, the distribution of free path
lengths has only algebraic decay, as shown by Theorem A 4) or Remark 1.

Theorem A depends essentially on the following technical estimates. Before stating
them, we need some notations. kzet]0, 1/2[ and consider

Z={zeR"|dist(@,Z2")>r};, Y=2Z/Z"; (2.1)

Q =dzdw —meas¥t x S"Y); du(r,w) = édxdw; (2.2)

T(x,w,r)=inf{t > 0|z +tw € 0Z}; T(w,r)=supt(z,w,r). (2.3)
zeY

ClearlyT is Z™-periodic and can be considered either as defined forZ or forx € Y.
Remark 3.7 (w, r) is the quantity referred to as the “ergodization time” in [D1].

With these definitions and notations, we can state

Theorem B. For all n € N* there exists”(n) > 0 such that

dw — meas({w € S" 1| T(w,r) > t}) < C(”l)t . (2.4)
rn
This estimate is sharp in the case 2: indeed
Theorem C. Letn = 2. There exist€’ > 0 such that, for allt > %
Cl
p{(z,w) €Y x S| 7(z,w,r) > t}) > = (2.5)

Remark 4.Theorem B shows that(-,-,7) € L>(Y; LY*°(S™~1)). Theorem C shows
that, at least ifv = 2, 7(-, -, 7) ¢ LYY x S"~1). Hence the mean free path in the sense
of the first phase space considered in Sect. 1 (thaYiss 6”1, 1)), defined as

/ (2, w, r)du(x,w) = +co
Y xsn-1

does not contain any information on the Lorentz gas, being infinite fer@]0, 1/2].
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As an aside result, we improve an upper boundlfatue to H.S. Dumas [D1]. We
first recall the notations for diophantine vectors: for&l> 0, s € R, let

D(s,K)={we 8" ' |Vk e 2"\ {0}, |w-k| > K|k|~°}. (2.6)

We recall that
VK >0,Vs<n—1, D(s,K)=0, 2.7)

(which is a variant of a result due to Dirichlet, see [Ca] chapter |, Theorem V1), and that
Vs>n—1, dw—measD(s, K))=0(K). (2.8)

Theorem D. For all n € N* ands > n — 1, there exist&’'(n, s) > 0 such that, for all
K >0andallw € D(s, K),

C"(n, s)
Krs
We refer to [D2], [ChGa] for an application of this type of estimate.

T(w,r) <

3. Proof of Theorem B

Formulation of the ergodization time problenfor allz € R, let||z| = infez |z — K.
Let

F={wes"Vi<i<n, wy,>|wil}; (3.1)
later, we shall need the following mapping:
A Fo[-11Y, wes A(w) = <‘”> . (3.2)
Wn / 1<i<n—1

LetQ € [-1,1]" tandR €]0, 1/2[; defineN (R, R) as the smallest positive integer
N such that

Vz e[0,1]" 71, min max ||z — Q| < R. (3.3)
ez, |I|<N 1<i<n—1

Clearly, if @ € A(F) and if N > N(, R), one has

vz € [0,1]"7°, n max ||z — a2t — 120 < R. (3.4)
1€z, |I|<N 1<i<n—1 Wn Wy
If w e F, thenw,, > ﬁ Therefore, ifl’ > \/n(N + 1),
Ve €[0,1]"7°,  min max ||z; — tw;| < R, (3.5)

[t|<T 1<i<n

by specializing to be of the form = ””T:l This argument shows that

VoeF, T(wr)<2ynN Aw), =) . (3.6)
Vn

Let ¢ be a nonnegativ€’> function onR"™~! supported in {1, 1]"~1, positive

on]—1,1[""* and let¢r(z) = 3, czn1 dZs for all R €]0,1/2[. Let (0;)icz be a
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nonnegative doubly infinite sequence such that> 0 if and only if |I| < N. Then
N > N(Q, R) ifand only if

V2 e[0,1]"", Sn(2) =) oidr(z—12) > 0. 3.7)
lez

ForS,(z) = 0ifand only if¢r(z — I2) = O for alll € Z such thafl| < N; obviously
(bR(Z — ZQ) =0ifand only ifmaxlgign_lei — ZQ,H > R.
It is then convenient to expressy in terms of the Fourier coefficients ¢fz:

V2e[0,1]" 1, Sn(e)= D dr(©e? e Y gem e - (38)

gezn-1 [LI<N

In particular, if one takes; = (1 — ‘LN|) for |I| < N ando; = 0if || > N, the inner
sum in (3.8) is a Fejer kernel, that is to say

SN = D SR ED Fy((€, Q). (3.9)
gezn—t
with
1 sie 7Nz

N oo (3.10)

FN(Z) — Z Jle—iZﬂ'lz -

<N
Suppose now thaV < N (L, R); then there existg € [0, 1]~ such thatSx (z0) = 0.
Hence
rOFNO)=— > Gr(§e® 2 Fy((€,Q)),
£ezn—1\{0}
which implies

NRP< = S [9r©IFN((E ). (311)
90 ¢ez2\ o)

Using the Fejer kernel as above is reminiscent of [M] (chapter 5, Theorem 9).

The weakl! type estimateWe now come to the main result of this section, Theorem
B’ below. It is a slight generalization of Theorem B to the case where the probability
measure o™ ! is not the normalized Lebesgue measure.

Let m be a probability measure o$f*~1. We assume the existence okOc¢ < 1
andK > 0 such that

(H) m*(r)= sup m({a € S" 7 |{a,e)| <7}) < Kre.

eeSn-1

Obviously, the Lebesgue measureir ! satisfies (H) withe = 1.

Theorem B'. B’. Let m be a probability measure o™~ satisfying the assumption
(H) above. Then there exists a constélfin, n) > 0 (depending only on the dimension
n and the measurer) such that

m({w € S"7H T(w,r) > 1}) < ff;”n’ﬁ) :
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Proof. Let us first restrict our attention 0 € F. This can be done without loss of
generality: indeedy™ ! can be covered by the images/®tinder finitely many elements
ofthe orthogonal grou@,,(R); moreover, if a probability measure satisfies (H), its push-
forward under an element of the orthogonal group still satisfies (H).

If w e Fand N < N(A(w), R), thenQ = A(w) must satisfy (3.11)). Hence,
applying Chebyshev’s inequality shows that

m({w € F|T(w,vnR) > 2ynN}) <

m ({w e F| ¢>(10) S BROIFN(E AW > NRM})

gezr—1\{0}

1 ~
AO)NR—1 Fn((& A))dm(w). (312
< ¢(O) NRnr—1 Eez;\{o} ‘¢R(§)| A N(<€ (w))) m(w) ( )
This shows that
m({w € F|T(w, vVnR) > 2\/nN})

1 -
AO)NR-1 ' Fi(2)d : 3.13
SN cez;\{o} P R /Tl wi2)dme(2) (313)

where, for any measurable subsebf T?,
me(U) =m({w € F| (A(w), &) € U mod.Z}). (3.14)
In other wordsyn, is the push-forward of. under the magF — T? defined by

n—1

w — (A(w), ) mod.Z = ai > ai¢&mod.Z.
™=l

We shall appeal to the next lemma to estimate the integrals appearing in the right-hand
side of (3.13).

Lemma 1. Let m be a probability measure o8™~! satisfying (H), and letn: be
associated ton as in (3.14). Then there exists a positive const@j({in, n) depending
only on the dimension and the measure: such that

0< / Fn(2)dme(z) < Co(m,n)N1=e|¢t=e. (3.15)
Tl

We defer the proof of Lemma 1 to after that of Theorem B’. It follows from (3.15)
and the estimate (3.12) that
Oo(’ﬂ’l,n) 1 " 1—c
m({w € F|T(w,vVnR) > 2¢/nN}) < Nepn17 Z [ PRI
90 eczi 7\ (0}
(3.16)
But then, the functio being smooth, one has, for &lt> 0, the existence of; > 0
such that N
6r(E)] < KGR M1 +|RE) ™. (3.17)

Hence, choosing> n — ¢ and observing that
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RS [ReEe(L+RE) ™ ~ / 2] +[a]) de < +oo,  (318)
gezn—1 -

we obtain that

C'(m,n)

m({w € F|T(w,vnR) = 2/nN}) < ==

which completes the proof of Theorem B'. [

Proof of Lemma 1We proceed as in [GLPS]

Cdme(2) ()

Ay (3.19)

I= /T1 Fn(2)dme(z) < N s dme(z) + —= /

with C1 = sUp,¢(g 15 2 2(1—-2)?/ sir? 2. Then, the definition (3.14) and the assumption
(H) on the measurm show that

n—1
meze Tzl <on < Y mwe FII Y wiss — kwal < wad})
|k|<v/n|€]+1 =1

IN

5w C
S K () < K'5°l¢], (3.20)
k<vmes \VIEPHR?

for someK’ > 0. Hence,

I < INoe|ete + 21 ( !

N = + (1—1z)2> dme(2) . (3.21)

Then, integrating by parts and using (H) leads to

d Y27 —cse—
/5 me(2) [ / dm (t)} / 3< /O dmg(t)) dz < Cole[t=6°2. (3.22)

Proceeding in the same manner with the other integral in the right hand side of (3.21)
leads to

I < KGNG§°Ig)t ¢ + CaN 16 2[¢ e (3.23)
Optimizing ind leads to the choice &= 1/N and hence,

I < Co(m,n)N1=¢|g|te (3.24)

as announced. O

The following bound for averages of sufficiently small powers of the ergodization
time follows from Theorem B’ by using a classical interpolation argument.

Corollary B”. Under the assumptions of Theorem B’, one has, foball 3 < 1

2C(m,n)?
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4. Proof of Theorem C

In this section, only the case af= 2 is considered. Let €]0, 1/2[; the notation<, Y,
p andr are as in (2.1)-(2.3). A unit vectar € R? will be called irrational if and only
if wi/wz € R\ Q.

Definition. An open stripS of R? of width! is a subset oR? which can be mapped onto
R x]0, /[ with [ > 0 by a displacemenb (i.e. a rotation composed with a translation).
The middle third of5 is the open strip oR? which the same displacemeitmaps onto

R x] %l, %l[. The boundary)S consists of two parallel straight lines whose direction is

determined by a unit vectdr of R?; =V will be called the direction of the stri§.

Channels.
Definition. A channel inZ is an open strip included i@ of maximal width.

The idea of considering channels in the context of the periodic Lorentz gas seems
to be due to Bleher [BI] (who used instead the term “corrijes see also [Da].

It is well-known that, ifw € St is irrational, for allz € R?, the setr + Rw + Z? is
dense irR?. Hence a channel i# must have a rational direction. Fordfis a channel
in Z with directionw, any pointz € C must satisfy the condition+Rw C Z, implying
that dist 2, « + Rw) > r, which is obviously not satisfied if + Rw + Z? is dense in
R2. However any rational unit vector is not necessarily a direction of a chaniehs
shown by the next lemma.

Lemma 2. Let(p,q) € Z2\ {0} with p and ¢ coprime, and letyy = \/%(p, q). A
peTq

necessary and sufficient condition for a channel of directigto exist is that

1
VPR + < —. 4.1)
2r
The set of all such unit vectors is denoted Ay If wg € A, the width of any channel
of directionwyg is

W(wo,r) = _t 2r. 4.2)

Proof. Let S be a channel with direction included inR? \ Z?; its boundaryds is
the union of two parallel lineg andL’, each of which contains infinitely many integer
points. Letgz — py = a be an equation fof andgzx — py = o’ an equation fol.’. Since
both L N Z2 and L’ N Z? are non-empty, both anda’ belong topZ + ¢Z = Z sincep
andgq are coprime. Then

la —d| c 1
VPP @ PP

But sinceS must not contain any integer point, the distance betweand L’ must be
minimal among the distances between lines of direatigontaining infinitely many
integer points, which means that

dist (L, L) = N* (4.3)

dist (L. L) =inf ——— N*= 1 __ (4.4)
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The same argument shows thaLind L’ are two distinct parallel lines tangentdd,

dist (L, L') € S S VIYPY PR S EVE (4.5)
P> +q?

If C is now a channel it¥, its width is

inf —~__N* U (1 - 2r> N* = W (wo, 7)

as predicted by (4.2). Since a channefihas positive widthp andg must satisfy (4.1)
if there exists a channel with directia. Conversely it is easily seen thatlifand L’
are two distinct parallel lines tangent & with dist (L, L’) minimal, thenL and L’
define an open channel K. O

\( p2+ q2)V2.R

Fig. 2. Channels irO g with (p, q) = (2,5)

The Lower Bound for the Tail of the Distribution of Exit TimeBhe main result of this
section is the

Theorem C’. There exists a positive constafitsuch that forallA >>1,0<r <1
andt > 1/r,

2
dxdw-meas {(z,w) € Z x S*||z| < %A andr(z,w,r) > t}) > C’%.

Proof. Let wg € A,, and consider a channélwith directionwg. Then letC’ be the
middle third ofC. The forward or backward trajectory of any point belongingtin a
directionw € S* cannot exitC in time less thart provided thatu belongs to an arc of
St centered aty and of length

1 1 2 1
=2arcsin( = [ —— —2r | | > 2 | —— — 2] . 4.
0o arcsm<3t< o r)) > 3t< o r) (4.6)
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Therefore the sek’(ao) = (C' N {z | |& - wo| < 1A4}) x Jwo — 00/2,w0 +60/2] (i.e.,
only segments of’ of length A are considered) has the following properties:

if (z,w) € E'(wo), thent(z,w,r) > t; 4.7)

and
drdw — meas €' (wo)) = A - W (wo, ) - bo. (4.8)

Fig. 3. Construction of the set'(wp)

Given wy, there are infinitely many strip§’, (and correspondingly¥’(wo)’s), all
being Z"-translates of each other; consider next a sqéare R? of sided >> 1
centered at the origin, with one side parallel to the directiprand define

E(wo) = ( U E’(wo)+k> n@ x s, (4.9)

kezn

(that is, the union is taken over all such translates). Né#, wg, r) be the number of
channels of directiony intersecting with the squar@; since

N(A,wo,m) > 2A/p2+ ¢2, (4.10)
any setF/(wp) corresponding tayg € A, satisfies
drdw — meas E(wo)) ~ N(A,wo,r) - A - %W(wo, r) -0 > A%m(p,q,7) (4.11)
with

1 1
= —(1-2ryp?2+¢®) | —— -2 4.12
according to the inequalities (4.6) and (4.10).
The result will now follow by summing over ally € A,, at least if it can be
established that the corresponding $61&uo) are disjoint. To this end, consider another
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1

rational directionv; = ¥, q') € A,. The angle betweeny andw; is given by

the expression

: lap’ — pd'| , 2r
arcsin > arcsinf — | . 4.13
( /p2+q2 /p/2+q/2 - /p2+q2 ( )
Thus, fort > 1/3r, the arc ofS* centered at, and of lengthy, cannot intersect the

arc of S* of the same length centered.at, for any rational direction; € A,. different
from wq. Now, if one varies the directiong in the classA,., it follows that

U Ewo) c {(z,w) € Z x S| |z] < ZAandr(z,w,r) > t}, (4.14)
LUOEAT

and the left side of the inclusion above is a finite disjoint union. Hence

dxda-meas{(z,w) € Z x S*||z| < %A andr(z,w,r) > t}) (4.15)
> > dwdw — meas E(wo)) > S (4.16)
woEA,
with
S = > A’mp, q,7). (4.17)
(,9) € BO,
G.C.D.(p,q) =1

Observe that ip? + ¢> < 735, then

11
> e — :
so that
A2 1
S> > —_— (4.19)
72t /02 + 2
(,q) € BO, )\ {0y VI "1

G.C.D.(p,q)=1
We interrupt the course of the proof to recall the following very simple
Lemma 3. Let f be a homogeneous function of degree 0. Then
p —
> £, ) lW] = > feo (420
(p,q) € B(O,p) \ {0} (p,9)€B(0,0)\ {0}
G.C.D.(p,q) =1

(we recall the notatiotji-] for “integer part of”).
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Applying this to the case whergis the constant function equal to 1, one sees that

1
Tz 24 He ) € BO\{0. @2t
(p,q)eB%):,jr)\{o} N T H,9) € B(O, 3:) \ {0}} (4.21)

G.C.D.(p,q) =1

Putting all this together shows that
dzdw — meas {(z,w) € Z x S*||z| < %A andr(z,w,r) > t}
A?r (422)
18¢
from which Theorem C’ easily follows. O

Finally, Theorem C’ clearly implies Theorem C of Sect. 2.

5. Proof of Theorem A

As we said in Sect. 2, we only have to prove points 2), 3) and 4). An obvious scaling
argument shows that
Te(ex,w) = er(z,w,e?7L). (5.1)

Therefore, applying Theorem B and (5.1) leads to

b:([t, +oo]) < dw — meas{w e S HT(w,eh > z}

Cln) _ C0)

>~ é(&_vfl,’ﬂ)n—l - tr,«n—l

gn—n-1), (5.2)

This proves immediately the inequality in point 3]. Likewisepif 2 andy = 2, for all
t>1,

o ([t, +oo]) = ({(x,w) €Y x st | T(z,w, &) > z}> > 07/, (5.3)

which establishes point 4].
If ¢ is a vague limit point of ¢.) and if y is a bounded continuous function &,
one has, for aft > 0,

/ (). (2) = / a(t2)x(2)doe(2) + / - at)doe(z).  (5.4)
R* R* R*

whereq is a continuous function supported in B}, equal to 1 on [01], and such that
0<a <1 Hence

Cn n—yn—
< Il 921t +00D < Il oD, (55

[ a- atmeon

If v = -4, (5.5) shows that

n
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/ (A — a(t2))x(2)do-(z) — 0 ast — +oo, uniformly ine. (5.6)
R+
Hence, for all bounded continuous functigron R*, one has

| @)= [ s, (57)

which shows tha is a limit point of (¢.) in the weak topology; applying (5.7) to= 1
shows that) is a probability measure. This completes the proof of point 3).
As for point 2), if 1< v < 24, (5.4) shows that

/ (A — a(t2))x(2)do:(2) — 0ass — 0, for allt > O. (58)
R+
Hence, for allt > 0,
lim sup / X(2)dge(2)| < supla(t2)x(z)] < sup |x(2)!. (5.9)
e—0 R* 220 0<2<1/t

If fis a bounded continuous function & and if, for all z > 0, one sets¢(z) =
f(z) — f(0), (5.9) shows that

[ F606.) = £0)0R) = £0), a5z o (510)

This proves point 2].

6. Proof of Theorem D

We consider a fixed direction € S”~! and letQ := A(w) as in (3.2). Without loss
of generality, we can assume that F (see (3.1) for a definition of). Assume that
0 < T < T(w, R); hence, ifR = —=, N = [T'/2\/n] < N(Q, R), which, according to
(3.11), implies

1 3 |OR(E)] Fn((€, Q)

< = . (6.1)
n—1 N
#(0) gezn—1\{0} R
There exist€’y > 0 such that
Sin?(7r N z) < Co 6.2)

N2siP(rz) ~ 1+N2||z|]2°

On the other hand, we recall thaf; satisfies the regularity estimate (3.17). Putting
together (3.17), (6.2) and (6.1), < N(£, R), for all[ > 0 there exists a constafi

such that o
1<y : . (6.3)
- 1+RIENIL+N?||(€, )2
e oy A RIENE+ N )P)

Let now
Ears = {6 € 2" 1\ {0} |Ig] < M, [[(€. ]| <0} (6.4)
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In order to analyze the sum in the right hand side of (6.3), it will be useful to estimate
8F s (the number of elements iy 5).

At this point, we need to introduce the assumption that the directisatisfies a
Diophantine condition. Let > n — 1 andK > 0 be such that € D(s, K) (see Sect. 2
for the definition ofD(s, K)).

Lemma 4. Letw € D(s, K), and consider the associatéth, s.

i. If 6M*® < (4n)~°/2K, thenE)y; 5 = 0.

i. There exists a constagt, > 0such that for alb > 0satisfyingdM* > (4n) /2K,
one has

(n=1) _(n—1)

ﬁEAL(; < CzMnilKiT(s s

Proof of Lemma 4We shall only prove ii]; the proof of i] follows the same lines but is
slightly simpler. Let{; and&, be two different vectors i/, 5. Then

[1{62 = &2, Q)| < [[{€2, D) + [[{(—=2, Q)] < 2. (6.5)

On the other hand, suppose that
||<£1 - 627 Q>|| = |<£1 - 5279> - k' ;

in addition one has the identity resulting from the definition (3.2Q0f

1
(€1 — &, Q) — k[ = m\((ﬁl — &, —k), )|
Then,
K s K —s
[G =@l > 6 - &+ )72 > masa &l ™. (68)

Therefore, putting together (6.5) and (6.6) leads to

1 K\Y*
|£l - §2| > m <25) .

The conclusion follows easily from the pigeonhole principle. O
Next we estimate the right-hand side of (6.3). 8ét= %1(4n)—s/2K; one has then

@
)=
o) T FE VTE T

_ C
= 2 (L+RIENHL+N2|(E, )]

0<R|¢|<1

C
*2 X @R NIERD

i>0 2i < R|¢|<2i*

These sums are estimated by using the distribution of valuéR,&), as follows:
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T< Y GINZI) T iBgages
K'Rs<2-i<1
+ Z 012_“ Z (N2_j)_2 . ﬁEZHlR—l’zl—j .

iZO 2—(i+1)sK/Rs <2—j <1

Observe that these summations are truncated according to the first statementin Lemma 4
above. Now we inject in the sums above the estimate provided in point ii] of Lemma 4:

chlczK*"%lN*Zz"?lRl*n( S e

K'Rs<2-7<1
+on—1 Z 2i(n—1-1) } : 27— ";1))
i>0 2= s K/ Rs <279 <1

n—1
s

n—1
< CC, K~ N~ 22 RV

—1

(Kll/sR)—s(z_ ) + 2n—1 Z 22'(71,—1—l)(2(1',+1)sK/—lR—3)(2—"Tfl)
i>0

< ClCzK_nT_lN_zznT_lR_zs 14 2 Z 2i2s—1) | prr—@-"5)
i>0
25

_n-1
=CiCoK™ = <l+1_2251

) N-22"5 RZ K-,

To summarize: les > n — 1 andK > 0 be chosen small enough tH&ts, K) # 0.
Letl > 2s; for example choosk= 3s. There exists a consta@t(n, s) > 0 such that if
N < N(Q, R) with Q@ = A(w) andw € D(s, K), then

1< ¥ <C(n,s)’) K 2N"2R™% (6.7)

Inequality (3.7) can be recast as

< C’(n,s),
~ KRs
which, together with (3.6), establishes Theorem D. (I

N

Remark. This method of proof gives the same order of magnitude for the ergodization

time as the method based on approximating rotation angles by their continued frac-
tion expansion which was used in [D1,DDG1] to treat the two dimensional case. This
observation could lead to the belief that the result of Theorem D is sharp.
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