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HOMOGENIZATION OF THE LINEAR BOLTZMANN EQUATION
IN A DOMAIN WITH A PERIODIC DISTRIBUTION OF HOLES*

ETIENNE BERNARD!, EMANUELE CAGLIOTI¥, AND FRANCOIS GOLSEf

Abstract. Consider a linear Boltzmann equation posed on the Euclidian plane with a periodic
system of circular holes and for particles moving at speed 1. Assuming that the holes are absorbing,
i.e., that particles falling in a hole remain trapped there forever, we discuss the homogenization limit
of that equation in the case where the reciprocal number of holes per unit surface and the length of
the circumference of each hole are asymptotically equivalent small quantities. We show that the mass
loss rate due to particles falling into the holes is governed by a renewal equation that involves the
distribution of free path lengths for the periodic Lorentz gas. In particular, it is proved that the total
mass of the particle system at time ¢ decays exponentially quickly as ¢ — 4o0. This is at variance
with the collisionless case discussed in [E. Caglioti and F. Golse, Comm. Math. Phys., 236 (2003),
pp. 199-221], where the total mass decays as C/t as t — +o00.
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1. Introduction. The homogenization of a transport process describing the mo-
tion of particles in a system of fixed obstacles—such as scatterers or holes—leads to
very different results according to whether the distribution of obstacles is periodic
or random. Before describing the specific problem analyzed in the present work, we
recall a few results recently obtained on a more complicated and yet related problem.

An important example of the phenomenon mentioned above is the Boltzmann—
Grad limit of the Lorentz gas. The Lorentz gas is the dynamical system corresponding
to the free motion of a single point particle in a system of fixed spherical obstacles,
assuming that each collision of the particle with any one of the obstacles is purely
elastic. Since the particle is not subject to any external force, we assume without loss
of generality that its speed is 1. The Boltzmann—Grad limit is the scaling limit where
the obstacle radius and the reciprocal number of obstacles per unit volume vanish in
such a way that the average free path length of the particle between two consecutive
collisions with the obstacles is of the order of unity.

Call f(t,x,v) the particle distribution function in phase space in that scaling
limit—in other words, the probability that the particle be located in an infinitesimal
volume dx around the position x with direction in an infinitesimal element of solid
angle dv around the direction v at time ¢ > 0 is f(¢, z, v)dzdv.

In the case of a random system of obstacles—more precisely, assuming that the
obstacles’ centers are independent and distributed in the three-dimensional Euclidian
space under Poisson’s law—Gallavotti proved in [15, 16] (see also [17] on pp. 48-55)
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PERIODIC HOMOGENIZATION FOR LINEAR BOLTZMANN EQUATION 2083

that the average of f over obstacle configurations (i.e., the mathematical expectation
of f) is a solution of the linear Boltzmann equation

Oy +v-Vy+o)f(t,z,v) = E/ fz,v—2(w-v)w)w - vdw .
T Jw-v>0
Jw|=1

If, on the contrary, the obstacles are periodically distributed—specifically, if they

are centered at the vertices of a cubic lattice—the limiting particle distribution func-

tion f cannot be the solution of any linear Boltzmann equation of the form

(O +v-Vy+o0)f(t z,v) za/ p(u|w) f(t, z,w)dw ,

Jw|=1

where p is a continuous, symmetric transition probability density on the unit sphere.
See [18] for a complete proof of this negative result, based on earlier estimates on the
distribution of free path lengths for the periodic Lorentz gas [6, 19].

The correct limiting equation for the Boltzmann—Grad limit of the periodic
Lorentz gas was found only very recently; see [8, 25]. In the two-dimensional case,
the most striking feature of the theory presented in these references is that the limit-
ing equation is set on an extended phase space involving not only the particle position
z and direction v, as in all classical kinetic models, but also the (rescaled) distance
T to the next collision point with the obstacles and the impact parameter h at this
next collision point.

The particle motion is described in terms of its distribution function in this ex-
tended phase space, F' = F(t,z,v,7,h), which is governed by an equation of the
form

(O +v- -V —0;)F(t,x,v,7,h)

1 1
o = / P(r,h|h)F(t,z, R[m — 2 arcsin(h’)|v, 0, h")dH,
-1

where R[] designates the rotation of an angle 6 and P(7, h|h’) is a nonnegative integral
kernel whose explicit expression is given in [8] but is of little interest for the present
discussion. The particle distribution function in the classical phase space of kinetic
theory is recovered in terms of F' by the following formula:

“+o0 1
fi,x,v) = / / F(t,x,v, 7, h)dhdr .
0 -1

However, the particle distribution function f itself does not satisfy a linear Boltzmann
equation in closed form.

Loosely speaking, in the case of a periodic distribution of obstacles, the particle
“feels” the correlations between the obstacles since its trajectory consists of segments
of maximal length avoiding the obstacles. This explains the need for an extended
phase space in order to describe the Boltzmann—Grad limit of the Lorentz gas in the
periodic case. In the random case studied by Gallavotti, the obstacles’ centers are
assumed to be independent, which reduces the complexity of the limiting dynamics.

In the present work, we shall study a much simpler homogenization problem,
which can be formulated as follows.

Problem. Consider a system of point particles whose distribution function is gov-
erned by a linear Boltzmann equation. The particles are assumed to move in a periodic
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system of holes. Describe the asymptotic behavior of the total mass of the particle
system in the long time limit, assuming that the radius of the holes and their recip-
rocal number per unit volume vanish so that the average distance between the holes
is of the order of 1.

This problem is the analogue in kinetic theory of the one studied in [23] and [11]
for the diffusion equation and in [2] for the Stokes equation.

Although the underlying dynamics in this problem are a lot simpler than those
of the Lorentz gas, the homogenized equation is also set on an extended phase space,
analogous to the one described above.

As we shall see, the mathematical derivation of the homogenized equation in the
extended phase space for the problem above involves only very elementary arguments
from functional analysis—at variance with the case of the Boltzmann—Grad limit of
the Lorentz gas, which requires a fairly detailed knowledge of particle trajectories.

2. The model. We consider the monokinetic, linear Boltzmann equation
(2) atfa+U'waa+0(f6_Kfa):o

in space dimension 2.
The unknown function f(¢,z,v) is the density at time ¢ € Ry of particles with
velocity v € S!, located at x € R?. For each ¢ € L%(S!), we denote

1
T o

Ko(v) : / k(v,w)o(w)dw,

St
where dw is the uniform measure (arc length) on the unit circle S'. We henceforth
assume that

ke L*(S' xsY, k(v,w)=k(w,v) >0 ae. inv,w e S
3)

1
and — [ k(v,w)dw =1 a.e. in v € S*.

2 st
The case of isotropic scattering, where k is a constant, is a classical model in the
context of radiative transfer. Likewise, the case of Thomson scattering in radiative
transfer involves the integral kernel

k(v,w) = 1—36(1 + (v-w)?);

see, for instance, Chapter I, section 16 of [10]. Finally, the collision frequency is a
constant o > 0.

The linear Boltzmann equation (2) is set on the spatial domain Z., i.e., the space
R? with a periodic system of holes removed:

Z. = {z € R?|dist(z, eZ°) > %} .
We assume an absorption boundary condition on 072,
fe =0for (t,z,v) € R} x 0Z, x S' whenever v-ng >0,

where n, denotes the inward unit normal vector to Z. at the point x € 9Z.. This
condition means that a particle falling into any one of the holes remains there forever.

The same problem could, of course, be considered in any space dimension. Notice,
however, that in space dimension N > 2, the appropriate scaling, analogous to the one
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considered here, would be to consider holes of radius e/ (V=1 centered at the points
of the cubic lattice eZ”; see, for instance, [6, 19]. Most of the arguments considered
in the present paper can be adapted without change to the higher dimensional case,
except that the expression of one particular coefficient appearing in the homogenized
equation is not yet known explicitly at the time of this writing.

The most natural question related to the dynamics of the system above is the
asymptotic behavior of the total mass of the particle system in the small obstacle
radius € < 1 and long time limit.

The last two authors have considered in [7] the noncollisional case (¢ = 0) and
proved that, in the limit as e — 0T, the solution f. converges in L>®(R, x R? x S!)
weak-* to a solution f of the following nonautonomous equation:

_ p(®)

where p is a positive decreasing function defined below. In that case, the total mass
of the particle system decays like C/t as t — +o0.

f

=B

Observe that, starting from the free transport equation, we obtain a nonau-
tonomous (in time) equation in the small ¢ limit. In particular, the solution of (4)
cannot be given by a semigroup in a function space such as LP(R2 x S!). As we
shall see, the homogenization of the linear Boltzmann equation in the collisional case
(o0 > 0) leads to an even more spectacular change of structure in the equivalent
equation obtained in the limit.

The work of the last two authors [7] relies upon an explicit computation of the
solution of the free transport equation, where the effect of the system of holes is
handled with continued fraction techniques. In the present paper, we investigate the
analogous homogenization problem in the collisional case (¢ > 0). As we shall see,
there is no explicit representation formula for the solution of the linear Boltzmann
equation, other than the one based on the transport process, a particular stochastic
process, defined, for example, in [26].

This representation formula was used in a previous work of the first author [3],
who established a uniform in € upper bound for the total mass of the particle system
by a quantity of the form Ce~%! for some a, > 0. This exponential decay is quite
remarkable; indeed, there is a “phase transition” between the collisionless case in
which the total mass decays algebraically as t — +o0o and the collisional case in which
the total mass decays at least exponentially quickly in that same limit.

In the present paper, we further investigate this phenomenon and show that the
exponential decay estimate found in [3] is sharp by giving an asymptotic equivalent
of the total mass of the particle system in the small € limit as ¢t — 4oc0.

Instead of the semiexplicit representation formula by the transport process, our
argument is based on the very special structure of the homogenized problem. The key
observation in the present work is that this homogenized problem involves a renewal
equation, for which exponential decay is a classical result that can be found in classical
monographs such as [14].

3. The main results. First we recall the definition of the free path length in
the direction v for a particle starting from x in Z.:

(5) Te(x,v) :=inf{t > 0|z —tv € 0Z.} .

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



2086 E. BERNARD, E. CAGLIOTI, AND F. GOLSE

2] |

05 \ 02+ \

—— T T — T T T T T
00 05 10 15 20 25 a0 a5 4o 45 so &5 00 05 10 15 20 25 30 35 40 45 50 55

Fi1G. 1. The graphs of Y (left) and p (right)

The distribution of the free path length has been studied in [6, 19, 7, 4]. In
particular, it is proved that, for each arc I C S' and each t > 0, one has

(6) meas({(x,v) € (Z. N[0,1]%) x I |eTo(z,v) > t}) — p(t)|]]

as ¢ — 0T, where |I| denotes the length of I and the measure considered in the
statement above is the uniform measure on [0, 1] x St.

The following estimate for p can be found in [6]: there exist C,C’" > 0 such that
forallt > 1,

(7)

=+ Q

< meas({(z,v) € (Z-N[0,1]%) x I |ere(w,v) > t}) < OT/

uniformly as € — 0 so that

) -

!
gp(t)gc?

In [4] Boca and Zaharescu have obtained an explicit formula for p as

+oo
(9) plt) = / (r — )X (r)dr,

where the function T is expressed as follows (see the graphs of T and p in Figure 1):
(10)
1 if te(0,3],
24

) 1 1\° 1y 1 1\? 1] . 1
Lt (i 2) (Yl 2 e (o).

This formula had been conjectured earlier by Dahlqvist in [12] by an argument
based on some equidistribution assumption left unverified.

This is precisely at this point that the case of space dimension 2 differs from the
higher dimensional case. Indeed, in a space dimension higher than 2, the existence of
the limit (6) has been proved in [24], while the uniform estimate analogous to (7) is
to be found in [19]. However, no explicit formula analogous to (9) is known in that
case, at least at the time of this writing. We have chosen to treat in the present paper
only the case of the square lattice in space dimension 2 as it is the only case where
the limit (6)—(9) is known completely.

Y(t) =
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Throughout this paper, we assume that the initial data of (Z.) satisfies the as-
sumption

(11)  f™ >0 on R* x S' and // f(x,v)dedv +  sup  f(x,v) < +oo.
R2xS! (z,v)ERZ XSt

For each 0 < € < 1, let f be the (mild) solution of the initial boundary value problem
Ofetv-Vefetolfe—Kfo)=0, (x,v) € ZxSt>0,
(E)q fe=0ifv-ny >0, (x,v) € 0Z. x S,
fe(0,2,0) = f"(z,v), (z,v) € Ze x SL.

The classical theory of the linear Boltzmann equation guarantees the existence and
uniqueness of a mild solution f. of the problem (=.) satisfying

0< fo(t,z,v) < sup  f™(z,v) ae onRy x Z. xS,

(x,v)ER2 xSt
(12) .
// fe(t,z,v)dadv < // f(x,v)dxdv .
Z. xSt R2 xSt
Consider next F' := F(t, s, x,v) the solution of the Cauchy problem
OF +v-V,F +8,F = —oF + g(t/\s)F, t,5>0,(z,v) € R? x S\
() e 2., ql
F(t,0,z,v) =0 KF(t, s, x,v)ds, t>0,(xz,v) € R* x S
0
F(0,s,1,v) = ge~ % fin(z,v), 5>0,(r,v) € RZ x St

with the notation tAs := min(¢, s). Notice that F' is a density defined on the extended
phase space

{(s,x,v)|s >0,recR>ve Sl}

involving the extra variable s, whose physical meaning is explained as follows.

Recall that the solution f. of the linear Boltzmann equation can be expressed in
terms of the transport process (see [26]), a stochastic process involving a jump process
in the v variable, perturbed by a drift in the x variable. The variable s is the “age”
of the current velocity v in that process, i.e., the time since the last jump in the v
variable.

Therefore, between jumps in the v variable, s increases with ¢, and this accounts
for the sign of the additional term +0sF in the system (X).

On the contrary, in (1), the extra variable 7 (the rescaled distance to the next
collision point with one of the scatterers) decreases as ¢ increases between collisions
with the scatterers, which accounts for the minus sign in the additional term —9, F
in that equation.

Henceforth, we shall frequently need to extend functions defined a.e. on Z. by
0 inside the holes (that is, in the complement of Z.). We therefore introduce the
following piece of notation.
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Notation. For each function ¢ = ¢(z) defined a.e. on Z., we denote
_J plx) ifzeZ,
{‘f’}(“”)_{ 0 if o ¢ Z..

We use the same notation { f.} or { Fz} to designate the same extension by 0 inside the
holes for functions defined on Cartesian products involving Z. as one of their factors,
such as R, x Z. x S! in the case of f. and R, x R, x Z. x St in the case of F..
Our first main main result is shown in the following theorem.
THEOREM 1. Under the assumptions above,

“+o0
{fs} = Fds
0

in L®(Ry x R? x S') weak-+ as e — 0T, where F is the unique (mild) solution of

(%)

Notice that the limit of the (extended) distribution function of the particle system
is indeed defined in terms of the solution F' of the homogenized integro-differential
equation (X). However, it does not seem that the limit of {f.} itself satisfies any
natural equation.

Next we discuss the asymptotic decay as t — +o0o of the total mass of the particle
system in the homogenization limit € < 1. Obviously, the particle system loses mass
due to particles falling into the holes.

In order to do so, we introduce the quantity

1
m(t,s) = — // F(t,s,z,v)dzdv .
2 R2 xS1

A key observation in our work is that m is the solution of a renewal type partial
differential equation (PDE), as explained in the next proposition.
ProOPOSITION 1. Denote

B(t,s):a—]]—i(t/\s),

and assume that fi" satisfies the condition (11).
Then the renewal PDE

Oep(t, s) + Osp(t, s) + B(t, s)u(t,s) =0, t,s>0,

—+oo
u(t,0) = 0/ wu(t, s)ds, t>0,
0

1(0,8) = oe™ 7%, s>0

has a unique mild solution p € L>([0,T); L*(Ry)) for all T > 0.
Moreover, one has

m(t,s) = %:) /~/]R2><Sl i (x,v)dzdy

a.e. in (t,s) € Ry xRy
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Renewal equations are frequently met in many different contexts. For instance,
they are used as a mathematical model in biology to study the dynamics of structured
populations. The interested reader can consult [22] or [27] for more information on
this subject.

Consider next the quantity

1 —+oo —+oo
(13) M(t) = —/ // F(t,s,z,v)dzdvds :/ m(t,s)ds .
21 Jo R2 xSt 0

As explained in the theorem below, M(t) is the total mass at time ¢ of the particle
system in the limit as ¢ — 0%; besides, the asymptotic behavior of M as t — 400 is
a consequence of the renewal PDE satisfied by the function (¢, s) — m(t, s).
THEOREM 2. Under the same assumptions as in Theorem 1,
(1) the total mass

1
o // fe(t, z,v)dxdv — M(t)
s - XSt
in L

Le(Ry) as e = 01 and a.e. int > 0 after extracting a subsequence of

e—0F;
(2) the limiting total mass is given by the representation formula

1 .
M(t) = — // F(@v)dedy > £(E), >0
2ro R2 xSt
n>1
with
t) :=oe 7'p(t)1 =k
K(t) == 0e" " p(t)1s>0, K Kok kK
n factors

and * denoting as usual the convolution product on the real line;
(3) for each o > 0, there exists £, € (—0,0) such that

M(t) ~ Cyest as t — 400

// o (x, v)dzdv
_ 1 JJrexs ,

Cy, = 5 . ; and
ne / tp(t)e~(OTE)t gy
0

with

(4) finally the exponential mass loss rate &, satisfies
&y ~ —0 as o — 0" and £, — —2 as 0 — 400.

Statement (1) above means that M is the limiting mass of the particle system
at time ¢ as e — 0T. Statement (3) gives a precise asymptotic equivalent of M (t) as
t — +oo.

As recalled in the previous section, if ¢ = 0 in the linear Boltzmann equation
(Z¢), the total mass of the particle system in the vanishing e limit is asymptotically

equivalent to
1 mn
— z,v)dxdv
2 //]1§2><Sl f ( )
w2t

as t — +o0o. The reason for this slow, algebraic decay is the existence of channels—
infinite open strips included in the spatial domain Z., i.e., avoiding all the holes.
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Particles located in one such channel and moving in a direction close to the channel’s
direction will not fall into a hole before exiting the channel, and this can take an
arbitrarily long time as the particles’ direction approaches that of the channel. This
construction based on channels leads to a sufficiently large fraction of the single-
particle phase space and accounts for the algebraic lower bound in (8). The asymptotic
equivalent mentioned above in the collisionless case 0 = 0 is a consequence of a more
refined analysis based on continued fractions given in [7].

When o > 0, particles whose distribution function solves the linear Boltzmann
equation in (Z.) travel on trajectories whose direction is discontinuous in time. More
specifically, time discontinuities are distributed under an exponential law of parameter
0. Obviously, this circumstance destroys the channel structure that is responsible for
the algebraic decay of the total mass of the particle system in the collisionless case so
that one expects that the total mass decay is faster than algebraic as t — 4+00. That
this decay is indeed exponential whenever o > 0 is by no means obvious; see the argu-
ment in [3], leading to an upper bound for the total mass. Statement (3) above leads
to an asymptotic equivalent of the total mass, thereby refining the conclusions of [3].

In section 4, we give the proof of Theorem 1; the evolution of the total mass in
the vanishing ¢ limit (governing equation and asymptotic behavior as t — +00) is
discussed in section 5.

4. The homogenized kinetic equation. Our argument for the proof of The-
orem 1 is split into several steps.

4.1. A new formulation of the transport equation. Perhaps the most sur-
prising feature in Theorem 1 is the introduction of the extended phase space involving
the additional variable s.

As a matter of fact, this additional variable s can be used already at the level of
the original linear Boltzmann equation, i.e., in the formulation of the problem (E.).

Let us indeed return to the initial boundary value problem (Z.) for the linear
Boltzmann equation.

As recalled above, the last two authors have obtained the homogenized equation
corresponding to (Z.) in the noncollisional case (¢ = 0) by explicitly computing the
solution of the linear Boltzmann equation for each 0 < € < 1. In the collisionnal case
(o0 > 0), as recalled above, there is no such explicit formula giving the solution of the
linear Boltzmann equation except the semiexplicit formula involving the transport
process defined in [26].

However, not all the information in that semiexplicit formula is needed for the
proof of Theorem 1. The additional variable s is precisely the exact amount of in-
formation contained in that semiexplicit formula needed in the description of the
homogenized process in the limit as e — 0.

Consider therefore the initial boundary value problem

O F. +v-VyF, 4+ 0,F. +0F. =0, t,s >0, (x,v) € Z. x S,

F.(t,s,x,v) =0ifv-n, >0, t,5>0,(z,v) € (0Z. x SY),

F.(t,0,z,v) = 0/ KF.(t,s,z,v)ds, t>0,(x,v)€ Z xS,
0

F.(0,s,2,v) = oe~ 7 fin(x,v), 5>0,(x,v) € Z. x St

with unknown F; := F.(t,s,z,v).
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The relation between these two initial boundary value problems, (Z.) and (3.),
is explained by the following proposition.

PROPOSITION 2. Assume that fi* satisfies the assumption (11). Then

(a) for each € > 0, the problem (£.) has a unique mild solution such that

+oo
(t,z,v) n—>/ |F.(t,s,x,v)|ds belongs to L>([0,T] x Z. x S*)
0

for each T > 0;
(b) moreover,

0 S Fg(t78,$,’l}) S ||fin||Loo(]R2><S1)O'67(TS

ae int,s>0,x€Z. andv €S, and
+oo
Fg(t,s,x,v)ds:fg(t,x,v)
0

for a.e. t > 0,2 € Z., and v € S*, where f- is the solution of (Z.).
Proof. Applying the method of characteristics, we see that, should a mild solution
F. of the problem (¥.) exist, it must satisfy

(14) F.(t,s,z,v) = F1 .(t,s,2,0) + Fo . (t,s,2,0)
with

Fie(t,s,x,v) = 15<575(§,1})13<t6708F€(t — 5,0,z —vs,v)

(15) +o0
= Licer,(2 0)ls<toe” 7 / KF.(t—s,7,x — sv,v)dr
0
and
(16) FQ,E(t) 8, &,y U) = 1t<s‘re(§,v)1t<seigth(0a s—t,x —vt, U)

= 1t<sr€(§,u)1t<sU€_USfm(x — tv,v)

a.e. in (t,s,7,v) € Ry x Ry x R? x St
First define X1 to be, for each T' > 0, the set of measurable functions G defined
on Ry x Ry x Z. x St such that

+oo
(t,z,v) — / |G(t, s,2,v)|ds belongs to L>=([0,T] x Z. x S),
0
which is a Banach space for the norm

+oo
”GHXT = H~/O |G('787 ) ')|d5

L>([0,T]X Z.xS) .
Next, for each G € X7, we define

—+oo
TG(t, s, z,v) = licer.(z ) ls<toe™ KG(t—s, 1,z — sv,v)dr.
0
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Obviously

—+o0
/ TGt 5, )\ds
0

Lo°(Z.xSt)

t —+ 00
< 0/ / |Tn71G(t1,T,-,-)|dT dt,
o llJo Loo(ZoxS1)
¢ tron +o0
§a”/ / / Gt 5, )|ds dty ... dt
0 0 0 Loo(Z. xSt
so that
(cT)"
1Tl < T o,

Now Fi . = TF, so that (14) can be recast as
F.=F.+TF,.
This integral equation has a solution F, € Xp for each T' > 0, given by the series

Fo=) T'F.

n>0

which is normally convergent in the Banach space Xr since

o))"
ST Focllar <Y ( ,) [Fo.cll a7 < +o0.

n
n>0 n>0

Assuming that the integral equation above has another solution F! € Xr would imply
that

F.—F =T(F.-F)=---=T"(F. - F))

€ €

so that
(cT)"
|Fe = Flllxp = T (Fe = F)llar < — e = Flllxr — 0

as n — +oo; hence F! = F,. Thus we have proved statement (a).

As for statement (b), observe that TG > 0 a.e.on Ry xRy x Z. x ST if G > 0 a.e.
on Ry xRy x Z. xSt Hence, if f* € L>°(R? xS!) satisfies £ > 0 a.e. on R? xS, one
has Fr . > 0a.e.on Ry xRy x Z, x S! so that TrFye > 0ae on Ry xRy X Z, x St
and the series defining F. is a.e. nonnegative on Ry x R, x Z. x S!.

Next, integrating both sides of (14) with respect to s and setting

—+o0

ge(t, z,v) 1= E.(t,s,z,v)ds,
0
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we arrive at
+oo

+oo
ge(t, z,v) = F> . (t,s,x,v)ds —|—/ Fic(t,s,z,v)ds
0 0

. +w
= 1t<575(§,y)f1n($ —tw, ’U) / 1t<306708d8
0

+o0 +oo
+ / 15<575(§,U)13<t06_05 < KF.(t—s,T,x — sv, v)d7> ds
0 0

= 1t<€75(§,v)fin($ — tv, ’U)eigt

t
+ / € T lycer.(z2,0Kge(t — s, — sv,v)ds
0

in which we recognize the Duhamel formula giving the unique mild solution f. of (E;).
Hence
“+o0

fe(t,z,v) = F.(t,s,z,v)ds a.e. in (t,z,v) € R x Z. x S*.
0

Finally, since (E;) satisfies the maximum principle, one has
f(t, 2, 0) <[ ™| o r2xst) ace. in (¢,z,v) € Ry x Zo x St
Going back to (14), we recast it in the form

F.(t,s,z,v) = 1S<575(§,U)15<toe*"SKfa(t — 8, — SV, V)
+ 1t<575(§7v)1t<506_‘”fm(x — tv,v)
< ycer,(2,0) Loctoe™ || f | Lo m2 x51)
+ Licer. (2,0 Li<soe™ 7| 7 | oo m2 51
< o8| £ | Lo o x5ty

a.e. in (t,s,7,v) € Ry x Ry x Z. x St which concludes the proof. O
Observe that if

FE(Oa S, T, ’U) = Ueigsfin(xv U)
is replaced with
F.(0,s,z,v) = H(s)fi”(x, v),

where II is any probability density on R vanishing at oo, the conclusion of the
proposition above remains valid. In other words, the dependence of the solution F. of
the problem (X)) upon the choice of the initial probability density II disappears after
integration in s so that the particle distribution function f. is indeed independent of
the choice of II.

The choice II(s) = 0e~7¢ corresponds with the situation where the gas molecules
have been evolving under the linear Boltzmann equation for ¢ < 0 and the holes are
suddenly opened at t = 0.

Before giving the proof of Theorem 1, we need to establish a few technical lemmas.
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4.2. The distribution of free path lengths. A straightforward consequence
of the limit in (6) is the following lemma, which accounts eventually for the coefficient
p(t As)/p(t A s) in the limiting equation (X).

LEMMA 1. Let 7. be the free path length defined in (5). Then for each t > 0,

{1t<5‘re(§,v)} - p(t)
in L°°(R? x S') weak-+ as e — 0T,
(See the definition before Theorem 1 for the notation {1;<cr (2 )}.)
Proof. Since the linear span of functions ¢ = ¢(z,v) of the form

d(z,v) = x(x)11(v), x € C(R?), and I is an arc of S!

is dense in L'(R* x S'), and the family 1., (= ) is bounded in L>(R? x '), it is
enough to prove that

// d(x,v)1er (2 v)ysedzdv — p(t) // ¢(z,v)dzdv as e = 0.
Zo xSt N R2 xSt

/ / 6, 0)1er. 2wy el = / x(@) ( / 1&75<g,v>>tdv) dz
Z.xS1 Z. I
X
= /Zs x(2)T: (E) dx

Write

with
Ts(y) ::/1are(y,v)>tdv-
I

Obviously T is 1-periodic in y; and yo and satisfies 0 < T < |I]. Hence

Layz2)>T(y) = Z Tg(k)eziﬂk.y
keZ?

in L2(R?/72) with
T — T —2imk-z
«(£) ﬁ“ax(zl,;wa/z =(2) dz

for each k € Z2.
Then, by Parseval’s identity,

with
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Applying again Parseval’s identity,

7 2 2
= <
SRWE= [ TPy <1
keZ? lyl>e
while
. 1 2
%) < gl Pl
so that

—ork g2
Y < Vx| oo -
()] = e

Hence, by the Cauchy—Schwarz inequality,

2

PN A 2 e IV2xl 2 — (A
> Tk < S IRMP Y e = 0,

keZ2\(0,0) k€Z2\(0,0) k€Z2\(0,0)

and therefore

€
ase — 0T,
By (6)
P _ +
T.(0) = ‘/max(‘yl‘v‘y2‘)<1/2 T:(y)dy — p(t)|I| ase—0
ly|>e
so that

ROT0) = 01| [ x@de =p(t) [ ote0)dady
as € — 0T, and hence

/Zs x@T () de =) //szgl 6(x, v)dzdv + o(1) + O(e?)

which entails the announced result. 0

4.3. Extending f. by 0 in the holes. We begin with the equation satisfied
by the (extension by 0 inside the holes of the) distribution function {f.}.
LEMMA 2. For each € > 0, the function {f.} satisfies

(O +v- Vo) {f}+o({fe} = K{f})=(v- nw)fa|azs><g15825

in D' (R% x R? x St), where dpz. is the surface measure concentrated on the boundary
of Z. and ng is the unit normal vector at x € Z. pointing toward the interior of Z..
Proof. One has

O {fe} = {0 f}
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and
Vo lfel ={Vafe} + fe loz.xst doz.12
in D'(R% x R2 x S'). Hence
0=A{0f-+v-Vafe+to(fe—Kfe)}
=0c{f} +o- Vo lfe} + (vona)fely, aidoz. +o({fe} = K{f})

in D'(R% x R? x S*). 0
A straightforward consequence of the scaling considered here is that the family
of Radon measures

(v 10)fe| 57 w1002

is controlled uniformly as ¢ — 0T in the following manner.
LEMMA 3. For each R > 0, the family of Radon measures

(v ”z)fs‘azsxsl‘sazs

[—R,R]? xSt
is bounded in' M([—R, R]? x S').
Proof. The total mass of the measure
(v- ”w)ff}azsxsl‘saze [~ R,R]2xS!

is less than or equal to

27| fell oo (my x 2. xs1) 1062, 1= r,R)2 |M(1=R.RI?)

which is itself less than or equal to

27T||fin||L°°(R2><Sl) H‘SBZE |[—R’R]2HM([—R,R]2) .

Since sz, |[—r,r)> is the union of O((%)z) circles of radius €2,

2R ? 2 2
1oz, |i-r.m2 lmi-rmz) = O { — ) | 27" = O(L)R

as € — 0T, whence, the announced result. d

4.4. The velocity averaging lemmas. As is the case of all homogenization
results, the proof of Theorem 1 is based on the strong Llloc convergence of certain
quantities defined in terms of F.. In the case of kinetic models, strong L}, . compactness
is usually obtained by velocity averaging; see, for instance, [1, 21, 20] for the first
results in this direction. Below we recall a classical result in velocity averaging that is
a special case of theorem 1.8 in [5].

PROPOSITION 3. Let p > 1, and assume that f. = f-(t,z,v) is a bounded family
in LY (R x R% x S¥=1) such that

loc
T
SUP/ // |0 fe +v - Vi feldedvdt < 400
e Jo B(0,R) xSd—1

1For each compact subset K of R, we denote by M(K) the space of signed Radon measures on
K, i.e., the set of all real-valued continuous linear functionals on C'(K) endowed with the topology
of uniform convergence on K.
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for each T > 0 and R > 0. Then, for each ¢ € C(S% ! x S71), the family py|f-]
defined by

pyfe](t @, v) = fo(t, 2, v)0(v, w)dw

§d—1

is relatively compact in L}, (RS x RZ x S2-1).
A straightforward consequence of Proposition 3 is the following compactness result

in L, strong, which is the key argument in the proof of Theorem 1.

LEMMA 4. Let f. = f-(t,x,v) be the family of solutions of the initial boundary
value problem (Z;). Then the families

K{fa} = {Kfa}

and

[ i3

are relatively compact in L}, (R4 x R? x St) strong.
Proof. We recall that, by the maximum principle for (Z.),

|[fe(t, 2, 0)] < ™ oo raxsr)

a.e.int>0,2 € Z. and v € S, so that
(17) sup || {f=} | Ry xr2x81) < [1F || L0 (R2x51)-
€

By Lemma 2, {f.} satisfies

O {fa} +v-Vy {fa} =o(K {fa} - {fa}) —6oz.(v.ng) fe |BZE><81

in D'(R% x R? x S'). Because of (17) and the fact that the scattering kernel k is a.e.
nonnegative (see (3)), one has

lo(K {fe} = {feP) oo @ xrzxst) < o(L+ [[K1 o)) | {fe} (|2 @y xr2x51)
= 20| {fe} [l Lo (R, xR2x51)

since K1 =1 (see again (3)). Besides, the family of Radon measures

fe = fe |<3ZE><S1 (U : nm)5azs

satisfies

o
€ J[0,T]xB(0,R) xSt

for each T' > 0 and R > 0 according to Lemma 3.
Applying the velocity averaging result recalled above implies that the family

/ gedv
st

is relatively compact in L}, (R} x R? x St).

By density of C(S! x St) in L?(S! x S'), replacing the integral kernel k with
a continuous approximant and applying the velocity averaging Proposition 3 in the
same way as above, we conclude that the family Kg. is also relatively compact in
LI Ry xR?2xSY). 0O

loc
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4.5. Uniqueness for the homogenized equation. Consider the Cauchy prob-
lem with unknown G = G(¢, s, x,v)

(t A
Ot 0- Vot 0)G = oG+ LA ey o0 pe R ves!,
p(tAs)
G(t,0,z,v) = S(t, x,v), t>0,(x,v) € R? x S,
G(0,s,2,v) = G"(s,2,v), s> 0,(z,v) € R x SL

If, for a.e. (t,s,2,v) € Ry x Ry x R? x S!, the function 7 +— G(t + 7,5+ 7,7 + Tv,0)
is C! in 7 > 0, then, since the function p € C'(R,) and p > 0 on R, , one has
( d ptANSs+T)

&, PUASETN
dT—I—U p(t/\s—|—7')> (t+7,s+1,2+70,0)

d <e”G(t—|—7',s+7',x—|—Tv,v)> 0

= e TTp(t A —
e S+T)d7' p(tAs+T)

Hence

e TGt + T, s+ T, x + TV, V)

I': 77—
p(tAs+T)

is a constant. Therefore

so that
G(t,s,2,0) = Licse” Tp(t)G™ (s — t, 2 — tv,v) + Ly<re 7p(s)S(t — s, — sv,v).

PROPOSITION 4. Assume that f™ € L°°(R? x S'). Then the problem (X) has a
unique mild solution F' such that

+oo
(t,x,v) »—>/ |F(t,s,z,v)|ds belongs to L=([0,T] x R?* x St)
0

for each T > 0. This solution satisfies

F(t,s,z,0) = 1icsoe” tp(t) f (x — tv,v)
+oo
p(s) KF(t—s,1,x — sv,v)dr
0

+ ]-s<to'e_0S

for a.e. (t,s,7,v) € Ry x Ry x R?Z x ST,

Besides, F >0 a.e. on Ry x Ry x R?2 x St if £ >0 a.e. on R? x S'.

Proof. That a mild solution of the problem (3), should it exist, satisfies the integral
equation above follows from the computation presented before the proposition.

As above, let Yr be, for each T' > 0, the set of measurable functions G defined
a.e.on Ry x Ry x R? x St and such that

“+o0
(t,x,v) — / |G(t, s, 2,v)|ds belongs to L>([0,T] x R* x S'),
0
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which is a Banach space for the norm

+oo
HG”yT = HA |G('787 ) ')|d5

L ([0,T)x Z. xS') '
Next, for each G € Yr, we define

+oo
QG(t,s,x,v) := lscroe” 7°p(s) KG(t —s,7,x — sv,v)dr .
0

2099

Since 0 < e~7*p(s) < 1, the integral kernel £ > 0 on S! x S! and K1 =1 by (3),

one has
“+o00 t “+o00
/ |QG(t, s,x,v)|ds < 0/ / |G(t — s,7,-,-)|dT ds
0 o IlJo Lo (R2xS1)
a.e. in (t,x,v) € [0,T] x R? x S, meaning that
—+o0
|[ et as
0 Loo (R2xSH)
t +o0
ga/ / Q" G(ty, s, -, -)|ds dt,
0 0 L (R2xSt)
¢ tno1 || oo
ga”/ / / |G(tn,s,-,)|ds dt, ...dt;.
0 0 0 Lo°(R2 xS1)

In particular,

(aT)"
n!

1Q"Glly, < 1G]y -

The integral equation in the statement of the proposition is
F= FQ + QF7
where

Fo(t,s,2,v) = 1icsoe” ip(t) f(x — tv,v).

Therefore, arguing as in the proof of Proposition 2, one obtains a mild solution of (3)

as the sum of the series
F=> QF,
n>0

which is normally convergent in the Banach space Yr for each T' > 0.
Should there exist another mild solution, say, F’, it would satisfy

(F-F)Y=QF—-F)=...=Q"F-F")
for all n > 0 so that

(oT)"
n!

IF = F'llyy = |Q*(F = F)lyy < T2 F = F'lly, -0

as n — 400, which implies that FF = F” a.e. on R, x R, x R? x St.

Finally, QF >0 a.e. on R, x Ry x R2 x St if F > 0 a.e. on Ry x Ry x R? x St
Since F is given by the series above, one has F' > 0 a.e. on R, x Ry x R%2 x S! whenever

f™ >0 a.e. on RZ x S'. O
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4.6. Proof of the homogenization theorem. Start from the decomposition
(14) of F.. Passing to the limit as ¢ — 0T in the term F,. is easy. Indeed, by
Lemma 1,

(18) {1t<s‘re(§,v)} Ap(t)

in L>°(R2 x S!) weak- for each t > 0 as e — 0. Hence

(19> {FZ,E}(ta S, T, U) :1t<seigsfm($ — tv, U){1t<ers(f,v)}
= Lo TS f (2 — to,v)p(t) =: Fy(t, s, x,v)
in L®(RS x Rf x R2 x S!) weak-* as ¢ — 0%,

Next we analyze the term F} .; this is obviously more difficult as this term depends
on the (unknown) solution F; itself.

We recall the uniform bound
sup || {f=} |y xr2x51) < [F™ Lo @2 xs1)
€

(see Proposition 2(b)) so that by the Banach-Alaoglu theorem
(20) {f-} = fin LR, x R? x S') weak-*

for some f € L=°(R, x R? x St), possibly after extracting a subsequence of € — 0.

Thus, applying the strong compactness Lemma 4 shows that
K{f.} = Kfin L} (R, x R? x S') strong

as e — 07T,

This and the weak-* convergence in Lemma 1 imply that

{FLE} :13<tUe*O'SK{fE} (t — S8, r— SU,U)15<57-E(§)U)

(21)
- 1s<taeigSKf(t — 5T = S’U,’U)p(S)

: 1
inLj .

(Ry x Ry x R? x St) weak as e — 0. Therefore

(22) {F.} (t,8,2,0) 21sc10e P K f(t — s,x — sv,v)p(s) + Fa(t, s, z,v)
=: ﬁ'(t,s,x,v)

. 1
in Lj,,

(Ry x Ry x R? x S!) weak as e — 0%,
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Fix T > 0; then, for t € [0,T7], one has

) T
/ F.(t,s,z,v)ds = / F1e(t,s,x,v)ds + e oI (1 — tu, V)1icer, 2 )
0 0

since F ¢ is supported in s <t < T so that

oo T
/ {F.}(t,s,z,v)ds 4/ 1<t Kf(t—s,x —vs,v)oe 7°p(s)ds
0 0
(23) + [ (@ — tv,v)e”"'p(t)
= / F(t,s,z,v)ds
0

in L}, (Ry x R? x S) weakly as ¢ — 0%, where F is defined in (22).
On the other hand,

/000 {F.} (t,8,z,v)ds = {f.} (¢t,z,0) = f(t,z,v)

in L (R4 x R? x S) weak-* as € — 0" and therefore also in L} (R x R? x S') weak
as € — 0". By uniqueness of the limit, we conclude that

(24) flt,xz,v) = / F(t,s,z,v)ds a.e. in (t,z,v) € Ry x R? x St
0

so that F satisfies

F(t,s,x,0) = 1,c,0e "°K (/ F(t —s,u,z — sv, )du) (v)p(s)
0
+ Licsoe™ 7 [ (@ — tv, v)p(t)

a.e. in (t,s,2,v) € Ry x Ry x R? x S'. By Proposition 4, this means that F is a
solution of the Cauchy problem (). }

By uniqueness of the solution of (), we conclude that F' = F' and that the whole
family

F. ~Fin L} (Ry xR, x R? x S')

weakly as ¢ — 0.
Finally, (20) and (24) imply that

{fa}éfz/oooFds

in LRy x R? x S') weak-+ as ¢ — 0F, which concludes the proof of
Theorem 1. O

5. Asymptotic behavior of the total mass in the long time limit. The
formulation of the homogenized equation (problem (X)) as an integro-differential equa-
tion set on the extended phase space involving the additional variable s is of consid-
erable importance in understanding the asymptotic behavior of the total mass of the
particle system as the time variable ¢ — +o00. Indeed, this formulation implies that
the total mass of the particle system satisfies a renewal equation, i.e., a class of inte-
gral equations for which a lot is known on the asymptotic behavior of the solutions in
the long time limit; see, for instance, in [14] the basic results on renewal type integral
equations.
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5.1. The renewal PDE governing the mass. We begin with a proof of Propo-
sition 1.

Proof. That p is a mild solution of the renewal PDE means that, for a.e. (¢,s) €
Ry xRy,

“+o0
p(t,s) = Licsoe 7 De™lp(t) + 1s<te“’5p(8)/ p(t —s,7)dr
0
+oo
=oge p(tAs) <1t<S + 1S<t/ u(t — s, T)dT) .
0
For each T > 0, define
+oo
Ri(t,s) = Locoe **p(s) [ ult s 7)dr
0
a.e. in (t,s) € R4 x R;. Obviously, for each ¢ € L*°([0,7]; L'(R)) and a.e. t > 0,
t
IR&E, )l ry) S/O oe 7 p(t — )| 6(s, )| 1 .y ds
t
<o [ (s e ds
0

so that, for each n > 0, one has

t t1 trn—1
IR (N o ey < / / / 16t )y - .
(o)

<

o Dl oo (j0,77: 1 (R )
a.e.int € R+.

Arguing as in the proof of Proposition 2, we see that the renewal PDE has a
unique mild solution p € L>([0,T]; L}(R4)) for all T > 0, which is given by the
series

p=> R"u"),
n>0
where
pin(s) == oe %,

Obviously R¢ > 0 a.e. on Ry x Ry if ¢ > 0 a.e. on Ry x Ry so that u > 0 a.e.
on Ry x R, . Besides, for each 7" > 0,

(cT)"

el os 0,771 Ry )y < Z 1 1™,y =€,
n>0 )

which implies, in turn, that

0 < pu(t,s) <coe 7°p(tAs) (1t<S + 1S<te‘7T) < ge’Te s

a.e. in (t,s) € [0,T] x Ry.
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Finally, let F' be the mild solution of the problem (X) obtained in Proposition 2.
Since F > 0 a.e. on R, x R x R% x S! is measurable, one can apply Fubini’s theorem
to show that

1
m(t,s): = %//]R . F(t,s,z,v)dxdv
2§l

1 )
= 1ics0e T'p(t) — // ™z — tv,v)dzdv
2 R2 xS1
1
+ 1t<5cre_‘7tp(s)/ — // KF(t—s,1,x — sv,v)dxdvdr
o 27 )/ rzxst
1 .
Lo 0y ([ oy
s R2 xS1
1
=+ 1t<508_0tp(5)/ — // KF(t—s,1,y,v)dydvdr
0 27 JJr2xst

—0 1 in
= 1;50€ tp(t)Z— // " (y, v)dydv
T J JR2xSt

> 1
+ 1t<5cre_‘7tp(s)/ — // F(t — s, 7y, w)dydwdr
o 21 JJrzxst

1 )
= 1t<sae*”tp(t)2— // %z — tv,v)dxdv
™ R2xS1

+ 1t<5cre_‘7tp(s)/ m(t — s, 7)dT,
0

where the second equality follows from the substitution y = x — tv that leaves the
Lebesgue measure invariant, while the third equality follows from the identity

1

o Jon k(v,w)dv =1,

which implies that
1

1
o 8 KF(t—s,1,y,v)dv = o . F(t—s,7,y,w)dw.

In other words, m(t, s) satisfies the same integral equation as

@ //szsl "y, v)dydv.

Now the solution f. of (Z;) satisfies

f- >0ae. on Ry x R? x S! and // fe(t,y,v)dydv < // f(y,v)dydv
R2 xSt R2 xSt

which implies by Theorem 1 that

+oo
/ fe(t, y,v)dvdy 4/ / / F(t,s,y,v)dvdyds .
ly|<R JS! 0 ly|<R Jst

Hence, by Fatou’s lemma,

—+oo
/ / F(t,s,y,v)dvdyds < lim // fe(t, z,v)dadv
0 ly|<R Jst e—0+ J JR2xS1

< / / £y, v)dydo
R2 xSt
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a.e.int > 0.
Letting R — +o00 in the inequality above, we see that m € L>(Ry; L*(Ry)), and
we have proved that the difference

At = mie.s) = L2 [ gy gy
27‘( R2xS1
satisfies
Ae LR, ;LY R,)) and A =TRA.

By the same uniqueness argument as in the proof of Proposition 4, we conclude that
A =0ae on Ry xR;. a0

5.2. The total mass in the vanishing ¢ limit. By Theorem 1, the solution
f= of (2.) satisfies

+oo
{f} = / Fds in L™(R; x R? x S') weak-*;
0

therefore, checking that

“+oo
/ / {f-}dxdv — / / / Fdzdvds =: 2w M (t)
R2 xSt 0 R2 xSt

reduces to proving that there is no mass loss at infinity in the x variable.
LEMMA 5. Under the same assumptions as in Theorem 1,

% //stsl fe(t, z,v)dadv = % //szgl{fs}(t,x,v)dxdv — M(2)

strongly in L}, (R4) as e — 0T,
Proof. Going back to the proof of Proposition 2 (whose notations are kept in the
present discussion), we have seen that

F. = ZT’LFQ,E on Ry xRy x Z. x St

n>0
with the notation
Fo . (t,s,x,v) = 1t<575(§7v)1t<5cre_‘”fm(x —tv,v).
Since T® > 0 a.e. whenever ® > 0 a.e., the formula above implies that

F. SG::ZT"GQ a.e. in (t,s,z,v) € Ry x Ry x Z. x S,
n>0

where
Ga(t, s, x,0) = Licsoe 7 f" (z — tv,v).
Thus, G satisfies the integral equation

G=G2+ TG,
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meaning that G is the mild solution of

Oy +v-Vy+05)G =—0G, t,s>0, x €R?, |v| =1,
—+00

G(t,O,x,U)zo/ KG(t, s, z,v)ds, t>0, z€R?, || =1,
0

G(0,s,x,v) = f"(z,v)oe %, s>0, r€R?, Ju|=1.

Reasoning as in Proposition 2 shows that

+oo
g(t,z,v) == G(t,s,x,v)ds
0

is the solution of the linear Boltzmann equation
(Ot +v-Vy)g+o(g—Kg)=0, t>0, xeR?, [v|=1,
9(0,z,v) = f"(z,v), zeR2, u|=1.

In view of the assumption (11) bearing on ™, we know that

G>0aec onR, xRy xR? xS!

+oo
/ // G(t,s,z,v)dzdvds = // g(t, z,v)dzdv
0 R2 xSt R2 xS?t
= // i (x,v)dzdy
R2 xSt

and

for each t > 0.
Summarizing, we have

0<{F} <G

/// G(t,s,x,v)dsdxdv = // f(x,v)dedv < +00.
R4 xR2 xSt R2 xSt

Then we conclude as follows: for each R > 0, one has

+oo
// fe(t,z,v)dxdv —/ // F(t,s,z,v)dzxdvds
= xSt 0 R2xS?
—+oo
:/ / {F.}(t,s,x,v)dvdzds
0 |z|>R JSt

+ /O+OO /|m|§R /S1 ({F.} = F)(t,s,x,v)dvdzds

and

2105

+oo
_ / / (F}(t, 5,2, v)dvdwds = T (t) + [Tn.(t) + ITTa(t).
0 |z|>R JSt
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First, for a.e. ¢ > 0, the term Ir .(¢t) — 0 as R — 400 uniformly in € > 0 since
0<{F}<GandGe L®[R; L' (R, x R? x S1)).

Next, the term IIg.(t) — 0 strongly in Lj, (Ry) as ¢ — 0T for each R > 0 by
Lemma 4.

Finally, since {F.} — F in Lj (R x Ry x R? x S!) weak as ¢ — 0T, one has
0 < {F} <G sothat F € L*(Ry; L}*(R; x R? x S)). Hence the term ITIg(t) — 0
as R — +oo for a.e. t > 0.

Thus we have proved that

+oo
// fe(t, z,v)dxdv —>/ // F(t,s,z,v)dxdvds
- xSt 0 R2 xSt
in L}

ioc(R4) and therefore for a.e. t > 0, possibly after extraction of a subsequence of
e—0T. O

5.3. An integral equation for M. Given a function ¢ defined (a.e.) on the
half-line R, we abuse the notation ¥1r, to designate its extension by 0 on R* .
Henceforth we also denote

K(t) == p(t)oe™ 7" 1;>0.

LEMMA 6. The function M defined in (13) satisfies the integral equation

M(t) = k* (M1g,)(t) //R N f"(z,v)dzdv, t >0,
X

where * denotes the convolution on the real line.

Proof. We apply the same method as for deriving the explicit representation for-
mula for F' starting from the equation in Corollary 1 in order to find an exact formula
for m. Indeed, by the method of characteristics,

m(t,s) = ls<ip(s)e” 7°m(t — s,0) + 1t<sp(t)e*”tm(07 s—1)
= lsp(s)o *”S/ m(t — s,u)du

+1:csp(2) //2 ) f(x,v)dzdv .
R2 xS

The function m therefore satisfies

m(t,s) = ls<p(s)oe™ ”SM(L‘ —5)
25
(25) + 1i<sp(t) // i (x,v)dzdv .
R2 xSt

We next integrate both sides of (25) in s € Ry. By the definition (13) of M, we obtain

M(t) = /O op(s)e" Mt — s)ds + p(t)e_"t% / /R @ dedo

a.e. in t > 0, which is precisely the desired integral equation for M:

(26)  M(t) = /O K(S)M(t—s)ds—kﬁﬁs(t) / /R  P@o)dsde. 0
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5.4. An explicit representation formula for M. We first establish the fol-
lowing elementary representation formula for M.
LEMMA 7. Let M be the function defined in (13). Then

'LTL dd
27m_//]RzXSlf x,v) {E’UZFL

n>1
with the notation

K" =K% %K.
—_——

n factors

Proof. Observe that

+oo “+o0
/ k(t)dt = cr/ e “ip(t)dt
0 0

(27) .
=1 +/ p(t)e 7tdt < 1,
0

where the second equality results from integrating by parts the integral defining «
and the final inequality is implied by the fact that p is a C' decreasing function.

By Lemma 5, M € L}, .(R;) and M > 0 a.e. on R} since f- > 0 a.e. on Ry x Z x
S! because f* > 0 a.e. on R? x S!; see the positivity assumption in (11). Applying
Fubini’s theorem shows that

+oo —+oo —+oo
M(t)dt= / / (t—s) dsdt—|—— // i (x,v da:dv/ K(t)dt
0 2no R2xS!1
—+o0
= M( ) </ K(t — s)dt) ds —|— — // f(z,v da:dv/ k(t)dt.
0 s R2 xS!

In other words,

1 n
1Ml ey < IMIpr@oliele @y + 35— // [ (@, v)dedo
xea R2 xS1

so that M € L'(Ry) since ||k 1 (r,) < 1, and

T Mo
M < (x,v)dzdv .
H HLI(R+) = 271_0_(1 — ||K/HL1(R+)) R2 xSl f ( )

In particular, if
// i (z,v)dzdv = 0,
R2 xSt

then M = 0 a.e. on R, so that the representation formula to be established obviously

holds in this case.
// (2, v)dedv > 0;
R2xS?

Otherwise,
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define then

Y(t) := 2mo <// fm(x,v)dxdv> - M(t), t>0.
R2 xS1
According to Lemma 6, the function v verifies the integral equation
(28) P(t) = (kx (Y1r,))(t) + k() ae int>0.
Applying Fubini’s theorem as above shows that the linear operator
A: L'Ry) D fs rx (flg,) € LY(Ry)

satisfies
+oo
[AfllLiwyy < IANflloreyy  with [[Afl =/O K(t)dt < 1.

Therefore (1 — A) is invertible in the class of bounded operators on L'(R,) with
inverse

1-—A)t=>" A

n>0

In particular,

) = (I—A)_llQZZKJ*n

is the unique solution of the integral equation (28) in L!(R, ), which establishes the
representation formula in the lemma. a

5.5. Asymptotic behavior of M in the long time limit.

5.5.1. The characteristic exponent &,. The characteristic exponent govern-
ing the long time limit of the total mass is defined as follows.
LEMMA 8. For each o > 0,

/ Ue*(”ﬁ)tp(t)dt =1
0

with unknown & has a unique real solution £,. This solution &, satisfies
—0 <& <.

Proof. Consider the Laplace transform of the function s defined above:

ﬁm@yz/ e Tty dt.
0
As 0 < p <1, L[k] is of class C*! on | — 7, +00[, and

LlR)(E) = - / e O p(t)dt < 0

as p(t) > 0 for each ¢ > 0. The function L[] is therefore decreasing on | — o, +o0].
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For each t > 0,
k(t)e st - 01 as & — +oo,
while
k(t)e st < oe " foreacht >0
since 0 < p < 1. By dominated convergence, one concludes that
L[k](&) = 0T as € — +oc.
Besides, for each t > 0,
op(t)e T Y op(t)  asE | —oT.

By monotone convergence,
+o00
ﬁ[/{](&) — 0/ p(t)dt =400 as é’ 5 —ot.
0

(Notice that

+oo
/ p(t)dt = 400
0

follows from the lower bound in (8).)
By the intermediate value theorem, there exists a unique £, > —o such that

L[x](&) = 1.

Besides, &, < 0 as L[x] is decreasing, and

[e'e] +o00
L[K:](O):/O fi(t)dt</0 e tdt =1 = LK)(E)

which concludes the proof. O
In particular,

t k(t)e St

is a decreasing probability density on R .

5.5.2. The renewal equation. It remains to prove statement (3) in Theorem
2.

First, for each A € R and for each locally bounded measurable function f : R — R
supported in R, denote

fa(t) == eMf(t) for each t € R.
Notice that for each such f, g, we have

eM(f x g)(t) = (fr * gx)(t) for each t € R.
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Hence, if 9 is a solution of the integral equation (28), the function ¢_,, satisfies

(29) Vg, () = (g, ¥ g, )(8) + hg,

which is a renewal integral equation in the sense of [14].

Moreover, as noticed above, k_¢_ is a decreasing probability density on Ry, so
that, in particular, k_¢_ is directly Riemann integrable (see [14], pp. 348-349). Thus,
applying Theorem 2 on p. 349 in [14] shows that

1
/ tr(t)e S tdt
0

(30) P(t)e st — as t — +o00.

By definition of 4, this is precisely the asymptotic behavior of M in Theorem 2 (3).

5.6. Two important limiting cases for £,. We conclude our proof of Theo-
rem 2 with a discussion of the asymptotic behavior of &, (statement (4) of Theorem
2) in the two following regimes:

1. the collisionless regime o — 07, and
2. the highly collisional regime o — +o0.

End of the proof of Theorem 2. Denote, for the sake of simplicity, A\, := 0 + &,.
Establishing that £, ~ —o as ¢ — 0% amounts to proving that A\, = o(c). First notice
that, since —o < &,,

O0< Ao <o

s0 Ay — 07 as ¢ — 07. Keeping this in mind, we have
+oo 1
(31) / e p(t)dt = =
0 g
by definition of £,. Substituting z = A,t in the integral above, we obtain

“+o0
0< uld = / e “p (i> dz.
g 0 AU

Since Ay — 07 as ¢ — 07 and p(t) — 0T as t — +o0, one has p(z/)\,) — 0 as
o — 0. Besides, 0 < e *p(z/)\,) < e~ so that, by dominated convergence,

Ao
2 S50aso—0t.
g

This establishes the asymptotic behavior of £, in the collisionless regime.
As for the highly collisional regime, we return to (31) defining &, (written in terms
of A\y):

+oo
1= O’/ e Mlp(t)dt
0
)\g/ e_A"tp(t)dt—fg/ e_A"tp(t)dt
0 0

1+/ e**“tp(t)dt—gg/ e Atp(t)dt,
0 0
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where the last equality follows from integrating by parts the first integral on the
left-hand side. Therefore,

[ e

0

e 'p(t)d
fo= "o
/ e Atp(t)dt
0

or, after substituting ¢’ = A\,t,
o t
¢
— | dt
A ep(%)
o0 t *
—t
— | dt
A ep(%)

(31) shows that A\, — +00 as 0 — +o00. Passing to the limit in the right-hand side of
(32), we find, by dominated convergence,

(32) go =

¢y = S——— =p(0) as o — +o0.

Indeed, p is decreasing and convex, as can be verified, for instance, on the Boca—
Zaharescu [4] explicit formula? (9)—(10) for p so that

0<—p(t) <—p(0) foreacht>0.

We conclude by observing that the same explicit formulas of Boca—Zaharescu [4] imply
that

p(0)=-2. O

6. Final remarks and open problems. The present work provides a complete
description of the homogenization of the linear Boltzmann equation for monokinetic
particles in the periodic system of holes of radius €2 centered at the vertices of the
square lattice eZ? (Theorem 1.) In particular, we have given an asymptotic equivalent
of exponential type of the total mass of the particle system in the long time limit
(Theorem 2.)

Since the discussion in the present paper is restricted to the two-dimensional
setting, it would be useful to extend the results above to the case of higher space di-
mensions and to lattices other than the square or cubic lattice. Most of the arguments
considered here can be adapted to these more general cases; however, the analogue of
the distribution of free path lengths (the function p(t)) is not known explicitly so far.

Otherwise, it would also be interesting to investigate other scalings than the
Boltzmann-Grad type of scaling considered here—holes of radius €2 centered at the
vertices of a square lattice whose fundamental domain is a square of size ¢ in the case
of space dimension 2. Typically, one would like to mix the homogenization procedure

2In space dimension higher than 2, one can show that the analogue of p is also nonincreasing
and convex, by using a variant of a formula due to L.A. Santald established in [13], for want of an
explicit formula giving the limiting distribution of free path lengths.
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considered in the present work with the assumption of a highly collisional regime
o > 1 so that the size of the holes and the distance between neighboring holes are
scaled in a way that differs from the one considered here. We hope to return to this
problem in a forthcoming publication.

Another problem of potential interest is the case where the periodically distributed
holes considered in the present paper are replaced with scatterers, assuming that
particles are specularly reflected on the surface of each scatterer. In other words, the
problem (Z;) is replaced with

8tfa+v'vwfa+a(fa_Kfa):07 (x,’U)Enggl,t>0,
fe(t,x,v) = fo(t,z,0 — 2(v - ng)ng,v), (z,v) € 0Z. x St t >0,
f=(0,2,v) = fi(z,v), (x,v) € Z. x SL.

Assume for simplicity that f. is periodic with period 1 in z1,x2, while £ designates
the sequence of 1/n for each integer n > 1.

Most likely, the homogenized equation governing the vanishing e limit of f. should
involve an extended phase space, as in the case of the Boltzmann—Grad limit of the
periodic Lorentz gas [8, 25]. The structure of this homogenized equation should be such
that its solution converges to a constant state exponentially quickly in the long time
limit for each o > 0. However, while the limiting constant state is fully determined
by conservation of mass and is therefore independent of o > 0, the exponential decay
to that constant state is not expected to hold uniformly as ¢ — 0. Indeed, the case
o = 0 is precisely the Boltzmann—Grad limit of the periodic Lorentz gas governed by
(1), and according to Theorem 3.5 in [9], (1) does not have the spectral gap property.

Finally, the homogenization result considered in the present paper raises an inter-
esting question of quite general bearing. Usually, homogenization is a limiting process
leading to a macroscopic description of some material that is known at the microscopic
scale. In the problem considered here, it has been necessary to use a more detailed de-
scription of the particle system than that provided by the linear Boltzmann equation
(problem (Z.) set in the extended phase space that involves the additional variable

In other words, the formulation of the macroscopic homogenization limit for the
linear Boltzmann equation considered here involves remnants of an even more micro-
scopic description of the system than the linear Boltzmann equation itself, namely,
the extended phase space and the additional variable s.

We do not know whether this phenomenon (i.e., the need for a more microscopic
description of a system to arrive at the formulation of a homogenized equation for that
system) can be observed in homogenization problems other than the one considered
here—for instance, in the case of equations other than those found in the context of
kinetic theory.
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