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This paper reviews recent mathematical results on the half-space problem for the Boltz-
mann equation. The case of a phase transition is discussed in detail.
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1. PRESENTATION OF THE HALF-SPACE PROBLEM

Consider the steady state of a rarefied, monatomic gas in a half-space; by an
appropriate choice of coordinates, we assume that this half-space is

R3
+ := {(x, y, z) ∈ R3 | z ≥ 0} .

The state of the gas is described by its phase-space density (or velocity distribution
function)

F ≡ F(x, y, z, vx , vy, vz) ≥ 0

that is the density of particle located at the position (x, y, z) with the velocity
v = (vx , vy, vz) ∈ R3. Everywhere in this paper, we assume that the steady state
considered has slab-symmetry, meaning that the phase-space density is indepen-
dent of the variables x, y; however, it does depend on the variables vx , vy . In other
words,

F ≡ F(z, v), z ≥ 0, v = (vx , vy, vz) ∈ R3 . (1.1)
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The phase-space density F satisfies the Boltzmann equation, which, in the case of
slab-symmetry as above and in the absence of external forces (such as gravity),
reduces to

vz∂z F = B(F, F) , z > 0, v ∈ R3 , (1.2)

where B(F, F) is the Boltzmann collision integral. In the sequel, we shall assume
that the molecular interaction is well described by the hard-sphere model, meaning
that B(F, F) is of the form

B(F, F)(v) =
∫∫

R3×S2

(F ′F ′
∗ − F F∗)|(v − v∗) · ω|dv∗dω, (1.3)

by choosing a unit of length so that d2
m/2m is unity, where dm is the diameter of

a molecule and m is the mass of a molecule. In the formula (1.3), the notations
F∗, F ′ and F ′

∗ designate as usual F(v∗), F(v′) and F(v′
∗) respectively, where the

velocities v′ and v′
∗ are given in terms of v, v∗ and ω by the formulas

v′ = v − (v − v∗) · ωω,

v′
∗ = v∗ + (v − v∗) · ωω.

(1.4)

In order for the half-space Boltzmann equation (1.2) to define a unique
solution F , some boundary conditions must be prescribed at least at z = 0 and
also possibly at infinity (i.e. for z → +∞). As will be seen in our discussion
below, the boundary condition at z = 0 may in some cases (or may not) influence
the asymptotic behvior of F as z → +∞.

Another way of considering the same question is as follows. Assume the
gas is in thermal equilibrium at infinity, meaning that its phase space density is
a Maxwellian defined by its temperature θ∞ > 0, pressure p∞ > 0 and the flow
velocity of the gas u∞ ∈ R3. In the sequel, we denote this Maxwellian state

M(ρ∞,u∞,θ∞) = ρ∞
(2πθ∞)3/2

exp

(
−|v − u∞|2

2θ∞

)
, (1.5)

where the density ρ∞ is related to the pressure by the ideal gas law

p∞ = ρ∞θ∞ .

(Henceforth, the temperature is measured in units of energy, so that the specific
gas constant, or the Boltzmann constant divided by the mass of a molecule, is 1).
Thus, instead of discussing the influence of a given boundary condition at z = 0
on the state of the gas at infinity, one can equivalently seek all the boundary data
at z = 0 for which the problem (1.2) has a unique solution F satisfying

F(z, v) → M(ρ∞,u∞,θ∞) as z → +∞ . (1.6)

In our discussion of the half-space problem (1.2) we shall mainly consider the
latter formulation. If we think of (1.2) as a dynamical system with z being the time
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variable, this formulation is equivalent to seeking the stable manifold of a given
Maxwellian state at infinity. However, viewing (1.2) as a dynamical system is not
entirely appropriate, as we shall see below.

The interest for half-space problems such as (1.2) mainly stems from their
role in the asymptotic behavior of the solution of boundary-value problems of the
Boltzmann equation for small Knudsen numbers. That is, the solution of half-space
problems provides the boundary conditions for the fluid-dynamic-type equations
and Knudsen-layer corrections to the solution of the fluid-dynamic-type equations
in a neighborhood of the boundary (see Sone refs. 22 and 23). For that reason
alone, this subject has received a lot of attention, and problems such as (1.2)
are among the best documented of all steady problems involving the Boltzmann
equation. However, as we shall see below, there remain several fascinating open
questions in the theory of half-space problems such as (1.2). Carlo Cercignani
greatly contributed to that theory,(3,9,11) and formulated some of the remaining
open problems in this direction.(10) We offer him this modest contribution in
recognition of his leading role in the development of kinetic theory in the past
40 years.

2. NUMERICAL AND ASYMPTOTIC ANALYSIS OF THE PHASE

TRANSITION PROBLEM

2.1. Range of Existence of a Solution

The half-space problem (1.2) with (1.6) has only a trivial uniform solution
that accommodates the boundary wall when the wall is a simple boundary, where
the mass flux across the boundary vanishes, as given by Remark 2 in Sec.5. In the
case where the wall is made of the condensed phase of the gas and evaporation or
condensation takes place there, the range of the parameters where a steady (or time-
independent) solution exists shows an interesting feature. The problem is studied
analytically(20,26) and numerically (refs. 1, 2, 25, and 29, etc.). The numerical works
on the basis of the BKW equation3 and the complete condensation condition on
the wall clarify the comprehensive feature of the existence range of the solution.
The complete condensation condition at z = 0 is given by

F(z, v) = M(ρw,0,θw) = ρw

(2πθw)3/2
exp

(
−|v|2

2θw

)
(vz > 0), (2.1)

where θw is the temperature of the wall (or the condensed phase) and ρw is the
saturation gas density at temperature θw.

3 The BKW equation is a model equation introduced in refs. 6 and 34, where the collision term B of
(1.2) is simplified (see, e.g., ref. 22).
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For the convenience of explanation, p∞ and pw (= ρwθw) will be used
instead of ρ∞ and ρw, and the components of the flow velocity u∞ at infinity are
indicated by (ux∞, uy∞, uz∞). The component uy∞ can be put zero without loss
of generality. The Mach numbers Mn∞ and Mt∞ with sign, corresponding to uz∞
and ux∞, are defined by

Mn∞ = uz∞

/ (
5

3
θ∞

)1/2

, Mt∞ = ux∞

/ (
5

3
θ∞

)1/2

. (2.2)

The basic equation and boundary condition being expressed in properly chosen
non-dimensional variables, the boundary-value problem is found to be character-
ized by the four parameters Mn∞, Mt∞, p∞/pw, and θ∞/θw.

The problem is first studied as a time-evolution problem of the Boltzmann
equation with time-derivative term for a large number of initial and boundary data.
From detailed investigation of the long-time behavior of the solutions, we found
that the time-independent solution exists only in a limited range of parameters
Mn∞, Mt∞, p∞/pw, and θ∞/θw. Then, on the basis of a further larger number of
solutions, the range of the parameters where a time-independent solution exists is
determined. The result is summarized in the rest of this subsection.

When Mn∞ ≥ 0, a solution exists when and only when the parameters satisfy
the relations

p∞/pw = h1(Mn∞), θ∞/θw = h2(Mn∞), Mt∞ = 0 (0 ≤ Mn∞ ≤ 1),

(2.3)

where h1(Mn∞) and h2(Mn∞) are decreasing functions of Mn∞ with h1(0) =
h2(0) = 1. No solution exists for Mn∞ > 1. The solution is determined only by
the parameter Mn∞, and it is a subsonic or sonic evaporating flow or the uniform
equilibrium state at rest with pressure pw and temperature θw.

When Mn∞ < 0, the character of the solution is classified into two cases. If
−1 < Mn∞ < 0 (a subsonic condensing flow), a solution exists when and only
when the parameters satisfy the condition

p∞/pw = Fs(Mn∞, |Mt∞|, θ∞/θw), (2.4)

where Fs is a decreasing function of Mn∞ with Fs(0−, |Mt∞|, θ∞/θw) = 1 (see
Fig. 1).4 The solution is determined by the three parameters Mn∞, |Mt∞|, and
θ∞/θw with trivial difference for positive or negative Mt∞. If Mn∞ ≤ −1 (a
supersonic condensing flow), a solution exists when the parameters satisfy the

4 According to direct simulation Monte-Carlo computation for a hard-sphere gas for |Mt∞| = 0 and
θ∞/θw = 0.5, 1, and 2 (Sone-Sasaki [unpublished]), the relative differences of its data p∞/pw from
that of the BKW model are less than 1% except in the range −0.9 ≥ Mn∞ > −1 at θ∞/θw = 0.5,

where the differences are bounded by 5%.
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Fig. 1. A diagram of the range of existence of the solution of a condensing flow. The section θ∞/θw =
const. and Mt∞ = const. of the parameter space (Mn∞, Mt∞, p∞/pw, θ∞/θw) where the solution
exists is shown. A solution exists on the surface p∞/pw = Fs (Mn∞, |Mt∞|, θ∞/θw) and in the region
p∞/pw ≥ Fb(Mn∞, |Mt∞|, θ∞/θw), where the equal sign is applied only to the case Mn∞ = −1. A
supersonic Knudsen-layer-type solution exists on the surface p∞/pw = Fes (Mn∞, |Mt∞|, θ∞/θw).

inequality

p∞/pw > Fb(Mn∞, |Mt∞|, θ∞/θw) (Mn∞ < −1),

p∞/pw ≥ Fb(−1, |Mt∞|, θ∞/θw),
(2.5)

where Fb is an increasing function of Mn∞ (see Fig. 1). That is, we can choose all
the four parameters as long as they satisfy the above inequality. The two functions
Fs and Fb approach the same limit as Mn∞ approaches −1 from their regions:

lim
Mn∞→−1+

Fs(Mn∞, |Mt∞|, θ∞/θw) = lim
Mn∞→−1−

Fb(Mn∞, |Mt∞|, θ∞/θw). (2.6)

Further, a point on p∞/pw = Fb(Mn∞, |Mt∞|, θ∞/θw) is related to some point
on p∞/pw = Fs(Mn∞, |Mt∞|, θ∞/θw) by the Rankine–Hugoniot relation of a
plane shock wave or the shock condition.(13)

The bounds of the functions h1, h2 , Fs, and Fb are discussed in Sone-
Takata-Sugimoto,(31) Bobylev-Grzhibovskis-Heinz,(7) and Sone-Takata-Golse(30)

(see also Sone ref. 22).
The half-space problem, linear or nonlinear, plays an important role in

the asymptotic behavior of the solution of the boundary-value problem of the
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Boltzmann equation for small Knudsen numbers. That is, its solution gives
the boundary condition for the fluid-dynamic-type equations derived from the
Boltzmann equation and the Knudsen-layer correction to the solution of the fluid-
dynamic-type equations in a neighborhood of the boundary. Its detailed discussion
is given in refs. 22 and 23. Here, we only mention the role of the result of the non-
linear half-space problem summarized in this subsection. Consider a gas around
its condensed phase where evaporation or condensation of a finite Mach number is
taking place. The behavior of the gas (or the solution of the Boltzmann equation)
in the limit that Knudsen number vanishes is given by the solution of the Euler
equations whose boundary condition on the interface is given by (2.3), (2.4), or
(2.5) where the values with subscript ∞ are taken as the boundary values of the
corresponding variables in the Euler equations.

2.2. Structure of Bifurcation of a Solution

The dimension of the range of existence of a solution in the parameter
space (Mn∞, Mt∞, p∞/pw, θ∞/θw) increases by two5 on the transition from the
evaporating flow to the subsonic condensing flow and increases by one on the
transition from the subsonic condensing flow to the supersonic condensing flow.
Analytical structure of the bifurcation of a solution is studied in Sone(20) for the
former transition and in Sone-Golse-Ohwada-Doi(26) for the latter (see also Sone
refs. 21 and 23). These are studied on the basis of the standard Boltzmann equation
as well as the BKW equation.

The transition from evaporation (Mn∞ > 0) to condensation (Mn∞ < 0) is
studied by a perturbation analysis to the uniform state F(z, v) =M(ρw,0,θw). Putting
F(z, v) =M(ρw,0,θw)(1 + φ), we consider that φ is small, i.e., φ = O(|Mn∞|) with
|Mn∞| 
 1. The linearized problem where the second and higher-order terms in
|Mn∞| are neglected is studied mathematically (e.g., Bardos-Caflisch-Nicolaenko,
ref. 5,6 Golse-Poupaud, ref. 16; see Sec. 3) and numerically (e.g., ref. 28 for the
BKW model, ref. 27 for a hard-sphere gas). The solution of the linearized problem
is determined only by the parameter Mn∞ irrespective of the sign of Mn∞, as will
be discussed in the next section. For the original nonlinear Boltzmann equation,
the situation is entirely different, however small |Mn∞| may be.

The boundary condition on the condensed phase being put aside, the nonlinear
Boltzmann equation has a slowly varying solution whose length scale of variation
is 1/|Mn∞| for small |Mn∞|.7 The nontrivial leading term of the slowly varying

5 Three if we count ux∞ and uy∞ independently.
6 The theorem proved in ref. 5 is conjectured by Grad.(17)

7 (i) Let a characteristic density of the gas be taken unity, i.e., mn = 1, where n is the corresponding
number density of the molecules of the gas. Then, nd2

m/2 = 1, since d2
m/2m is taken to be unity just

after (1.3) by the choice of the unit length. That is, 2/nd2
m , which is of the order of the mean free path,



Half-Space Problems for the Boltzmann Equation: A Survey 281

solution is a local Maxwellian. The parameters of the local Maxwellian, i.e.,
density ρ (or pressure p), flow velocity u = (ux , uy, uz), and temperature θ,

are determined by the incompressible Navier–Stokes equations with their energy
equation being a little modified (i.e., internal energy or thermal conductivity
being multiplied by 5/3 or 3/5).8 Thus, for the case of condensation (uz∞ < 0
or Mn∞ < 0), there is a non-trivial bounded solution in the half-space owing to
the convection effect of flow blowing toward the condensed phase. For a given set of
the macroscopic variables at z = 0, we can choose the parallel velocity component
(or the velocity component parallel to the condensed phase) and temperature at
infinity arbitrarily.

In view of the properties of the solution of the linearized problem and the
slowly varying solution,9 we can construct the solution of the condensation prob-
lem. That is, the pressure, flow velocity, and temperature at infinity of the lin-
earized problem are taken as those at z = 0 of the slowly varying solution. Then,
the two solutions are continuously connected at the level of the velocity distribution

is chosen as the unit of length in the Boltzmann equation (1.2) with (1.3). Thus, the natural length
scale of variation of the variables in the half-space problem of the Boltzmann equation (1.2) is the
mean free path, since there is no geometric characteristic length. This property applies to the standard
Boltzmann equation in general, including the BKW equation, as well as the Boltzmann equation (1.2)
with (1.3) for a hard-sphere gas. Thus, the statement that the length scale of variation of a variable
is of the order of unity means that the variable makes an appreciable change over the mean free path.
When the length scale of variation is of the order of 1/|Mn∞|, the nonlinear term of the order of φ2 is
of the same order as the space-derivative term ∂zφ, since φ = O(|Mn∞|) and ∂z(∗) = O(|Mn∞|∗).
Incidentally, for clearer physical discussion, a systematic system of non-dimensional variables as in
ref. 22 or 23 should be introduced.
(ii) The spatial coordinate z being scaled by 1/|Mn∞|, i.e., Z = z|Mn∞|, the collision term B(F, F)
is relatively multiplied by 1/|Mn∞| in the Boltzmann equation (1.2) with the new variable Z . Then, the
solution is looked for in a power series of |Mn∞| with the additional assumption that the perturbation of
F from a uniform state at rest is of the order of |Mn∞|. This is a special class of the Hilbert solution(18)

with |Mn∞| as the Knudsen number and with the perturbation from a uniform state at rest of the
order of |Mn∞|.(20,22,23) The solution thus obtained is the slowly varying solution. Obviously from
the above explanation, the nontrivial leading term of the solution is a local Maxwellian. Incidentally,
there is a slowly varying solution with small |Mn∞| but with a finite temperature variation, for which
the connection analysis similar to that to be explained for the preceding case can be carried out, and the
solution with small |Mn∞| but finite |θ∞/θw − 1| of the half-space problem can be constructed.(21,22)

8 The stress is given by an isotropic tensor or pressure and the heat flow vanishes for a Maxwellian. This
does not mean that the governing equations for the macroscopic variables are the Euler equations. A
little careful examination of the order of the terms in the conservation equations is required in view
of the size of the perturbations and the length scale of variation of the variables. Incidentally, the
gas is not incompressible, but the flow velocity is determined by the incompressible Navier–Stokes
equations for small Mach numbers and small temperature variations. The difference of the energy
equation is due to the work done by pressure, which is a compressibility effect. See the discussion in
refs. 22 and 23.

9 In the region where the length scale of variation of the solution is of the order of unity, the solution
of the linearized Boltzmann equation is the leading-order solution.
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function.10 The temperature and parallel velocity component at infinity in the re-
sulting solution can be chosen arbitrarily. Thus, we obtain a solution with more
freedom than the evaporating solution.

We have seen that existence of a slowly varying solution plays an important
role for the jump of the dimension of the range of existence of a solution. Looking
for a slowly varying solution around other states, we find it around the point
where the normal velocity uz is sonic, i.e., |uz|/( 5

3θ )1/2 = 1.11 The slowly varying
condensing solution (uz < 0) bounded in a half space is of two kinds: one is a weak
shock wave solution (Caflisch-Nicolaenko,(8) Grad,(17) Liu-Yu(19)) and the other
is a supersonic accelerating flow, in both of which the length scale of variation of
the solution is 1/|Mn∞ + 1|, where |Mn∞ + 1| is small, and the parallel velocity
component is uniform; the flow field with nonzero parallel velocity component
is given by parallel translation of the field with zero parallel velocity component.
Nontrivial leading terms of these solutions are expressed by local Maxwellians, and
the parameters p, uz, and θ in the Maxwellians are determined by the compressible
Navier–Stokes equations for small variations of flow velocity and temperature
around a sonic condition.12 The pressure p and temperature θ of these solutions
are expressed parametrically with Mach number Mn, defined by Mn = uz/( 5

3θ )1/2,

as13

p

p∞
= 1 + 5

4
(Mn − Mn∞),

θ

θ∞
= 1 + 1

2
(Mn − Mn∞). (2.7)

The slowly varying solutions expressing a flow in the −z direction exist only for
Mn∞ < −1, and Mn ranges in the domain

Mn∞ ≤ Mn ≤ −Mn∞ − 2 (weak shock wave),

Mn ≤ Mn∞ (supersonic accelerating flow).
(2.8)

10 The effect of the derivative of slowly varying solution enters the next-order solution.
11 Take a uniform state, i.e., a uniform Maxwellian (say, FE ). Consider a slowly varying solution

whose deviation from FE is small, i.e., F = FE (1 + εϕ), where ε is a small parameter and ϕ is
the perturbed solution of the order of unity, and whose length scale of variation is of the order of
1/ε, i.e., ∂ϕ/∂z = O(εϕ). The coordinate z being scaled by 1/ε, the solution ϕ is looked for in a
power series of ε by a similar analysis to that explained in (ii) of Footnote 7. A nontrivial solution
exists only when FE is a Maxwellian at rest or at sonic condition. The former is the preceding case
with small |Mn∞|, for which ε = |Mn∞|. For the latter, ε = |Mn∞ ± 1| depending on Mn∞ >< 0.
See refs. 21, 23 or 26 or for the details.

12 See the first three sentences in Footnote 8.
13 This is the same as what is obtained in an isentropic flow for small |Mn − Mn∞|. This is naturally

understood, since the entropy variation through a weak shock wave is of the third order of the strength
(or the pressure jump) of the shock wave.
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It may be noted that the solutions can be shifted arbitrarily in the z direction and
that Mn∞ and −Mn∞ −2 in the weak shock wave are the values of Mn at the
upstream and downstream infinities related by the shock condition.

The solution whose length scale of variation with respect to z is of the order
of unity14 is studied in detail numerically. The solution exists on the hypersur-
face p∞/pw = Fs(Mn∞, |Mt∞|, θ∞/θw) in (Mn∞, Mt∞, p∞/pw, θ∞/θw) space
for −1 < Mn∞ < 0 (Fig. 1), and it approaches its uniform state at infinity ex-
ponentially. Further, the same type of solution (i.e., a solution with length scale
of variation of the order of unity and exponential approach to the state at infin-
ity) exists on a hypersurface p∞/pw = Fes(Mn∞, |Mt∞|, θ∞/θw) for Mn∞ ≤ −1
(Fig. 1), where the function Fes(Mn∞, |Mt∞|, θ∞/θw) is a smooth extension of
Fs(Mn∞, |Mt∞|, θ∞/θw) and a decreasing function of Mn∞.(21,26) We will call
these solutions (subsonic or supersonic) Knudsen-layer-type solutions.

The nontrivial leading term of the slowly varying solution being local
Maxwellian, the two kinds of solutions, the Knudsen-layer-type solution and the
slowly varying solution, are continuously connected at the level of the velocity
distribution function by connecting the macroscopic variables, at infinity for the
former and at z = 0 for the latter,15 in the Maxwellians of the two solutions. Let
us rewrite (2.7) in the following form:

p∞
pw

= p

pw

[
1 − 5

4
(Mn − Mn∞)

]
,

θ∞
θw

= θ

θw

[
1 − 1

2
(Mn − Mn∞)

]
, (2.9)

where pw and θw are inserted for the convenience of the following explanation.
The expression gives the values p∞ and θ∞ at infinity with the parameter Mn∞
when the variables p, θ, and Mn on a point of a slowly varying solution are given.
The range of Mn∞ is

Mn ≤ Mn∞ < −1 (Mn on a supersonic accelerating flow),

Mn∞ ≤ Mn ≤ −1 (Mn on the supersonic part of a shock wave),

Mn∞ ≤ −2 − Mn ≤ −1 (Mn on the subsonic part of a shock wave). (2.10)

Let a Knudsen-layer-type solution be given. Its parameters determined by the
variables at infinity are denoted in parentheses with subscript K as (Mn∞)K ,

(Mt∞)K , (p∞/pw)K , and (θ∞/θw)K . The (Mn∞)K , (p∞/pw)K , and (θ∞/θw)K are,
respectively, chosen as Mn, p/pw, and θ/θw in (2.9).16 Then, the connection of the

14 See Footnote 7 (i).
15 By the freedom of shift of the slowly varying solution mentioned above, any point along the solution

can be positioned at z = 0.
16 According to Footnote 15, the state can be put at z = 0.
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Knudsen-layer-type solution and the slowly varying solution is completed.17 The
connected solution forms a one-parameter family of solutions with the parameter
Mn∞ in the range (2.10) with Mn = (Mn∞)K . It goes without saying that (Mn∞)K

and Mn∞ (< −1) have to be close to −1.

From the above discussion, the solution exists when the parameters Mn∞,

Mt∞, p∞/pw, and θ∞/θw satisfy

p∞
pw

=
(

p∞
pw

)
K

{
1 − 5

4
[(Mn∞)K − Mn∞]

}
, (2.11a)

θ∞
θw

=
(

θ∞
θw

)
K

{
1 − 1

2
[(Mn∞)K − Mn∞]

}
, (2.11b)

Mt∞(θ∞/θw)1/2 = (Mt∞)K ((θ∞/θw)K )1/2, (2.11c)

where the relation (2.11c) corresponds to ux ∞ = (ux∞)K ,18 and the parameters
(Mn∞)K , (Mt∞)K , (p∞/pw)K , and (θ∞/θw)K of the Knudsen-layer-type solution
are on the hypersurface Fs or Fes, i.e.,

(p∞/pw)K = FS((Mn∞)K , (|Mt∞|)K , (θ∞/θw)K ), (2.12)

with

FS = Fs((Mn∞)K , (|Mt∞|)K , (θ∞/θw)K ) for (Mn∞)K > −1,

= Fes((Mn∞)K , (|Mt∞|)K , (θ∞/θw)K ) for (Mn∞)K ≤ −1. (2.13)

We have a free parameter, i.e., Mn∞, in addition to (Mn∞)K , (θ∞/θw)K , and
(|Mt∞|)K in the formulas (2.11a)–(2.13). That is, the dimension of the range of
existence of a solution of the condensing flow increases by one by transition from
a subsonic solution to a supersonic one. According to (2.10), the range of the
parameter Mn∞ is

(i) Mn∞ ≤ −1 for (Mn∞)K ≤ −1,

(i-a) (Mn∞)K ≤ Mn∞ ≤ −1 (accelerating flow),

(i-b) Mn∞ ≤ (Mn∞)K (weak shock wave),

(ii) Mn∞ < −2 − (Mn∞)K < −1 for (Mn∞)K > −1. (2.14)

The range of existence of a solution with a supersonic accelerating flow or
a supersonic part of a shock wave as its slowly varying part extends from the hy-
persurface p∞/pw = Fes(Mn∞, |Mt∞|, θ∞/θw) in (Mn∞, Mt∞, p∞/pw, θ∞/θw)

17 Naturally, trivial connection (ux∞)K = ux (= const.) of the slowly varying solution is made. The
choice of ux does not affect the other variables in the slowly varying solution.

18 Note that the parallel velocity is uniform in the slowly varying solution.
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space. That is, in view of (2.11a) and (i-a,b) in (2.14), the range of existence of
a solution with a part of a supersonic accelerating flow extends to the side closer
to Mn∞ = −1 and higher p∞/pw, and that of a solution with a supersonic part
of a shock wave extends to the side farther from Mn∞ = −1 and lower p∞/pw.

In view of (2.11a) and (ii) in (2.14), the range of existence of a solution with
a subsonic part (and the full supersonic part) of a weak shock wave extends in
Mn∞ < −2 − (Mn∞)K , i.e., from Mn∞ = −2 − (Mn∞)K to the side farther from
Mn∞ = −1 and lower p∞/pw. The boundary Mn∞ = −2 − (Mn∞)K corresponds
to the second equal sign of the relation for a weak shock wave in (2.8), that is,
(Mn∞)K corresponds to the downstream infinity of the shock wave. When the
connection of the two solutions are made here, the profile or nonuniform part
of the weak shock wave shifts upstream infinity and disappears from the flow
field. Thus, it is excluded from the range of existence of a solution. A point
on the hypersurface p∞/pw = Fb(Mn∞, |Mt∞|, θ∞/θw) is related to a point on
p∞/pw = Fs(Mn∞, |Mt∞|, θ∞/θw) by the Rankine-Hugoniot relation. From the
way of its determination, it is easily seen that the shape of the boundary Fb is due
to the dependence of the speed of propagation of a shock wave (nonlinear wave)
on its amplitude or pressure ratio. In the linear theory by Coron-Golse-Sulem(12)

to be explained in Sec. 3, the boundary is given by Mn∞ = −1.
The case where |Mn∞ + 1| 
 1 and |(Mn∞)K + 1| 
 1 being considered

here, the range given by (2.11a)–(2.13) can be simplified. The free parameters
(Mt∞)K and (θ∞/θw)K in (2.12) for (p∞/pw)K are expressed with Mt∞, θ∞/θw,

and (Mn∞)K − Mn∞ with the aid of (2.11b) and (2.11c). These relations be-
ing substituted into (2.11a), p∞/pw is expressed with Mn∞, |Mt∞|, θ∞/θw,

and (Mn∞)K .19 Neglecting the second and higher-order terms of |Mn∞ + 1| and
|(Mn∞)K + 1| in this expression, we obtain the following formula for the range of
existence of a supersonic condensing flow:20

p∞
pw

= FS +
(

5

2
FS − ∂ FS

∂a1
+ |Mt∞|

2

∂ FS

∂a2
− θ∞

θw

∂ FS

∂a3

)
(Mn∞ + 1)

+
(

5

4
FS − ∂ FS

∂a1
+ |Mt∞|

4

∂ FS

∂a2
− θ∞

2θw

∂ FS

∂a3

)
t,

t = −(Mn∞)K − Mn∞ − 2 > 0, Mn∞ < −1, (2.15)

where t is a positive free parameter, ∂ FS/∂ai is the partial derivative with respect
to the i-th argument of FS, and the three arguments of FS and ∂ FS/∂ai ’s are,
commonly, −1, |Mt∞|, and θ∞/θw in their order, e.g., FS(−1, |Mt∞|, θ∞/θw).
If the sign of the quantity in the parentheses of the last term is positive, which

19 In addition to (Mn∞)K − Mn∞ in the relations, the variable (Mn∞)K is contained in FS in (2.12).
20 In this analysis, it is assumed that Fs and Fes are smoothly connected, i.e., FS is smooth, which is

confirmed for the BKW model numerically.



286 Bardos, Golse, and Sone

is confirmed for the BKW model numerically, the range is given by p∞/pw >

FS + (· · ·)(Mn∞ + 1), as shown in Fig. 1. The boundary function Fb of the range
is given by

Fb = FS +
(

5

2
FS − ∂ FS

∂a1
+ |Mt∞|

2

∂ FS

∂a2
− θ∞

θw

∂ FS

∂a3

)
(Mn∞ + 1), (2.16)

where the arguments of FS and ∂ FS/∂ai are the same as in (2.15).

2.3. Supplementary Notes

The above results are for the complete condensation boundary condition. The
results are extended to a more general boundary condition given by

F(z, v) = M(αcρw+(1−αc)σw,0,θw) (vz > 0) at z = 0,

σw = −
(

2π

θw

)1/2 ∫
vz<0

vz F(0, v)dv,

where αc is a constant (0 < αc ≤ 1) called the condensation coefficient (see refs.
22 and 23). When Mn∞ ≥ 0 (an evaporating flow), the character of the solu-
tion is the same as that for the complete condensation condition, that is, the
solution is determined by one parameter, e.g., Mn∞. When Mn∞ < 0 (a condens-
ing flow), the character of the solution is subject to some change. The diagram
p∞/pw = Fs(Mn∞, |Mt∞|, θ∞/θw) and p∞/pw > Fb(Mn∞, |Mt∞|, θ∞/θw) re-
mains qualitatively unchanged when the condensation coefficient αc (≤ 1) is larger
than some value (αc > αcr

c ). For αc ≤ αcr
c , Fs → ∞ as Mn∞ → −c1+ (c1 ≤ 1)

and Fb → ∞ as Mn∞ → −c2− (c2 ≥ 1), where c1 and c2 are determined by αc,

θ∞/θw, and |Mt∞|. There is a band region c1 ≤ − Mn∞ ≤ c2 where no solution
exists when αc ≤ αcr

c (see Fig. 2).21

A similar result is obtained when there is some non-condensable gas in the
gas (Sone-Aoki-Doi(24)). In the evaporating flow, the non-condensable component
is blown off up to infinity and disappears from the flow field. In the condensing
flow, the diagram of the range of existence of a solution is qualitatively similar
to that for αc > αcr

c (or without a non-condensable gas) when the amount of the
non-condensable gas is smaller than some value; and the diagram is similar to that

21 The above result is derived under the assumptions on Fs and Fb for the complete condensation
condition that −Mn∞ Fs is a decreasing function and −Mn∞ Fb is an increasing function with
respect to Mn∞ in Mn∞ < 0 and that the relation (2.6) holds, which are confirmed for the BKW
model numerically. Then, Fs (Mn∞ = −1+) and Fb(Mn∞ = −1−) commonly diverge to +∞ as
αc → αcr

c+. Thus, c1 = c2 = 1 at αc = αcr
c and no solution exists at Mn∞ = −1. Even without the

above assumptions, there appears a band region or regions where no solution exists in both the
subsonic and supersonic regions as αc decreases.
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Fig. 2. The diagram of the range of existence of the solution of a condensing flow for a generalized
boundary condition. (a) αc > αcr

c and (b) αc ≤ αcr
c . The dashed lines in panel (b) are the asymptotes

of Fs and Fb. No solution exists in c1 ≤ −Mn∞ ≤ c2 when αc ≤ αcr
c .

for αc ≤ αcr
c , i.e., there is a band region without a solution around Mn∞ = −1,

when the amount is larger than that value.

3. THE LINEARIZED THEORY

In this section, we choose units of pressure and temperature so that p∞ = 1
and θ∞ = 1, so that the condition at infinity (1.6) becomes

F(z, v) → M(1,u∞,1)(v) as z → +∞ . (3.1)

Next, we assume that the deviation of the phase-space density from the Maxwellian
at infinity is so small that it becomes legitimate to replace (1.2) with its linearization
at the Maxwellian state at infinity. Also, we change the velocity variable v into ξ

defined by

ξ = v − u∞ (3.2)

and we normalize the linearization of the Boltzmann collision integral by setting

F(z, v) = M(1,0,1)(v − u∞)(1 + f (z, v − u∞)) .

Furthermore, we henceforth use the short-hand notation

M(ξ ) = M(1,0,1)(ξ ) .

The linearization of (1.2) at the Maxwellian state at infinity in these new variables
becomes

(ξz + uz∞)∂z f + L f = 0 , z > 0 , ξ ∈ R3 , (3.3)
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where L is the linearization at M of the Boltzmann collision integral, defined as

L f (v) =
∫∫

R3×S2

( f + f∗ − f ′ − f ′
∗)|(v − v∗) · ω|M∗dv∗dω. (3.4)

The condition at infinity (1.6) becomes

f (z, ξ ) → 0 as z → +∞, ξ ∈ R3. (3.5)

We shall restrict our attention to the linearization at M of the class of boundary
conditions at z = 0 considered in the previous section, i.e.

f (0, ξ ) = fb(ξ ) , ξz + uz∞ > 0 . (3.6)

For instance, consistently with the discussion in the previous section, one could
consider as boundary data

fb(ξ ) = 1

M(ξ )

(
M(ρw,−u∞,θw)(ξ ) − M(ξ )

)
,

or the linearization thereof

fb(ξ ) = (ρw − 1) − u∞ · ξ + (θw − 1)
1

2
(|ξ |2 − 3).

Before going further, we recall some basic facts on the linearized operator L,
that are due to Hilbert.(18) The linearized collision integral L is an unbounded,
self-adjoint Fredholm operator on L2(R3, Mdξ ), with domain

D(L) = L2(R3; (1 + |ξ |2)Mdξ ),

and nullspace

kerL = span{1, ξx , ξy, ξz, |ξ |2}.
Let � be the orthogonal projection on kerL in L2(R3; Mdξ ), Hilbert’s results imply
that one has a spectral gap estimate for L, i.e. there exists a positive constant c0

such that, for each φ ∈ D(L)∫
R3

φLφMdξ ≥ c0

∫
R3

(φ − �φ)2 Mdξ.

(Recently, Baranger-Mouhot proved this inequality by a constructive argument
that avoids Hilbert’s compactness method and provides an explicit formula for c0).
An elementary—but important—observation by Bardos-Caflisch-Nicolaenko in
ref. 5 says that the spectral gap estimate above can be strengthened into∫

R3

φLφMdξ ≥ c0

∫
R3

(φ − �φ)2 (1 + |ξ |)Mdξ. (3.7)
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Bardos-Caflisch-Nicolaenko studied the case uz∞ = 0 in ref. 5 and proved
the following result.

Theorem 3.1. Let fb ≡ fb(ξ ) be any measurable function such that∫
ξz>0

fb(ξ )2(1 + |ξ |)M(ξ )dξ < +∞ .

Then, the problem (3.3)–(3.6) has a unique solution f ≡ f (z, ξ ) that belongs to
L∞(R+; L2(R3, (1 + |ξ |)Mdξ )) and has zero mass-flux:∫

R3

ξz f (z, ξ )Mdξ = 0 . (3.8)

Furthermore, this solution has the following asymptotic behavior at infinity: there
exists a unique q∞ ∈ span{1, ξx , ξy, |ξ |2} such that

eγ z( f (z, ξ ) − q∞(ξ )) ∈ L∞(R+; L2(R3, (1 + |ξ |)Mdξ )).

for all small enough γ > 0.

For instance, if

fb(ξ ) = (ρw − 1) − u∞ · ξ + (θw − 1)
1

2
(|ξ |2 − 3),

then the function

g(z, ξ ) = (ρw − 1) − u∞ · ξ + (θw − 1)
1

2
(|ξ |2 − 3)

is a trivial solution of (3.3) that satisfies the boundary condition (3.6). However,
it does not satisfy the condition (3.8). Instead, the theorem above gives the exis-
tence of a function f that satisfies (3.3)–(3.8), and converges as z → +∞ to an
infinitesimal Maxwellian of the form

q∞(ξ ) = a∞ + c∞
1

2
(|ξ |2 − 3),

where the numbers a∞ and c∞ are (nonexplicit) linear functionals of the boundary
data fb.

The case of an arbitrary uz∞ has a richer structure, that was conjectured by
Cercignani.(10)

Following Bardos-Caflisch-Nicolaenko,(10) we consider the quantity

Q[uz∞](φ) =
∫

R3

(ξz + uz∞) φ (ξ )2 M(ξ ) dξ. (3.9)
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This quantity is the second order term in the expansion of the flux of Boltzmann’s
H function ∫

R3

(ξz + uz∞)F(ξ ) ln F(ξ ) dξ

near F = M . More precisely, setting F = M(1 + f ), one has∫
R3

(ξz + uz∞)F(ξ ) ln F(ξ ) dξ =
∫

R3
(ξz + uz∞) M(ξ ) ln M(ξ ) dξ

+
∫

R3
(ξz + uz∞)(ln M(ξ ) + 1) f (ξ )M(ξ ) dξ

+1

2
Q[uz∞]( f ) + O( f 3).

Since kerL = span{1, ξx , ξy, ξz, |ξ |2} and L is a self-adjoint operator on
L2((R3; Mdv), one has

d

dz

∫
R3

(ξz + uz∞)




1
ξx

ξy

ξz

|ξ |2


 f (z, ξ )M(ξ ) dξ = 0. (3.10)

Since ln M(ξ ) + 1 ∈ span{1, ξx , ξy, ξz, |ξ |2}, the relations (3.10) entail

d

dz

∫
R3

(ξz + uz∞)(ln M(ξ ) + 1) f (z, ξ )M(ξ ) dξ = 0.

Since L is a nonnegative operator on L2((R3; Mdv), one has

d

dz
Q[uz∞]( f ) = −

∫
R3

f (z, ξ )L f (z, ξ )M(ξ ) dξ ≤ 0. (3.11)

That Q[uz∞]( f ) is nonincreasing (3.11) clearly has interesting implications if we
know a priori that this quantity is bounded from below. In this case, Q[uz∞]( f )
is a Lyapunov function for the linearized half-space problem under considera-
tion, and has important implications on its stability. Since Q[uz∞] is a quadratic
form, knowing that it is bounded from below is equivalent to knowing that it
is a priori nonnegative. Furthermore, we expect that f (z, ·) approaches kerL as
z → +∞, so that it is enough to know a priori that the restriction of Q[uz∞]
to the finite dimensional subspace kerL is bounded from below. On the other
hand, the invariance relations (3.10) constrain the projection of f on kerL
as z → +∞.

A complete classification of the linearized half-space problem (3.3) was
conjectured by Cercignani in ref. 10, and eventually proved by Coron-Golse-
Sulem in ref. 12. Their result is summarized in the following.
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Theorem 3.2. For each uz∞ ∈ R, call

V+[uz∞] = {V linear subspace of kerL | Q[uz∞]
∣∣
V

≥ 0}.
Let V be a maximal element of V+[uz∞] and pick an arbitrary l ∈ kerL.

For each measurable boundary data fb ≡ fb(ξ ) such that∫
ξz>0

fb(ξ )2(1 + |ξ |)M(ξ ) dξ < +∞,

there exists a unique q ∈ V and a unique solution f of the problem (3.3)–(3.6) in
L∞(R+; L2(R3, Mdξ )) with the following asymptotic behavior as z → +∞:

eγ z( f (z, ξ ) − q(ξ ) − l(ξ )) ∈ L∞(R+; L2(R3, (1 + |ξ |)Mdξ ))

for each small enough γ > 0.
Moreover, this solution satisfies∫

R3

(ξz + uz∞) f (z, ξ )φ(ξ )M(ξ ) dξ = 0, z > 0,

for each φ in the radical22 of Q[uz∞].

The following basis of kerL is orthonormal for the L2(R3; Mdξ ) inner prod-
uct and orthogonal for the quadratic form Q[uz∞]:

χ0(ξ ) = 1√
30

(|ξ |2 +
√

15ξz),

χ1(ξ ) = ξx , χ2(ξ ) = ξy,

χ3(ξ ) = 1√
10

(|ξ |2 − 5),

χ4(ξ ) = 1√
30

(|ξ |2 −
√

15ξz).

Denoting by c the speed of sound defined by the Maxwellian state M(1,0,1), i.e.

c =
√

5

3
,

one has

Q[uz∞](χ0) = uz∞ + c,

22 I.e. for each φ ∈ ker L satisfying∫
R3

(ξz + uz∞)φ(ξ )ψ(ξ )M(ξ ) dξ = 0 for all ψ ∈ kerL.
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Q[uz∞](χ1) = Q[uz∞](χ2) = Q[uz∞](χ3) = uz∞,

Q[uz∞](χ4) = uz∞ − c.

Below, we denote V+[uz∞] (resp. V−[uz∞]) a maximal subspace of kerL
such that Q[uz∞]

∣∣
V+[uz∞]

is positive definite (resp. Q[uz∞]
∣∣
V−[uz∞]

is negative

definite), and we call V0[uz∞] the radical of Q[uz∞].
Then one can choose as follows

• if uz∞ > c, then

V+[uz∞] = kerL, V0[uz∞] = V−[uz∞] = {0},
• if uz∞ = c, then

V+[uz∞] = span{χ0, χ1, χ2, χ3},
V0[uz∞] = span{χ4},
V−[uz∞] = {0},

• if 0 < uz∞ < c, then

V+[uz∞] = span{χ0, χ1, χ2, χ3},
V0[uz∞] = {0},
V−[uz∞] = span{χ4},

• if uz∞ = 0, then

V+[uz∞] = span{χ0},
V0[uz∞] = span{χ1, χ2, χ3},
V−[uz∞] = span{χ4},

• if −c < uz∞ < 0, then

V+[uz∞] = span{χ0},
V0[uz∞] = {0},
V−[uz∞] = span{χ1, χ2, χ3, χ4},

• if uz∞ = −c, then

V+[uz∞] = {0},
V0[uz∞] = span{χ0},
V−[uz∞] = span{χ1, χ2, χ3, χ4},
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• if uz∞ < −c, then

V+[uz∞] = V0[uz∞] = {0}, V−[uz∞] = kerL.

In the case uz∞ = 0: both

W+ = span{χ0 + χ4, χ1, χ2, χ3} = span{1, ξx , ξy, |ξ |2} and

W− = span{χ0 − χ4, χ1, χ2, χ3} = span{ξx , ξy, ξz, |ξ |2 − 5}
belong to V

+[0]. The result proved by Bardos-Caflisch-Nicolaenko (i.e.
Theorem 3.1) is the particular case of Theorem 3.2 with V = W+.

4. THE WEAKLY NONLINEAR THEORY

In this section, we return to the nonlinear problem stated in the introduction
and discussed from the numerical viewpoint in Sec. 2.

The numerical experiments in Sec. 2 and the analysis in Sec. 3 show the
importance of the Maxwellian state at infinity in the statement of the half-space
problem. This suggests the following formulation of this problem:

“Given the Maxwellian state M(ρ∞,u∞,θ∞) at infinity, to find all boundary data
Fb ≡ Fb(v) such that the half-space problem

vz∂z F = B(F, F), z > 0, v ∈ R3, (4.1)

with boundary condition

F(v) = Fb(v), vz > 0 (4.2)

has a unique solution F ≡ F(z, v) such that F(z, v) → M(ρ∞,u∞,θ∞) as z → +∞.”
In this and the next section, all solutions of the Boltzmann equation considered

are bounded in z, rapidly decaying in v. In particular, for vz �= 0, z 
→ F(z, v) is
of class C1 on R+.

The set of all boundary data Fb satisfying the conditions above is denoted by
S[M(ρ∞,u∞,θ∞)]—and can be viewed as the stable manifold of M(ρ∞,u∞,θ∞).

As explained above, one can always choose units of temperature and pressure
so that ρ∞ = θ∞ = 1, in which case our problem reduces to finding S[M(1,u∞,1)].

Using a clever variant of the analysis of the linearized problem in ref.
12, Ukai-Yang-Yu(32) arrived at a following, very satisfying local description of
S[M(1,u∞,1)]. We recall that c = √

5/3 — the speed of sound in an ideal gas at
temperature 1.

Theorem 4.1. Assume that uz∞ /∈ {0,±c}. Then S[M(1,u∞,1)] is locally (near
M(1,u∞,1)) a C1 manifold of codimension dimV+[uz∞]—with the notation of Sec. 3.
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That the statement above holds in a neighborhood of M(1,u∞,1) is to be
understood as follows: there exists ε > 0 small enough such that

|Fb(v) − M(1,u∞,1)(v)| ≤ ε(1 + |v|)−βM(1,u∞,1)(v)1/2

for some β > 3
2 . In which case, the problem (4.1) with boundary condition (4.2)

has a unique solution such that, for γ > 0 small enough, there exists C > 0 for
which the following estimate holds for each z > 0 and v ∈ R3:

|F(z, v) − M(1,u∞,1)(v)| ≤ Ce−γ z(1 + |v|)−βM(1,u∞,1)(v)1/2.

A few remarks on the result above are in order.
To begin with, Theorem 4.1 is a local result only, and in particular the size

of the neighborhood of M(1,u∞,1) considered in that statement may depend in
u∞. For instance, it may fail to be uniformly positive as uz∞ → 0. In particular,
it might vanish as uz∞ → 0 so as to prevent any Maxwellian state of the form
M(ρw,0,θw) to be in that neighborhood. For that reason, Theorem 4.1 may fail to
justify the transition between evaporation and condensation as explained in Sec. 2.
However, it is consistent with the results obtained in that section, at least as far as
the codimension of the stable manifold is concerned.

That the analysis in ref. 32 avoids the cases uz∞ ∈ {0,±c} is only a minor
technical problem—see ref. 15 for the treatment of these missing cases.

Finally, the proof of Theorem 4.1 is based on a perturbation analysis and
Picard’s fixed point theorem. As is well known, this method may lead to solutions
of the Boltzmann equation that fail to be nonnegative and therefore lose physical
meaning. In a more recent paper,(33) the same authors proved the nonlinear stability
of that solution in the case uz∞ < −c (supersonic condensation). In other words,
the solution of the steady half-space problem (4.1) with boundary condition (4.2)
provided by Theorem 4.1 is the long time limit of the solution of a time-dependent
half-space problem, known to be everywhere nonnegative. Hence the solution of
the steady problem is itself everywhere nonnegative.

5. A UNIQUENESS RESULT IN THE LARGE

The analysis in ref. 32 excludes the particular case uz∞ = 0. By a completely
different energy method, based on Boltzmann’s H Theorem, one arrives a global
description of the stable manifold of the Maxwellian M(1,u∞,1) for uz∞ = 0. Let
us introduce another piece of notation: in the sequel, S[u∞] designates the set

S[u∞] = S[M(1∞,u∞,1∞)] ∩ {
M(ρw,0,θw)

∣∣
vz>0

| ρw, θw > 0
}
.

Here, S[M(ρ∞,u∞,θ∞)] is the stable manifold of the Maxwellian state M(ρ∞,u∞,θ∞).
Specifically, S[M(ρ∞,u∞,θ∞)] is the set of boundary data Fb ≡ Fb(v) ≥ 0 a.e. on
{v ∈ R3 | vz > 0} such that the half-space problem (1.2) has a solution F that
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satisfies

F(0, v) = Fb(v) for all v ∈ R3 such that vz > 0,

and F(z, v) → M(ρ∞,u∞,θ∞) as z → +∞.

The solutions of the Boltzmann equation considered in this section are supposed to
be bounded in z, and rapidly decaying in v as in the previous section. In addition,
we also restrict our attention to positive solutions F such that ln F has at most
polynomial growth as |v| → +∞, so that Boltzmann’s H Theorem holds true for
this class of solutions.

Theorem 5.1. One has

S[0] =
{
M(1,0,1)

∣∣
vz>0

}
.

In addition, the only solution F of (1.2) such that

F
∣∣
z=0, vz>0

= M(1,0,1) and lim
z→+∞ F(z, v) = M(1,0,1)

is the uniform23 Maxwellian state F ≡ M(1,0,1).

This theorem is a nonlinear analogue of the uniqueness result in ref. 5; it
confirms the numerical results described in Sec. 2. Notice that this result does not
require the interaction potential to be that of a hard-sphere gas.
Proof of Theorem 5.1. Let F satisfy

vz∂z F(z, v) = B(F, F)(x, v), v ∈ R3, z > 0,

F(0, v) = M(ρw,0,θw)(v), v ∈ R3, vz > 0,

F(z, v) → M(1,0,1)(v), as z → +∞.

Multiplying the Boltzmann equation by the collision invariants 1, vx , vy , and |v|2,
one obtains after integrating in v:∫

vz Fdv =
∫

vzvx Fdv =
∫

vzvy Fdv =
∫

vz|v|2 Fdv = 0. (5.1)

Next we seek to apply Boltzmann’s H Theorem. For ρ > 0, θ > 0 and u ∈ R3, set

F(F |M(ρ,u,θ)) =
∫

vz

[
F ln

(
F

M(ρ,u,θ)

)
− F + M(ρ,u,θ)

]
dv.

Because of the relations (5.1) on the fluxes of conserved quantities,

F(F |M(1,0,1)) =
∫

vz F ln Fdv.

23 I.e. constant in z.
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Hence Boltzmann’s H Theorem reads

d

dz
F(F |M(1,0,1)) −

∫
B(F, F) ln Fdv = 0

so that, after integrating in z over the half-line (0,+∞):

lim
z→+∞F(F |M(1,0,1)) −

∫ +∞

0

∫
B(F, F) ln Fdvdz = F(F |z=0|M(1,0,1)).

Since the first term on the left-hand side of the equality above is 0, one arrives at
the inequality

0 ≤ −
∫ +∞

0

∫
B(F, F) ln Fdvdz

=
∫

vz>0

[
M(ρw,0,θw) ln

(M(ρw,0,θw)

M(1,0,1)

)
− M(ρw,0,θw) + M(1,0,1)

]
vzdv

−
∫

vz<0

[
F(0, v) ln

(
F(0, v)

M(1,0,1)(v)

)
− F(0, v) + M(1,0,1)(v)

]
|vz|dv

At this point, we use the following lemma which is a variant of the Darrozes-
Guiraud inequality (see ref. 14).

Lemma 5.2. Let � ≡ �(v) be defined for all v’s in R3 such that vz > 0. Let
M(ρ,0,θ) be the Maxwellian state satisfying the relations

∫
vz>0

vz




1
vy

vz

|v|2


M(ρ,0,θ)(v)dv =

∫
vz>0

vz




1
vy

vz

|v|2


 �(v) dv (5.2)

Then ∫
vz>0

[
� ln

(
�

M(1,0,1)

)
− � + M(1,0,1)

]
vzdv

−
∫

vz>0

[
M(ρ,0,θ) ln

(M(ρ,0,θ)

M(1,0,1)

)
− M(ρ,0,θ) + M(1,0,1)

]
vzdv

=
∫

vz>0

[
� ln

(
�

M(ρ,0,θ)

)
− � + M(ρ,0,θ)

]
vzdv ≥ 0.

Taking this lemma for granted, apply it to �(v) = F(0, vx , vy,−vz). The
relations (5.2) with ρ = ρw and θ = θw coincide with the flux conditions (5.1),
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and hence

0 ≤ −
∫ +∞

0

∫
B(F, F) ln Fdvdz

= −
∫

vz<0

[
F(0, v) ln

(
F(0, v)

M(ρw,0,θw)

)
− F(0, v) + M(ρw,0,θw)

]
|vz|dv ≤ 0

Therefore

−
∫ +∞

0

∫
B(F, F) ln Fdvdz = 0, and

∫
vz<0

[
F(0, v) ln

(
F(0, v)

M(ρw,0,θw)

)
− F(0, v) + M(ρw,0,θw)

]
|vz|dv = 0.

The first relation implies that F is everywhere a local Maxwellian, and thus
B(F, F) = 0 on (0,+∞) × R3. Boltzmann’s equation then implies that F(z, v)
is constant in z for each v ∈ R3 s.t. vz �= 0. Thus one has F(z, v) = M(1,0,1)(v)
for all z ≥ 0 and vz �= 0, and this in turn implies that M(ρw,0,θw) = M(1,0,1), i.e.
ρw = θw = 1. This concludes the proof of Theorem 5.1. �

Proof of Lemma 5.2. By using the first relation in (5.2)

∫
vz>0

[
�(v) ln

(
�(v)

M(1,0,1)(v)

)
− �(v) + M(1,0,1)(v)

]
vzdv

−
∫

vz>0

[
M(ρ,0,θ) ln

(M(ρ,0,θ)

M(1,0,1)

)
− M(ρ,0,θ) + M(1,0,1)

]
vzdv

=
∫

vz>0

[
�(v) ln

(
�(v)

M(1,0,1)(v)

)
− M(ρ,0,θ) ln

(M(ρ,0,θ)

M(1,0,1)

)]
vzdv.

Using next the first and the fourth relations in (5.2), together with the formula
lnM(1,0,1) = − 3

2 ln(2π ) − 1
2 |v|2, one further reduces the right hand side of the

equality above to

∫
vz>0

[
�(v) ln

(
�(v)

M(1,0,1)(v)

)
− M(ρ,0,θ) ln

(M(ρ,0,θ)

M(1,0,1)

)]
vzdv

=
∫

vz>0

(
�(v) ln �(v) − M(ρ,0,θ) lnM(ρ,0,θ)

)
vzdv.
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Further, since lnM(ρ,0,θ) is also a linear combination of 1 and |v|2, the same
argument as in the case ρ = θ = 1 shows that∫

vz>0

(
�(v) − M(ρ,0,θ)

)
lnM(ρ,0,θ)vzdv = 0.

Hence, using also the first relation in (5.2), we finally arrive at

∫
vz>0

(
�(v) ln �(v) − M(ρ,0,θ) lnM(ρ,0,θ)

)
vzdv

=
∫

vz>0

[
� ln

(
�

M(ρ,0,θ)

)
− � + M(ρ,0,θ)

]
vzdv.

This establishes the equality in the conclusion of Lemma 5.2.
As for the positivity, it follows from the following elementary observation:

for each a and b ∈ (0,+∞), one has

a ln(a/b) − a + b ≥ 0,

with equality if and only if a = b. Observe that the equality case here guarantees
that the relation (5.2) define indeed a unique Maxwellian state.

Remark 1. As the proof shows, the same result holds if the Boltzmann equation is
replaced by the BKW model, as in most of the numerical works on this question—
see Sec. 2.

Remark 2. Theorem 5.1 can be extended to a general simple boundary, where
there is no mass flux across the boundary (Sone(23)). The boundary condition is
given as

F
∣∣
z=0, vz>0

=
∫

vz∗<0
K (v, v∗)F(0, v∗)dv∗,

limz→+∞ F(z, v) = M(ρ∞,u∞,θ∞),

(5.3)

where the condition on the wall z = 0 is expressed with a scattering kernel
K (v, v∗). The scattering kernel K (v, v∗) satisfies the conditions

(i) K (v, v∗) ≥ 0 (vz > 0, vz∗ < 0),
(ii)

∫
vz>0

vz

vz∗
K (v, v∗) dv = −1 (vz∗ < 0),

(iii) M(ρ,0,θw) = ∫
vz∗<0 K (v, v∗)M(ρ,0,θw)dv∗ (vz > 0)

where ρ is arbitrary and the other Maxwellians do not satisfy the condition (iii).
Then, the solution F of the Boltzmann equation (1.2) subject to the boundary
condition (5.3) exists only when u∞ = 0 and θ∞ = θw, and it is uniquely given
by F(z, v) = M(ρ∞,0,θw) .
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This remark is used to show the uniqueness of the nonslip boundary condition
for the fluid-dynamic-type equations in the continuum limit (see ref. 23).
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