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Abstract 

Using relative entropy estimates about an absolute Maxwellian, it is shown that any properly scaled 
sequence of DiPerna-Lions renormalized solutions of some classical Boltzmann equations has fluctua- 
tions that converge to an infinitesimal Maxwellian with fluid variables that satisfy the incompressibility 
and Boussinesq relations. Moreover, if the initial fluctuations entropically converge to an infinitesi- 
mal Maxwellian then the limiting fluid variables satisfy a version of the Leray energy inequality. If 
the sequence satisfies a local momentum conservation assumption, the momentum densities globaly 
converge to a solution of the Stokes equation. A similar discrete time version of this result holds for 
the Navier-Stokes limit with an additional mild weak compactness assumption. The continuous time 
Navier-Stokes limit is also discussed. 01993 John Wiley & Sons., Inc. 

1. Preliminaries 

Introduction 

The incompressible Navier-Stokes equations describe the evolution of the ve- 
locity field u = u(t ,x)  of an idealized fluid over a given spatial domain in RD: 

vx.u = 0 ,  

(1.1) &U + u*V';U + Vxp = V A ~ U  , 

u(0 ,x )  = U%), 

where v > 0 is the kinematic viscosity of the fluid. In a seminal paper of 1934, 
J. Leray (see [16]) proved the existence of a temporally global weak solution to 
these equations over the whole space R3 for any initial data with finite energy. 
We use the modification of this result for the case when the fluid is contained in 
a D-dimensional periodic box TD; this will be stated more precisely below. 

If the fluid consists of similar particles then at the kinetic level of description 
the state of the fluid is given by a density F = F ( t , x , v )  of particle mass with 
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position x and velocity v in the single particle phase space at instant t .  If the 
particles interact only through a conservative interparticle force with a finite range 
then at low densities all but binary collisions can be neglected and the evolution 
of the phase space density F is governed by the classical Boltzmann equation: 

(1.2a) dtF + v.VXF = B(F, F )  , 

(1.2b) 

where the collision operator B(F, F )  is given by 

F(0, x, v) = F”(x, V) 2 0 , 

B(F, F )  = JJQ; F’ - FIF) b(v1 - v, w) dw dvl . 

The Boltzmann kernel b(v1 - v, w) is a non-negative measurable function. The 
variable w lies on the unit sphere SD-’ = {w E RD : IwI = 1) endowed with its 
rotationally invariant unit measure dw. The F ,  F1, F’ ,  and F;  appearing in the 
integrand are understood to mean F(t ,x ,  .)  evaluated at the velocities v, v1, v’, and 
v; respectively, where the primed velocities are defined by 

(1.3) 

for any given (v, vl, w )  E RD x RD x W1. 
The unprimed and primed velocities denote possible velocities for a pair of 

particles either before and after, or after and before they interact through an elastic 
binary collision. Conservation of momentum and energy for particle pairs during 
collisions is expressed as 

(1.4) 

Equation (1.3) represents the general solution of these D + 1 equations for the 
4D unknowns v, vl, v’, and v; in terms of the 3D - 1 parameters (v, VI, w). Each 
solution is counted twice by this representation since (1.3) is invariant under the 
transformation w - -w. Geometrically, the binary collisions associated with 
(v, vl, w) leave v + v1 unchanged while reflecting v1 - v through the plane perpen- 
dicular to w. 

That the Boltzmann kernel b depends on v1 - v follows from the Galilean 
invariance of the collisional physics. Since w and -w represent the same collisions, 
b is taken to be an even function of w. The rotational invariance of the collisional 
physics then implies that b has the classical form 

v’ = v + WW’(V1 - v) , v; = v1 - ww*(v1 - v) , 

v + v1 = v’ + v; , 1\11? + (v# = + I V p  . 

where X 2 0 is the specific differential cross-section. Moreover, it will be assumed 
that b satisfies the bounds 

(1.6) O ~ b ( v l - ~ , ~ ) ~ C ( l + I v l - v 1 ~ )  , 
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for some constant C < 00 independent of w. This condition is met by classical 
Boltzmann kernels with a small deflection cut-off; see [7]. Additional technical 
requirements on b will be imposed later. 

In a recent paper R. J. DiPerna and P.-L. Lions (see [lo]) proved the existence 
of a temporally global weak solution to the Boltzmann equation over the spatial 
domain RD for any initial data satisfying natural physical bounds. With slight 
modifications, their theory can be extended to the case of a spatial domain which 
is a periodic box; this result will be stated more precisely below. In many respects 
this theory is analogous to the Leray global existence theory for the Navier-Stokes 
equations (1.1). This paper shows how the Leray solutions can be understood as an 
appropriate fluid dynamic limit of a sequence of DiPerna-Lions solutions. While 
the results given here are for a periodic box, the relations drawn here should be 
valid over a much wider context. 

Dimensional Analysis 

The dimensional scales of the Boltzmann initial-value problem (1.2) can be 
identified as follows. First, the volume of the periodic box determines a length 
scale A, by setting 

where here, as with all integrals, the integration is understood to be over the whole 
domain associated with its measure unless otherwise stated. The sides of the box 
TD need not be the same length; all these length scales, however, are assumed to 
be of the same order. 

Next, after a Galilean transformation to ensure that 

the initial data F'" determines a density scale p. and a velocity scale 0:'' by the 
re 1 at i o n s 

The parameters p. and 8,  have been chosen so that the equilibrium associated 
with the initial data F'" is given by the absolute (constant in space and time) 
Maxwellian 

(1.9) M =  

Here 8,  is related to the physical temperature T, of this equilibrium by 8, = 
kT,/m, where rn is the single particle mass and k is the Boltzmann constant. 
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Finally, since the Boltzmann kernel b has units of reciprocal density times 
time, it determines a timescale r* by 

(1.10) 

The finiteness of the above integral is ensured by the assumed bound on b (1.61, so 
that 0 < r* < 00. This is the scale of the average time interval that particles in 
the equilibrium density M spend traveling freely between collisions, the so-called 
mean free time. It is related to the length scale of the mean free path (= O* r * ). 

The initial-value problem (1.2) can then be reformulated in terms of dimen- 
sionless variables; these are introduced below adorned with hats. Dimensionless 
time, space, and velocity are defined by 

(1.11) 

1/2 

while a dimensionless phase space density is given by 

(1.12) 

Define the dimensionless Boltzmann kernel h(0, - 0, w )  by the relation 

(1.13) h(01 - 0, w )  , 
1 

p * r *  
b(vl - V , W )  = - 

and set the corresponding dimensionless collision operator to be 

(1.14) 

Substituting (1.1 l)-( 1.14) into the Boltzmann equation (1.2) and henceforth drop- 
ping all hats yields the dimensionless initial-value problem 

( 1.1 5a) 

(1.15b) 

1 

F(O,x, v )  = F'"(x, v )  2 0 , 

d,F + v*V,F = -B(F, F )  , 
& 

where E = O ' * / 2 r , / X ,  is the dimensionless mean free path or Knudsen number. 
The incompressible Navier-Stokes equations are obtained with a scaling in 

which F is considered close to M in a sense that will be made more precise later. 
It is natural to introduce the relative density, G = G(t, x ,  v), defined by F = MG, 
where the dimensionless equilibrium Maxwellian is now 

(1.16) 
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Recasting the initial-value problem (1.15) for G yields 

1 

G(0, X ,  V )  = Gi"(x, V )  Z 0 , 

(1.17a) 

(1.17b) 

d,G + v.V'G = -Q(G, G )  , 
& 

where the collision operator is now given by 

(1.18) Q(G, G )  = JJ (G;G~ - GIG)  b(vl - v, w)dwMI dvl . 

This nondimensionalization has the following normalizations: 

(1.19) 

associated with the domains SD-', RD, and TD respectively; 

J d w  = 1 , / M d v  = i , d x  = i , J 

associated with the initial data; and 

(1.21) 

associated with the Boltzmann kernel. 

JJJb(v1 - v ,  w)dwMldvl M d v  = i , 

Formal Structure 

Since M d v  is a positive unit measure on RD, we denote by ( E )  the average over 
this measure of any integrable function [ = [ (v) ,  

(1.22) (0 = J w  . 
Since d p  = b(v1 - v, w )  dw Mldvl  M d v  is a non-negative unit measure on RD X 
RDx § D - l ,  we denote by ((E) the average over this measure of any integrable 
function E = Z(v,  v l ,  w),  

(1.23) ((z)) = / E d p .  

We now present the basic formal structure of the Boltzmann equation in the setting 
of this notation for later reference. All of these results are standard and their 
proofs can be essentially found in [7]. 
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The formal structure of the Boltzmann equation follows from two fundamen- 
tal properties of the measure dp. First, that it is invariant under the coordinate 
transformations 

These transformations will be referred to as the dp-symmetries. Second, that it 
characterizes microscopic conserved quantities in the sense that for any measur- 
able < = ((v) the following statements are equivalent: 

(i) < + (1 - <’ - (; = 0 
for dp-almost every (v, v1, w )  E RD x RD x SD-’ ; 

(1.25) 1 
(ii) [ = a + p - v + y - l ~ 1 ~  

2 
for some (a!,p,y) E R x R ~ X  R . 

This property will be referred to as the dp-characterization. 

tant identity regarding the collision operator ( 1.18): 
Repeated application of the dp-symmetries (1.24) yields the following impor- 

(1.26) 

for every < = ((v) and G = G(v)  for which the integrals make sense. 

vation laws (1.4) gives the conservation laws 
Successively setting < = 1, v, 1 I v I in (1.26) and using the microscopic conser- 

for every G = G(v) for which the integrals make sense. It can be shown that 
these are essentially all the quantities conserved by Q(G,G) by using the dp- 
characterization (1.25). More precisely, the following statements are equivalent: 

(9 (<Q(G,G)) = 0 
for every G = G(v) for which the integral makes sense; 

< = a! + p.v  + y-lv12 
2 

for some (a!,p,y) E R x R ~ X  R . 

(1.28) 1 
(ii) 
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If G solves the Boltzmann equation (1.17) then (1.27) implies that it satisfies 
local conservation laws of mass, momentum, and energy: 

(1.29) 

&(G) + V’.(vG) = 0 ,  

&(VG) + V’.(V Q vG) = 0 ,  

d, ( ~ I v I ~ G )  + V x . ( ~ ~ l ~ l Z G )  = 0 

Integrating these over space and time yields the global conservation laws of mass, 
momentum, and energy: 

/ ( ~ l v I ’ G ( t ) )  dx = D . 
(1.30) / ( G ( t ) ) d x  = 1 , /(v G(t))  dx = 0 , 

Upon setting E = log G in the collision identity (1.26), Boltzmann observed 
that the resulting integrand is non-negative and hence obtained the dissipation law 

1 GiG‘ 
GIG 

(1.31) -(log G Q(G, G ) )  = 4 (log( -) (GiG’ - G I G ) ) )  2 0 , 

for every G = G(v) for which the integrals make sense. He then characterized 
the equilibria of the collision operator by using the &-characterization (1.25); he 
found that for any G = G(v) for which the integrals make sense, the following 
statements are equivalent: 

(1.32) 
(ii) (logGQ(G,G)) = 0 ; 

for some (a ,p ,y )  E R x R ~ X  R 

The equilibria characterized in (iii) above will have finite mass, momentum, and 
energy density when y < 1. In that case they can be written as G = M ( p ,  u, 8)/M, 
where M(p, u, 8) are the classical Maxwellians defined by 

(1.33) 

and where the density p 2 0, the velocity u E RD, and the temperature 8 > 0 are 
determined by the relations 
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Now, if G solves the Boltzmann equation ( 1.17) then the dissipation law (1.31) 
implies that G satisfies the local entropy dissipation law 

dt(G logG - G + 1) + V,*(v(G log G - G + 1)) 
(1.35) - 1 1  G; G' 

E 4  GIG 
- --- ((log( -) (GiG' - GIG))) S 0 .  

Integrating this over space and time gives the global entropy equality 

R(G(s))ds = H(G'") , 
E 

(1.36) 
0 

where H(G) is the entropy functional 

(1.37) H(G) = (GlogG - G + l ) h ,  J 
and R(G) is the entropy dissipation rate functional 

(1.38) 

This choice of H as the entropy functional (1.37) is based on the fact that its 
integrand is a non-negative strictly convex function of G with a minimum value 
of zero at G = 1. Thus for any G, 

(1.39) H(G) 2 0 ,  and H(G) = O  iff G =  1 .  

This is the so-called relative entropy of G with respect to the absolute equilibrium 
G = 1; it provides a natural measure of the proximity of G to that equilibrium. 

Incompressible Navier-Stokes Scalings 

Fluid dynamics is obtained in limits where the mean free path becomes small 
compared with the macroscopic length scales, those with vanishing Knudsen num- 
ber ( E  - 0). If this is done while the Reynolds number is held fixed, the Mach 
number must also vanish (cf. [2] or [3]). In order to realize densities correspond- 
ing to a small Mach number, it is natural to consider them as perturbations about 
the equilibrium Maxwellian M. The flow will be incompressible if its kinetic 
energy in the acoustic modes is smaller than that in the rotational modes. Since 
the acoustic modes vary on a faster timescale than rotational modes, they may 
be suppressed by assuming that the solution is consistent with motion on a slow 
timescale; this scale separation will also be measured with the Knudsen number. 
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This idea is quantified by rescaling time to the order of E-' while setting the 
distance to the absolute Maxwellian M to be of order E"' for some rn 2 1. Thus, 
we consider a sequence of solutions G, to the scaled Boltzmann equation 

1 
(1.40) E &G, + v.VXG, = -Q(G,, G,)  , 

E 

in the form 

(1.41) G, = 1 + E m g E  . 

As E tends to zero, the leading behavior of the fluctuations g ,  is formally consistent 
with the incompressible Navier-Stokes equations (1.1) when m = 1, and with the 
Stokes equations (the linearization of 1.1) when rn > 1. We make this more 
precise below. 

Setting (1.41) into (1.40) and Taylor expanding the collision operator gives 

1 
Edtg, + v.vxg,  + -Lg, = Em-I Q(g.c,gE) * 

E 
(1.42) 

where L, the linearized collision operator, is given by 

Repeated application of the dp-symmetries (1.24) yields the identity 

(ELd = (Ek + gl - g' - A))) 

for every E = ( ( v )  and g = g(v) for which the integral makes sense. This shows 
that L is formally self-adjoint and has a non-negative Hermitian form. These 
properties ensure that L has a self-adjoint extension to the Hilbert space L2(Mdv) 
with the inner product ( f g ) .  Furthermore, using the dp-characterization (1.23, 
it can be shown that for any g = g(v) in the form domain of L, the following 
statements are equivalent: 

(i) Lg = 0 ; 
(1.45) 1 

(ii) g = a + p . v  + y- lvI2 for some (a, p, y )  E R x R~ x R . 
2 

This characterizes N(L), the null space of L, as the set obtained by linearizing (iii) 
of (1.32) about (a, p, y )  = (0, 0, 01, the so-called infinitesimal Maxwellians. 

In studying the formal incompressible Navier-Stokes limit of the Boltzmann 
equation, one finds a special role is played by the functions +(v) E RDxD and 
$(v) E RD that are the unique solutions to the equations 

1 1 D + 2  
D 2 2 

(1.46) L ~ ( v )  = v 8 v - - 1 ~ 1 ~ 1  , L$(v) = - 1 ~ 1 ~ ~  - - V ,  
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which are orthogonal to N(L); henceforth 4 and $ will always refer to these 
functions. The main formal result of [3] is the following. 

THEOREM 1.1.  Let GE(trx,v) be a sequence of non-negative solutions to the 
scaled Boltzmann equation (1.40) such that, when it is written according to for- 
mula (1.411, the sequence g ,  converges in the sense of distributions and almost 
everywhere to a function g as E tends to zero. Furthermore, assume that the 
moments 

( g E )  1 ( v g E )  9 (v @ v g E >  9 ( v l v 1 2 g E )  7 

(4 @ vgE> 1 ( d ) Q ( g E , g E ) )  9 ($ @ vgs> 7 ( $ Q ( g E , g E ) )  9 

converge in the sense of distributions to the corresponding moments 

( g )  7 (vg) 1 (v @ vg) 9 (vlv12g) 9 

(4 @ vg> (4Qk g ) )  ($ @ vg> (9Q(g ,  g ) )  

and that all formally small terms in E vanish. Then the limiting form of g is that 
of an injinitesimal Maxwellian, 

(1.47) 

where the velocity u satisjies the incompressibility relation, while the density and 
temperature jluctuations, p and 0, satisfy the Boussinesq relation: 

(1.48) v,.U = o , v,(~ + e) = o . 
Moreover, thefunctions p, u, and 0 are weak solutions of the equations 

In these equations the coeficients u and K are given by 

2 
D(D + 2) (**L*) * 

1 
(D - 1)(D + 2) v =  (4 :L4) ,  K =  (1.51) 

We shall refer to (1.49) as the Stokes system and to (1 S O )  as the Navier-Stokes 
system. The momentum equations in these systems will be referred to as the 
Stokes equation and the Navier-Stokes equation respectively. 

Global Solutions 

The theory of R. J. DiPerna and P.-L. Lions in [lo] (modified slightly for the 
periodic box) gives the existence of a global weak solution to a whole class of 
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formally equivalent initial-value problems. These are obtained by dividing the 
Boltzmann equation (1.17a) by normalizing functions N(G) > 0: 

(1 S2a) 

(1.52b) G(O,x, v)  = G'"(x, v )  , 

where the normalization N(G) satisfies (1 + Z ) / N ( Z )  5 C over Z > 0 for some 
constant C < 00 and where T'(z) = l/N(z). They showed that if G is a weak 
solution of (1.52) for one such N(G)  then it is a weak solution for all such N(G). 
Such solutions they called renormalized solutions of the Boltzmann initial-value 
problem ( 1.17). 

More specifically, given any initial data in the entropy class {G"' 2 0 : 
H(G'") < +coo) that satisfies the initial normalizations (1.20), there exists at least 
one non-negative weak solution of (1.52) in C([O, 00); w-L'(Mdvx)) (see Appendix 
A for the notation regarding spaces) with 

(1.53) 

where Q- and Q+ are the source and sink components of the collision operator 
(1.18): 

Here, to say G is a weak solution of (1.52) means that it is initially equal to G'" 
and that it satisfies the normalized Boltzmann equation (1.52a) in the sense that 
for every x E L"(Mdv;C1(UD)) and every 0 5 t l  < t2 < 00 it satisfies 

(1.55) 
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It also satisfies the global entropy inequality 

H(G(t)) + - R(G(s))ds 5 H(G'") , 
(1.56) E l J  0 

the local conservation law of mass 
(1.57) 
the global conservation law of momentum 

&(G) + VX*(vG) = 0 , 

(1.58) / ( vG( t ) )dx  = 0 , 

and the global energy inequality 

(1.59) 

for every t > 0. 
The finiteness of the entropy is enough to insure the integrability of the con- 

served densities. The DiPerna-Lions theory, however, does not assert the local 
conservation of momentum (see (1.2911, the global conservation of energy (see 
(1.30)), or the global entropy equality (see (1.36)); nor does it assert the unique- 
ness of the solution. 

The DiPerna-Lions theory has many similarities with the Leray theory of global 
weak solutions of the initial-value problem for Navier-Stokes type systems. For 
the Navier-Stokes system (1.50) with mean zero initial data, we set the Leray 
theory in the following Hilbert spaces of vector and scalar valued functions: 

X ,  = wEL2(dx;RD)  : V ' * w = O ,  w d x = O  , { J }  

{ 
X s  = { x  E L2(dx;R) : J x d x  = 0 }  , 

Y , =  w E X y  : J 1V'wl2dx < -> , 
Y , = { ~ E x ~  : J 1 v x X 1 2 d x < m } .  

(1.60) 

Let Z = Zv @ X ,  and Y = Y ,  @ '7,. Given any (uin,I9'") E X ,  there exists a 
(u, 19) in C([O, 00); w - X )  n Lk(d t ;  7 )  which is initially (uin, Oi") and satisfies the 
Navier-Stokes system (1.50) in the sense that for every (w, x )  E X n C'(UD) 

(1.61a) 
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(1.61b) 

for every 0 5 tl < t 2 .  Moreover, (u, 9) satisfies the dissipation inequalities 

f 

(1.62a) / lu(t)I2 dx + // vlVxu12 dx dt' 5 / I dx , 
0 

for every t > 0. Arguing formally from the Navier-Stokes system (1.50) one 
would expect these inequalities to be equalities, but that is not asserted by the 
Leray theory. Also, as was the case for the DiPerna-Lions theory, the Leray 
theory does not assert uniqueness of the solution. 

The Program 

Let G, L 0 be a sequence of DiPerna-Lions renormalized solutions to the 
scaled Boltzmann initial-value problem 

(1.63a) 
1 

&drGE + v.V'G, = -Q(G,,G,) , 
& 

(1.63b) G,(O,x, v )  = G$(x, v )  2 0 

For any given DiPerna-Lions normalization N(Z),  the associated normalized Boltz- 
mann equation is 

(1.64) 

with T(Z) is related to N(2) by r'(2) = l/N(Z). The associated DiPerna-Lions 
entropy inequality is 

(1.65) R(G,(s))ds 5 H(G$) 
0 
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Assume that the initial data G$ satisfies the normalizations (1.20) and the entropy 
bound 

(1.66) H(G$) 5 , 

for some fixed C'" > 0 and m 2 1. Moreover, assume that the initial data has the 
form G? = 1 + Emg$ where 

(1.67) 

in L'(Mdvdx) as E tends to zero, where pin + Oin = 0 and (u'",8'") E X .  
Consider the sequence g ,  as defined by the relation G, = 1 + emgs as E tends to 

zero. The DiPerna-Lions entropy inequality (1.65) and the entropy bound (1.66) 
are consistent with this order of fluctuation about the equilibrium G = 1. Given 
the formal result contained in Theorem 1.1, it is natural to ask whether, and in 
what sense, one has the limits 

(1.68a) 

(1.68b) 

where p + 0 = 0 and (u,e) E C([O, 00); w - Z )  r l  Lk(dt;Y) is a solution of the 
Stokes system (1.49) when m > 1, or else a Leray solution of the Navier-Stokes 
system (1 SO) when m = 1. 

While this program is not yet complete, we present significant partial results 
in this paper. The next section gives precise statements of all the main results 
contained in the remainder of this paper; in particular, it clearly sets out the 
additional assumptions necessary for their proofs. In doing so, we also provide 
an outline of the body of the article and give an impressionistic overview of the 
strategies employed. 

The program above deals with globally defined, weak solutions of the Boltz- 
mann equation or the Stokes and Navier-Stokes systems. It is possible to analyze 
fluid dynamic limits when dealing with sufficiently smooth solutions. De Masi, 
Esposito, and Lebowitz (see [9]) have used asymptotic expansions ''A la" Hilbert or 
Chapman-Enskog to construct solutions of the Boltzmann equation having a pre- 
scribed hydrodynamic limit. It is still unknown, however, whether the existence 
of smooth solutions of the Boltzmann equation or of the Navier-Stokes system is 
a generic fact. This makes the derivation of hydrodynamic limits for weak solu- 
tions a problem of definite interest, although more complicated than for smooth 
solutions. 

It is clear that completion of the program may require a better knowlege of 
properties of the DiPerna-Lions solutions. For example, in order to obtain the 
dynamical equation for u, we shall assume that the local momentum conservation 
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law is satified. In any event, it is certainly a major success for the DiPerna-Lions 
theory that this program can be carried so far. 

2. Main Results 

The Normalized Boltzmann Equation 

Throughout this article, the Boltzmann initial-value problem will be taken in 
its scaled form (1.63). Based on the formal arguments in the last section, we 
expect the renormalized solutions of (1.63) to have the form G, = 1 + E m g , .  With 
this in mind, we choose to work with a DiPerna-Lions normalization in the form 

2 1  1 
3 3  3 N e  = N(G,) = - + -G, = 1 + - E m g ,  . 

One reason for this choice is such that formally N, - 1 as E tends to zero; thus, 
the normalizing factor will conveniently disappear from all algebraic expressions 
considered in this limit. Another reason lies in simplification of the specifics 
encountered during some subsequent estimates. Of course, our main results are 
independent of this particular choice of normalization. 

Given this choice, we then choose to write the normalized Boltzmann equation 
(1.64) as 

(2.2) 

where we have introduced y, by 

(2.3) 

Since y, formally behaves like g, for small E ,  it should be thought of as the 
normalized form of the fluctuations g,. 

Implications of the Entropy Inequality 

The first objective of the paper is to characterize the limiting form of the 
fluctuations g,; the formal argument indicated that this should have the form of 
an infinitesimal Maxwellian (1.47). Since the quantities of interest are indeed 
fluctuations, they do not have a definite sign; therefore the conservation laws do 
not provide any a priori estimate on the family g,. The a priori estimates needed 
are to be sought in the combination of the entropy inequality (1.65) and the entropy 
bound (1.66) assumed for the initial data: 

(2.4) R(G,(s))ds 5 H(G5) 5 Cin~2rn 
0 
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As can be seen from (1.37), the terms involving the entropy H measure the prox- 
imity of G, and G t  to the absolute equilibrium value of 1. On the other hand, 
the terms involving the dissipation rate R, defined in (1.38), can be understood 
to measure the proximity of G, to any Maxwellian through their characterization 
(1.32). More precisely, the object of interest regarding the dissipation rate R is 
the scaled collision integrand given by 

(2.5) 

One observes that the entropy and dissipation rate can be recast as 

where the integrands are written in terms of the convex functions 

h(z) = (1 + z)log(l + z )  - z , r(z) = zlog(1 + z )  . 

Since h(z) = O(z2) and r(z) = O(z2) as z - 0, one easily sees that H(G,) and R(G,) 
asymptotically behave almost like L2 norms of g ,  and q, respectively as E tends 
to zero. Using this observation, the bound (2.4) results in the following statement. 

PROPOSITION 2.1. (THE IN~~NITESIMAL MAXWELLIAN FORM) Let the family 
G, = G,(t,x,v) satisfy the entropy inequality and bound (2.4). Let g, and q, be 
the corresponding families of Jluctuations (1.41) and scaled collision integrands 
(2.5). Then 

(1) The family (1 + I v I 2, g ,  is relatively compact in w-L:,(dt; w-L'(Mdv dx)); 
(2) The family (1 + 1 v 1 2, q , / N ,  is relutively compact in w-L:,(dt; w-L'(d,u dx)); 
(3) Any convergent subsequence of g ,  as E - 0 has a limit g of the form of an 

injinitesimal Maxwellian for some (p, u, 0)  E LW(dt; L2(dx; R X RD X R)), 

g = p + u * v  + 0  ( i I v I 2  - 5) . 
It is remarkable that the statement above does not involve the fact that g ,  will 
eventually represent fluctuations of the number density in the Boltzmann equation; 
the only features of the Boltzmann equation used in these result are the entropy 
and entropy dissipation bounds resulting from the entropy inequality and bound 
(2.4). More precisely, the entropy and entropy dissipation bounds provide the 
weak compactness statements regarding g ,  and q, respectively. The limiting local 
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Maxwellian form (2.7) is a consequence of the weak compactness property of q,. 
The statement above is proved in Section 3 (see Propositions 3.1, 3.4, and 3.8). 
Section 3 also contains other consequences of the entropy inequality that are used 
throughout this article. 

Implications of the Normalized Boltzmann Equation 

Let G, be a family of renormalized solution of the Boltzmann initial-value 
problem (1.63) with initial data satisfying the entropy bound (1.66). Let g, and 
qE be the corresponding families of fluctuations (1.41) and scaled collision in- 
tegrands (2.5). As a consequence of the above proposition, we may assume g ,  
converges to g in w-L:,(dt;w-L’((l + Iv12)Mdvdx)), q , / N ,  converges to q in 
w-L:,(dt; w-L’(dp dx)), and g has the form of an infinitesimal Maxwellian (2.7). 
Passing to the limit in the normalized Boltzmann equation (2.2) leads to the fol- 
lowing result. 

FROFQSITION 2.2. (THE LIMITING BOLTZMANN EQUATION) Given g and q as 
described above, then q inherits the symmetries of qE under the dp-symmetries 
(1.24), is in Lk(d t ;  L2(dp dx)), and satisjies 

(2.8) V q g  = / / q b ( v l  - v,w)dwMl dvl . 

Combining this result with that of the last subsection and using the microscopic 
conservation laws (1.4) and the dp-symmetries (1.24) yields the following rela- 
tions. 

PROPOSITION 2.3. (INCOMPRESSIBILITY AND BOUSSINESQ RELATIONS) 
Given g as described above, it has the form of an injnitesimal Maxwellian (2.7) 
where ( p ,  u, 0) satisfy 

(2.9) vx’x.u = 0 , Vx(p + 0) = 0 . 

The proof makes critical use of compactness results from Section 3. 
Before going further in this direction, we introduce the notion of “entropic 

convergence” that will be of repeated use later. A sequence of fluctuations g ,  is 
said to converge entropically of order em to g if and only if 

g, - g in w-L’(Mdvdx) , 

(2.10) and 

We shall show that this notion of convergence is in fact stronger than that of 
L’((1 + IvI2)Mdvdx). 
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One of the most remarkable features of the incompressible Navier-Stokes scal- 
ings is that the DiPerna-Lions entropy inequality (2.4) transforms into a global 
form of the Leray energy inequalities (1.62) as E tends to zero. More precisely, 
we shall consider the entropy inequality (2.4) multiplied by E - ~ ~  and pass to the 
limit in the resulting inequality as E tends to zero, to obtain the following result. 

PROPOSITION 2.4. (THE LERAY ENERGY INEQUALITY) Let 

(pi", uin, @) E L2(dx; R x RD x R) 

and define the injnitesimal Maxwellian gin in L2(Mdvdx) by the formula 

(2.1 1) 

Suppose that GE = 1 + E m g E  2 0 such that g: - gin entropically of order srn for 
some m 2 1. Let G, 2 0 be a sequence of renormalized solutions of the scaled 
Boltzmann initial-value problem (1.63) and let g,  and qe be the corresponding se- 
quences ofjluctuations and scaled collision integrands. Let g and q be limits of the 
sequences g, and q , / N ,  in w-Lk(dt;  w-L'(Mdvdx)) and w-L:,(dt; w-L'(dpdx)) 
respectively. Then g has the form of an injnitesimal Maxwellian (2.71, where 
p E L2(dt; Ys),  u E L2(dt; Yv), and 0'0 E L2(dt; L2(dx)) satisfy the inequality 

The proof is based essentially on the convexity of the integrands of both the 
entropy H and the entropy dissipation rate R, and on the dp-symmetries (1.24). 
Various implications of the normalized Boltzmann equation are used in the proof, 
in particular, the limiting Boltzmann equation (2.8) and the incompressibility and 
Boussinesq relations (2.9). 

The implications of the normalized Boltzmann equation are the subject matter 
of Section 4. In particular, the above results are contained in Propositions 4.1, 
4.2, and 4.9. 

The Stokes Limit 

So far, the local conservation laws associated to the Boltzmann equation have 
not been used. The only local conservation law known to be satisfied by all 
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renormalized solutions of the Boltzmann equation, however, is that of mass (1.57). 
In order to formulate the hydrodynamic limits (which are obviously based on the 
fundamental principle of dynamics), we are consistently led to restrict our attention 
to sequences of renormalized solutions G, of the scaled Boltzmann initial-value 
problem (1.63) such that the following assumption holds: 

(HO). The solutions G, satisfy the local momentum conservation law: 

1 
d,(vG,) + -VX.(v 8 v G ~ )  = 0 . 

E 
(2.13) 

Whether renormalized solutions of (1.63) generally satisfy (HO) is still an open 
problem. 

The Stokes equation will be obtained as the limiting form of the above local 
momentum conservation law as E tends to zero. But, in order to take the small E 

limit in the local momentum conservation law, it is essential to control the high 
velocity tails of the quantities involved. High velocities are obviously generated 
by the collision operator. It is therefore little wonder that controlling the high 
velocity tails can be achieved by some assumptions bearing on the Boltzmann 
kernel b. To achieve the Stokes and the time-discretized Navier-Stokes limits, we 
shall make the following assumption: 

The Boltzmann kernel b is that of a cut-off hard potential (see [7]) such 
that the two following inequalities hold 

(2.14a) 

(2.14b) 

where 4 = 4(v) is the matrix valued function defined by (1.46). 
Assumption (Hl) is certainly satisfied by Maxwell potentials. In that case 

the key observation is that the entries of the matrix 4 are eigenfunctions of the 
linearized collision operator L (see [7]); both inequalities in (Hl) then follow from 
(1.46). The properties of the linearized collision operator L related to assumption 
(Hl) will be discussed in Appendix C. 

(Hl). 

(I4(v)l + Ib(vl)l) b(vl - v, w )  5 C (1 + lvI2 + I V I  1 2 )  , 

(1 + l V l 2 )  5 c (1 + lb(v)l)2 1 

Our main result concerning the Stokes limit is the following. 

THEOREM 2.5. (THE STRONG STOKES LIMIT) Assume (Hl). Let uin E X, 
and define the injinitesimal Maxwellian g'" by 

(2.15) = u'n. v , 

Let G$ = 1 + Ern&' 2 0 be any sequence such that g? - gin entropically of order 
E" for some m > 1. Let G, = 1 + EmgB Z 0 be any corresponding sequence of 
renormalized solutions of the scaled Boltzmann initial-value problem (1.63) that 
satisfies (HO). Then 

(2.16) g,(t) - u(t).v entropically of order E" for almost every t > 0 , 
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where u(t) is the unique solution of the Stokes initial-value problem 

(2.17a) dtu + VIP = u A ~ u ,  V ~ . U  = 0 ,  

(2.17b) u(0) = u'" , 

with the viscosity v given by formula (1.51). Moreover, the normalized scaled 
collision integrands converge strongly to q: 

- q = (Vxu + ( 9 ~ ) ~ )  :a in L:, (dt;L'(( l  + 1vl')dpdx)) , q E  (2.18) - 
N &  

where = + 4 - 4; - 4') and 4 is given by (1.46). 

The strong Stokes limit theorem is proved in Section 6 (see Theorem 6.2). 
A key step in its proof is the following compactness result: that any consistently 

scaled sequence of DiPerna-Lions solutions has a subsequence whose velocity 
moments converge weakly to a solution of the Stokes equation (see Theorem 
6.1). This result is based on the following line of arguments. Recast the local 
momentum conservation law as 

Then, using the self-adjointness of L, the quadratic character of Q, and the defi- 
nition of the scaled collision integrand qE, one obtains 

Using various implications of the entropy bounds (2.4), one can show that the first 
two terms in the right side of (2.20) vanish as E tends to zero. The last term in 
the right side of (2.20) is first computed with the help of the limiting Boltzmann 
equation (2.8) and the infinitesimal Maxwellian form (2.7): 

One sees from the above relation that this last term in the right side of (2.20) 
corresponds exactly to the viscosity term in the Stokes equation. 



FLUID DYNAMIC LIMITS OF KINETIC EQUATIONS I1 687 

The local conservation of momentum is integrated against a test vector field 
which is divergence free (with respect to x);  only then does one take the limits 
of the various terms involved as E tends to zero. This procedure eliminates the 
pressure term on right side of (2.19). The pressure in the Stokes equation is 
therefore nothing but a Lagrange multiplier associated with the constraint of the 
incompressibility relation of (2.9). 

The Time-Discretized Navier-Stokes Limit 

The scaling leading to the nonlinear Navier-Stokes equation corresponds to the 
case m = 1 in the entropy bound (2.4) on the initial data. For various reasons 
discussed below, we have not been able to prove the exact analog of the Stokes 
limit theorem in the case where m = 1. The main simplification we have to 
concede is to study time-discretized analogs of the evolution equations above. 
The scaled time-discretized Boltzmann problem is 

(2.21) 
G, - G r  1 

At E 
E ~ + v.V'G, = - Q(G,,G,) ; 

it is an implicit time discretization of the scaled Boltzmann equation (1.63a). 
Throughout this article, we shall always set the time step At = 1. With the same 
definitions as in (2.1) and (2.3), the normalized Boltzmann equation reads: 

(2.22) 

The DiPerna-Lions theory can be transposed to this new problem without signifi- 
cant change. The form of the entropy inequality is, however, somewhat different: 

H(G,) + J(G$, G,) + ,R(G,) 5 H(G$) , (2.23) 

where J(GF, G,) is the relative entropy of G t  with respect to G, which is given 

1 
& 

by 

(2.24) J(G$, G,) = 1 (G? log( z )  - G$ + G,) dx . 

The corresponding time-discretized Navier-Stokes equation reads 

(2.25) u + VX.(u 8 U )  + VXp = Y A ~ U  + u'" , VX.u = 0 

In any dimension, for every uin in X v ,  this equation has a solution in 7 ,  that 
satisfies the Leray energy inequality: 

(2.26) 
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In dimension D = 2, 3, 4, any solution of the time-discretized Navier-Stokes 
equation in 7,  satisfies the equality in (2.26). 

For a sequence of initial data for (2.21) chosen to satisfy the entropy bound 

analogs of the results implied by the evolution entropy inequality and the evolution 
Boltzmann equation hold and are proved in the corresponding sections. 

For the same reason as in the previous subsection, in order to derive the Navier- 
Stokes limit, it has been necessary to assume the local momentum conservation 
law for the renormalized solutions G, of (2.21) considered: 

(HO'). G ,  satisfies the time-discretized local momentum conservation law 

Most of the proof of the Stokes limit theorem can be reproduced in the case where 
m = 1. The second term on the right side of (2.20), however, does not tend to zero, 
but is formally expected to converge to the (quadratic) convection tensor in the 
Navier-Stokes equation (see Section 1 and reference [3]). It becomes, therefore, 
essential to control this nonlinear term at high velocities. To this end, we have 
been led to introduce the supplementary assumption 

(H2). The family (1 + I v I 2 ) g 2 / N E  is relatively compact in w-L'(Mdv dx). 
The term g z / N ,  somehow measures the difference between the entropy bound 
(2.4) and an L2 bound on g,. Section 3 contains a proof of the following partial 
result in this direction (see Proposition 3.3): 

(1) $ is bounded in L"(dt;L'(Mdvdx)) , 

in L"(dt;L'(Mdvdx)) . 1 

This result is enough to take the limit of the term 

in the case where m > 1; assumption (H2) is needed, however, to achieve the 
same in the case where m = 1. 

THEOREM 2.6. (THE STRONG NAVIER-STOKES LIMIT) Assume (Hl) and D 5 
4. Let uin E dE", and defne the infinitesimal Maxwellian by 
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Let GF = 1 + E ~ F  h 0 be any sequence of initial data such that g t  converges to 
gin entropically of order E. Let G, = 1 + ~ g ,  Z 0 be any corresponding family 
of renomalized solutions of the time-discretized Boltzmann equation (2.22) that 
satisfies (HO) and (H2). Then the family g, is relatively compact in w-L'((l + 
I v12)Mdv dx)  and for any convergent subsequence (again denoted g,) 

g, - g = u.v entropically of order E , 

where u E Yv is a weak solution of the time-discretized Navier-Stokes equation 

u + VX.(u 8 U )  + V'p = vAxu + u"' , VX.U = 0 , 

with the viscosity u given by the formula (1.5 1). Moreovel; the normalized scaled 
collision integrands converge strongly to q: 

- q = (V& + (VXu)*) :@ , in L'((1 + Iv12)dpdx), 9, 
N ,  
- 

where @ = &#q + 4 - 4; - 6'). 

The main difference with the Stokes limit theorem lies in the treatment of the 
nonlinearity in 

(2.27) 

The strategy used in this article is based on earlier results (see [4] and 1151). It is 
based on a two-step procedure. 

Step 1. Write 
g, = WE + Z E  

with Z J X ,  .) E N(L) for almost every x and ( w , ~ )  = 0 for all x E N(L). A 
consequence of the entropy dissipation bound (2.4) is the fact that w, - 0 for 
almost every (x ,v)  as E tends to zero. In other words, the entropy dissipation 
bound measures the distance between the fluctuation of the number density and 
the linear space of infinitesimal Maxwellians. 

Step 2. Observe that 

Therefore, in view of Step 1, proving the pointwise convergence of g, amounts to 
proving the pointwise convergence of its velocity averages. The tool best adapted 
to investigating those properties is the velocity averaging theorem given in Golse, 
Lions, Perthame, and Sentis; see [131 and [141. 
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THEOREM 2.7. (VELOCITY AVERAGING) Assume that: 

(i) The family f , = . fp(t ,  x ,  v )  is bounded in L k ( d t ;  L2(( 1 + I v I 2)Mdv dx)), 
(ii) The family T ,  = &&fE + v.VxfE is bounded in Li,(dt;L2((1 + IvI2)Mdvdx). 

Then, for any measurableZfuncilon x = x(v)  subquadratic as IvI - 00, the fam- 
ily ( X f , )  is bounded in Ll,(dt;H’/2(dx)) and for every t < t‘ there exists some 
constant C such that the following inequality holds: 

Classical interpolation arguments allow one to state an analog of the velocity 
averaging theorem in L’ spaces. 

With the argument sketched above, it can be proved that the nonlinear term 
(2.27) converges to u 8 u modulo a matrix proportional to the identity, which 
can therefore be absorbed in the pressure term. The proof of the strong Navier- 
Stokes limit theorem is carried through in Section 7 (see Theorem 7.4). As in the 
case of the Stokes limit, a key step in order to prove the strong Navier-Stokes 
limit theorem is the following statement, which holds in any dimension: any 
consistently scaled sequence of DiPerna-Lions solutions has a subsequence whose 
velocity moments converge to a solution of the time-discretized Navier-Stokes 
equation (see Theorem 7.3). 

Observe that the velocity averaging theorem stated above does not provide 
relative compactness with respect to the variable t. This is the very reason for 
which we have proved the Navier-Stokes limit theorem for the time-discretized 
problem. In other words, the velocity averaging theorem is used in the particular 
case of functions constant in time. 

3. Implications of the Entropy Inequality 

Convexity 

As stated in Section 1, DiPerna and Lions (see [lo]) have proven the global 
existence of G,, a renormalized solution to the scaled Boltzmann initial-value 
problem (1.63), satisfying the entropy inequality (1.63, 

/ (G&) log GE(t) - G,(t)  + 1 )  dx 
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Consider a sequence of such solutions G, indexed by a vanishing positive sequence 
E such that for some constant C’” > 0, the initial data GF satisfies the entropy 
bound (1.66): 

This then implies bounds on the sequence G, through the entropy inequality (3.1). 
This section contains results that follow directly from the convexity of the inte- 
grands in the entropy inequality (3.1) and the entropy bound (3.2). 

Since the entropy integrand, G log G - G + 1, is a strictly convex function of G 
with a quadratic minimum of zero at G = 1, the integral approximately measures 
the square of the deviations from this minimum. This suggests introducing the 
fluctuation g, defined by G, = 1 + E m g ,  and the convex function h = h(z) defined 
over z > -1  by 

The entropy inequality (3.1) and entropy bound (3.2) then give 

(3.4) 

Proposition 3.1 will state that these bounds imply that the families g, and gy 
are relatively compact (therefore bounded) sets in w-L:,(dr; w-L’(Mdv dx)) and 
w-L’ (Mdv d x )  respectively, a so-called “entropy control.” 

The second integral on the left side of the entropy inequality is the entropy 
dissipation. The convexity here is a bit subtle; its form suggests the introduction 
of the scaled collision integrand q, = E - ( ~ + ’ ) ( G L ~ G ~  - G,lG,) and the convex 
function r = r(z) defined over z > -1 by 

(3.5) r(z) = zlog(1 + z) . 

The entropy inequality (3.1) and the entropy bound (3.2) can then be recast in the 
form 

(3.6) 
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Proposition 3.5 will state that the family of scaled collision integrands qE divided 
by a normalization N, is a relatively compact set in w-L:,(dt;w-L’(dl.Ldx)), a 
so-called “dissipation control.” 

The scaled Boltzmann time-discretized problem (2.2 1) brings a new element 
to the convexity story. Its renormalized solutions satisfy the entropy inequality 
(2.23, 

/ (G,logG, - G, + 1) dx 

(3.7) 

The convexity for the integrands of all but the middle term on the left side of 
inequality (3.7) is as it was for the continuous time problem. The middle term is 
just the entropy of G? relative to G,; as such, its integrand is easily understood 
to be a non-negative convex function of Gf. It is one of the beautiful properties 
of the classical entropy that this integrand is a jointly convex function of both of 
its arguments, G? and G,. 

Since only the Navier-Stokes limit will be considered for this problem, se- 
quences of such solutions G, indexed by a vanishing positive sequence E are 
taken with initial data G? satisfying the entropy bound (3.2) with rn = 1 for some 
constant C”’ > 0. Once again using the fluctuation g, defined by G, = 1 + Eg,, 

and introduce the convex function j = j ( z ,  y) defined over z, y > - 1 by 

The entropy inequality (3.7) and the entropy bound (3.2) (with rn = 1) can then 
be recast in the form 

(3.9) 
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Proposition 3.5 will state that the family of scaled collision integrands qE divided 
by a normalization N ,  is a relatively compact set in w-L’(dp  dx)),  another so-called 
“dissipation control.” 

All the results in this section will be obtained from properties of the functions 
h and r defined over the interval z > -1. The foremost of these properties is 
convexity; this will often be used through the Young inequality. Generally stated, 
if f and f *  are strictly convex functions defined over the convex domains D 
and D* in the dual linear spaces E and E* respectively that are dual under the 
Legendre transformation (see [ 11) then they satisfy the inequality 

(3.10) (y; Z)p, 5 f * (y) + f(z) , 

for every z E D and y E D*. The Legendre transform of h (3.3) is explicitly 
given by 

(3.1 1) h * ( y )  = exp(y) - 1 - y , 

while that of r (3.5) is implicitly determined by 

(3.12) y = log(1 + z) + - Z ; 1 +z 
r*(y) = 2- , 

1 +z 

both are defined for all y E R. Notice that j is not strictly convex; its Legendre 
transform is singular and plays no role in the sequel. 

l k o  other properties of these functions play a role in what follows. First, the 
functions h and r satisfy the elementary reflection inequalities 

over the interval z > -1. Second, the functions h* and r* have superquadratic 
homogeneity for y > 0; this means that 

(3.14) h*(Ay) I A2h*(y), r*(Ay) I A2r*(y), 

for any y > 0 and 0 I A 5 1. 

Entropy Controls 

The first step is the following compactness result which shows that the entropy 
bound (3.2) provides the necessary control to justify the scaling of the fluctuations 
used in the formal arguments. 
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PROPOSITION 3.1. Let E = {en}  be any positive sequence converging to zero. 
Let g, be any sequence of functions in L"(dt; L'(Mdvdx)) with 1 + emg, 2 0. 
Assume there exists a positive constant Cin such that g, satisjies the entropy bound 

Then the following assertions hold: 

( 1 )  The sequence (1 + (vI2)g, is bounded in L"(dt;L1(Mdvdx)) and relatively 

(2) Z j  g is the w-L:,(dt; w-L'(Mdv dx))  limit of any converging subsequence of g ,  
compact in w-L:,,(dt; w-L'(Mdv dx)); 

then g E L"(dt;L2(Mdvdx)) and for almost every t E [O ,co )  it satis3es 

Remark. As it is stated, Proposition 3.1 may be applied to the sequence gz 
by considering the g ,  to be independent of time; the temporal component of the 
above spaces then trivializes. This observation is also used in later sections when 
applying this, as well as subsequent propositions, to the treatment of the time- 
discretized Navier-Stokes limit. 

Proof Let a > 0 (to be chosen). First apply the Young inequality (3.10) to h 
and h * with z = cm lg, I and y = E~ (1 + I v I 2) /a  and invoke the reflection inequal- 
ity for h (3.12). For all E such that cm 5 a use the superquadratic homogeneity 
of h* (3.13) with A = cm/a  to obtain the bound 

1 Ern 1 a 
- (1 + lv12) lgsl 5 4 E2m a 4 h*( - - (1 + Iv12)) + 

4 - h*( - (1 + 1 ~ 1 ~ ) )  + - h(Emg,) . 

h(Emgg) 

1 1  a 
a 4  &2m 

(3.17) 

From the explicit form for h* (3.11), it is manifest that the first term on the 
right side above is in L'(Mdv), while the second term is is uniformly bounded 
in L'(Mdvdx)  by (3.15). Thus, integrating (3.17) over U D X  RD after choosing a 
larger than any value of em shows that the left side of (3.17) is a bounded sequence 
in L / , ( d t ;  L'(Mdv dx)). 
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The equi-integrability of the sequence must be demonstrated in order to verify 
its relative compactness; see [l  11. Integrating (3 .17)  over any measurable C! C 
[0, TI x TD x RD and using the entropy bound (3 .15)  gives 

(3.18) 

s '//L h'( a (1 + dvdxdt + aTCi" . 
ff 

Take 
that 

> 0 arbitrarily small. First choose a = 77/(2TC'"), then pick S > 0 such 

1 
/ /"h*(: (1  + lvI2) dvdxdt  5 -aq.  meas(0) < S implies 1 2 

For all E with em S a this choice of S will ensure that the left side of (3.18) will 
be smaller than q for any R with meas(R) < 6. The finite set of members of 
E with cm > a can be accommodated by picking 6 as small as necessary. This 
proves assertion (1 ). 

Now let g be the w-L/,(dt; w-L'(Mdvdx)) limit of any convergent subsequence 
of g,. The convexity of h gives the inequality 

1 1 1 
&2m Ern E2m 
- -h (Emg)  + -h'(Pg)(g, - g) 5 - h(Pg,)  . 

Fix A > 0 and multiply this inequality by the indicator (characteristic) function 
1Igl<A; the non-negativity of h then implies 

Average this over [ t l ,  t2] X BD x RD for an arbitrary time interval [ t l ,  t2] and then 
consider its limit as E tends to zero. Use the strong L" limits 

and the w-L' limit (g, - g) - 0 to show that 

5 liminf - I /  ( +h(&"g,)) dxdr 5 C'" 
E - 0  t2 - t l  

f I  
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Taking A - +m and using the arbitrariness of the interval [tl,  t2] completes the 
proof of assertion (2). 

The following corollary considers a w-L:,(dt; w-L'(Mdv dx)) convergent sub- 
sequence of g ,  (still denoted g,)  and its limit g in Lm(dt;L2(Mdvdx)). It concerns 
some technical results regarding certain functions of g ,  that will subsequently be 
used to approximate g ,  and g .  The first is -ye, the nonlinear function of g ,  that 
appears in the normalized Boltzmann equation (2.2). Note that 7, = E - m t ( E m g e )  

where t (z)  = 31og(l + i z ) .  The second is the decomposition 

This will be used frequently for various technical reasons, in particular to control 
terms in the collision operator. These approximations make explicit the fact that 
g ,  converges in w-L' to a limit g that is in L2, as we shall see from the following 
corollary. 

COROLLARY 3.2. Given g ,  as above: 

(1) The sequences g , / N ,  and -ye converge to g in w-Lk(dt;  w-L2(Mdvdx)); 
(2) As E tends to zero, g ,  - -ye = O ( E ~ )  in Lm(dt;L1(Mdvdx)); 
(3) The sequence g : / N ,  is bounded in ~ " ( d t ;  L' ( ~ d v  dx)). 

Proof Assertion (1) will follow from assertions (2)  and (3) once the se- 
quences are shown to be bounded in Lk(d t ;  L2(Mdv dx)). But such bounds follow 
immediately from the entropy bound (3.15) by setting z = Emg, into the following 
elementary inequalities (for z 2 -1) 

/ \ 2  

Assertion (2) follows from assertion (3) by setting z = E m g E  into the elementary 
inequality 

Z 
1 5 t (z)  5 2 ; 

1 + gz 

The right side above is then O(cm) in L"(dt; L'(Mdv dx)) by assertion (3). 
In order to prove assertion (3) we introduce the function 

(3.19) s(z) = - - 
2 1 + 5 2  
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Observe that s(z) 5 h(z) for z L -1; indeed s”(z) = (1 + f ~ ) - ~  4 ( 1  +z)-’ = h”(z) 
and h(z) - s(z) = O(z4) as z - 0. Therefore 

whence assertion (3) follows from the entropy bound. 

The most technical point in this section consists of controlling the behavior of 
g : / N ,  for the large values of v. We obtain only a partial success in this direction 
in the sense that the following control is not sufficient to prove convergence to the 
Navier-Stokes equation; it will be strong enough, however, to prove convergence 
to the Stokes equation. This result should be compared with assertion (3) of 
Corollary 3.2 above and with assumption (H2). 

PROPOSITION 3.3. As E tends to zero 

Proof Start with the observation that the function w - h’(w)/s’(w) is in- 
creasing over w E (0, co). This follows from the fact that for every w € ( 0 , ~ )  

w ( l +  iw) 1 1 
(1 + iw)2 1 + w  

s‘(w) h”(w) - h’(w) s”(w) = - log(1 + w) > O .  
(1 + $ 4 3  

Moreover, the values of h’(w)/s’(w) over (0,m) range from 1 to 00. This mono- 
tonicity then implies that every positive w and z satisfy 

(3.21) 

This inequality is nothmg but the Young inequality applied to the function f = 
h 0 s-’, but can be inferred more directly by noticing that equality holds when 
z = w and using the monotonicity to compare the z derivatives of each of its sides. 

Setting z = EmgE into (3.21) and dividing by ezrn gives 

for every positive w. In this proof we shall choose w = wE(v) to be the solution 
of the equation 

(3.23) 
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Notice that the values of the right side of this equation span range of values of 
the function on the left. 

The proof now contains three technical steps which we state here in order of 
usage, deferring their verification. 

Step 1. The function w, determined by (3.23) satisfies the bound 

(3.24) 

where = C ( E )  is the solution of 

(3.25) 1 - <log(<) - (1 - Qlog(1 - g + clog(&? = 0 . 

Step 2. There exists a constant C, independent of E ,  such that wE determined 
by (3.23) satisfies the bound 

(3.26) 

Step 3. Given that < = G ( E )  is the solution of (3.29, then ( ( E )  satisfies the 
asymptotic bound 

(3.27) 

Given these three steps, the remainder of the proof follows directly. First, 
combining inequality (3.24) of Step 1 with inequality (3.22) gives 

Integrating this over TD x RD while using the entropy bound (3.4) and the bound 
(3.26) of Step 2 yields the bound 

Dividing this by <(E)  and using (3.27) of Step 3 yields (3.20), the desired result. 
All that remains to complete the proof of Proposition 3.3 is the verification of 
Steps 1-3. 
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In order to verify Step 1, for every 6 E (0,l) and E > 0 define a function over 
k E R by k - 1 + log( 1 + E~ exp{k}) - k c .  This function takes on its minimum 
value of 

at the point k where 
r 

E"(1 - 5) . 
exp(k) = 

This minimum value will be zero when [ = [ ( E )  solves (3.25); this solution exists 
and is unique provided log(Em) < - 1. Setting k = f 1v12 and 5 = ( ( E )  into this 
positive function and recalling the definition of w, (3.23) then yields (3.24). 

To verify Step 2, first notice that (3.23) gives the estimate 

Next notice that for some C > 0 one can obtain the bound 

(3.29) 

for every positive w. This follows from direct asymptotic analysis of the defining 
formulas (3.3) and (3.19) of h and s. Finally, notice that when log(Em) < -1, one 
has the bound 

1 + log( 1 + Emexp(kIvl2)) 

1 
8 

5 log(e + 1) + -1vI2 . 

Thus, the function w, defined by (3.23) satisfies 

which is uniform in E .  After some more asymptotic analysis, this leads to 

(3.30) w, = O(exp( A l v l 2 ) )  

Combining (3.28), (3.29), and (3.30) shows that 

where the estimate is uniform in E .  Integrating this over Mdv then gives (3.26). 
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The verification of Step 3 follows from a straightforward asymptotic analysis 
of (3.25), the defining equation for C(E).  This completes the proof of Proposition 
3.3. 

Dissipation Controls 

Applying exactly the same techniques to the entropy dissipation as were used 
in the proof of Proposition 3.1 to control the sequence g ,  by the entropy produces 
a corresponding result for the sequence of scaled collision integrands q,. In this 
case, while similar, the results for the continuous and discrete time problems have 
differences worthy of distinction. 

PROPOSITION 3.4. Let g ,  and g$ be sequences of finctions in 

Loo (d  t ; L ' (Md v dx)) and L ' (Mdv dx) 

respectively such that 1 + E m g ,  2 0 and 1 + Emg$ Z- 0. Let q, be the sequence 
of scaled collision integrands corresponding to g,. Ifg,, q,, and g$ satisfy the 
entropy inequality and bound (3.6) then 

(1) The sequence (1 + 1 v I '),q,/N, is relatively compact in w-L/,(dt; w-L'(dp dx)); 
(2) If g and q are the w-Ll,(dt; w-L'(Mdv dx)) and w-L:,(dt; w-L'(dp dx)) Zim- 

its of any converging subsequence of g,  and q , / N ,  respectively then q in- 
herits the symmetries of q, under the dp-symmetries (1.24); moreovel; q € 
L2(dt; L2(dp dx)) and for almost every t E [ O , c o )  it satisfies 

Proof Let a > 0 (to be chosen). First apply the Young inequality (3.10) to r 
and r* with z = E'"+~~~,I / (G~IG,)  and y = em+'1/4(1 + Ivl')/(aN,) and invoke 
the reflection inequality for r (3.13) to obtain the bound 
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Since N, = 1 + 1/3 EmgB B 2/3, the superquadratic homogeneity of r* (3.14) can 
be used with A = e'"+l/(aN,) provided E satisfies E ~ + '  5 2/3a. This leads to 

Now consider the first term of the right side above. From the implicit formula 
for r* (3.12) it can be easily shown that r*(y) = O(exp{y}) as y - +co; thus, the 
function r*(1/4(1 + lvI2)) is O(exp{l/4 lvI2}) for large IvI. The factor G,/Nz  is 
uniformly bounded by the value 9/8 and converges to 1 almost everywhere while 
the factor (1 + Iv1 I2)G,1 is relatively compact in w-L;,(dt; w-L'(Mdvl dx)). These 
facts along with the bound (1.6) on b imply that the first term on the right side of 
(3.32) is relatively compact (and therefore equi-integrable) in 

w-L:,(dt; w-L'(dp dx))  . 
Integrating (3.32) over any measurable R C [0, T ]  X TDx RDx RDx SD-' and 

using the entropy bound (3.4) with the entropy inequality (3.6) gives 

(3.33) 

Taking R = [0, T ]  x TD x RD x RD x SD-' and choosing a larger than any 
value of 3/2~'"+' shows that the left side of (3.32) is a bounded sequence in 

To prove equi-integrability, take 17 > 0 arbitrarily small. Choose a = 17/2C'". 
Invoking the equi-integrability of the first term on the right side of (3.32), pick 
6 > 0 such that 

L:,(dt; L ' @ p  dx)). 

meas(R)<S implies J//r*(i ( 1 + l v l 2 ) ) - d p d x d t ~ - q .  G&IC& 
1 

R N:  2 

For every E with &'"+I I 2/3a this choice will ensure that the left side of (3.33) 
will be smaller than 7 for any R with meas(R) < 6. The finite set of members 
of E such that em+' > 2/3a can then be accommodated by picking 6 as small as 
necessary. This proves assertion (1 ). 

Now let q be the w-L:,(dt; w-L'(dp dx) )  limit of any convergent subsequence 
of q E / N E .  The product limit theorem (see Appendix B) implies that 

a,  
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in w-L:,(dt; w-L'(dpdx)) as E tends to zero. Since each of these approximating 
functions has the symmetries of qE under the dp-symmetries (1.24), q inherits 
these symmetries. 

In order to obtain the inequality (3.31), take the limit inferior on both sides of 
the entropy inequality (3.6) and apply assertion (2) of Proposition 3.1 to obtain 

(3.34) 

It remains to show that the second term on the left side above is an upper bound 
for the corresponding term in (3.31). 

The convexity of r gives the inequality 

1 1 
-r &2m+2 (em+'q)  + ~ m + l ~ '  ( E m + l q )  

Fix A > 0 and multiply this inequality by the indicator function l l q l < ~  times GE1G, 
over the normalization NZbs = 1 + i~~ lgEl; the non-negativity of r then implies 

(3.35) 

Integrate this over (0, t )  X TD x (RD x RD X SD-') then consider its limit as E 

tends to zero. The normalization Ngbs is chosen so that GEIGE/N:bS - 1 in 
L;,,(dt;L'(dp dx)) (by the estimates of Corollary 3.2), and that 

in w-L:,(dt; w-L'(dpdx)) (by hypothesis and the product limit theorem). The 
w-L' limit of the left side of inequality (3.35) can be evaluated using the strong 
L" limits 

1 1 
-r(Em+lq) &2m+2 I l q l < h  --* q2 I lg l<X 9 - r ' ( E m + ' q )  1 l q l t X  - 2 q  l lq l<X 9 

and the w-L' limit 
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this leads to the bound 

Taking h - +m then provides the estimate needed in (3.34) to complete the proof 
of assertion (2). 

Remark. Control of the first term on the right side of (3.32) required only 
the boundedness of the sequence G,/N:.  This can be achieved by normalizations 
N(G) that grow sublinearly as G - 00. For example, N(G) = (2/3 + 1/3G)'I2 
works fine. In fact, the whole DiPerna-Lions theory can be recast with such 
normalizations. So far, however, we have been unable to gain significant new 
results from this observation. 

The time-discretized version of Propositon 3.4 mainly differs in the limiting 
form of the entropy inequality obtained (compare (3.31) above with (3.36) below). 
This difference plays a critical role in obtaining the strong Navier-Stokes limit in 
Section 7. 

PROPOSITION 3.5. Let g, and g5 be sequences offunctions in L ' (Mdvdx)  such 
that 1 + eg, 2 0 and 1 + &g! 2 0. Let q, be the sequence of scaled collision 
integrands corresponding to g,. I f  g,, q,, and g? satisfy the entropy inequality 
and bound (3.9) then 

( 1 )  "he sequence ( 1  + lvI2)q,/N, is relatively compact in w- l ' (dpdx ) ;  
(2) I f g ,  g'", and q are the w-L'(Mdvdx),  w-L'(Mdvdx),  and w-L'(d,udx) limits of 

any converging subsequence of g,, g!', and q , / N ,  respectively then q inherits 
the symmetries of q, under the dp-symmetries (1.24); moreover; q E L2(dpdx))  
and it satisfies 

/ &")dx + / [ (lg - g i n [ " )  dx  + / a ((q2)) dx  

(3.36) 

S lirn E - 0  inf 1 ( $ h(E g?)) dx 5 C'" . 

Proof The verification of assertion ( 1 )  and the first parts of assertion (2) 
proceed like the corresponding parts of Proposition 3.4; all that remains is to 
verify (3.36). The only term in (3.9) that is unlike those already analyzed in the 
proof of Proposition 3.4 is the middle term on its left side. The convexity of j 
gives the inequality 

1 1 1 
T j ( E  g'", & g) + -a& g'", E g)(g? - g'") + y(& g'", E g)(g, - g) 
& & 

1 
5 +(EgF, E g E )  . 

& 
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Fix A > 0 and multiply this inequality by l k ,  the indicator (characteristic) function 
for the set { (x ,v )  E T D X  RD : lgl'", lgl < A} and passing to limits as before leads 
to the bound 

Taking A - 00 then provides the estimate needed to complete the proof of Propo- 
sition 3.5. 

An immediate corollary of Proposition 3.4 (or 3.5) that will be used frequently 
in the sequel is the relative compactness of the family of normalized collision op- 
erators that appears on the right side of the normalized scaled Boltzmann equation 
(2.2) (or (2.22)). 

COROLLARY 3.6. Let G, = 1 + E m g s  > 0 where g, 
with m = 1, as in Proposition 3.5). Then the sequence 

is as in Proposition 3.4 (or 

is relatively compact in 

w-L:,(dt; w-L'(Mdvdx)) (or with m = 1, w-L'(Mdvdx)) 

Proof Just observe that for any x in Lg(dt;L"(Mdvdx))  and [ t l . t z ]  C R+ 
one has 

and apply Proposition 3.4 to the right side. The proof for the time-discretized 
case is similar. 

Another consequence of the entropy inequalities is a bound on the difference 
between Q: and Q;, the gain and loss components of the collision operator. These 
are defined by 
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PROPOSITION 3.7. The bound 

holds for almost every (r, x, v )  E [O,m) x TD x RD. 

Remark. The significance of this result lies in the fact that the right side of 
the inequality divided by E ~ + ~  is in a bounded set of L!,(dt;L'(Mdvdx)) by the 
dissipation bound (3.6). This inequality is a slightly sharper version of the one 
exploited by DiPerna and Lions (see [lo]) to obtain some of their compactness re- 
sults. While those results now follow from Proposition 3.4, we feel that inequality 
(3.37) has intrinsic interest. 

Proof For almost every ( t ,x ,v)  the values of Q: and Q; are finite. If 
GE(t,x, . ) = 0 almost everywhere then all members of the inequality (3.37) vanish, 
giving the result. Consider the quantity [(G,) defined by 

Since Q; = G,C(G,), it is clear that WE) also has a finite value for almost 
every (?,x,v). If GE(f,x, .)  > 0 on a set of positive measure then it follows 
that k'(GE(t,x, 0 ) )  > 0 provided the Boltzmann kernel b is sufficiently positive. 
Wherever this is the case, define the positive unit measure d p f  on RDx SD-' b Y 

The mean of the function 

over this measure is simply 

Application of the Jensen inequality to the non-negative convex function r gives 

which yields inequality (3.37) upon multiplication by Q; (= G,C(G,)). 
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The Infinitesimal Maxwellian 

One of the main consequences of the entropy and dissipation controls is the 
determination of the limiting form for the fluctuations g,. The following propo- 
sition relies on none of the assumptions (HO), ( H l ) ,  or (H2); the only assumption 
used is the bound (1.6) on the Boltzmann kernel. 

PROPOSITION 3.8. (THE IN~~NITESIMAL MAXWELLIAN FORM) Let g be the limit 
of a converging sequence of g ,  in w-L/,(dt; w-L'(Mdv dx))  that satisjies the entropy 
inequality and bound (3.6). Then, for almost every (t,x), g(t,x, .) E N(L), which 
means that g is of the form 

where (p, u, 8) E L"(dt; L2(dx; R X RD X W)) 

Proof Consider the identity 

(3.39) 

The bound (1.6) on the Boltzmann kernel implies that L is a continuous linear 
map from L'((1 + Iv12)Mdv) to L'(Mdv). Since g ,  - g in w-L:,,(dt;w-L'((l + 
)vI2)Mdv dx)) as E tends to zero, this continuity implies that 

(3.40) Lg, - Lg in w-L/,(dt;w-Ll(Mdvdx)) . 

Thus, the left side of (3.39) is w-L' convergent. Evaluating the limit of the right 
side, however, is complicated by its nonlinear nature. 

There is some information about terms that appear on the right side of (3.39). 
For example, Corollary 3.6 gives that 

(3.41) 

while, by an estimate given below, Proposition 3.3 will imply that 

where Ntbs = 1 + ;em lg, I. 
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It is convenient to define [ = [(v) = &(l + lvI2) (so that ( E )  = 1 ) .  The 
preceding information suggests dividing (3.39) by N &  N?) to obtain 

Observing the uniform bounds 

(3.44) 

it is clear that (3.41) and (3.42) show that the right side of (3.43) vanishes in L 1  
as E tends to zero. Proposition 3.1 implies 

(3.45) - 1 almost everywhere, 
1 

- 1  and ~ 

1 - 
N ,  (5 N P )  

so using (3.40), (3.44), and (3.45) in the product limit theorem (see Appendix B) 
shows that the left side of (3.43) converges to Lg in w-L' as E tends to zero. 
Therefore, the limiting form of (3.43) is just 

L g = O ,  

and formula (3.38) follows from the characterization of the null space of L, (1.45). 
Assertion (2) of Proposition 3.1 states that g is in L"(dt;L2(Mdvdx)), so that 
(p,  u, 0) is in L"(dt; L2(dx; R x RD x R)) then follows. 

What remains is to verify (3.42). This is done for the gain and loss components 
of the collision operator separately. The bound (1.6) on the Boltzmann kernel gives 
the estimate 

I (Q' ( g B , g a ) )  I 5 (Q' (lg,l, lg,l)> 5 C ( E  1gE1)2 

for some C < 03; hence 

This last term is a convex function of ([ lg,l), so an application of the Jensen 
inequality gives 

Applying Proposition 3.3 to estimate the last term above and multiplying the result 
by E"' verifies (3.42), whence Proposition 3.8 holds. 
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4. Implications of the Normalized Boltzmann Equation 

The Limiting Boltzmann Equation 

Consider the normalized Boltzmann equation (2.2) written in the form 

This means (see 1.55) that for every x in L"(Mdv;C'(UD)) and every 0 5 tl < 
t2 < 00 

f l  

(4.2) 

= / J ( ( E x )  dxdt . 
tl 

Taking the limits in (4.2) as E tends to zero while using Proposition 3.2 and 
Proposition 3.4 to establish the limits of the terms involving -ye and qE respectively 
yields 

f l  11 

hence, the limiting form of the normalized Boltzmann equation is 

(4.3) v.vIg = JJqb(v1 - v,w)dwMldvl . 

More precisely, we have proved the following. 

PROFQSITION 4.1. (THE LIMITING BOLTZMANN EQUATION) Let G, 2 0 be a 
sequence of renormalized solutions of the scaled Boltzmann initial-value problem 
(1.63) satisfying the entropy bound (3.2) for some m 2 1. Let g,  and qE be the 
corresponding sequences of Jluctuations and scaled collision integrands. Let g 
and q be limits of the sequences g ,  and q , / N ,  in w-L;,(dt; w-L'(Mdvdx)) and 
w-L:,(dt; w-L'(dpdx)) respectively. Then g and q satisfy the limiting Boltzmann 
equation (4.3). 

Remark. The limiting Boltzmann equation for the time-discretized case is 
also (4.3); both the formulation of this theorem and its proof are analogous to 
those of Proposition 4.1. For this reason we omit both here, but rather shall also 
refer to this corresponding time-discretized result as Proposition 4.1. 
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The principal implications of (4.3) are twofold. First, it provides the starting 
point for the derivation of the incompressiblity and Boussinesq relations satisfied 
by the fluid variables (p ,  u, 8) that arise in the infinitesimal Maxwellian form for g 
(3.38). Second, it provides the key relations between q and the dissipation tensors 
involving gradients of these fluid variables. These formulas yield spatial regularity 
for the limiting fluctuations and are used in this section to derive a version of 
the b r a y  energy inequality (2.12) from the limiting form of the DiPerna-Lions 
entropy inequality (3.27), and later to obtain the fluid equations. 

The Incompressibility and Boussinesq Relations 

In the formal argument leading to incompressible fluid dynamics (see [3] and 
Theorem 1.1) the incompressibility and Boussinesq relations arise as the first man- 
ifestations of the local conservation laws. This route to these relations is not 
available here since, except for that of mass, these local conservation laws are 
not known to hold for DiPerna-Lions renormalized solutions of the Boltzmann 
equation. With the aid of the dp-symmetries (1.24), however, the local conser- 
vation laws can be established for the limiting Boltzmann equation (4.3) and the 
incompressibility and Boussinesq relations can be derived as follows. 

Given that q is in L2(dpdx)) then for every E = ((v) in L2(dp),  an application 
of the Cauchy-Schwarz inequality shows that (((4)) is in L2(dn)). By a repeated 
application of the dp-symmetries (1.24) together with the symmetries that q in- 
herited from the sequence qE (see Propositions 3.4 and 3 3 ,  one has that for any 
E in L2(dp), 

As was done in the formal derivation of the local conservation laws for the Boltz- 
mann equation (1.29), successively apply this relation for < = 1, v, f lvI2 and use 
the microscopic conservation laws (1.4) to obtain 

The fact that these < are in L2(dp) follows from the bound on the Boltzmann 
kernel (1.6). Since these E are also in L2(Mdv), it then follows from the limiting 
Boltzmann equation (4.3) that g satisfies the local conservation laws of mass, 
momentum, and energy: 

(4.5) V,.(vg) = 0 ,  V..(v 8 vg) = 0 ,  0,. (v;Ivlzg) = 0 .  

Proposition 3.7 states that g has the form of the infinitesimal Maxwellian (3.38), 

(4.6) 8 = p + u.v + 8 ($"I2 - ;) . 
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Substituting this into (4.5), the local mass and energy conservation laws yield the 
incompressibility relation for the velocity field u while that of momentum yields 
the Boussinesq relation between p and 8: 

(4.7) vx.u = 0 ,  vx(p + e) = o . 
More precisely, we have proved the following. 

PROPOSITION 4.2. (INCOMPRESSIBILITY AND BOUSSINESQ RELATIONS) 
Assume that g E L2(Mdvdx) and q E L2(dpdx) satisfy the limiting Boltzmann 
equation and let g have the form of an injinitesimal Maxwellian (4.6). Then ( p ,  u, 8) 
E L2(dx; R X RD X R) satisfy the incompressibility and Boussinesq relations (4.7) 
in the sense that for every testfunction x E C'(UD) 

Remark. Notice that the above proposition does not require that the lim- 
iting initial data gin be an infinitesimal Maxwellian nor that its fluid variables 
(pi", uin, @) satisfy either the incompressibility or the Boussinesq relation. For 
the continuous time problem, (4.8) is only asserted almost everywhere in time, 
not pointwise. Physically, this result implies that the weak limit of the acoustic 
modes of the flow must vanish, but does not mean they are not there. 

The Dissipation Tensor Relations 

The limiting Boltzmann equation (4.3) leads to relations between q and the 
gradients of the fluid variables u and 8; these relations are stated in the following 
proposition. 

PROPOSITION 4.3. Let g E L2(Mdvdx) and q E L2(dpdx) satisfy the limiting 
Boltzmann equation and let g have the form of an infinitesimal Maxwellian (4.6). 
Then for almost every x 

and where 4 and are dejined in (1.46). 
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Proof Starting from the limiting Boltzmann equation (4.3) satisfied by g and 
q, set g to its infinitesimal Maxwellian form (4.6) and use the incompressibility 
and Boussinesq relations (4.7) to obtain 

Multiplying this limiting relation by 4 and rC, then integrating over v gives 

The result now follows from the following classical lemma that is also used in the 
proofs of Lemmas 4.6 and 4.8. 

LEMMA 4.4. The components of (4 0 L 4 )  and (@ 8 L@) satisfy the following 
identities: 

(4.13a) 

(4.13b) 

where v and K are given by (4.10). 

Proof: 
symmetries 

Set Tijkl = (4;j 8 L4kl). Since L is self-adjoint, this tensor has the 

Since B(v) = v 8 v - lvI2Z is proportional to the second spherical harmonic, the 
rotation invariance of L implies that the same holds for 4(v), the unique solution 
of Ld(v) = B(v) that is orthogonal to the null space of L. The symmetries of 
the defining integral imply that TijkI # 0 only if all of its indices are paired 
(the integrand is odd in the variable corresponding to an unpaired index). The 
symmetries listed above mean Tijkl has the form 
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for some scalars v and v'. But since Bkk = 0 (summing over repeated indices), 
one also has Tijkk = Tkkij = 0, whence v' = - ~ v .  Finally, the most symmetric 
formula for v is obtained by taking the double trace of T :  Ti,i, = v(D + 2)(D - 1). 
When rendered in the original notation this is the formula for v given by (4.10). 
This completes the proof of formula (4.13a). Formula (4.13b) follows from a 
similar argument. 

2 

The Limiting Global Conservation Laws 

Another property of renormalized solutions of the scaled Boltzmann initial- 
value problem (1.63) is that they satisfy global conservation laws for mass and 
momentum; see (1.57) and (1.58). In terms of the fluctuations g E ,  the initial 
normalizations (1.20) imply that these conservation laws take the form 

for every t > 0. Let E tend to zero in these expressions and use the form of the 
infinitesimal Maxwellian (4.6) to obtain 

for almost every t > 0. Thus p and u have mean zero; this fact, along with the 
incompressibility relation of (4.7), proves the following result. 

PROPOSITION 4.5. Let G, 2 0 be a sequence of renormalized solutions of 
the scaled Boltzmann initial-value problem (1.63) satisfying the entropy bound 
(3.2). Let g, and qE be the corresponding sequences of fluctuations and scaled 
collision integrands. Let g and 7 be limits of the sequences g, and q,/N, in 
w-L:,(dt; w-L'(Mdv dx)) and w-Ll,(dt; w-L'(dp dx)) respectively. Then g has the 
form of an injnitesimal Maxwellian (4.6) such that 

p E L"(dt;X,) , u E L"(dt;Xv) . 

Remark. The obstruction to proving both that 8 is in Lm(d t ;Xs )  and that 
p + 8 = 0 is the lack of a global energy conservation law for the DiPerna-Lions 
renormalized solutions. Spatially integrating the Boussinesq relation of (4.7) gives 

where E depends only on t. If the global energy conservation law were established, 
even if only in the limit, then it would follow that 
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The usual Boussinesq relation, p + 8 = 0, would then be inferred and the fact that 
e(t)  has mean zero (and thus is in X , )  would then follow from Proposition 4.5. 

The Limiting Dissipation Inequalities 

A limiting form of the entropy inequality for the initial-value problem (1.63) 
was established in Proposition 3.4. With the additional information contained in 
the infinitesimal Maxwellian form and the limiting Boltzmann equation, this can 
be refined. 

PROPOSITION 4.6. Let G ,  2 0 be a sequence of renormalized solutions of the 
scaled Boltzmann initial-value problem (1.63) with initial data G t  satifying the 
entropy bound (3.2). Let g ,  and q, be the corresponding sequences offluctuations 
and scaled collision integrands. Let g and q be limits of the sequences g, and 
q , / N ,  in w-L:,(dt; w-L'(Mdv dx ) )  and w-L:,(dt; w-L'(dp dx))  respectively. Then 
g has the form of an infinitesimal Maxwellian 

(4.14) = + u.v + e ($12 - i) , 
where p E L2(dt; Ys),  u E L2(dt; Y"), and V,O E L2(dt; L2(dx)) satisfy the inequal- 
ity 

/-; (p(t)2 + lu(t)I2 + 
f 

(4.15) 

Proof Inequality (3.31) of Proposition 3.4 states that 

f 

) (4.16) J f ( g 2 ( t ) ) d x + J J  ~((q2)dxdsSl iminf/(  p h ( E " g $ )  1 dx  5 c'" . 
E - 0  

0 

Proposition 3.8 states that g has the form of an infinitesimal Maxwellian (4.14); a 
direct calculation shows that 
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The result then follows from the limiting entropy inequality (4.1 1) upon showing 
that 

(4.18) 

almost everywhere. But this inequality will follow directly from Proposition 4.3 
above and Lemma 4.7 below. 

LEMMA 4.7. Any q E L2(dp) satisfies the inequality 

where u and K are given by (4.10). 

Proof Introduce @ = + 4 - 4; - 4’) and 6 = : ( + I +  + - t,bi - +’). First 
observe that the symmetries of q under the dp-symmetries (see (2) of Proposition 
3.4) imply 

Next, repeated application of the dp-symmetries (1.24) shows 

Lemma 4.4 then implies that any vector a E RD and any traceless symmetric 
matrix A E RDxD satisfy the identities 

D + 2  
KU . ((9 8 Q))-u = - 

1 
2 8 

((@ 8 @)):A = - u A ,  (4.22) 

When viewed this way, Lemma 4.4 is seen to give orthogonality relations for the 
functions @ and 9 with respect to the dp measure while (4.20) gives the coefficients 
of the orthogonal expansion of q in terms of @ and 9. All that remains is to check 
that (4.19) is the Bessel inequality associated with that expansion. 

First applying the Cauchy-Schwarz inequality and then the identities (4.22) 
shows that 
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The result now follows by using (4.20) and setting 

in the inequality (4.23). 

Remark. It is clear from the application of the Cauchy-Schwarz inequality 
in (4.23) that inequality (4.19) is an equality if and only if 

This observation plays a key role in establishing the limiting form of the normal- 
ized scaled collision integrands. 

The time-discretized analog of Proposition 4.6 uses the infinitesimal Maxwel- 
lian form and the limiting Boltzmann equation to refine the limiting form of the 
entropy inequality found in Proposition 3.5. 

PRO~SITION 4.8. Let G, L 0 be a sequence of renonnalized solutions of the 
scaled time-discretized Boltzmunn problem (2.2 1) with initial data G t  satisfying 
the entropy bound (3.9). Let g$, g,, and qE be the corresponding sequences o f juc -  
tuations and scaled collision integrands. Let gin, g, and q be limits of the sequences 
g!, g,, and q J N ,  in w-L'(Mdvdx), w-L'(Mdvdx), and w-L'(dpdx) respectively. 
Define the ju id  variables ( p i n ,  uin, 61in) in L2(dx; R x RD x R) corresponding to gin 
by the formulas 

Then g has the form of an infinitesimal Maxwellian 

(4.25) g = p + u.v + 0 ($.I2 - 5) , 
where p E Ys, u E Y,, and VxO E L2(dx) satisfy the inequality 

(4.26) 

/ p 2  + luI2+ - 0 2 d x - / p i n p + u i n . u +  D D -0 in 0 d x + / ; ( g i n 2 ) d x  
2 2 

D + 2  
2 

+ / ;V 1 VXu + (V,U)~ I + -K lVX01* dx  
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Proof Inequality (3.36) of Proposition 3.5 states that 

(4.27) 

Expanding the middle term on the left side of this inequality gives 

(4.28) 1 i ( 1 g  - g'"I2)dx = 1 i ( g 2 ) d x  - / ( g i n g ) d x  + 1 i ( g i f 1 2 ) d x  . 

Proposition 3.8 states that g has the form of an infinitesimal Maxwellian (4.25); a 
direct calculation shows that 

(4.29) 
D 

/ ( g 2 ) d x  = / p 2  + 1uI2 + - 0 2 d x ,  2 

while using the definition (4.24) of (p'", uin, ein) gives 

As before, Proposition 4.3 and Lemma 4.7 yield the inequality 

almost everywhere. The result then follows upon setting (4.28H4.31) into the 
limiting entropy inequality (4.27). 

The Leray Energy Inequalities 

It was quite clear from the outset that the DiPerna-Lions global existence result 
for the Boltzmann equation was analogous to Leray 's global existence result for 
the incompressible Navier-Stokes equation. More specifically, the DiPerna-Lions 
entropy inequalities and the Leray energy inequalities play parallel roles in their 
respective theories; both inequalities are instrumental in establishing compactness 
results and serve as criteria to select relevant solutions from among all weak 
solutions. It is therefore quite satisfying that the dissipation inequalities of the 
preceding subsection can be refined to make this analogy more explicit; the Leray 
energy inequalities derive from the DiPerna-Lions entropy inequalities. 

This refinement requires the introduction of a stronger notion of convergence 
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than we have used heretofore. We say that g, - g entropically of order em 
provided that 

g, - g in w-L'(Mdvdx) 

and 

lim E - 0  J (-&h(Emg,)) dx  = J $ ) d x  . 

The notion of entropic convergence is a strong one since, as will be shown in 
Proposition 4.11 below, it implies that sequence g, converges to g strongly in 
L'((1 + IvI2)Mdvdx). 

If the initial data GF = 1 + Ern&" 2 0 for the Boltzmann initial-value problem 
(1.63) is now chosen so that g$ - g'" entropically of order E"' then the entropy 
bound (3.2) is automatically satisfied. Proposition 4.6 then has the following 
refinement. 

(4.32) 

PROFQSITION 4.9. (THE LERAY ENERGY INEQUALITY) Let (pi" ,  uin, Oin) 
E L2(dx; R X RD X R) and define the infinitesimal Maxwellian gin in L2(Mdv dx )  
by the formula 

(4.33) 

Suppose that G$ = 1 + em&' 2 0 such that g? - g'" entropically of order ern for 
some m B 1. Let G, 2 0 be a sequence of renormalized solutions of the scaled 
Boltvnann initial-value problem (1.63) and let g, and q, be the corresponding se- 
quences ofjhctuations and scaled collision integrands. Let g and q be limits of the 
sequences g, and q J N ,  in w-L:,(dt; w-L'(Mdv dx)) and w-L;,(dt; w-L'(dpdx))  
respectively. Then g has the form of an infinitesimal Maxwellian 

(4.34) 

where p E L2(dt; Ys),  u E L2(dt; Yv), and VxO E L2(dt; L2(dx)) satisfy the inequal- 
ity 

(4.35) 
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Remark. Note that this is a single dissipation inequality for the fluid variables 
rather than the two which are given in (1.62) that might be expected from the 
formal argument. Of course, this reflects the fact there is only one DiPerna-Lions 
entropy inequality from which to begin. 

Proof Invoking entropic convergence (4.32) and using the initial infinitesimal 
Maxwellian form (4.33), a direct calculation shows that 

The result then follows from setting (4.36) into the limiting entropy inequality 
(4.15) of Proposition 4.6. 

The analogous result for the time-discretized Boltzmann problem (2.21) is even 
easier; it follows directly from Proposition 4.8 upon invoking entropic convergence 
(4.32) in the limiting entropy inequality (4.26). 

PROPOSITION 4.10. Let gin E L2(Mdv dx) and defne the corresponding jluid 
variables ( p i n ,  uin, Oin)  in L2(dx; R X RD X R) by the formulas 

Suppose that G$ = 1 + cg$ 2 0 such that g$ converges to gin entropically 
of order E. Let G, B 0 be a sequence of renormalized solutions of the scaled 
Boltzmann time-discretized problem (2.22) and let g,  and q, be the corresponding 
sequences of jluctuations and scaled collision integrands. Let g and q be limits of 
the sequences g ,  and q,/N, in w-L'(Mdv dx) and w-L'(dp dx) respectively. Then 
g has the form of an infnitesimal Maxwellian 

(4.38) g = p + u.v + 0 ( $ I v I 2  - ;) , 

where p E Y,, u E Yv, and 0.0 E L2(dx) satisfy the inequality 
D + 2  J p2 + 1 u12 + -02 dx + --v 1 v x U  + ( o X u ) ~  I + - K 10'i312 dx 

2 1; 2 

(4.39) 

Remark. Notice that here, in contrast to Proposition 4.9 for the continuous- 
time case, gin is not assumed to have the form of an infinitesimal Maxwellian. 
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Entropic Convergence 

The notion of entropic convergence introduced in the last subsection will play 
a central role in sharpening our convergence results. Here we show that it implies 
convergence in L' (( 1 + I v I * ) ~ d v  dx). 

PROPOSITION 4.1 1. lf g, converges to g entropically of order ern then g, con- 
verges to g in ~ ' ( ( 1  + ( v I 2 ) ~ d v d x ) .  

Proof For any zo > - 1 consider the convex function defined over z > - 1 
by 

z - h(z) - M z o )  - h'(zo)(z - z,) . 

When viewed as a function of z - zo this function satisfies the reflection property 

so the Young inequality gives 

Moreover, the Legendre dual function 

y - h*(h'(zo) + y) - h*(h'(zo)) - zoy , 

is a superquadratic function of y in the sense that 

for every A 5 1. 

z = E"g,, and y = &"!(l+ 
property (4.41) with A = &"/a to obtain 

Let a be any number such that a 2 ern for every value of E .  Set zo = cmg, 
into (4.40) and make use of the superquadratic 

) 4 1  + lv1*)Ig, - gl 5- (h*(h'(E"g) + -(1 + lv12) 1 1 1 
4 a 4 

(4.42) - 
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Fix A > 0 and multiply this inequality by the indicator (characteristic) function 
l l g l < x ;  integrate the result over M d v d x  and let E tend to zero to obtain 

Arguing as in the proof of assertion (3) of Proposition 3.1, the limit of the last 
term in (4.42) vanishes by the entropic convergence of g ,  to g .  By the arbitrariness 
of a, the limit must be zero. Taking A to infinity while using the equi-integrability 
of the sequence g ,  then completes the proof. 

5. Weak Compactness of the Convection-Diffusion Tensor 

The Convection-Diffusion Tensor 

Let GE be a family of renormalized solutions of the scaled Boltzmann initial- 
value problem (1.63) satisfying assumption (HO). This means that the normalized 
Boltzmann equation satisfied by g E  is 

(5.1) 

and that, as assumed in (HO), g ,  satisfies the local momentum conservation law 

1 
d,(vg,)  + -Vx-(V Q vg , )  = 0 . 

& 
(5.2) 

The momentum flux is a symmetric D x D tensor that can be split into the sum 
of its traceless and diagonal part as 

where 4 was defined in (1.46). The local momentum conservation law can then 
be recast as 

(5.3) 

The quantity under the gradient on the right side of (5.3) is to become the pressure 
in the limiting process and will be consistently referred to as the pressure term; 
in the same way, the divergence of the tensor field on the left side of (5.3) will 
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eventually converge to the convection and diffusion terms of the Navier-Stokes 
equation and this tensor field will be referred to as the convection-diffusion tensor. 

It will be unessential to control the pressure term in any asymptotics leading 
to incompressible hydrodynamics since the limit of (5.3) will be considered after 
integrating against a divergence-free test function; the pressure will then be re- 
covered as a Lagrange multiplier. This is the reason for the above splitting of the 
momentum flux. 

The convection-diffusion tensor, on the other hand, must be controlled with 
particular care since it remains the only source of nonlinearities in the limiting 
hydrodynamic equation. Its control is based on the decomposition 

(5.4) 

This decomposition is physically meaningful: the divergence of the last term in 
(5.4) will converge to the diffusion term in the Navier-Stokes equation, whereas 
that of the second term in (5.4) will converge to the convection term (when M = 1). 
The first term is only a remainder due to the normalization procedure and will 
converge to zero. 

The limit of the last term in (5.4) is easily computed since, as was seen in the 
proof of Corollary 3.5, it can be written in terms of the sequence q,/N,, which 
is relatively compact in w-L:,(dr;w-L'(d~dx)). Let q be the limit point of any 
converging subsequence of q , / N , .  Thus, as tends to zero, it is seen that 

But this limiting quantity was already evaluated in equation (4.19) of Lemma 4.5 
and found to be given by 

This proves the following result. 

PROPOSITION 5.1. Given G, as described above, then 

in w-L;,(dr;w-L'(dx)) as E tends to zero. 
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This proposition means that the control of the convection-diffusion tensor has 
been reduced to that of the second term in (5.4); upon doing so, the remainder 
term will then easily be shown to vanish. The nonlinear character of this term 
can be seen by considering its formal limit when m = 1, 

This section is essentially aimed at the goal of controlling the convection-diffusion 
tensor, or equivalently, the convection tensor. 

We should make it clear at this point what is meant by "control" here. When 
m > 1 the convection tensor formally vanishes due to the .sm-' sitting in front 
of it. In that case we shall show that Proposition 3.3 is enough to justify the 
formal limit. When m = 1 then more is needed. Section 7, which treats that case, 
essentially provides pointwise convergence properties of g, .  In order eventually 
to obtain convergence properties in strong L', the relative compactness in w-L' of 
all the quantities of interest should be first established. This is exactly the main 
task of the present section. 

Weak Compactness of the Convection Tensor 

For technical reasons, it is convenient to decompose the family g,  into a part 
that is bounded in L"(dt; L2(Mdvdx)) and a part that is small in 

L"(dt; L'(Mdv dx)) . 

Based on parts (1) and (3) of Proposition 3.2, we choose to do this in the form 

This decomposition will be instrumental in controlling the nonlinearities. 
Some properties of the Boltzmann kernel will be used in controlling some high 

velocity tails. These properties are a direct consequence of assumption (Hl) which 
holds throughout the present section and is discussed in Appendix C. 

For the case when m = 1, we also adopt assumption (H2): 

(1 + lv12)gE is relatively compact in w-L:,(dt;w-L'(Mdvdx)) . 

For the case when m > 1, the result proved in Proposition 3.3 is sufficient for the 
purposes of this article. 

The main result of the present section is 

PROPOSITION 5.2. Given G,  = 1 + E m g ,  as described above, then the following 
statements hold. 
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(i) The sequences 

are relatively compact in w-L:,(dt; w-L'(Mdvdx)). 
(ii) The convergence 

holds in L/,(dt;L'(Mdvdx)) as E tends to Zero. 
(iii) The families 

converge to zero in L:,(dt; L ' (Mdvdx))  as E tends to zero. 

The proof of assertion (i) being quite involved, it is preferable to begin with a 
short outline of its main steps, before giving the proof itself. Those of assertions 
(ii) and (iii) will be easy corollaries of (i). The steps are best understood in the 
context of the following formula that will be the key to the pmo$ 

Here, X, denotes various renormalizations used in the sequel; Jvc will stand for 
either N ,  or ( ( 1  + lvI2)N,)/((1 + lvI2)) or even N,((l + lv12)Ne)/((l + 1 ~ 1 ~ ) ) .  

Step 1 .  The families 

are relatively compact in w-L:,(dt; w-L1 (Mdv dx)). 

Step 2. The sequence 

is relatively compact in w-L:,(dt; w-L1(Mdv dx)). 
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Step 3. The sequence 

1 1 
(' + '4' ) iNE((l  + I v ~ ~ ) N ~ ) ~ ~ ~  

is relatively compact in w-L:,(dt;  w-L' ( M ~ V  dx)). 

Step 4. The sequence 

1 
(1  + I4l)-LgE 

& 

is relatively compact in w-~/ , (d t ;  w-L' ( M ~ V  dx)) .  

Step 5 .  The sequence 

is relatively compact in w-~:,(dt; w-L' ( M ~ V  dx)). 

Proof 

Step 1. Here, N E  stands for either N, or ((1 + lv12)Nc)/((l + Iv12)). The 
decomposition in (5.5) yields 

The sequence (1 + I C $ I ) E ~ - ' L ~ ~  is relatively compact in w-L/,(dt; w-L'(Mdv dx)) 
because of Proposition 3.3 or (H2); the sequence 

is uniformly bounded by 3/2 and converges almost everywhere to 1 as E tends to 
zero. According to the product limit theorem (see Appendix B), the sequence 

(1  + 141) ( 1  - +.) E E m - ' L g &  

is relatively compact in w-L:,(dt; w-L' ( M ~ V  dx)). 
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Now, let s1 C [0, TI x TD x RD be measurable. Using the Cauchy-Schwarz 
inequality twice with Proposition C (see Appendix C) provides the estimate 

(5.8) 

In the case where JV& = N ,  one has 
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In the case where A"& = ((1 + lv12)NE)/((l + lvl')), the following inequality holds: 

/ --& ( 1  - &)2( l  + Iv12)Mdvdxdt 
R 

T 

and follows from the Jensen inequality applied to the convex map 

- 1  
s(z) = l z '  ( 1  + t z )  

2 

and the measure (1 + (vI2)Mdv. In both cases therefore, 

/-& ( 1  - $)' ( 1  + 1 . 1 ' )  Mdvdxdt  
R 

5 c ] / J E " - ' ~ &  ( 1  + lv12) Mdvdxdt  . 
0 

Finally, according to (5.8), (5.9), and Proposition 3.3 or (H2): 

(5.10) 

where C is a generic positive constant. Replacing R with the whole [0, TI XTDx RD 
space in (5.10) and using Proposition 3.3 and assumption (H2) in connection with 
Proposition C of Appendix C shows that the sequence (1 + l+I)lg&L& I is bounded 
in L'(Mdvdx).  Taking meas(R) going to zero in (5.8) shows by the same argument 
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that this sequence is equi-integrable. Going back to (5.7) gives the announced 
result announced in Step 1 .  

Step 2. The statement announced above as Step 2 will be an easy consequence 
of the following 

LEMMA 5.3.  

The family 

is relatively compact in w-L:,(dt; w-L'(MIdv1Mdvd.x)); 
The family 

in L:,(dt;L'(MldvlMdvdx)) as E - 0; 
The inequalities 

The following assertions hold true: 

8 - l  l i & l  Ii&l1(1 + l V l 2 ) ( 1  + Iv1 1 2 )  

Em-I Ii&lIEmg&](l + lv12)(1 + IVI 12) - 0 

hold f o r  almost every ( t ,  x, v )  and ( t , x )  respectively; 

is relatively compact in w-L:,(dt; w-L ' (Mldv lMdvdx)) .  

Proof 

To prove assertion (l), it suffices to remark that 

Notice that assertion ( 5 )  is an easy consequence of assertions (l), (2), 
and (4), according to the decomposition (5.5). 

Indeed, it follows from Proposition 3.3 or (H2) that ern-' g&(l  + lvI2)(1 + 1v1 1 2 )  is 
relatively compact in w-L:,(dt; w-L'(M ldv lMdv  dx ) ) ,  whence assertion (1) easily 
follows. 



728 C. BARDOS, F. GOLSE, AND C. D. LEVERMORE 

The proof of assertion (2) directly follows from the product limit theorem 
of Appendix B. Indeed, one has ~ ~ l & l  5 3 and .sml&1 - 0 almost every- 
where; moreover the family ern-' g,l(l + lvI2)(1 + Iv1 1 2 )  is relatively compact 
in w-L:,(dt; w-L'(M1dvlMdv dx) )  according to assumption (H2) or Proposition 
3.3; their product converges therefore to zero in L k ( d t ;  L'(M1 dvlMdv dx)). 

To prove assertion (3), notice first that 

1 1 1 ,  1 + - E m g ,  3 2 1 - 3 2 1 - l ,mg;r 2 2 - 
2 '  

Indeed, 
3 3 < - m - < -  m A  

= 2 E  g, = 2 '  1 + ?&mg, 1 

since the renormalized solutions of the Boltzmann equation G, = 1 + E m g ,  are 
non-negative. Therefore: 

&2m g, &2m g, 
5 2  1 2 m -  5 3 .  

N& 7 + ? E  g, 

To prove assertion (4), proceed as follows. First, 
T 

T 

Now, in view of Proposition 3.3 or assumption (H2) and assertion (3) above, 

for almost every ( t , x )  and is bounded by 3. Applying the product limit theorem 
shows that 

in w-Li,(dt; w-L'(Mdvdx)); assertion (4) then follows upon integration with re- 
spect to ( t , x ,  v). 

Continuation of the Proof of Proposition 5.2: The proof of Step 2 now fol- 
lows easily from Lemma 5.3. Using assumption (Hl) with assertion (5 )  of Lemma 
5.3 shows that the family 
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is relatively compact in w-L:,(dt;  w-L'(MldvlMdv dx)). Therefore, the renormal- 
ized sink term (see Section 1) 

is relatively compact in w-L:,(dt; w-~'(~ldvl~dv dx)). 
To control the source term, observe first that, according to (Hl) 

Therefore, assertion ( 5 )  of Lemma 5.3 shows that the family 

is relatively compact in w-L/,(dt; w-L'(MldvlMdvdx)). Upon the change of vari- 
ables ( v , v ~ )  - (v', v;) which leaves invariant the measure MldvlMdv, it follows 
that the family 

is relatively compact in w-L&(dt; w-L'(MldvlMdv dx)) .  Therefore, the renomal- 

is relatively compact in w-L:,(dt; w-L'(MldvlMdvdx)).  his completes Step 2. 

Step 3. The essential formula in this step is (5.6) with J, = N,((l+ lvI2)N,). 
Both N, and ((1 + lvI2)NE) are uniformly bounded below by 2/3 and converge 
almost everywhere as E tends to zero. The product limit theorem shows: 

-according to Step 2 above, that 

is relatively compact in w - ~ / & t ;  w-L' ( ~ d v  dx)),  
-according to Proposition C of Appendix C, that 

is relatively compact in w-L:,(dt; w-L' ( ~ d v  dx)) .  
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Then (5.6) with N ,  = N,((1 + lvI2)N,) shows that 

is relatively compact in w-~:,(dt; W - L ' ( M ~ V  dx)). 

Step 4. Start with the identity 

(5.11) 

The first term on the right side of identity (5.11) is relatively compact in w-L:, 
(dt;w-L'(Mdvdx)) in view of Step 1; the second term on the right side of (5.11) 
is also relatively compact in w-L:,(dt; w-L'(Mdv dx)) because of Step 1. Indeed, 

is relatively compact in w-L:,(dt; w-L'(Mdv dx)); apply the product limit theo- 
rem with multiplier the sequence l/N,, which is uniformly bounded by 3/2 and 
converges to 1 almost everywhere as E tends to zero. Therefore, 

is relatively compact in w-L:,(dt; w-L'(Mdv dx)). Combining this property with 
the result of Step 2 finally proves that 

is relatively compact in w-~/ , (d t ;  W - L ' ( M ~ V  dx)). 

Step 5. Write (5.6) with N ,  = N,. Using the results of Step 1 and of Step 3 
in this proof shows that 

is relatively compact in w-~/ , (d t ;  w-L' ( ~ d v  dx)). 
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This completes the proof of assertion (i) in Proposition 5.2. The proof of 
assertion (ii) follows from assertions (2) and (4) in Lemma 5.3. Indeed, one has: 

Observe that the families 

and 

converge to zero in L:,(dt;L'(Mdvdx)) as E - 0 by the product limit theorem- 
one uses assertion (i) of Proposition 5.2, assertion (1) of Lemma 5.3, and the fact 
that 

1 -  1 -  

almost everywhere as E tends to zero. 
Observe now that 

which converges to zero in L:,(df;L'(MldvlMdvdx)) as E - 0. Therefore, as in 
the proof of assertion (i), Step 2, it follows that 

in L:,(dr;L'(Mdvdx)) as E - 0. The same analysis applies verbatim for the 
source terms. Therefore, assertion (ii) holds true. 
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Finally, assertion (iii) easily follows from assertion (i), Step 4, to be more 
precise and the product limit theorem. Indeed, the families 

are both bounded by 3/2 and converge pointwise to zero, whereas the family 

1 
(1 + Idl)-Lg, 

& 

is relatively compact in w-L,',(dt; w-L'(Mdv dx)). Hence, assertion (iii) holds. 

6. Convergence to a Solution of the Stokes Equation 

Let G, 2 0 be a sequence of DiPerna-Lions renormalized solutions of the 
scaled Boltzmann initial-value problem (1.63) with initial data G t  2 0 satisfying 
the entropy bound (1.66) for some m > 1; this is the scaling that corresponds to 
the formal Stokes limit (see (1.49)) and will be assumed throughout this section. 

Let g, and q, be the corresponding sequences of fluctuations and scaled colli- 
sion integrands defined by 

respectively. Propositions (3.1) and (3.4) imply that the sequences g, and q , / N ,  
are relatively compact in 

w-L:,(dt; w-L'((l + IvI2)Mdvdx)) and w-L/,(dt; w-L'((l + IvI2)dpdx)) 

respectively. Let g be the w-Lt,(dt; w-L'(Mdv dx)) limit point for any converg- 
ing subsequence of g,. Extracting a further subsequence if need be, let 4 be a 
w-L:,(dt; w-L'(dp dx)) limit for the corresponding sequence of q , /N , .  

Assume hypothesis (HO); specifically, that these solutions satisfy the local mo- 
mentum conservation law, here cast in the form (5.3): 

This conservation law is understood to hold in the weak sense. As indicated 
previously, we shall consider passing to the limit of E tending to zero in this 
equation only when it is integrated against a divergence free test vector field w in 
X, f l  C'(UD), thus eliminating the pressure term on its right side and yielding 

(6.3) 

for every 0 5 t l  < r2 < 00. 

J Jvxw:E(+Lg,)dxdt, 1 1 w.(vgE(t2))dx - w+g,(tl))dx = J 11 
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Before passing to the limit, first observe that the sequence of time dependent 
functions appearing on the left side of (6.31, 

when considered as a sequence in C([O, 00); R), is both pointwise equibounded and 
equicontinuous (and therefore relatively compact). The equiboundedness follows 
directly from the first part of assertion ( 1 )  of Proposition 3.1. By Proposition 5.2 
(i), the quantity 

is relatively compact in w-L:,(dt; R), so the e uicontinuity of (6.4) then follows 
from (6.3). Since the sequence (6.4) has a w-Ll,(dt; R) limit, however, it has the 
same C([O, co); R) limit. Hence, passing to the limit in (6.4) yields 

(6.5) lim w.(vg,)dx = w.(vg)dx = w.udx in C([O, co);R) . 

Note that since u E L"(dt;X,), a simple density argument then shows that u 
is in C([O, 00); w-X,);  this result will be improved once the limiting dynamics 
is established and the classical regularity results for the Stokes equation [8] are 
applied. 

In order to pass to the limit on the right side of (6.3), we utilize Proposition 
5.2. This requires the additional assumption of hypothesis (HO) regarding the 
Boltzmann kernel b (see Appendix C). Consider the decomposition (5.4) of the 
convection-diffusion tensor: 

9 

E - 0  J J J 

By assertion (iii) of Proposition 5.2, the first term on the left side of (6.6) vanishes, 

(6.7) (4: (1  - - 0 in w-L:,(dt;w-L1(dx;IWDXD)) . 

By assertion (ii) of Proposition 5.2, showing the second term on the left side of 
(6.6) vanishes would follow upon showing that 

E ~ - ' Q ( E , , & )  - 0 in L:,(dt;L'(Mdvdx)). 
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By Lemma 5.3 ( l ) ,  

sm-l It&l It&I l (1  + l V l 2 ) ( 1  + 1v1 1 2 )  - 0 , 

in L;,,(dt; L'(M1dvlMdvdx)). Therefore, as in Step 1 of Proposition 5.2, 

s"-'Q'(l&~, & I )  - 0 in L;m(dt;L1((l + 141)Mdvdx)) . 

from which it follows that 

( 4sm-' Q(g&' ")) - 0 in L;,,(dt;L'(dx; RDXD)) , 
N &  

Finally, according to Proposition 5.1, the convergence of the last term on the left 
side of (6.6) is given by 

(6.9) 

Combining the results (6.7), (6.8), and (6.9) into the decompositon (6.6) gives that 

((g*))-(+q)) = u(V.u + ( V A T )  in w-L/,(dt; w-L'(dx; RDXD)) . 
N ,  

J v . ~ :  (4;Lg.) dx - - Ju~7.w: ( v X u  + ( ~ ~ u ) ~ )  dx 

(6.10) 

= - J U V ~ W :  Vxu dx in w-L:,(dt; R) . 

Now passing to the limit in (6.3) by using (6.5) on the left and (6.10) on the 
right shows that 

which is just the weak form of the Stokes equation (compare with (1.61a)). The 
initial data for this equation can be recovered by considering (6.5) evaluated at 
t = 0. Since w is an arbitrary test vector field in X n C1(UD), it is seen that the 
initial condition for (6.1 1 )  can be written in terms of the orthogonal projection P ,  
of L ~ ( B ~ ; [ W ~ )  onto Zv as 

u(O) = limp, (vg?) . 
E - 0  

This result is stated below as a proposition. 

THEOREM 6.1. Assume (Hl). Let G, 2 0 be any sequence of renormalized 
solutions of the scaled Boltzmann initial-value problem (1.63) with initial data 
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satisfying the entropy bound (1.66) for some m > 1 and satisfying (HO). If the 
corresponding sequence offluctuations g, has a w-L:,(dt; w-L'(1 + IvJ2)Mdv dx)) 
limit g then 

(6.12) u = (vg) E C([O, w); w-X,) n L2(dr; 7,) , 

is approximated by (vgE) in the sense that 

lim Jw.(vg,)dx = wsudx 
E - 0  J (6.13) 

in C([O, 00); R) for every w = w(x) in X ,  r l  C'(TD). Moreover, u is the unique 
solution of the Stokes initial-value problem (2.17) : 

(6.14a) d , ~  + Vxp = U A ~ U  , VX*u = 0 , 

U(O) = limPv(vg$) , 
E - 0  

(6.14b) 

with the viscosity v given by formula (1.51). 

Remark. Notice that the existence of the initial data in (6.14b) was inferred 
through the existence of the weak limit (6.13). Since any sequence of renormalized 
solutions of the scaled Boltzmann initial-value problem (1.63) with initial data sat- 
isfying the entropy bound (1.66) is relatively compact in w-L', this theorem shows 
that the momentum densities associated with each of its convergent subsequences 
converge to a solution of the Stokes equation (6.14a) which is uniquely determined 
by the initial condition (6.14b). 

With a careful choice of initial data GF, any solution of the Stokes initial- 
value problem can be attained and be used to uniquely characterize the limiting 
fluctuation g. 

THEOREM 6.2. (THE STRONG STOKES LIMIT) Assume (Hl). Let uin E X, 
and dejine the infinitesimal Maxwellian gin by 

(6.15) = uin. v . 

Let GF = 1 + P g ;  & 0 be any sequence such that g t  - gin entropically of order 
E'" for some m > 1. Let G, = 1 + EmgB L 0 be any corresponding sequence 
of renormalized solutions of the scaled Boltzmann initial-value problem (1.63) 
sarisfying (HO). Then 

(6.16) 

where u(t)  is the unique solution of the Stokes initial-value problem 

g,(t) - u(t1.v entropically of order srn for almost every t > 0 , 

(6.17a) 
(6.17b) u(0) = u'" , 

d , ~  + V x p  = U A ~ U  , VX.u = 0 , 
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with the viscosity v given by formula (1.51). Moreover, the normalized scaled 
collision integrands converge strongly to q: 

Remark. In fact we shall obtain a stronger result for the convergence of 
q, /N, ,  that it converges to (V'u + (V,U)~):@ in a sense analogous to entropically 
of order E ~ " ,  but based on the dissipation rate integrand r rather than the relative 
entropy integrand h. 

Proof The idea is to show that all convergent subsequences of g ,  have the 
same limit, namely, that which is of the form (6.16) with u(t) prescribed by 
(6.17). The entropic convergence will follow from a squeezing argument. First, 
extract any convergent subsequence of g ,  in w-L:,(dt; w-L'((l + l ~ 1 ~ ) M d v d x ) )  
and apply Proposition 6.1 to it. Since g$ - g'" entropically, it does so in 
w-L'((l + I ~ 1 ~ ) M d v d x ) ) ,  hence the right side of the initial condition (6.14b) re- 
duces to that of (6.17b). Thus the limiting u for each convergent subsequence of 
g, is determined by (6.17). 

Since g$ - ul".v entropically, Proposition 4.9 states that g has the form of an 
infinitesimal Maxwellian, 

g = p + u.v + 8 ( $ V l 2  - 5) , 
such that the fluid variables (p ,  u, 8) satisfies the Leray energy inequality, 

(6.19) 
0 

5 J? 1 ( u i n I 2 d x .  

Solutions of the Stokes initial-value problem (6.17), however, satisfy the energy 
equality 

Subtracting this equality from the Leray energy inequality (6.19) yields p = 8 = 0 
for all time, whence the only possible form for the limit of an extracted subse- 
quence of g ,  is necessarily the one defined by (6.16). 
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The squeezing argument to obtain the entropic convergence starts with the 
following observations. The proof of Proposition 3.1 showed that for almost 
every r > 0 

1 1 1 
(6.21) / 5 lu(r)I2dx = / $ g 2 ( r ) ) d x  5 liminf E - 0  1 ( -h(Emg,(r))) &2m dx , 

while that of Proposition 3.4 showed that 

J / i u l V x u  + ( V , u ) T [ 2 d x d s  
. .  
0 

f 

Sliminf[/; 6-0 (&r(*)GEIGE) G&lG, d x d s .  

Since g$ - uin-v entropically, (4.30) gives 

Combining (6.20H6.23) with the entropy inequality part of (3.61, 

(6.24) 

implies the existence of the limits 

(6.25) 

The first limit above implies the entropic convergence of g ,  (6.16) while the second 
will yield (6.18) through an argument given below that is similar to the proof of 
Proposition 4.1 1. 
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For any zo > - 1 consider the convex function defined over z > - 1 by 

z - r(z) - r(zJ - r’(zo)(z - 2,) . 
When viewed as a function of z - zo this function satisfies the usual reflection 
property so that the Young inequality gives 

(6.26) ylz - zol 5 r*(r’(zo) + y )  - r*(r’(zo)) - zoy + r(z)  - r(z,) - r’(zo)(z - 2,) . 
Moreover, the Legendre dual function 

y - r* (r’(zo) + y) - r* (r’(zo)) - zoy , 

is a superquadratic function of y in the sense that 

r* (r’(zo) + Ay) - r* ( r ’k , ) )  - zoAy 

(6.27) 
I h2 ( r *  (rr(z,,) + y )  - r* (r’(zo)) - zoy) , 

for every A 5 1. 
Let a be any number such that a 2 E ~ + ~  for every value of E .  Set 

into (6.26) and make use of the superquadratic property (6.27) with A = em+’/a  
to obtain 

(6.28) 

Fix A > 0 and multiply this inequality by the indicator (characteristic) function 
l lql<x;  integate the result over dpdx and let E tend to zero to obtain 

(6.29) 
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The limit of the last term in (6.28) vanishes by (6.25) and an argument as in the 
proof of assertion (2) of Proposition 3.4 (see after (3.35)). By the arbitrariness of 
a, the limit in (6.29) must be zero. But, since G,,G,/N$ - 1 in L:,(dt;L'), 

while an application of the product limit theorem shows that 

I 

lim E - 0  J J: (((I + 1.12) 1: - $1)) dxds  = o ,  
0 

so the vanishing of the limit in (6.29) then implies 

Taking A to infinity while using the equi-integrability of the sequence q , / N ,  then 
completes the proof. 

Remark. One very simple choice for GE that can be used for any uin E Xu 
is 

M( 1, &muin,  1) G 2  = 
M 

It is easy to verify that its fluctuations converge entropically of order cm to g'" = 
uin.v (see (4.32)) since a direct calculation shows that the scaled relative entropies 
are even independent of E :  

1 J ( p h  ( ~ g t ) )  dx = J (gif12> dx = J 1uinl2 dx . 

This shows the existence of one entropically convergent sequence of initial fluctu- 
ations; the point of Theorem 6.2 is that all such sequences have a unique limiting 
dynamics. 

7. Convergence to a Weak Solution 
of the Time-Discretized Navier-Stokes Equation 

In the present section, the Navier-Stokes and Boltzmann equations will always 
be taken in the time discretized form. All the results from Sections 3 and 4 
hold verbatim by dropping the time dependence in all the statements and making 
m = 1. (This is due to the fact that the entropy inequality, which is really all that 
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is needed for these results, is of the same form no matter that the problem be time 
dependent or time discretized). 

Therefore, G, = G,(x, v) = 1 + E g, will denote a family of renormalized 
solutions of the time-discretized Boltzmann problem (2.21) with initial data 

(7.1) GF = 1 + &gF , H(GF) 5 Cine2 , 

Throughout the present section, (HO'), (Hl), and (H2) are assumed. 
The main objective of the present section is to prove that, (modulo extraction of 

subsequences), (vg,) converges to a weak solution of the Navier-Stokes equation. 

Moment Equations 

We shall closely follow the arguments of Section 6. The local conservation 
law for momentum (see (HO')) holds and is written in the form (5.3): 

1 1 1  
(7.2) ( v g E >  + 7J"*, ((L4)gE) = (vg!) - OX- & ( hlv12gE) . 

Using again decomposition (5.4) leads to: 

Therefore, the local conservation of momentum can be recast in the form 

(7.4) 

The first term in the left side of (7.4) is to converge to the velocity field, the second 
term to the convection part of the Navier-Stokes equation. The second term in 
the right side of (7.4) is to converge to the diffusion part of the Navier-Stokes 
equation, the third one to the source velocity field. The last term in the right side 
of (7.4) is a remainder eventually converging to zero. Finally, the first term in the 
right side of (7.4) contributes to the pressure term and will vanish upon integration 
of this conservation law against any divergence free test vector field. 

Because of the quadratic nature of the convection part in the Navier-Stokes 
equation, convergence in weak topologies will not be enough for this purpose. It 
should, however, be observed that 
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(i) The control of the entropy dissipation rate shows that the distance between the 
sequence of fluctuations and the manifold of infinitesimal Maxwellian states 
tends to zero with E .  

(ii) Fluctuations of local Maxwellian are defined by a finite number (D+2, actually) 
of their velocity averages. 

Then, the problem of proving strong compactness for the family g, reduces to 
proving strong compactness for its velocity averages. Therefore, it seems that the 
appropriate tool by which to obtain strong convergence is the following compact- 
ness result due to Golse, Lions, Perthame, and Sentis (see [13] and [14]), referred 
to as velocity averaging theorem and given here in an L' setting well adapted to 
the present problem from the L2 version introduced in Section 2. 

THEOREM 7.1. (VELOCITY AVERAGING) Let 9 be a relatively compact subset 
of w-L'((l + 1vI")Mdvdx) (where n is any positive number), and assume that the 
set {v.V'f : f E F} is relatively compact in w-L'(Mdvdx). Then, for any 
measurable finction p = p(v) satisfying the following growth condition for large 
v 's: 

remains bounded as IvI - +cc , p(v)  
( 1  + Ivl") 

the set 
{ ( f p ) ( x )  : f E 9) 

is relatively compact in strong L'(dx). 

The strategy sketched in (iHii) is quite common to all the hydrodynamic limits 
of kinetic equations leading to a macroscopic equation with a diffusion term and 
has been used successfully in various contexts, such as radiative transfer (see [13]) 
and the kinetic theory of semiconductors (see [ 151). 

Pointwise Convergence of the Fluctuations 

PROPOSITION 7.2. The family g, is relatively compact in L'((1+ lvI*)dvdx). If  
g is the limit of a subsequence of g,, then for almost every x E TD, g(x, . ) E N(L), 
which means that g is of the form 

Proof The asymptotic form (7.5) has already been proved in Proposition 3.7. 
According to decomposition ( 5 3 ,  it suffices to prove that 2, is relatively compact 
in L1( ( l  + (v l*)dvdx) .  Observe that, by the Cauchy-Schwarz inequality 
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according to Proposition C (i) (see Appendix C). It follows from Proposition B 
(iii) and assumption (H2) that lL& l 2  is relatively compact in w-L'(Mdvdx).  Using 
then Proposition 5.2 (i) proves that lL&12 - 0 almost everywhere as E tends to 
zero. Therefore lL&I2 - 0 in L'(Mdvdx).  

Now write the orthogonal decomposition of & as 

h (7.6) g, = w, + z ,  with w, E N(L)* , z ,  E N(L) . 

According to (Hl), the interaction potential is strong. Therefore (see [7]) there 
exists a positive constant C such that 

Then, 

(7.7) w, - 0 in L2(Mdvdx) . 

Now observe that 

First, one has 

According to Corollary 3.2, Proposition 5.1, and the velocity averaging theorem 
7.1, 

are relatively compact in L'(dx). It follows from Corollary 3.2 (1) and (7.5) that 
z ,  is relatively compact in L2(Mdv dx) .  Combining (7.7), (7.8), and decomposition 
(7.6) yields the announced result. 

The Navier-Stokes Limit Theorems 

The main results of the present section are 

THEOREM 7.3. Assume (Hl). Let G, be a family of renormalized solutions 
of the time-discretized Boltzmann problem (2.21) with initial condition (7.1) and 
satisfying (HO') and (H2). Assume that g? has a w-L' (( 1 + I vI2)Mdv dx)  limit gin. 
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Then the family g ,  is relatively compact in w-L'((l + IvI2)Mdvdx) and any of its 
sequential limit points g is a local Maxwellian (2.7) such that: 

(i) The dissipation inequality (4.24) holds; 
(ii) u = (vg) E Y ,  is a weak solution of the time discretized Navier-Stokes system 

u + VX.(u o U) + V x p  = U A ~ U  + u'" , VX.u  = 0 ,  

Mi" = P,(vg'") , 

with the viscosity u given by the formula (1.51). 

As in Section 6, a careful choice of the initial data GF allows us to characterize 
the limiting fluctuations g more accurately. Observe that the restriction bearing 
on the dimension is related to the fact that H' solutions of the time discretized 
Navier-Stokes equation verify the energy equality in (2.26) for dimension D I 4. 
Also, the defect of convergence (that is, the nonuniqueness of the sequential limit 
points of g,) is exactly measured by the lack of uniqueness of a weak solution of 
the time discretized Navier-Stokes system. 

Another point of interest is the scaled collision integrand 

As in Section 6, the limiting form of the normalized scaled collision integrand 
follows from the energy equality. 

THEOREM 7.4. (THE STRONG NAVIER-STOKES LIMIT) Assume (Hl) and D S 
4. Let ui" E X ,  and define the initial infinitesimal Maxwellian by 

Let GP = 1 + E &  2 0 be any sequence of initial data such that g t  converges to 
g'" entropically of order E. Let G, = 1 + E g ,  1 0 be any family of renormalized so- 
lutions of the corresponding time-discretized Boltzmnn equation (2.2 l )  satisfying 
(HO') and (H2). Then the family g ,  is relatively compact in w-L'(( 1 + I vI *)Mdv dx )  
and for any convergent subsequence (again denoted g , )  

g ,  - g = u.v entropically of order E , 

where u E Y ,  is a weak solution of the time-discretized Navier-Stokes system 

u + VX.(u Q U) + V x p  = U A ~ U  + u'" , VX.u = 0 ,  
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with the viscosity v given by the formula (1.51). Moreovel; the normalized scaled 
collision integrands converge strongly to q: 

- q = (Vxu + ( 9 ~ ) ~ )  :CP in L' ( (  1 + lv12) dpdx )  , qE 
N, 

where CP = + 4 - +\ - 4'). 

Proof of Theorem 7.3: First, notice that the incompressibility relation (4.7) 
follows in the time-discretized case of Proposition 4.2 and the remark following 
Proposition 4.1. The dissipation inequality was proved in Section 4 and stated as 
Proposition 4.8. 

The essential step in the proof, and what makes it actually different from that 
of Proposition 6.1 (in the Stokes case) is 

LEMMA 7.5. Let g be a L ' ( ( l+ I vI2)Mdv dx) limit of a converging subsequence 
of fluctuations g,. As E tends to zero, 

(7.9) 
1 Q(gEE,gE) - Q(g,g) = j L ( g 2 ) ,  in L' ( ( 1  + 141) Mdvdx)  . 

Proof of Lemma 7.5: 

Observe that 

The fact that Q(g,g) = ;L(g2) comes from the special 
form (7.5) of g and was proved in [3]. 

A h  (7.10) I g E l g E  - glg l  I?&[ I?&, - gl I + lgl I I g E  - gl ' 

Using the fact that zE is a bounded family of L2(Mdvdx), that g E L2(Mdvdx) 
and Corollary 3.2 ( 1 )  together with Proposition 7.2, one obtains that 

In fact, this convergence holds in L'((1 + lvI2)(1 + Iv1 I2)M1dvlMdvdx) because 
of assertion 1 of Lemma 5.3. Following exactly the same route as in Step 1 of 
Proposition 5.3, one obtains first that 

and, exchanging primed and unprimed velocities in the collision integral, 

Q+ (?=,?E) - Q'(g,g) 

in L'((1 + 14I)Mdvdx). Lemma 7.5 is essential to obtain the asymptotic form 
of the local momentum conservation. Let w = w(x) be any smooth divergence 
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integrating 

(7.11) 

Using now 

(7.12) 

free vector field. Multiplying the local momentum conservation (7.4) by w and 
with respect to x gives: 

Proceeding as in [3] shows that 

/-(V1w)T : (4 Q(g,  g)) dx = /(VXw)' : (4 i L g 2 )  dx 

1 
= / (Vxw)T:  (g2L4)  dx . 

(7.13) 

Now, using the form (7.5) of g shows that 

L 
= 2u;uj - - Iu 126ij . D 

Combining then (7.12), (7.13), and (7.14) yields: 

using the fact that the vector field w is divergence free. 
Proceeding as in Section 6 and taking the limits in (7.1 1 )  in the various terms 

involved as E - 0 shows that the limiting vector field u satisfies the following 
relation 

The fact that u E 'Yy follows easily from the dissipation inequality (4.24). Propo- 
sition 7.3 is therefore proved. 
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Proof of Theorem 7.4: The restriction to initial data such that g t  converges 
to gin entropically ensures that the sharpened dissipation inequality (4.37) holds. 
Let g be a sequential limit point of g,; it follows from Theorem 7.3 that g is a 
local infinitesimal Maxwellian form (2.7) where u E 'Y, is a weak solution of the 
time-discretized Navier-Stokes system. The assumption that D 5 4 allows us to 
write the energy equality in (2.26) recalled in Section 2. Substracting the energy 
equality form of (2.26) from the sharpened dissipation inequality (4.37) yields 

according to the choice of the initial fluctuation gin = uin e v .  Therefore, p = 0 = 0. 
The convergence assertions of Theorem 7.4 follow from a squeezing argument 

in the style of Theorem 6.2. Again using the energy equality in (2.26) when D S 4, 
one infers the existence of the limits 

The first limit above implies the entropic convergence of g,, while the second will 
yield the convergence of the scaled collision integrands as in the proof of Theorem 
6.2, whence Theorem 7.4 holds. 

8. Conclusions 

As announced in Section 1, we have been unable to fulfill the program outlined 
there. The goal of the present section is to comment upon the various difficulties 
encountered in trying to do so. In particular, we wish to make it clear which ones 
we consider fundamental and which ones we consider more technical. 

This article relies as much as possible on known physical estimates (like con- 
servation laws or the entropy inequality). With the exception of assumptions 
(HO)-(Hl)-(H2), no additional hypothesis on the regularity or the size of the ini- 
tial data is needed. Therefore, this article deals with solutions of the Boltzmann 
or Navier-Stokes equations in the weakest possible sense that is compatible with 
those basic physical properties. 

Some of our shortcomings are due to the fact that the DiPerna-Lions renor- 
malized solutions of the Boltzmann equation lack local conservation laws of mo- 
mentum and energy. This is due to the lack of control of the high velocity tails 
in the corresponding fluxes. Such controls were recently obtained on simpli- 
fied Bathganar-Gross-Krook (BGK) models, first by B. Perthame (see [171) in the 
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whole space, and then by E. Ringeisen (see [18]) for more general domains and 
boundary conditions. These controls would be of little use, however, to get a tem- 
perature equation for the incompressible limit. Indeed, the incompressible limit 
calls for high velocity controls on fluctuations of the number density, something 
that no conservation law can provide. 

The fact that was used in Section 3 to provide control of the (vI2 moments of 
these fluctuations was the structure of the integrands of the entropy and dissipation 
functionals; particularly, it was the exponential asymptotic behavior of h* and r* 
as y - 00. It is clear on the basis of this remark that no control of moments of 
order higher than two on the fluctuations can be attained by these methods. 

On the other hand, it can be argued that local conservation of momentum and 
energy for the renormalized solutions of the Boltzmann equation are only needed 
in the hydrodynamic limit. It is possible that both of these local conservation laws 
(or at least that of momentum) can be recovered at the level of hydrodynamics; 
that is, in the limit when E tends to zero. If so, then hypothesis (HO) could be 
dropped and our program would be complete for the Stokes limit. 

In addition to the local momentum conservation, two additional ingredients 
were required for the Navier-Stokes limit. The first was assumption (H2), the 
w-L' compactness of (1 + lv1*)g;/N,. Observe that the result in Proposition 3.3 
does not miss by much, and might very well be sharpened. The second was our 
introduction of the discrete time problem for this limit. This was necessitated by 
the fact that the time regularity provided by the velocity averaging theorem and 
the equicontinuity arguments is not sufficient to get the evolution Navier-Stokes 
equation in the limit as E tends to zero. More precisely, since the equicontinu- 
ity argument in Proposition 6.1 also goes through for the m = 1 (Navier-Stokes) 
scaling, what is presently lacking is a time regularity result for the acoustic com- 
ponent of the hydrodynamic modes (see [6]). This regularity could have easily 
been added as a hypothesis in order to obtain the continuous time Navier-Stokes 
equation in the limit as was asserted in [2]. Such a hypothesis seems rather strong, 
however, when compared to the ones we have already made, in that formal ob- 
structions exist to an equicontinuity argument and the techniques used to prove 
weaker notions of regularity are subtler. 

The set of technical assumptions (HI) on the Boltzmann kernel b(vl - v ,w)  
enjoy (as was emphasized previously) the following status: 

(i) They are natural and consistent with power law hard potentials by formal 
scaling arguments; at this time, however, we have no proof that (H2) holds in 
this case. 

(ii) They hold for the so-called Maxwell potentials. 

There is clearly room for improvement in this direction, maybe at the expense of 
a detailed analysis of the linearized collision operator, a task that we leave for 
future work. 

Finally, we remark that the horizon of the whole program can be extended 
considerably. For example, the temperature equation obtained formally with the 
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above scaling (see [2]) does not correspond to a dominant balance asymptotics 
(it is easily seen that the viscous heating term is missing). Dominant balance is 
obtained when the density and temperature fluctuations are of order c2 while the 
bulk velocity fluctuations are of order E (see [5]). Although a formal moment 
calculation in the style of [3] can be carried out, say, by splitting the fluctuations 
of the number density G, into odd and even components with respect to v, there 
is no analog of the entropy estimate that can be used to globally maintain the 
assumed scale separation of these odd and even components. Since the stability 
of this asymptotic regime is well verified by experience, it should be understood 
through basic physical estimates. 

Appendix A. The Notation Regarding Spaces 

Throughout this article, many basic topological linear spaces are employed. 
Some of our notation regarding these spaces is standard while some of it is less 
so. These spaces, as well as our notation for them, are described below. A 
comprehensive treatment of them can be found in many standard references; for 
example, see [l  11. 

Let E be any normed linear space; I( . I I E  denotes its norm and E* denotes its 
dual space. We shall use the notation w-E to indicate the space E equipped with 
its weak topology, that is the coarsest topology on E for which each of the linear 
forms 

u - (w ; u ) E * , E  for w E E *  , 

is continuous. Here ( .  ; . ) E * , E  is the natural bilinear form relating E* and E. 
Let X be a locally compact topological space and E a normed linear space. We 

shall use the usual notation C(X; w-E) to indicate the space of continuous functions 
from X to w-E; that is the set of fuctions u for which 

is in C ( X )  for each w E E' x - (w ;u(.x)),*, 

We note that an Arzela-Ascoli theorem holds for such spaces. 
Let ( Y , A , d m )  be a measure space and E a normed linear space. For every 

1 5 p 5 00 we shall use the abbreviated notation LP(dm;E) for the Bochner 
space LP((Y, A, dm); E )  whenever there is no possible confusion; we shall also use 
L W m )  to denote the same space whenever E is a power of R, unmistakeable in 
its context. For 1 5 p < 00, the dual space of Lp(dm;E) is LP*(dm;E*) where 
p *  = p / ( p  - 1). Only p = 1, 2, or 0;) arise in this article. 

When Y is locally compact and dm is a Bore1 measure, we shall denote by 
Lk(dm;  E )  (or Lk(dm))  the space determined by the family of seminorms 

1 / P  
u - (L ~lu (y ) l l i dm(y ) )  for compact K c Y . 
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For every 1 5 p < rn we shall use the notation w-LP(dm; w-E) (or w-Lp(dm)) 
to denote the space Lp(dm;E) equipped with its weak topology, that is the coarsest 
topology on LP((Y, A, dm);E) for which each of the linear forms 

(A. 1) 

is continuous. 
Finally, in the case where Y is locally compact, we denote by w-Lk(dm; w-E) 

(or w-Lk(dm))  the space L k ( d m ; E )  equipped with its weak topology; that is, the 
coarsest for which all the linear forms (A.l) are continuous, where the functions 
a are restricted to have compact support in Y. 

u +. / ~ ( y )  (w ; U ( Y ) ) ~ . +  dm(y) for w E E* and x E LP'(dm) , 

Appendix B. The Product Limit Theorem 

In the body of this article extensive use has been made of the so-called product 
limit theorem to establish certain limits of products of sequences of functions. 
Since this result is not given in most standard references on integration theory, 
we present it here. 

Let (X, A, dm)  be a measurable space equipped with a positive finite measure 
drn. The result is a consequence of the classical Egorov theorem (see [ 1 111, which 
is restated here for the sake of completeness. 

Let g ,  be a bounded sequence in L"(dm) such that g, - g 
almost everywhere. Then, for  any S > 0 there exists a measurable set E C X such 
that 

03.1) 

EGOROV THEOREM. 

(i) m(E) < 6 , 
(ii) g,(x) - g(x) as n - +oo uniformly over x E X - E . 

PRODUCT LIMIT THEOREM. Consider two sequences of real-valued measurable 
functions dejned on X denoted f, and g,. 

(i) I f g ,  is bounded in LCYi(drn) such that g ,  - 0 almost everywhere and f, - f 
(ii) Zfg, is bounded in Lm(drn) such that g, - g almost everywhere and f,,  - f in w-L'(dm) then f n g n  - 0 in L'(dm). 

in w-L'(dm) then f n g n  - f g  in w-L'(dm). 

Proof Writing fngn - f g  = f,(g, - g )  + g ( f n  - f )  shows that (ii) is a 
consequence of (1) with g ,  - g in place of g,. Let E > 0 be some arbitrary positive 
number. The sequence f,, being relatively compact in L'(dm), is equi-integrable ; 
see [lo]. Thus, by picking S > 0 small enough, one has that for every measurable 
set E 

m(E) < 6 implies 1 f n  - f I 1~ dm < E uniformly in n . 
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Now fix E C X to be as given by the Egorov theorem in (B.1). Then 

(B.2) / I ( f n  - f)gn I dm = / I(fn - f ) g n  I 1~ dm + / I ( f n  - f ) g n  1 1 ~ - E  dm . 

The first term in the right side of (B.2) is treated as follows: 

(B.3) / I(fn - f ) g n  I 1 E  dm 5 sup { llgk l l L m }  / I(fn - f ) l  1 E  dm . 
k 

Then, using the equi-integrablity of f n  - f ,  (B.3) shows that (B.2) implies 

Taking the limit as n - 00 in (B.4) shows that 

but E was arbitrary, whence assertion (i) holds. 

Appendix C. On the Linearized Collision Operator 

This appendix presents some technical estimates regarding the linearized col- 
lision operator that are used extensively in the main body of this article in order 
to control the high velocity tails of various distributions. 

The following estimates bear on the operator ILI which was defined in Section 
6 by 

(C.1) ILl(f) = //(fi + f' + f l  + f)b(vl - v , u ) M i d v i  d u  

where f is any function of v for which the integrals make sense. 

PROPOSITION C. The operator ( L  I satisjes the following two properties. 

(i) Let f and g be twofunctions of v. Then 

(C.2) 

(ii) Assume (Hl). Then, there exists a constant C such that 

lL(fg)12 5 (ILl(lfg1))2 5 IW2) lLl(g2) * 
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Moreovel; the following continuity property holds: 
(iii) Assume (Hl). Then, the operators L and ILI are continuous from L’((1 + 

I v I 2 ) ~ d v )  into ~ ‘ ( ( 1  + I 4 I ) ~ d v ) .  

Proof The proof of assertion (i) is nothing but the Cauchy-Schwarz inequal- 

To prove assertion (ii), first weaken the first statement in (Hl) into the inequal- 
ity, and makes no use of assumption (Hl). 

ity 

I&v)l b(Vl - v,w) 5 c (1 + lv12 + lv112) . 

This inequality is then integrated with respect to the measure M l d v l  dw, which 
yields 

according to assumption (H1 ). The announced conclusion then follows. 
To prove (iii), observe that, by (Hl) 

whence, after integrating with respect to v and using the dp-symmetries (1.24), 
the following inequality holds: 

Assertion (iii) follows upon this last inequality. 

The fact that Maxwell potentials satisfy assumption (Hl) relies on a well- 
known observation, probably going back to Maxwell, that the entries of the tensor 
4 are eigenfunctions of the operator L. Therefore, I4(v)l = 0( lv l2 )  and the 
second inequality in (Hl)  obviously holds. As for the first inequality in (HI), 
it stems from the fact that, in the case of a Maxwell potential, b(V,w) = O(1) 
uniformly in w as IVI tends to infinity. Therefore, the class of potentials satisfying 
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assumption (Hl) is nonempty. It is very likely that all cut-off hard potentials such 
that b(V,w) = O(lVlY) as IVI tends to infinity also satisfy (Hl). Although we 
have not been able to prove this fact rigorously, a simple homogeneity argument 
at large v seems to indicate that (Hl) also holds in this case. 
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