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The connection between kinetic theory and the macroscopic equations of fluid 
dynamics is described. In particular, our results concerning the incompressible 
Navier-Stokes equations are based on a formal derivation in which limiting 
moments are carefully balanced rather than on a classical expansion such as 
those of Hilbert or Chapman-Enskog. The moment formalism shows that the 
limit leading to the incompressible Navier-Stokes equations, like that leading to 
the compressible Euler equations, is a natural one in kinetic theory and is 
contrasted with the systematics leading to the compressible Navier Stokes 
equations. Some indications of the validity of these limits are given. More 
specifically, the connection between the DiPerna Lions renormalized solution of 
the classical Boltzmann equation and the Leray solution of the Navier Stokes 
equations is discussed. 

KEY W O R D S :  Boltzmann equation; Chapman-Enskog expansion; incom- 
pressible Navier stokes equation; renormalized and weak solutions. 

1. I N T R O D U C T I O N  

This paper is devoted to the connection between kinetic theory and macro- 
scopic fluid dynamics. Formal limits are systematically derived and some 
rigorous results are given concerning the validity of these limits. In order 
to do that, several scalings are introduced for standard kinetic equations of 
the form 

a,F~+v.VxF~=Ic(F~) (1) 
e 

Here F~(t, x, v) is a nonnegative function representing the density of 
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particles with position x and velocity v in the single-particle phase space 
3 3 R x x R~ at time t. The interaction of particles through collisions is modeled 

by the operator C(F); this operator acts only on the variable v and is 
generally nonlinear. The operator will be kept abstract in Sections l-4, 
being defined only by properties given below. This emphasizes a 
universality that embraces the Boltzmann, Fokker-Planck, and BGK 
forms for C(F) (ref. 5) and allows the modeling of multiple-particle 
collisions. In Section 5 the classical Boltzmann form of the operator will be 
considered. 

The connection between kinetic and macroscopic fluid dynamics 
results from two types of properties of the collision operator: 

(i) Conservation properties and an entropy relation that implies that 
the equilibria are Maxwellian distributions for the zeroth-order limit. 

(ii) The derivative of C(F) satisfies a formal Fredholm alternative 
with a kernel related to the conservation properties of (i). 

The macroscopic limits are obtained when the fluid becomes dense 
enough that particles undergo many collisions over the scales of interest. 
This situation is described by the introduction of a small parameter e, 
called the Knudsen number, that represents the ratio of the mean free path 
of particles between collisions to some characteristic length of the flow 
(e.g., the size of an obstacle). Properties (i) are sufficient to derive the 
compressible Euler equations from Eq. (1); in Section 2 this will be done 
assuming a formally consistent convergence for the fluid dynamical 
moments and entropy of the solutions of the kinetic equation (1) 
(Theorem I). The compressible Euler equations also arise as the leading- 
order dynamics from a systematic expansion of F in e (the Chapman 
Enskog or Hilbert expansion described briefly in Section 3). Properties (ii) 
are used to obtain Navier-Stokes equations; they depend on a more 
detailed knowledge of the collision operator. The compressible Navier- 
Stokes equations arise as corrections to those of Euler at the next order in 
the Chapman-Enskog expansion; this is done in Section 3. Strong 
hypotheses are needed on the regularity of solutions of the compressible 
Navie~Stokes equations in order to make sense of these expansions 
(Theorem II). 

In a compressible fluid one also introduces the Mach number Ma, 
which is the ratio of the bulk velocity to the sound speed, and the Reynolds 
number Re, which is a dimensionless reciprocal viscosity of the fluid. These 
numbers ~1'2'12) are related by the formula 

Ma 
e = (2) 

Re 
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It is clear from this relation that when e goes to zero, to obtain a fluid 
dynamical limit with a finite Reynolds number, the Mach number must 
vanish, too. This is the incompressible limit. This fact was already observed 
by Sone (15) in 1969 at the level of formal expansion for the steady solution. 
It was used by Sone and several of his co-workers for the study of the 
Knudsen layer (cf. for instance ref. 16). The incompressible limit is also 
the only regime where global weak solutions of fluid dynamic equations are 
known to exist. The relation between the global weak solutions of the 
incompressible Navier-Stokes equations due to Leray (11) and the renor- 
realized solutions of the Boltzmann equation introduced by DiPerna and 
Lions (s) is the subject of our forthcoming companion paper. (2) The deriva- 
tion of the incompressible Navier-Stokes equations presented in Section 4 
(Theorem III) provides the framework for those results. Like Theorem I, it 
only assumes a formally consistent convergence for the fluid dynamical 
moments and entropy of the solutions of the kinetic equation (1). Some 
indications are given in Section 5 about the proof of the assumptions made 
in Section 4. 

Related results have been obtained simultaneously by De Masi et al. (7~ 
They prove the validity of a formal expansion over the time interval during 
which a solution of the incompressible Navier Stokes equations remain 
smooth (cf. Remark 5 of Section 6). Due to his influence on the subject, we 
dedicate this paper to Joel Lebowitz on the occasion of his 60th birthday. 

2. T H E  C O M P R E S S I B L E  EULER L I M I T  

In this section the integral of any scalar- or vector-valued function 
f (v)  with respect to the variable v will be denoted by ( f ) ,  

( f )  = f f (v)  dv (3) 

The operator C is assumed to satisfy the conservation properties 

(C(F))  =0, (vC(F)) =0, (Ivl2C(f)) =0 (4) 

These relations represent the physical laws of mass, momentum, and 
energy conservation during collisions and imply the local conservation laws 

O,(F) +V x. (vF)  =0 

8,(vF) + Vx. (v | vF) = 0 (5) 

O,(�89 +Vx. (v�89 =0 
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Additionally, C(F) is assumed to have the property that the quantity 
(C(F)logF) is nonpositive. This is the entropy dissipation rate and 
implies the local entropy inequality 

0t(Flog F )  + Vx. @Flog F )  = (C(F) log F )  ~< 0 (6) 

Finally, the equilibria of C(F) are assumed to be characterized by the 
vanishing of the entropy dissipation rate and given by the class of 
Maxwellian distributions, i.e., those of the form 

F -  (2zc0)3/------ ~ exp 2 (7) 

More precisely, for every nonnegative measurable function F the following 
properties are equivalent: 

(i) C(F)=O, 

(ii) (C(F)logV)=O (8) 

(ii) Fis a Maxwellian with the form (7) 

These assumptions about C(F) merely abstract some of the consequences 
of Boltzmann's celebrated H-theorem. 

The parameters p, u, and 0 introduced in the right side of (7) are 
related to the fluid dynamic moments giving the mass, momentum, and 
energy densities: 

3 ( F )  =p,  ( v r )=pu ,  (�89189 

They are called, respectively, the (mass) density, velocity, and temperature 
of the fluid. In the compressible Euler limit these variables are shown to 
satisfy the system of compressible Euler equations [(14) below]. 

The main obstruction to proving the validity of this fluid dynamical 
limit is the fact that solutions of the compressible Euler equations generally 
become singular after a finite time. (14) Therefore any global (in time) 
convergence proof cannot rely on uniform regularity estimates. The only 
reasonable assumptions would be that the limiting distribution exists and 
that the relevant moments converge pointwise. With this hypothesis, it is 
shown that the above assumptions regarding C(F) imply that the fluid 
dynamic moments of solutions converge to a solution of the Euler 
equations that satisfies the macroscopic entropy inequality. 

Theo rom I. Given a collision operator C with properties (i), let 
F~(t, x, v) be a sequence of nonnegative solutions of the equation 

1 
OtF~ + v .VxF ~ = -  C(F~) (9) 

g 
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such that as e goes to zero, F= converges almost everywhere to a 
nonnegative function F. Moreover, assume that the moments 

(F=), (vF,:), (v|  (v[vt2F~) 

converge in the sense of distributions to the corresponding moments 

(F>, (vF),  ( v |  @lvl2F) 

the entropy densities and fluxes converge in the sense of distributions 
according to 

lim (F~ log F~) = (Flog F) ,  lim(vF~logF=) = ( vF logF)  
s~O e-+O 

while the entropy dissipation rates satisfy 

lim sup(C(F~)log F~) ~ ( C(F) log F)  
e ~ 0  

Then the limit F(t, x, v) is a Maxwellian distribution, 

p(t,x) ( l 
[2~r0(t, x)] 3/2 exp 2 Oft, x) ) (10) 

where the functions p, u, and 0 solve the compressible Euler equations, 

~,p + Vx. (pu) = 0 

O,(pu) + V x �9 (pu | u) + Vx(pO ) = 0 (11 ) 

~?t(p(�89 + 30)) + Vx. (pu(�89 + ~O))=O 

and satisfy the entropy inequality, 

Proof. Multiplying (9) by e(1 + log F=) and integrating over v gives 
the entropy relation 

e(Ot(F~logF~)+Vx.(vF~logF=))=(C(F~)logF=) (13) 

Letting e go to zero in (13) and using the convergence assumptions of the 
theorem regarding the entropic quantities shows that the limiting distribu- 
tion F must satisfy 

0 ~< lim sup(C(F~.) log F~) ~ (C(F) log F)  (14) 
~ 0  
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But the entropy dissipation rate of C(F) is nonpositive by assumption, so 
(14) implies (C(F)log F ) =  0. The characterization of equilibria (8) then 
gives that for almost every (4 x) the distribution F is a solution of the 
equation C(F)=0 and is a Maxwellian distribution with the form (10). 

The system of local conservation laws 

c?,(f~) + Vx. (vF~) = 0 

~ , ( v s  ) + V~. (v | vF= ) = 0 (15) 

O,(�89 + V x �9 (V�89 = 0  

is not closed. Each of these equations for the determination of the time 
derivative of a moment involves the knowledge of a higher order moment. 
However, if the convergence assumptions of the theorem regarding these 
moments are used, one can pass to the limit of e going to zero and replace 
F, by F, as given by (10), in these equations. A system of five equations for 
the five unknowns {p, ul, u2, u3, 0} is obtained which is the compressible 
Euler system (11 ). 

Finally, utilizing the entropy dissipation property 

( C(F=) log F=) <. O (16) 

we find that Eq. (9) leads to the inequality 

~?,(F~ log F~) +Vx. (vF~ log F~) ~ 0 (17) 

Once again using the convergence hypothesis of the theorem regarding the 
entropy densities and fluxes along with the form of F given by (10), this 
inequality gives the classical entropy inequality (12). 

Remark I. The above arguement shows that any type of equation of 
the form (9) leads to the compressible Euler equations with a pressure p 
given by the ideal gas law p=pO and an internal energy of ~pO 
(corresponding to a ~-law perfect gas). This is a consequence of the fact 
that the kinetic equation considered here describes a monoatomic fluid in 
a three-dimensional domain. Other equations of state may be obtained by 
introducing additional degrees of freedom that take into account the 
rotational and vibrational modes of the particles. 

3. T H E  C O M P R E S S I B L E  N A V I E R - S T O K E S  L IMIT  

As has been noticed above, the form of the limiting Euler equation is 
independent of the choice of the collision operator C within the class of 
operators satisfying the conservation and the entropy properties. The 
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choice of the collision operator appears at the macroscopic level only in the 
construction of the Navier-Stokes limit. The compressible Navie~Stokes 
equations are obtained by the classical Chapma~Enskog expansion. To 
compare this approach with the situation leading to the incompressible 
Navier-Stokes equation, a short description of this approach is given 
below. 

Given (p, u, 0), denote the corresponding Maxwellian distribution by 

P ( l l v - u '  2 ) 
M(o,u,o ) (2rc0)3/2 exp 2 0 (18) 

The subscript (p, u, 0) will often be omitted when it is convenient. 
Introduce the Hilbert space L ~  defined by the scalar product 

(f] g)M = ( fg)M = f f(v) g(v) M(v) dv (19) 

Denote by L and Q the first two Fr6chet derivatives of the operator 
G~--,M-IC(MG) at G =  1: 

L ( g ) = I D c ( M ) . ( M g ) ,  Q(g ,g )=ID2c(M): (Mg v Mg) (20) 

where v is the usual symmetric tensor product over functions of v. 
Taylor's formula then gives 

1 
~r C(M(1 + 8g)) = eL(g) + ~21Q(g, g) + O(~3) (21) 

In general the operator L is not bounded. However, it is naturally defined 
as a linear unbounded operator in the space L 2. This operator is assumed 
to be self-adjoint and to satisfy a Fredholm alternative with a five-dimen- 
sional kernel spanned by the functions {1, Vl, v2, v3, Ivl2}. The fact that the 
kernel must contain at least these vectors follows from deriving the relation 
C ( M ) = 0  over all Maxwellian distributions (7). Examining the second 
variation of the entropy dissipation rate at M shows that L has a 
nonpositive Hermitian form. 

Denote by V, A =  {Ai} and B =  {B~} the following vectors and 
tensors: 

U - - / I  

= 21Vi2 5 
3 

V= x ~  A(V) (! -7 )  V, B ( V ) = V |  

By symmetry, the functions Ai and B 0 are orthogonal to the kernel of L; 
therefore the equations 

L(A') = A, L(B') = B (22) 
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have unique solutions in Ker(L) • Assume (this would be a consequence of 
rotational invariance for the collision operator) that these solutions are 
given by the formulas 

A'(V) = -~(p,  O, IVI)A(V), B'(V) = -fl(p,O, IVI)B(V) (23) 

where ~ and fl are positive functions depending on p, 0, and IV[. If C(F) 
is homogeneous of degree two (for example, if it is quadratic), then a 
simple scaling shows that the p dependence of ct and fl is just proportional 
to p-1. 

A function He(t, x, v) is said to be an approximate solution of order p 
to the kinetic equation (1) if 

OtH ~ + v . V x H ~ -  1 C(H~) + O(e p) (24) --g 

where O(e p) denotes a term bounded by e p in some convenient norm. An 
approximate solution of order 2 will be constructed in the form 

H e = m~(1 + ~g~ + eZw~) (25) 

where (p~, u~, 0~) solve the compressible Navier-Stokes equations with 
dissipation of the order e (denoted CNSE~): 

Otp~+ Vx.(p~u~)=O 

p~(0, + u~-Vx)u~ + Vx(p~0~) = eVx. [#~a(u~)] (26) 

In these equations a(u) denotes the strain-rate tensor given by 

l 2 
a~(u)  = (u~, + u~,) - ~V~,  u G 

while the viscosity /~ = #(p~, 0~) and the thermal diffusivity ;~=/r Oe)  

are defined by the relations 

#(p, O)=~O<fl(p,  O, ~Vl)LS(V)I~>M 

2 ~ f ~  = 1-5 pO fl(p, O, r)r6e -r2/2 dF 

(27) 
1 

m(p, O)=~O<~(p, O, IVI) IA(V)t2>M 

= = pO ,~---~,~,~ ~(0, O, r)(rZ- 5)2r4e -~/2 dr 
0 [ZrCl  ~'~ 
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Notice that in the case where C(F) is homogeneous of degree two, the left 
sides become independent of p; this is why classical expressions for the 
viscosity and thermal diffusivity depend only on 0. 

The Chapman-Enskog derivation can be formulated according to the 
following. 

Theorem I I .  Assume that (p,, u~, 0~) solve the CNSE~ with the 
viscosity #(p, 0) and thermal diffusivity to(p, 0) given by (27). Then there 
exist g~ and w e in Ker(L)- such that H~, given by (25), is an approximate 
solution of order 2 to Eq. (1). Moreover, g, is given by the formula 

1 A(V) .VxO~ 
g~= - ~  fl(p~, 0~, IVl) B(V):a(u~)-e(p~, Or, ]VI) (28) 

z 

Proof. In the computation below the subscript ~ is omitted. Setting 
the form (25) for an approximate solution of order two into (24) yields the 
formula 

(~?t + v .Vx)M (O,+v.Vx)(Mg) +g 
M M 

= L(g) + e ( L(w) + ~ Q(g, g)) + O(e 2) (29) 

The O(e z) term is the remainder from the Taylor expansion of 
M-1C(M(1 +gq + e2w)) about g = 0 and is therefore in Ker(L) • A direct 
derivation of (18) gives the formulas 

~.M= ViM, c~oM= Igl 2- ~M 

Utilizing these shows that the contribution of the first term on the left side 
of (29) is given by the formula 

(~,+v.Vx)M (O,+v.Vx)p (O,+v.Vx)u ~-V. 
M p , fo  

+(~ lgl2-~) (~'+vvx)O0 (30) 

The CNSE~(27) are used to replace the time derivatives of the functions p, 
u, and 0 by expressions involving only spatial derivatives. This introduces 
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terms of order 5, corresponding to the right side of the second and third 
equations of (27), into (30): 

(c~, + v .V~)M 

M 

1 Vx0 B( V):a(u) + A( V) . - - +  eR (31) 

where 

R~- V .(vx'[~O'(u)])p N/01- -~- (~ [VI 2 -- 1 ) 1#a(u):cS(u)+vx'[tcVxO]pO (32) 

From (29) and (31) it follows that the term of order one with respect to 
e has to be given by the formula (28). To complete the proof, one must 
show the existence of a function w that cancels the term of order one in 
(29). This amounts to proving the existence of a solution to the equation 

(0 ,+v.Vx)(Mg) 1 
L(co) = R +  M --2 Q(g' g) (33) 

Such a solution exists if and only if the right side of (33) is orthogonal to 
the kernel of L. These orthogonality relations are already satisfied by the 
terms Q(g,g) and M-IO,(Mg), so all that is left to compute are the 
remaining terms. The inner products of 1, v-u,  and 11v-ul 2 with R are 
easily computed from (32) and are given by 

( R ) M = O ,  ( ( V - - b / ) R ) M  = g  x �9 [ l / i f ( u ) ]  

( I I v - -  u[2 R ) M = l I.uT(u)" 6(u)  + g x . [tzgxO ] 
(34) 

When computing the same inner products for the M- lv-Vx(Mg ) term, the 
orthogonality of g to the Ker(L) implies 

l vVx(Mg)\M /M=O' t (v-u)VVx(Mg)  M=Vx'EO(Bg)M] 
(35) 

(~ v. Vx(Mg)\ 1 Iv-u]2 M /M=gX �9 [03/2(Ag)g] +~O(Bg)g" ~r(U) 

With the explicit form of g given by (28), one finds that 

03/2(Ag)M = --O(ctA | A )M" VxO = - 10(cr VI 2 - 5)2 ] VI2)MVx 0 
(36) 

O( Bg ) M = -- 10(fiB| B ) M:a(U)= -- ~50(fl l VI4) M O'(U) 

Putting the right side of (36) into (35) and comparing the result with (34) 
shows that the solvability condition for (33) is satisfied if and only if it(p, O) 
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and ~c(p, 0) are given by formula (27). This completes the proof of 
Theorem II. 

Romark 2. Let F,: be a solution of the kinetic equation that coincides 
with a local Maxwellian at t =  0. Let (p~, u~, 08) be the solution of the 
CNSE~ with initial data equal to the corresponding moments of F~(0, x, v). 
Then it follows from the above computation that the expression given by 

1 ( 1 , v - u ~ ( t , x ) ,  2) 
He - (27r0~(t, x)) 3/2 exp - 2 O~(t, x) (p~(t, x) + eg~ + e2w~) 

is an approximation of order 2 of Ft. Since M sg~ is orthogonal to the 
functions 1, v, Ivl 2, the quantities p~, p~u~, and p~(�89 provide 
approximations of order two to the corresponding moments of F,. In fact, 
this observation was used to do the Chapman-Enskog derivation by the 
so-called projection method. (4) 

4. T H E  I N C O M P R E S S I B L E  N A V I E R - S T O K E S  L I M I T  

The purpose of this section is to construct a connection between the 
kinetic equation and the incompressible Navier Stokes equations. As in 
the previous section, this will describe the range of parameters for which 
the incompressible Navier-Stokes equations provide a good approximation 
to the solution of the kinetic equation. However, in this case the connection 
is drawn between the kinetic equation and macroscopic fluid dynamic 
equations with a finite Reynolds number. It is clear form formula (2), 

= Ma/Re, that in order to obtain a fluid dynamic regime (corresponding 
to a vanishing Knudsen number) with a finite Reynolds number, the Mach 
number must vanish. (1,12) 

In order to realize distributions with a small Mach number, it is 
natural to consider them as perturbations about a given absolute 
Maxwellian (constant in space and time). By the proper choice of Galilean 
frame and dimensional units this absolute Maxwellian can be taken to have 
velocity equal to 0, and density and temperature equal to l; it will be 
denoted by M. The initial data F~(0, x, v) is assumed to be close to M, 
where the order of the distance will be measured with the Knudsen 
number. Furthermore, if the flow is to be incompressible, the kinetic energy 
of the flow in the acoustic model must be smaller than that in the 
rotational modes. Since the acoustic modes vary on a faster time scale than 
rotational modes, they may be suppressed by assuming that the initial data 
is consistent with motion on a slow time scale; this scale separation will 
also be measured with the Knudsen number. 

This scaling is quantifed by the introduction of a small parameter 
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such that the time scale considered is of order e - l ,  the Knudsen number 
is of order eq, and the distance to the absolute Maxwellian M is of order 
d, with q and r being greater than or equal to one. Thus, solutions F~ to 
the equation 

eO,F, + v . VxF~ = ~ C(F,) (37) 

are sought in the form 

F~ = M(1 + dg~) (38) 

The basic case r = q = 1 is the unique scaling compatible with the usual 
incompressible Navier-Stokes equations. 

The notation introduced in the previous section regarding the collision 
operator and its Fr6chet derivatives is conserved, but here the Maxwellian 
M is absolute, so that L and Q no longer depend on the fluid variables. 

T h e o r e m  III. Let F~(t, x, v) be a sequence of nonnegative solutions 
to the scaled kinetic equation (37) such that, when it is written according 
to formula (38), the sequence g~ converges in the sense of distributions and 
almost everywhere to a function g as e goes to zero. Furthermore, assume 
the moments 

(L-  l(A(v)) | vg,)M, 

(L-1(B(v))| 

(V| @Ivl2g~)M 

(L l(A(v)) Q(g~, g,))M 

(L-l(B(v)) Q(g~, g~) )M 

converge in D'(R 7 x R3x) to the corresponding moments 

<g>M, <Vg>M, <v| <vlvtag>M 

<L I(A(v))| (L-I(A(v))Q(g,g)>M 

(L-l(B(v))| (L-I(B(v)) Q(g,g))M 

and that all formally small terms in e vanish. Then the limiting g has the 
form 

g = p  + v . ,  + (�89 2 -  3)0 {39) 

where the velocity u is divergence-free and the density and temperature 
fluctuations p and 0 satisfy the Boussinesq relation 

V x �9 u = 0, Vx(p + 0) = 0 (40) 



Fluid Dynamic Limits of Kinetic Equations 335 

Moreover, the functions p, u, and 0 are weak solutions of the equations 

8tu + u.Vxu + Vxp= #, Au, 

8 t u + V x p = # ,  Au, 

8 , u + u . V x u + V x p = 0 ,  

8tu+Vxp=O, 

c~tO+u.VxO=tr i f r = l ,  q = l  (41) 

8tO=K, AO, if r > l ,  q = l  (42) 

8tO+u.VxO=O, if r = l ,  q > l  (43) 

St0=0,  if r > l ,  q > l  (44) 

In these equations the expressions # ,  and ~c, denote the function values 
g(1, 1) and ~c(1, 1) obtained from (27) in the previous section. 

Remark 3, Equation (44) is completely trivial; it corresponds to a 
situation where the initial fluctuations and the Knudsen number are too 
small to produce any evolution over the time scale selected. However, this 
limit would be nontrivial if it corresponded to a time scale on which an 
external potential force acts on the system. (1) 

Proof. Setting (38) into (37) and Taylor expanding the collision 
operator gives 

1 r 1 
zc?,g~+v.Vxg~=-~L(g~)+e q-~Q(g~,g~)+O(e2r-q) (45) 

Multiplying this by e q, letting e go to zero, and using the moment 
convergence assumption yields the relation 

L(g) = 0 (46) 

This implies that g belongs to the kernel of L and thus can be written 
according to the formula (39). 

The derivation of (40) starts from the equations for conservation of 
mass and momentum associated with (45) :  

z8,(g, ) M + Vx. <vge>M = 0 (47) 

eOt(vg~>M+ V,:. (v| (48) 

Letting ~ go to zero above (understanding the limit to be in the sense of 
distributions) gives the relations 

V~. (vg>M = O, V~- (v|  

When g is replaced by the right side of (39) these become (40). A repetition 
of this argument starting from the equation for the conservation of energy 
again leads to the divergence-free velocity condition of (40). 

822/63/1-2-22 
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The limiting momentum equation is obtained from 

1 
O,(vg~)M +- V~. (v | vg~) M = 0 (49i 

g 

by first separating the flux tensor into its traceless and diagonal parts: 

1 
Ot(vge)M+~Vx.((V@V--~[Vl2I)gelM-t-~Vx(~lvl2gelM=--O (50) 

This is best thought of as being in the form 

a,(vg~)M +l Vx �9 ( B(v) g~)M + Vxp~=O (51) 

1 1 2 where the pressure is given by p~=e (girl g~)M. In the same spirit, the 
limiting temperature equation is obtained by combining the density and 
energy equations for (37) as 

t / 1  2 5\ / 0, [ ~ [ v l - 2 ) g "  M+lvx'(A(v)g~}M=Oe (52) 

Utilization of the moment convergence assumption and the limiting form 
of g given by (39) provides the evaluation of the distribution limits 

l i m  O t ( v g e )  M = O , ( V g ) M  ----- 63tU 
e --* O 

lim 0,((�89 2 -  5 _ 59,0 5) g~)M=0,((�89 5_)2 g)M =s 
~ 0  

(53) 

As is classical (since the contribution of Leray) in most treatments of the 
incompressible Navier-Stokes equations, the pressure term that appears on 
the right side of (51) will be eliminated upon integrating the equation 
against a divergence-free test function. 

To complete the proof of Theorem III, the limits of the moments 
I(A(v)g~)M in (52) and e I(B(v)g~)M in (5l) have to be estimated. 

Start from the identities (recall that L is self-adjoint) 

(A(v)g~)M=(L I(A(v))L(g~))M, (B(v)g~)m=(L I(B(v))L(g~))M 

and eliminate L(g,) using Eq. (45), 

I 1 eOtg~+v.Vxg~L(g~)+~r-q-~Q(g~,g~)+O(e 2r q) 
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The convergence assumptions of the theorem then imply that the limiting 
moments may be evaluated by 

lim _1 ( A(v) g~ }M = l ime  q - iV X . ~ v | L-l(A(v)) g~ } M 
e ~ O  ,~ e ~ O  

- lim e r -  1 1 ~ o  ~ ( L  '(A(v))Q(g~,q~)}M 

(54) 
lim 1 (B(v)g~}M= lira eq-lVx.  (v |  
e ~ 0  ~ ~ 0  

- lim e~- ~ 1 ~ o  ~ ( L  I(B(v))Q(g~,q~)}M 

The neglected terms are formally O(e) and O(e 2~- a). For r > 1 and q > 1 all 
the limits on the right side of (54) will vanish by the moment convergence 
assumptions; formula (44) is a direct consequence. For the case r > q = 1 
one needs to compute the moments 

Vx. ( v |  I(A(v))g}M, V~. (v@L I(B(v))g)M 

For the case q > r = 1 one needs the computation of 

(L-t(A(v))Q(g,g))M, (L-~(B(v))Q(g,g)}M 

For the case r = q = 1 the knowledge of all four of the above moments will 
be needed. 

The limiting form (39) and the Boussinesq relation (40) imply that 

Vx. (V |  = ( L  l(A(v))| } ~) M . V~O 

= - ( ~ ( 1 , 1 ,  l v l ) A ( v ) |  (55) 

This expression gives the thermal diffusion term appearing in the second 
equation of systems (41) and (42). Even more directly, the limiting form 
(39) implies 

V ~ . ( v |  ~(B(v))g}M= (L-~(B(v))|174 u 

= - ( ~ ( 1 ,  1, I v l ) B ( v ) Q ~ ( v ) ) M : V ~ u  (56) 

After applying a divergence, this expression gives the viscous term 
appearing in the first equation of systems (41) and (42). 

Next, consider the moments (L  l(A(v))Q(g, g)}M and (L-I(B(v)) 
Q(g, g))M; these may be evaluated by using the fact that C(F) vanishes for 
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all M axwellians (18). The first and second differentials of M(~,, ~.o) computed 
at the point (1, 0, 1) are 

dM = M(dp + v. du + (�89 [vt 2 - 3) dO) (57) 

a ~ m  = M ( @  + v.  du + (�89 ~ -  ~) dO) ~ 

+ M(dap + v. dZu + (�89 2 - 3) d20) (58) 

Comparison of (57) with the limiting form (39) shows that a correct choice 
of parameterization leads to dM = Mg and d2M = Mg 2. Twice deriving the 
formula that states Maxwellians are equilibria for the collision operator 
then gives 

0 = d2C(M) = D2C(M):(dM v dM) + DC(M) .  d2M 

= D2C(M):(Mg v Mg) + DC(M) .  (Mg 2) (59) 

Applying the definitions (20) of L and Q, this becomes simply 

Q(g, g) = - L ( g  2) (60) 

Using relation (60) and the self-adjointness of L, one finds the desired 
moments to be 

( L  ~(A(o))Q(g,g))M 

= - ( L  ~ ( A ( v ) ) L ( g Z ) ) ~ = - ( A ( v ) g 2 ) M = - 5 u O  (61) 

( L -  ~(B(v)) Q(g, g) )M 

= - ( L  '(B(v)) L(g2 ) )~=  - - (B(v)  g2)M = -2B(u)  (62) 

Formula (61) gives the term u.VxO appearing in the second equation of 
the systems (41) and (43), while (62) gives the term u .V~u that appears in 
the first equation of the systems (41) and (43). The proof of Theorem II is 
now complete. 

Romark 4. The second equations of (40)-(42) that describe the 
evolution of the temperature do not contain a' viscous heating term 
�89 such as appears in the CNSE~" 

O~p~ + V~ . (p~u~) =O 

p~(~?, + u~- Vx) u~ + Vx(p~ 0~) = eVx. [#~ a(u~) ] (63) 
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This is consistent with the scaling used here when it is applied directly to 
the CNSE~ to derive the incompressible Navier-Stokes equations. More 
precisely, with the change of variables 

p~=po+e~( t , x ) ,  u~=efi( t ,x) ,  O~=Oo+eO(t, x)  (64) 

the system (40), (41) is obtained for ~(t,)~), ~(t, 2), and 0(t, 2) as e 
vanishes. In this derivation every term of the last equation of (62) is of the 
order e 2 except �89 which is of order three. The viscous heating 
term would have appeared in the limiting temperature equation had the 
scaling in (64) been chosen with the density and temperature fluctuations 
of order 82. (3) 

Remark 5. In the case where q = r = 1 a system is obtained that has 
some structure in common with a diffusion approximation. A formal 
expansion for q~, the solution of the equation 

1 1 L(g~) + ~ Q(g~, g~) + O(e) (65) eSt g~ + v . V x g~= 

can be constructed in the form 

g~ = g(1) + eg(2) + e2g(3) + . . .  (66) 

Inserting (66) into (65) and canceling terms through O(e) yields the system 
of equations 

L(g(l/) = 0  (67) 

L(g  (2)) = v-V x g(1)_ �89 g(1)) (68) 

L(g  (3)) = 8t g(~) + v. Vx g ( 2 )  O(1) (69) 

Equation (67) shows that g(X) is given [cf. (39)] by an expression of the 
form 

g ( l ) = p +  v -u+( �89  3)0 (70) 

The solvability conditions for (68) are equivalent to the facts that u is 
divergence-free and that p and 0 satisfy the Boussinesq relation. That 
satisfied, then g(2) is given by 

g(Z)= -/~(1, 1, Iv])B(v):Vxu-et(1,  1, [v])A(v).VxO 

+ �89174 (~[v[4- ~]v[2+ ~)02 

+ p(2)+ v. u(2)+ (�89 [v[ 2 - 3)0(2) (71) 
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Finally, the solvability conditions for (69) given the two equations (41) for 
u and 0. This approach is related to the method of the previous section and 
to the work of De Masi, Esposito, and Lebowitz. 

5. R E M A R K S  C O N C E R N I N G  THE PROOF OF THE FLUID 
D Y N A M I C A L  L IMIT  

In this section the collision operator is given by the classical 
Boltzmann formula, 

C ~ ( F ) = f f  R3• s2 ( F ( v ' l ) F ( v ' ) - F ( v l ) F ( v ) ) b ( V l - V ' c o ) d ~ o d v l  (72) 

where co ranges over the unit sphere, Vl over the three-dimensional velocity 
space, and b(v 1 - v, co) is a smooth function; v' and v'~ are given in term of 
v, vl, and co by the classical relations of conservation of mass, momentum, 
and energy. (5'6~ 

Any proof concerning the fluid dynamical limit for a kinetic model 
will, as a by-product, give an existence proof for the corresponding macro- 
scopic equation. However, up to now no new result has been obtained by 
this type of method. Uniform regularity estimates would likely be needed 
for obtaining the limit of the nonlinear term. These estimates, if they exist, 
must be sharp, because it is known (and is proven by Sideris (14~ for a very 
general situation) that the solutions of the compressible nonlinear Euler 
equations become singular after a finite time. 

In agreement with these observations and in the absence of boundary 
layers (full space or periodic domain), the following theorems are proved: 

(i) Existence and uniqueness of the solution to the CNSE~ for a finite 
time that depends on the size of the initial data, provided the initial data 
is smooth enough (say in H s with s>3/2) .  This time of existence is 
independent of e and when e goes to zero the solution converges to a 
solution of the compressible Euler equations. 

(ii) Global (in time) existence of smooth solution (~~ to the CNSE~ 
provided the initial data is small enough with respect to e. 

These two points have their counterparts at the level of the Boltzmann 
equation: 

(i) Existence and uniqueness (under stringent smallness assumptions) 
during a finite time independent of the Knudsen number, as proved by 
Nishida (13~ (cf. also Caflisch(4~). When the Knudsen number goes to zero 
this solution converges to a local thermodynamic equilibrium solution 
governed by the compressible Euler equations. 
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(ii) Global existence for the solution to the Boltzmann equation 
provided the initial data is small enough with respect to the Knudsen 
number. 

However, there are two other types of results concerning weak solu- 
tions. First, the global existence of weak solutions to the incompressible 
Navier-Stokes equations has been proved by Leray. (11) Second, using a 
method with many similarities to Leray's, DiPerna and Lions (8) have 
proved the global existence of a weak solution to a class of normalized 
Boltzmann equations, their so-called renormalized solution. This solution 
exists without assumptions concerning the size of the initial data with 
respect to the Knudsen number. Such a result also holds for the equation 

1 
eOtF~ + v . VxF~ = ~ C,(F~) (73) 

over a periodic spatial domain T 3. 
The situation concerning the convergence to fluid dynamical limits 

(with e going to zero) of solutions of the Boltzmann equation (73) with 
initial data of the form 

F~ = M(1 + ergo) (74) 

continues to reflect this similarity. Following Nishida, (13) it can be shown 
that for smooth initial data (indeed very smooth) the solution of (73) is 
smooth for a time on the order of E 1 -r. For  r = 1 this time turns out to the 
independent of e and durinig this time the solution converges (in the sense 
of the Theorem III) to the solution of the incompressible Euler equations 
when q > 1 or to the solution of the incompressible Navie~Stokes equa- 
tions when q = 1. In this very case one obtains more precise information for 
the solution than the one given by ref. 7. It is the solution of the Cauchy 
problem itself, and not some (not so precisely defined) solution of the 
Boltzmann equation which converges. However, the price to pay lies in the 
much stronger hypothesis that must be made on the regularity of the initial 
data. For  r > 1 the solution is regular during a time that goes to infinity as 
e vanishes; in this situation it converges to the solution of the linearized 
Navier-Stokes equations when q =  1 or to the solution of the linearized 
Euter equation when q > 1. 

The borderline consists of the case r = q = 1. In this case it is natural 
to conjecture that the DiPerna-Lions renormalized solutions of the 
Boltzmann equation converge (for all time and with no restriction on the 
size of the initial data) to a Leray solution of the incompressible Navier-  
Stokes equations. However, our proof of this result is incomplete without 
additional compactness assumptions. (2) 
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Leray's proof relies on the energy estimate 

�89 + IlVxu[12ds<<.lllu(O)ll 2 (75) 

For the Boltzmann equation the classical entropy estimate plays an 
analogous role in the proof of DiPerna and Lions. The entropy integrand 
can be modified by the addition of an arbitrary conserved density; the form 
chosen here is well suited for comparing F~ with the absolute Maxwellian 
M: 

f f (F~( t ) log( f f_~)_F~( t )+M)dvdx+ 1 ' e-r~q fo f D~ dx ds 

<~ ff (F~(O) log (ff2-~)- F~(O) + M) dv dx (76) 

where D~ is the entropy dissipation term given by 

D~= ~ fff (F~1F;- F~'F~l l~ (F~IF~)F~IF'~ b de) dvl dv 

Here F21, F ' ,  F~I, and F~ are understood to mean the evaluation of the 
distribution at the velocity values v'~, v', v~, and v, respectively. 

The entropy integrand is a nonnegative, strictly convex function of F~ 
with a quadratic minimum value of zero attained at F~ = M. This suggests 
that in order to obtain bounds consistent with a formal expansion of the 
form (74) the initial data must be taken to satisfy the bound 

ff (F~(O) log ( ff-~)-F~(O) + M) dv dx <~ Ke 2r (77) 

where K is an constant independent of e. 
The estimates (76) and (77) are enough to show that a sequence of 

functions g~ in (74) is relatively compact in the weak topology of L 1 and 
that every weakly converging subsequence has a limit belonging to [2~(R~ +, 
L2(T3) |  L~t ). To obtain a strong convergence of the moments for the case 
q = 1, the above estimates are used with the averaging lemma (8'9) to obtain 
a compactness result for the integrand of the collision operator (72). These 
estimates are sufficient to show convergence to the linearized 
Navie~Stokes equations (42) for the case r > q = 1. However, for the case 
q = r = 1 an additional compactness assumption is needed to gain some 
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time (weak) regularity for the moments (vg~). For e > 0  these are not 
divergence-free functions and therefore (51) does not produces the classical 
estimates. Finally, to avoid concentration phenomena as e ~ 0 ,  it is 
assumed that 

(1 + Ivl 2 ) g2 M 
(3 + ~g,) 

lies in a weakly compact set of L ~ r + LX(T3)@L1) .  With these two lock t 
assumptions one c a n  s h o w  (2) the convergence (in the sense of Theorem III) 
of the velocity moments for renormalized solutions of the Boltzmann 
equation to a Leray solution of the incompressible Navier-Stokes equations. 

Remark 6. The energy estimate (75) and the entropy estimate (76) 
are cornerstone estimates in the proofs of the global existence of the weak, 
or renormalized, solutions. This similarity can be emphasized by the 
observation that as e -~ 0 both sides of (76) converge to the corresponding 
sides of (75). A formal proof is easily obtained by an expansion of (76) in 
e; the rigorous proof is given in ref. 2. 
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