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Abstract

The time-dependent Hartree—Fock equations are derived frorWthedy linear Schrodinger
equation with the mean-field scaling in the lim\t — +o0o0 and for initial data that are close to
Slater determinants. Only the case of bounded, symmetric binary interaction potentials is treated in
this work. We prove that, a& — +o0, the first partial trace of th&/-body density operator ap-
proaches the solution of the time-dependent Hartree—Fock equations (in operator form) in the sense
of the trace norm.
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Résumé

On montre dans ce travail que les équations d’évolution de Hartree—Fock décrivent la limite de
I'équation de Schrédinger A corps pourN tendant vers l'infini et une constante de couplage en
O(1/N) et pour des données initiales proches de déterminants de Slater. On ne considére ici que le
cas de potentiels d’'interaction binaires, symétriques et bornés. LoMguet+oo, on montre que
la suite des traces partielles “a un corps” de I'opérateur densikfécarps converge, au sens des
opérateurs a trace, vers la solution de I'équation de Hartree—Fock sous forme opératorielle.
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1. Introduction

In this article we consider the Hamiltonian dynamics of systems of fermions and derive
the time-dependent Hartree—Fock equation in the mean field limit. We follow the approach
of Spohn, who derived a mean field dynamical equation (the time-dependent Hartree
equation) for mean field systems of distinguishable particles, remarking at the time that
“the convergence of the mean field limit with statistics included is an open problem” [15]—
see [2] for a complete proof of Spohn’s theorem.

In Spohn’s theory the initialV-body density operatoDy is assumed to be a product
stateD®V | i.e., the particles are statistically independent and identically distributed. The
mean field limit is investigated in the Schrodinger picture, whesg(r) obeys the von
Neumann equation:

d 1
in g Dy@ = 3 [LjDv@0] + w5 3 [Vip D] (1)

dr
1<GEN 1<i<j<N

with V;; denoting the two-body potentidt acting between théth and jth particles
(and[, ] denoting the commutator). The limit & — oo of then-body density operator

Dy, (t) is shown to converge t®(¢)®", where D(r) obeys a time-dependent Hartree
equation. (The subscript appearing inDy., is our notation for the:th partial trace,
defined in Eq. (4) below.) Spohn’s ideas have been refined in [1] and generalized to open
systems. There are other theories of quantum mean field dynamics, e.g., the algebraic
theory of [7], but to our knowledge the problem of including quantum statistical effects
remains unsolved.

The problem is that Fermi—Dirac or Bose-Einstein statistics constrain the possible
initial condition of (1) to have the appropriate symmetry, which is typically inconsistent
with the product formD®V . An N-body density operator with Fermi—Dirac symmetry can
never have the fornD®V and a Bose—Einstein density operator can only have the form
D®V if D is a pure state (i.e., if the system of bosons is in a condensed state). The remedy
to this problem, for fermions, is to replace the hypothesis that the initial state be a product
state with a hypothesis that is consistent with Fermi—Dirac statistics, e.g., that the initial
states are Slater determinants.

The role of the factorization hypothesiBy (0) = D®V is to permit the closure of
the BBGKY hierarchy by setting the two-body stabey.» equal toD ® D. Closing the
hierarchy this way results in the time-dependent Hartree equation. This kind of closure
hypothesis is implicit in th&tosszahlansathat leads to Boltzmann’s kinetic equation for
gases [4]. Kac noted that, for Boltzmann'’s equation, the factorization= f ® f is only
realized in the limitV — oo, and he called this behavior tiB®ltzmann property11,12].

Later authors [10,13,16] developed Kac's ideas; what is now calledotbpagation

of chaosis an important tool in rigorous kinetic theory [9,14,17]. We have noted that
Boltzmann’s closure Ansatz is inconsistent with the Pauli Exclusion Principle, and needs to
be replaced by another closure Ansatz when the particles are fermions. The novelty of our
approach consists in replacing the condition of asymptotic independence of the particles
by a condition that describes the correlations of Slater determinants. This condition, called
Slater closuras defined in Definition 2.1 below.
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Assuming that{ Dy (0)} is a sequence of initial states for (1) that has Slater closure,
we can prove thafDy (1)} has Slater closure for atl > 0. This phenomenon could be
called thepropagation of Slater closurbecause it is like the “propagation of chaos”
mentioned above. Sind®y (¢)} has Slater closure, the two-body density operéton (1)
is approximately equal téDy.1(1) ® Dy.1(¢)) X2 whenN is large, whereXs is the two-
body operator defined by:

H(x®y)=x®y—yQ®x.

Substituting(Dy.1(¢t) ® Dy:1(¢)) X2 for Dy.2(¢) in the BBGKY hierarchy leads one to
conjecture that, wheW is large, the single-body density operator should nearly obey the
time-dependent Hartree—Fock (TDHF) equation:

_d
i F()=[L, FO1+ [V, (FO ® F0) Z2]y,  F(0) =Dy (0).

Theorem 3.1 confirms this conjecture.

Theorem 3.1 states that the distance in the trace norm betWaen(r) and the
corresponding solutio' (r) of the TDHF equation tends to 0 astends to infinity. The
trace norms ofDy.1(z) and F(¢) are separately equal to 1, so it is significant that their
differenceDy.1(¢) — F(t) converges to 0 in the trace norm. A crucial detail of the proof
is Lemma 5.1, which states that thperatornorm of Dy.1 tends to 0 if{ Dy} has Slater
closure. Much of the rest of the proof lies in bounding tteee normof Dy.1(t) — F(¢)
by an expression involving th@perator normof Dy.1(0).

The use of the trace norm to measure the distance between two density operators is
quite natural. A density operat@r corresponds to a quantum state through the assignment
B — Tr(DB) of expectation values to bounded observalBleShus, two density operators
D and D’ are withine of one another in the trace norm if and only if they correspond to
guantum states that give expectations differing by no more ¢hiam all observables3
with ||B|| < 1.

In this article, we assume that the two-body poteritiaé a bounded operator. We find
the error in approximatingy.1 by the solution of the TDHF equation to be (at worst)
proportional to| V ||. Because of this, our estimates are not of much use folNgadrticle
systems (where there is no mean field scaling), for then the error becomes proportional
to N||V| and this is not likely to be small. It would be better, from a physical point of
view, to prove that the accuracy of the TDHF approximation is proportional taxtbeage
interaction energy TiDy V) rather than thenaximuninteraction energy V||

Recent work on the time-dependent Schrédinger—Poisson equation [3,8] suggests that
it may be possible to prove a theorem similar to our Theorem 3.1 Whisrthe Coulomb
potential. This work shall be published in a separate paper.

This rest of this article is organized as follows: The next section discusses fermionic
density operators and defines Slater closure.Ngarticle Hamiltonian and the associated
time-dependent Hartree—Fock equation are described in Section 3. This section concludes
with the statement of our main result, Theorem 3.1, whose proof spans Sections 4-6.
Sections 7 is an appendix relating the von Neumann form of the TDHF equation, used
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throughout this paper, to the formulation of the TDHF equation as a coupled system of
wave equations, which may be more familiar to some readers.

2. Fermionic density operators and Slater closure

Let H be a Hilbert space, supposed to be the space of wavefunctions for a certain type
of quantum system (a “component” or “particle”). Then the Hilbert space of wavefunctions
for a system consisting oN distinguishable components or particles of that type is
Hy =H®N. If the components are not distinguishable, but obey Fermi-Dirac statistics,
then the appropriate Hilbert space of wavefunctions is the antisymmetric subspace
An C Hy. To define this subspace, it is convenient first to define unitanspositiorand
permutatioroperators ort{y . The transposition operat6f; ;) is defined by extending the
following isometry defined osimple tensors

U(l/)(xl®x2®xlx]®xN): _xl®_x2®..._xj...xi...®_xN
to all of Hy. For anyr in the grouplly of permutations of1, 2, ..., N}, one may define
the permutation operatdf, asU, j,) - - - Uipjn) Uiy j1)» Where(iy jiv) - - - (i2j2) (i1j1) is any

product of transpositions that equals
The antisymmetric subspace may now be defined as:

An = {¥ € Hy: Uz =sgn(m)y Vr € ITy}.

One may verify that

1
Pay = D SINT)Ux

‘mwelly

is the orthogonal projector whose rangeds .
The pure statesof an N-fermion system correspond to the orthogonal projecRys
onto one-dimensional subspaces4y. That is, a pure state is given by:

Py (@) = (b, V)¢

for someyr € Ay of unit length. Thestatistical stateof the N-fermion system are the
positive trace class operators density operatorsD on Ay of trace 1. These can be
identified with density operator® on all of Hy whose eigenvectors lie idy, i.e., such
that

o0
D= 1Py,
i=1
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for some orthonormal systefw;} in Ay and a family of positive numbers that sum
to 1. It follows that theséermionic densitieare those density operators that satisfy:

DU, =U,D=sgnzx)D Vmelly. (2)

If a density operatoD on Hy commutes with every permutation operatgy then it is
symmetricln particular, fermionic densities are symmetric by (2).
If {ej} ey is @an orthonormal basis G then

ey ®ej, @ ®ejy: J1,j2,---» jN €J}
is an orthonormal basis 6{y . SinceAy is the range of 4, and since
Pyyle®ej, ®---®ejy) =0
unless all of the indiceg are distinct, the set
{Pay(ejy®ej, @ ®ejy): ju jz. ... jn all distinct

is a spanning set fory. In fact it is an orthogonal basis fody, each vector having
norm 1/+/N!. Vectors of the formy/N!Py, (ej, ® ¢j, ® --- ® ej,) are known asSlater
determinants

The trace class operators on a Hilbert spatcéorm a Banach spacg () with the
norm|| T |ltr = Tr(|T|). The important inequality

ITBller < ITlltrll Bl 3)

holds wheneveB is a bounded operator of norfiB|| and T € 7 (H). It is this basic
inequality that will produce our key estimates.

For n < N, the nth partial trace is a contraction froniZ (H®") onto 7 (H®"). The
nth partial trace ofl’ will be denotedT’,, and may be defined as follows: Lét be any
orthonormal basis of. If T € T (H®") andn < N then

(Taw).x)= > (Tw®u® Qv x@u® ®iv, (4

215 ZN-n €O

for anyw, x e H®". If a trace class operatdr € 7 (H®") satisfies (2) then so dods,,
i.e., the partial trace defines a positive contraction flB#®") to 7 (H®") that carries
fermionic densities to fermionic densities.

In the following definition, and throughout this article, we use the supers@figb
denote the:th tensor power of an operator, and we use the notaiipfor n!P4 , i.e.,

=Y sgnm)Us.

well,
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Thenth tensor powenf an operatod on# is the operatod®”* on7,, defined on simple
tensors by:

A®n(xl®x2®"'®xn)= Ax1 @ Ax2® -+ - Q@ Ax,,.

Definition 2.1. For eachV, let Dy be a symmetric density operator dfy,. The sequence
{Dy} has Slater closurd, for each fixedn,

N e

This terminology is motivated by the observation thatljf is a Slater determinant in
Ay and Py, denotes the orthogonal projector onto the spagrefthen

N"(N —n)!
(Poy )., = %(Pwﬁ" Y Sgnm)Us, (5)

well,

for this implies the following:

Proposition 2.2.For eachN let ¥y be a Slater determinant inly, and let Py,, denote
the orthoprojector onto the span #y. Then{ Py, } has Slater closure.

3. The time-dependent Hartree—Fock equation

We are going to prove that, in the mean field limit, the time-dependent Hartree—Fock
equation describes the time-evolution of the single-particle state in systems of fermions.
We state our theorem in this section and go on to prove it in the three subsequent sections.

First we describe th&/-particle Hamiltonian. Leti ™ be a self-adjoint operator o,
whereL™) may depend oV in an arbitrary manner. The free motion of th particle
is governed by:

LE'N) = [®ilg [ N) g [®N-J

wherel denotes the identity operator 6#. The interaction between the particles has the
form 1/(N — 1) times the sum over pairs of distinct particles of a two-body potemtial
Let V be a bounded Hermitian operator 8h® H that commutes with the transposition
operatorU1 2. Define the operatdvi, onHy by:

V201 ®@x2Q@ - @xy) = VX1 ®x2) @ x3Q@ - - @ XN

and for each K i < j < N defineV;; = UXVi1oU, wherex is any permutation with
7()=1andr(j)=2. Let

=Y i Y )
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be theN-particle Hamiltoniaroperator or{ . The von Neumann equation for thepar-
ticle density operatoDy (¢) is

. d 1
oDy =3 [L7. v+ 55 D [V D] (7)

1<j<N I<i<j<N
and has the solution
efiHNt/hDN(o)eiHNt/h' (8)

Next we define the time-dependent Hartree—Fock equatior. etandV be as above,
and letU(12 denote the transposition operator t® H. The time-dependent Hartree—
Fock (TDHF) equation for a density operat®(:) onH is

. d _
ih g F(1) = [LN, FO)]+[V. Fy 0], ©)

Fy(t)=(F()® F(1))(I —Uag) = F()®? %,

(the subscript; on the last commutator denotes partial contraction). Following [5], we
define astrong solutionof equation of (9) to be a continuously differentiable function
F(r) from [0, c0) to the real Banach space of Hermitian trace class operators such that the
domain of L) is invariant under (¢) for all r > 0 and

dr
ihﬁx = LY F@Wx — FOLNx + [V, F; ()],

for all x in the domain ofL™). The results proved in [5] show that (9) has a global
strong solutiod if the domain of L") contains the range of the initial conditiaf(0).
Furthermore,

F(t) = U*F(O)U (10)

for some unitary operator depending nand F (0). In particular, the operator norm of
F (1) is constant.

The relationship between thé-particle system and the TDHF equation is the subject
of our main theorem. Recall the Definition 2.1 of Slater closure.

Theorem 3.1.For each N, let Dy(¢) be a solution to(7) whose initial valueDy (0) is
a symmetric density. Let™)(r) be the solution of the TDHF equati@@) whose initial
value isF™)(0) = Dy.1(0).

1 The solution obtained in Theorem 4.2 of [5] is indeed defined for all positive times because the nonlinearity
of TDHF satisfies condition (4.1) of [5]—see Proposition 3.5 there.
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If {Dx(0)} has Slater closure thefDy (7)} has Slater closure and

lim |Dya@) = FYV )], =0
N—o0

forall r > 0.

4. Two hierarchies and their difference

Consider theV-particle von Neumann equation (7). From now on we will suppose that
the initial N -particle density operatddy (0) is symmetric, i.e., that

U, Dn(0)Ur = Dy(0)
for all = € ITy. (Recall that, in particular, fermionic densities are symmetric.) The

symmetry of the Hamiltonian (6) ensures tia (1) remains symmetric for all. From (7)
and the symmetry oDy (), it follows that the partial trac®y., (r) satisfies:

. d 1
1h——Dn:p(t) = Z [LE‘N)aDN:n(t)]"‘m Z [Vij,DN:n(t)]

d 1<j<n 1<i<j<n
N—n
N_1 Z [Vi,n+1, DN:n+l(t)]:n- (11)
1<i<n

The system of Egs. (11) fdPy.1, Dy:2, ..., Dy:y—1 together with Eq. (7) foDy is called
theN-particle hierarchy For our estimates later on, it is convenient to rewrite Eqs. (11) of
the hierarchy as

. d
|hEDN:n (= E,(lN) (DN:n (t)) + Z [Vi,n+1a DN:n+1(t)]:n +&n (Na Dy (t)) (12)
1<i<n

with

Vo= Y [,

A

1
E(t, N, DN(©O)=———= > [Vij, Dnu(®)]

N-1 1<i<j<n
n—1
- N_1 Z [Vi,n+1, DN:n+l(t)]:n- (13)
1<i<n

Next we describe another hierarchy, built from “the bottom up” out of solutions to the
TDHF equation, in contrast to the hierarchy we have just considered, which is built from
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“the top down” starting with solutions to (7). If is a trace class operator, defifg = F
and

F, =F%%x,

for n > 1. WhenF depends on we write F, () instead ofF (¢),,. The notationF,, (t)
has already been used in the TDHF equation (9).

Proposition 4.1.1f F(¢) is a strong solution of the TDHF equati@®), then

d - N) - _

i Fy ()= 3 OLLS LET O]+ [Viets Frpy 0], + Ra(F)),
j=1 j=1

whereR,, is defined on trace class operators By (X) = 0 (the zero operatgrand

n

Rn (X) = Z[Vj,rH»lv X®n+1 Z U(k,n+l)] 2 (14)
=1 Py n

forn > 1.

Proof. For any trace class operatk

n n n
D WVintt Xygln =) [Vj,m, xen+t (1 -y U(k,n+1>) 5 ® IB(H)}
n

j=1 j=1 k=1

n n
= [Vj,m, X®"“(1 - U<k,n+1>)] Zn. (15)
n

j=1 k=1
The first equality in (15) holds because
n
Znp1= (I - Z U(k,n+1)) 2n ® IB(H)»
k=1
and the second equality in (15) holds becadge® 1574y commutes Withz’}:1 Vint1.

From the TDHF equation (9) we calculate,

pdo_ . d ®ny i S ©j-1 o J ®n—j
i Fy () =ih o F()®' 3 _m{;m) ® L FO®F) >,

n
=Y ALY FOP ]+ [Vimss, FOP I = Ugnsn) ], } 2
j=1
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=Y (LY Py O]+ Ra(F (1)

j=1
n n
+y [vj,nH, F(r)®"+1<1 -3 U<k,n+1>)] T (16)
j=1 k=1 n

By the identity (15), the last sum in (16) equd¥$;_; [V)+1, F, 4(1)],. proving the
proposition. O ’

Now let Dy (¢) be a solution of thev-particle von Neumann equation (7) and Ftr)
be a solution of the TDHF equation (9). FoKln < N define thexth difference

Enn(t) = Dnin(t) — F, (1) 17)
From theN-patrticle hierarchy equations (12) and (13) and Proposition 4.1, it follows that
. d -
i Enn () = LYV(ENA0) + D [Vint1, ENasa(®)],,
j=1
+ & (N, Dy (1) — Ra(F (1)) (18)

forn=1,2,...,N — 1. The character§ and’R were chosen to evoke the words “error”
and “remainder”. Indeed, in the next section we find bounds on these error terms under
conditions onDy (0) and F(0). The rest of this section is devoted to show how such bounds
lead to an upper bound on the differenégs, (1).

To this end, let us define:

Err(t, N,n) =&,(N, DN (1)) — Ru(F (). (19)

Let U,ff\,’) denote the unitary operator e(>§32’}:1 LEN)) onH, and define isometriéﬁ,&{\,’)
on the trace class operators by:

N i o) N N
urg,t)(') — et Ly ()= Urg,t)(')U( )

n,—t*

ThenZy ,(t) = Z/{,Ef\,’)(EN,n(t)) has the same trace norm Bg ,, (r) and satisfies:

n

d i i
g I =~ ;[Vj,m, Zyns1(0)],, — T Upy ENG N, n) (20)

forn=1,2,...,N — 1. From (20) it follows that
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1
2|V
S [ 1Zva o) e

0

[Exa® e =Zna®] <[ 2O+

t
1
+E/ |ty (Errcs, N, m)) |, s
0

for n =1,2,...,N — 1. Recalling that||Zy ,+1(s)lr = |Enn+1(s)|ltr and that
||M,E{Y)(Err(s, N,n)|ly = || Err(s, N, n) ||, the preceding inequality becomes:

t

|Enn@®], <eWN.n, 1)+ 20Vl / |En.nta(s)], ds, (21)
0
if we define
t
e(N,n,t) = |En.n(0) ||tr+%f | Err(s. N.n)|,, ds. (22)
0

Beginning from (21) and iterating the inequalitytimes (for somen < N —n — 1) we
obtain our desired bound on the trace nornkgf, (¢):

- k—1) (21VIie\*
IExa@ly <3 (" 55T ) (2R ) evon+kn
k=0

+m—=1\[21VIt\"
+<”n'f1 )( . )SS[%’F;]{||EN,n+m+1(s)||tr}- (23)

5. Error estimates

In this section we collect the error estimates that will be used to prove Theorem 3.1.
If Dy (0) is a density operator then the solutidry (r) of the N-particle von Neumann
equation (7) is a density operator for alt- 0, and it is clear from (13) that

dn(n — 1)

Jeu(v. Dy @), < =

VIl (24)
for all 7.

Lemma 5.1.1f {Dy} has Slater closure, then

lim ||Dy:all =0.
N—o00
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Proof. The trace norm ofD2 , equals the sum of the squares of the eigenvalues of

Dy:1. Since the operator norm aby.; equals its largest eigenvalue, it follows that
1/2
I Dwall < 13,4l *. But D3y = (D3 Uaa )1, whence

|| D12V:1||tr = ” {DN:Z - D%:zl(l - U(12))}:1||tr < ” Dy:2 — D%;2122”tr-

The Slater closure ofDy} implies that the right-hand side of the preceding inequality
tendsto0av — co. O

Lemma 5.2.If F is a density operator, thejiF, [l < 1 for all .
Proof. SinceX, =(X,)* = n—1,(4‘7,1)2 commutes withF®", it follows that

F, =F%%,= %EH(FW)EH

is a nonnegative operator. Thus, the trace norm ofequals its trace. This trace is:

Y en® @, FE Ty ® - ®e,)).
J1,Jn€d

where{e;};cs is an orthonormal basis fdtl consisting of eigenvectors df. This sum
may be taken over distinct indicgs, . . ., j, € J, sinceX, annihilates all tensor products
ej, ® --- ® ej, with repeating factors, so that

Tr(F,) Y (e ® - ®e), F ' Eu(e;, ® - ®ej,))

_distinct
J1seesJn€J
= Z <ejl®"'®ejn,F®n(€j1®"'®e,/n)>

_distinct
J1seesJn€J

<Tr(F®") =1

as asserted. O

The next lemma provides a bound on the trace norm of the remaindeRigff) when
F is a density operator. The bound is proportional todperatornorm of F.

Lemma 5.3.Let R, be as in(14)and letF be a density operator. Then

|Rn(F)|, < 20(n = DIVIIFI. (25)
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Proof. From (14) we see th&,,(F) equals:

n
: > (V,-,n+1F®"+1U(k,n+1)—F®"“U(k,n+1>vj,n+1)<2n®IB<H>>} :
j’k=1 n
JF#k

Since Uk, n4+1 commutes with F®+1l and since X, ® Ipy commutes with
> jkejzk Utkon+1) Vjnta, it follows thatR, (F) equals

n n
: > V,-,n+1U(k,n+1>(Fn®F)} - :(Fn@oF) > U<k,n+1>vj,n+1} :
Jj.k=1 n Jj.k=1 n
J#k Jj#k

Since the trace norm of a trace class operator equal the trace norm of its adjoint, it follows
that

n

Z {V/.sﬂ-i-lU(k,"Jrl)(Fn_ ® F)}:n
k=1
J#k

<2n(n— 1)“{Vn—l,n—i-lU(n,nJrl)(Fn_ ® F)}n ”tr' (26)

[Ra(P <2

tr

But one may verify directly that
{anl,nJrlU(n,n—i-l)(Fni ® F)}:n = (1®n71 ® F) anl,nFni, (27)
so that, by (3) and Lemma 5.2,
|| {(Victnt 21Uy (Fy ® F)}:n ||tr S IFIIVIIE, e < TEHIV -
Substituting this in (26) yields (25).
To verify (27), we can assume= 3; choose an orthonormal bagis } ;s for 7 and
check that the operators on both sides of (27) have the same matrix elements relative to the

basis{e; ®ej®er:i,j,kelJ}. O

Let F(¢) be a solution of the TDHF equation (9). Since the (operator) norifi(of is
constant, it follows from Lemma 25 that

[Ra(F®) |y <20 = DIV FO

forall t > 0. Thus, Er¢t, N, n) of Eq. (19) satisfies:

2
|Errt, N n) |, < 2n(n — D V]| <m + | F(0) ||)
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ande(N, n, 1) of Eq. (22) satisfies:

e(N,n,t)=2n(n — 1)||V||£ 2 +[|FO| )+ |Enn©],- (28)
A\N—1

6. Proof of the theorem

Equipped with the estimates of the preceding sections, we proceed to the proof of
Theorem 3.1.

Proof. So, let us assume thdy (0) is a symmetric density for eacN and that the
sequencg Dy (0)} has Slater closure. Lddy (r) be the solution of (7) with initial value
Dy (0), and letF™™)(r) be the solution of the TDHF equation (9) whose initial value is
FM(0) = Dy.1(0). Let {FM)~ (1) denote{FM (1)}®" 3, and letEy ,(t) denote the
difference betwee® ., (1) and{ F ™M}~ (1).

We have the upper bound (23) for the trace norm E¥ ,(z), into which we
now substitute the estimates (28). In the same stroke, we will replace the binomial
coefficients(":ﬁl) with the larger quantitiegn + k)" /n! and we will use the fact that
SUR 0. Ul EN ntm+1(s)llr} < 2 by Lemma 5.2. Also, let us sét=2||V||¢/A. We obtain:

1 m
[Ena @l < 5 2 0+ 0" [ Enri O T
k=

1g ni2 _2 ) k+1
+E};(”+k) <N_1~|—||F (O)||)T

+ %(n +m)'T™" (29)

form <N —n— 1. FixT to be less than 1, i.e., fix< #/(2||V|). For fixedn, consider

the limit of the right-hand side of (29) @€ andm tend to infinity. The individual terms
(fixed k) tend to 0, for|| F¥) (0)|| tends to 0 by Lemma 5.1 aniE v, 1« (0) || tends to 0
thanks to the hypothesis thaby (0)} has Slater closure (recall thatY) (0) = Dy.1(0)).

On the other hand, the series on the right-hand side of (29) are dominated, uniformly with
respect ton, by a series that converges absolutelyfo& 1. It follows that

im0, =0 (30)

if 1 <h/2|VI). Whenn = 1, this shows that im_ | Dy:1(1) — F™(@)|ly = 0 and
consequently

Jim | D 0z, - (F™) ], =0
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for n > 1 andr < A/(2||V]]). From (30) again it follows that, for any and any
t<h/@IVID,

1\/“—r>noo ” Dy () — D?\?fll(t)zn Htr =0,

i.e.,{Dy(t)} has Slater closure. This proves the theorem uptdi /(2| V).

Let T = A/(3||V]); the previous argument shows that the theorem holds for
t € [0, 7]. At time 7, it is in general no longer the case thag.1(r) = F™)(r). How-
ever, | Ey ik (7) |l — 0 and| FY)(1)|| — 0 asN tends to infinity—to see this, use (10)
and the fact thal F¥)(0)|| — O recalled above. An argument nearly identical to the one
above shows that the theorem holdsfer [z, 2¢]. This argument may be repeated to es-
tablish the conclusion of the theorem on each interval of the farm(k + 1)z ] for each
nonnegative integer, and hence foral > 0. O
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Appendix A. TDHF equations for wavefunctions

The main body of this text describes time-dependent Hartree—Fock equations in the
language of density matrices and operator calculus. In another formulation—which may
be more familiar to some readers—the TDHF equations are written as a system of coupled
Schrddinger equations fof time-dependent orbitals. This appendix explains how to recast
the wavefunction formulation of the TDHF equations into the language of density operators
used in this paper.

The starting point in this discussion is the lin@&body Schrodinger:

8 W2 & 1
ih—Uy=—= Ag¥n+—— Y V(x—x)¥. (31)

at 2 N-1
k=1 1<k<I<N

whereWy = Wy (¢, x1, ..., xy) is the N-particle wavefunction. (Note that the interaction
term has been multiplied by/WV — 1).) This scaling has been introduced so that
N — oo may yield amean-fieldequation for the single-particle density, namely, the TDHF
equation.) The dynamics defined by (31) is unitaryl@i(R3)"Y). Therefore,

/‘WN(I,xl,...,xN)‘del---de=1
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for all # > 0 if the same equality holds at= 0 (as is the case ify|? is meant to be
interpreted as the probability density of the systemMofoarticles in its configuration
space). In the language of (1); = —#2A,,/2 while Vi; denotes the multiplication by
V (xx — x;). The TDHF equations corresponding to (31) may be written as a systém of
coupled Schrddinger equations for orthonormal orbifalg, x), ¥2(¢, x), ..., YN (t, x):

iha t—th t thV t,2)[%d
gl/fk(,x)——i xi/fk(,X)+1ﬁk(,X)N;f (x — )|y (t,2)| dz

N
1 -
3 2w Vi - o oG o (32)
=1
The N orbitals remain orthonormal at all times; if1(z, x), ¥2(z, x), ..., ¥n(t, x) is a

solution of (32) and
fllfk(O,x)mdx = Skl
then
/ Y (t, )Y (t, x)dx =8, forallz>0.

One way to obtain the TDHF equations (32) from the lin@&particle Schrodinger
equation (31) is to solve a variational problem which would lead to (31) if unconstrained,
but with the constraint that th&/-particle wave function remains a Slater determinant
at all times [6]. This constraint is imposed for the sake of obtaining an computationally
amenable approximation to (31), and it is not justified on physical grounds. In effect, this
paper proves that the constraint maintaining Slater determinants at all times is rigorously
justifiedin the mean-field limit

To see how the orbital form (32) of the TDHF equations relates to the TDHF equation
(9) discussed in this paper, we shall first rewrite (9) as an equation for the integral kernel of
a time-dependent density operator. To do this, we need to know how to translate the partial
trace into the language of integral operators, for Eq. (9) involves a patrtial tracg. ket
trace class operator dit (R™ x R") having an integral kernel(x, £, y, ) with x, y € R”
andé, n € R". The partial trace:

T., is the operator with integral kern?[ p(x,z,y,2)dz.

We may now convert the TDHF equation (9) into an integro-differential equation for
a time-dependent integral kernel: let= p(¢, x, y) be the integral kernel of the operator
F(t) that appears in (9). TheF, (r) has integral kernel:

Io(t7'x17 Y1):0(tax2a )’2) _p(t’xl’ )’Z)P(taXZa yl)a
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while [V, F, (1)].1 has integral kernel:

/(V(X1 —2) = V(1—2)(p(t,x1, yDp(t,2,2) — p(t,x1,2)p(t, 2, y1)) dz,

and the TDHF equation (9) in the language of integral kernels is:

9 2
Ihgp(t7'x7 )’)Z_?(Ax - Ay)lo(t’-xa )’)

+ /(V(x —2)—V(y—2)
x (@t x,)p(t,z,2) — p(t,x,2)p(t, 2, y)) dz. (33)

It may be verified that a solutiowi1 (¢, x), ¥2(¢, x), ..., ¥y (¢, x) to the orbital form of the
TDHF equations (32) yields a solutigi(z, x, y) to the integro-differential equation (33)
via

1 Y _
Pt X, )=+ k;wk(t,x)wk(r, ).

The rest of this Appendix is meant to serve as a key for reading this paper with the
Schrddinger wave equation (31) in mind.

To the wavefunctiony (z, -) solution of theN-particle Schrédinger equation (31) one
associates the operatbyy (r) with integral kernel:

pN(t’xl’ “"xN’ylﬂ“‘ﬂyN) ZWN(tﬂ‘xlﬂ“‘ﬂxN)l‘pN(t’yl’ “"yN)‘ (34)
The natural Hilbert spacg( in this context isH = L?(R%), andH®" is isomorphic to
L?((R3N) through the identification:
N
1@ @Yy <[] v
k=1
The corresponding representation of the permutation gfous given by the formula:

(UHW)(X:L, ey XN) = W(xn—l(l), ey Xﬂ—l(N))

for = € My and¥y € L?((R%)"). Hence the projectiof® 4, is given by the formula:

1
(Pay W) (i1, - XN) = 25 D SIUOWN (@) -+ Ka ()

: rwelly



682 C. Bardos et al. / J. Math. Pures Appl. 82 (2003) 665-683

A wavefunction is antisymmetric if it is in the image af 4, , or equivalently, if
Y (Xn(1)s -+ Xx(N)) = SNV (X1, ..., XN)

for all = € ITy. If ¥y is antisymmetric then the rank 1 orthogonal projec®gt, with
integral kernel as in (34) is fermionic in the sense of (2). Property (2) extends to all
convex combinations of such projectaPg, , the fermionic density operators discussed
in this article. Property (2) implies that fermionic density operators commute with all of
the operatord/,, so that the integral kernel of a fermionic density operator is symmetric
in the sense that

,ON(.xl, "'1XN1 yls "'1yN) :pN(xT[(l)s "'1x]'[(N)1 yj'[(l)v"'sy]'[(N))

forall w € ITy.
In the case wheréy = ¥1 ® --- ® ¥y with ¢, ..., ¥n orthonormal, one finds that
the Slater determinart N!P 4, (W) truly is a determinant:

Yi(x1)  valx2) - Yi(xw)
1 | Y2(x1)  Yalx2) - Y2(xn)

VNP4 N (XL, ..., XN) = Niti

Yn(x1) Ynx2) - Yn(xn)
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