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Abstract We derive the time-dependent Schrodinger—Poisson equation as the weak coupling limit
of the N-body linear Schrédinger equation with Coulomb potenflal.cite this article:
C.Bardoset al., C. R. Acad. Sci. Paris, Ser. | 334 (2002) 515-520. 0 2002 Académie des
sciences/Editions scientifiques et médicales Elsevier SAS

Justification de I'équation de Schrddinger—Poisson a partir du
probleme quantique aN corps

Résumé On établit la validité de I'équation de Schrodinger—Poisson en régime instationnaire comme
limite & couplage faible de I'équation de Schrddinger linéairé éorps avec potentiel de
Coulomb.Pour citer cet article: C. Bardos et al., C. R. Acad. Sci. Paris, Ser. | 334 (2002)
515-520. 0 2002 Académie des sciences/Editions scientifiques et médicales Elsevier SAS

Version francaise abrégée

Considérons un systeme dé particules chargées de masseet de charge; dont I'évolution est
gouvernée par I'équation de Schrodinger linéairé-aorps :

. n? &
i Wy =—— ZAxk\IJN +q2 Z V(lxk —x1|)\IJN, x1,...,xy € RS, D)
2m
k=1 1<k<ISN
Linconnue Wy = Wy (¢, x1,...,xy) €st appelée «fonction d’'onde /& corps» et le modéle (1) est
considéré comme exact en mécanique quantique non relativiste.

Compte tenu du trés grand nombre de particules intervenant en pratique, on cherche a approcher cette
description exacte par un modeéle non linéaire de champ moyen pour une fonction d’'onde a 1 corps
W = (s, x). Lexemple le plus simple de cette approximation consiste a supgosgeto factorisée, c'esta
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direde laformely (0, x1,...,xy) = H,’Ll W (0, xx) etque, pour tout > 0, ¥ est gouvernée par I'équation
de Hartree :
hz
RO (1 x) =~ AW 2) + <q2/ V(lx - yl)!\lf(ny)!Zdy)\If(t,x), xeRL (2
m

Dans le cas d’une interaction coulombien¥é) = 1/r dans (1) et (2) et I'équation de Hartree (2) est
appelée « équation de Schrédinger—Poisson ».

Spohn avait donné une démonstration de I'approximation de Hartree dans le seul cas ou le potentiel
est borné : voir [10]. Nous étendons ici son résultat a une classe trés large de potemigitenant en
particulier le cas du potentiel coulombien.

Notre preuve est basée sur des estimations a priori uniformaspartant sur la hiérarchie de BBGKY
guantique garantissant I'unicité de la solution pour le probléme limite par un argument de type Cauchy—
Kowalewski. Nous renvoyons a [1] et [3] pour une version détaillée de ces démonstrations.

1. Introduction

Consider a large numbe¥ of particles of like mas#: and charge; coupled by a radial (real-valued)
potentialV. In nonrelativistic quantum mechanics, the first principle model governing the evolution of such
a system is the linear Schrodinger equation (1) forfhbody wave functionty = Wy (¢, x1, ..., xy).

In most realistic situations, the numh&ris so large that one seeks to approximate the exact model (1)
by a nonlinear mean field equation for a 1-particle wave funclios W (¢, x). A standard way of doing
this is to postulate tha¥ y;—g is of the formWy (0, x1, ..., xy) = H,i\':llll(o, xr) and that¥ solves the
Hartree equation (2) for all > 0, this ansatz corresponding to the case where the particles considered are
bosons.

The goal of this note is to provide a mathematical derivation of the approximate mean-field equation (2)
from the first principle model (1) under some appropriate scaling assumptidh-asco. A derivation
for boundedV's was given by Spohn [10], in second quantized formalism by Hepp [4], and for singular
potential by Ginibre and Velo [5]. The last approach requires special initial states with no definite particle
numbers. The method described below allows to consider more general potentials, especially the Coulomb
potentialsV (r) = 1/r of paramount importance for applications to atomic physics, in which case (2) is
referred to as the Schrddinger—Poisson equation.

2. Compactness properties and existence theory for hierarchies

Below, we choose to work with density matrices rather than with wave functions. To a wave function
Wy (t, x1,...,xy) € Cis associated the density matrix

pN(tny-u,xN,,)’l, ""yN):\IJN(t7x17"'7xN)\IJN(t7y17"'7yN)' (3)
Since the quantum particles under consideration are indistinguishable,

PN, Xg(1ys -+ s X (N)s Yo(1)s - - -2 Yo (N)) = PN, X1, oo, XN, Y1y oo o5 YN) (4)

for any permutationr € Gy . In the sequel, we denote for anysuch that 1< n < N, X,, = (x1, ..., Xn)
while, if 1<n < N, X3, = (x441, ..., xny). The wave functionty is normalized by the relation

/|\IJN(I,XN)|2dXN=1, teR. (5)
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Both conditions (4) and (5) are propagated by the Schrodinger equation (1). We consider this Schrodinger
equation (1) in dimensionless variables chosen so that

1& 1
iBUN =0y = =5 AgUn -+~ D V(m-x)by. 1eR Xye GRS
k=1 1<k<I<N (6)
Wy (0, Xy) = UR(Xy), Xye (R

The 1/N factor in front of the potential energy characterizes the so-called “weak-coupling scaling” under
which the mean-field limit described above can be established.
The object of interest is the sequenceraharginals of theV-body density matrix (3) defined by

pN,n(t»Xn»Yn):/pN(t»Xn»ZnN7Yn»ZnN)dZnN7 1<n<N, pnn=pn, pNn=0, n>N.

(7)
They satisfy the N-body Schrédinger hierarchy”
1 N—n
iatpN,n(t7 Xun, Yn) = _E(AX,, - AY,,))ON,n(t» Xn, Yn) + T(en,n+1pN,n+1)(t7 Xn, Yn)
1 (8)
+~ 2 Vs—ul) = V(e =yl ona X, Y, 1<n <N,
1<k<I<n

where the operatdt,, ,+1 is defined by

Cornt1oNn+1) (@t Xn, Yn) = Z/[V(ka —z) = V(Iyk — zl) | onnt1(t, Xno 2, Yo, 2)dz. (9)
k=1
Taking limits formally in (8) (withn fixed andN — +o00) leads to the “infinite Schrédinger hierarchy”

1
10;00(t, Xp, Yy) = _E(AX,, - AY,,),On(ty X, Yn) + (en,n+1pn+1)(t, Xn,Yy), nz=2l (10)

This limiting procedure is justified by the following theorem. Before stating it, observe that the
normalization (5) allows one to identifyy , with the integral operator

b= d(X,) > / Pt X, Yo )b (V) Y,

This operator belongs to°B(R; LY(L2(R%))), whereL1(L2(R®)) is the ideal of trace-class operators
on the Hilbert space4(R%"). We recall that the weak-* topology orft(R.; L1(L2(R%"))) is defined by
the family of semi-norms

T —

+00
/ trace K ()T (1)) dr |,
0

wherek runs through E(R.; K(L2(R3"))) (the notatiorK(L2(R%")) designating the algebra of compact
operators on £(R3")). The following theorem is proved in [13¢e also [2]).

THEOREM 2.1. — Assumethat x — V (|x|) isbounded frombelow, belongsto C(R3\ {0}) NL2 .(R®) and

satisfies lim,_, 1o V (r) = 0. Pick a sequence \IJ}{,‘ of initial data that satisfy the normalization of mass (5)
and of energy

1N . ) 1 . 5
=33 [lorad, wcxw)| Aty 3 V(m-w)iean<en
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for some constant C > 0, and the condition (4). The sequence \IJ}’V‘ is further assumed to satisfy
[ ¥R 251, 28) 023~ X V) (12)

in L1(L2(R%")) weak-* for all n > 1. Let Wy bethe solution of (6) with initial data Wi (see [7]) Then any
limit point as N — oo in [[,»1 L (Ry: LX(L2(R3"))) weak-* of the sequence (pn,»)a>1 defined by (7)
solves the infinite Schrédinger hierarchy (10)with initial data (p,i,”)n>1 in the sense of distributions.

3. An abstract uniqueness result; application to factorization

The relation between this theorem and the mean-field limit presented in the introduction is as follows.
Let & be a solution of the Cauchy problem

i0,W(t,x) = —%Axwa,x) + (/ V(lx = y) |, Y)|2dy>\ll(t,x), w(0,x)=¥"(x), xeR®
. (13)
with ¥'" € H1(R®) such that
/|\Ilin(x)|2dx=1, //V(|x—y|)|\l—’in(x)\l—’in(y)|2dxdy<oo. (14)

(See [6] for the existence and uniqueness theory for the mean-field Schrédinger equation.) One can check
by inspection that the factorized initial data

N
wRxw) =[] %" (15)
k=1
satisfies the conditions of Theorem 2.1 and that
pn(t, X, Yo) = [ [ W, x) W, o) (16)
k=1

is a solution of the inifinite hierarchy (10). If it was known that (10) with initial data deduced from
(16) and (15) has a unique solution, Theorem 2.1 would imply that the whole sequenaaarfjinals
pN.n @ssociated to the solution of thé-body Schrddinger equation (6) convergeshas»> +oo to the
factorizedn-body density matrix (16) in ©°(R,; £1(L2(R®"))) weak-*, built on the solution of the mean-
field Schodinger equation (13).

This can be handled by the following abstract uniqueness resulE,Lbe a sequence of Banach spaces
indexed byn € N* with norm denoted by} - ||,. Let A,, be the generator of a strongly continuous group
of isometriesU, (¢) in E, andL, ,+1 be a bounded linear operator frofy1 to E,. Consider, for each
n > 1, the Cauchy problem

iy (1) = Un (=) Ly n41Un+1(Dup+1(1),  u,(0) =0. (17)
The next result is a abstract variant of corollary 5.1 in [1].
THEOREM 3.1. — Assume that the family of operators L, ,+1 satisfies the bound
ILnn+ille(EprEn) <Cny n21, (18)

for some C > 0. Let r* > 0 and u,, € C1([0, t*], E,,) for n > 1 be a solution to (17) satisfying the growth
condition

thereexists R > O suchthat  sup |u, (1|, < R". (19)
t€[0,1*]

Thenu, =0o0n|[0,*] forall n > 1.
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Proof. — For all» > 0 define the Banach space

B, = {v = @1 € [ En | I0ll- =D r"lvnlln < +oo},

n=>1 n>1

and setF (v, 1) = (Up(=t) Ly n41Un41(t)vn1)n>1- The assumptions oA, andL, ,41 imply that, for all
r > 0and allv € B,
C

r—ri

C
S =) sl < S

n>1

1F@.nll,, <€ nrt]fonsall, . < —
n>1 1
forall t e R and allr1 € [0, r[, by an easy convexity argument. The conclusion follows from the abstract

Cauchy—Kowalewski theorem of Nirenberg and Nishise (9]). O

We seek to apply Theorem 3.1 to the infinite Schrodinger hierarchy (10) by setting
i
(Anpn)(Xp, V) = E(AX,, - AY,,)pn(xn» Y,) and Ln,n+1 = _ien,n+1~ (20)

If the potential V is bounded, one can takg, = L1(L2(R%)); U,(t) acts onp, by conjugating it
with €2x:/2 which is a unitary group in #(R%"); therefore it is isometric irE,. On the other hand a
straightforward estimate shows that foralp 1,

1Ch 41l L (Epin, En) < 2001V Lo (21)

Hence Theorem 3.1 applies and together with Theorem 2.1 gives a new proof of the weak coupling limit of
the N-body Schrédinger announced by Spohn [10] (who already used the trace norm in however a slightly
differentway). See Section 5 of [1] for details and for a stability result somewhat analogous to Theorem 3.1.

4. The case of the Coulomb potential

Theorem 2.1 applies to the case of the repulsive Coulomb poténtial = 1/r. In order to apply
Theorem 3.1, one needs to choose the Banach sggces that (18), and in particular a certain analogue
of (21) hold. The Coulomb singularity can be controlled by the inequality

tracelVp| < Ctracd (I — A)Y2p(1 — A)M?],  p e L (L?(R?)) (22)

which is consequence of the Hardy inequaﬁt{yd‘2 < —Aind =3 (see[8], pp. 203-204). We recall,
however, thatA < B does not imply that tradelC| < tracel BC| even for positive operators. The proof
of (22) uses trac¢/ A* B*BA = tracey BAA* B*, and that the square root is monotonic for operators.

This leads to the definition of the following norm. L&t = (I — A,,)%/? and setG,, = [[{_, Sk for all
n>1.ForT e L(L?(R%)), define||T||, = trac&|G,T G,|) and consider the Banach space

Ey:={T e L(L3(R®)) | IT|lx < +o0}. (23)

Because é*x/2 commutes withG,,, the operato#,, defined in (20) generates a strongly continuous group
of isometries orE,,. With this norm, one can prove that (18) holds.

Our next task is to verify (19) for the limiting density matrices. Derﬂzﬂ% =— ijzl A,;. For pure
states (3) satisfying the symmetry condition (4), the normjn(23) for n fixed is uniformly bounded by
the norm|| Wy lin.n = (Wn, (£ H)"Wn)Y2 + Wy ]| 2. Since(FHy)" is conserved by the flow of (6), to
control(ﬂ{?\,)” it would suffice to establish that

CT"(HN)" < (HG)" < C(FHN)", (24)

and that for the initial data we hayieV y|;—olllv,» < R".
The bound (24) as it stands is incorrect due to the Coulomb potential. In the expr&4sitie Coulomb
singularity is taken to high powers and the resulting singularities cannot be controlled by higher derivatives.
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Therefore, we need to cutoff the Coulomb singularity in the Hamiltordigyn and estimate the error.
Similarly the bound||Wy;=olllv,» < R" requires the initial data to be essentiallf°Cwhich is a very
serious restriction. This restriction can be removed by smoothingZimitial data and comparing the
solutions of N-body Schrddinger equation with the original initial data and the smoothed one. Both the
cutoff and the smoothing length scales dependon

These estimates also imply the analogue of theorem 2.1 in the weak-* topolﬁyﬁfLw(R+; E,)
for the smoothed initial data and for the Hamiltonian with a cutoff. However, the cutoff estimates can be
controlled only in a weaker space. This leads to the the following derivation of the Schrdodinger—Poisson
equation. See [3] for the proof.

THEOREM 4.1. —Let V(r) = £1/r bethe attractive or repulsive Coulomb potential. Let ¥ € H2(R3)
satisfy |¥'"|| 2 = 1, and let W be the solution of the Schrédinger—Poisson equation (13). Let Wy be the
solution of the N-body Schrédinger equation (6). Let oy, be, for all n > 1, the n-marginal of the density
matrix (3) of ¥y defined asin (7). As N — oo, py,, convergesin LS (R ; L1(L?(R¥))) weak-* to the
factorized solution

n
pn(t, X, Vo) = [ [ W, x0) @ @, 30).
k=1

Although the uniqueness of the solution to the hierarchy (10) can always be established if we impose
a very strong norm on the density matrices, such a result is useful only if we can prove that the limiting
density matrices are bounded in that norm. There are very few a priori estimates which can be proved for
solutions of many-body Schrédinger equations. The conservation oftherm and the energy has been
widely used in the literature. Clearly, the higher powers of the energy are also conserved, but we are not
aware of their application prior to this work. The key point in [3] is that this high power of the energy,
together with a proper cutoff procedure for the Coulomb singularity and a regularization of the initial data,
provides the basic a priori estimates needed for the uniqueness of the hierarchy.
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