Eur J. Mech , BfFluids, 12, n° 5, 565-577, 1993

Steady flows of a rarefied gas

around arbitrary obstacle distributions

K. AOKI *, C. BARDOS **, F. GOLSE **, M. N. KOGAN *** and Y. SONE *

ABSTRACT — This paper is devoted to the mathematical study of a highly rarefied gas around a group of
bodies which are at rest. Ernphasis is put on the relations existing between the mathematical structurs of the
problem and its physical propeities.

1. Introduction

In two papers which appeared in the “Journal de Mécanique Théorique et Appliquée”,
Y. Sone [1985] gave an explicit constiuction for the description of a highly rarefied gas
around bodies at rest with various temperature distributions. The purpose of the present
note is to give a functional analysis proof of the existence and uniqueness of such a
solution and to study the basic properties of the problem. This will produce a different
proof of existence and uniqueness from that which was given in [S, 1985} For closed
systems the hypothesis and conclusions turn out to be similar In particular we assume
that the temperature of the wall and the accommodation coefficient are uniformly
bounded away from zero These assumptions are instrumental both for energy estimates
(in the present paper) and to prove that the series expansion introduced in [S, 1985] is
uniformly convergent. Section 3 is devoted to the open system (two reservoirs connected
by a pipe with complicated structure). Unlike [S, 1985] it is assumed that the pipe which
connects the two reservoirs is contained in a bounded domain. On the other hand more
general flows are considered (in particular the case in which the macroscopic velocity of
the flow is not identically equal to zero can be treated).

The methods piesented in this article can be extended to very general situations (use a
compactness argument as in [Babovsky et al., 1991] and the Krein and Rutman Theorem
as it is described in [Smoller, 1982] page 122). However the proofs given in [B, 1991] are
incomplete; they will be completed in a forthcoming paper [Bardos et al., to appear],
and it turns out that in the present case direct simple proofs are available and will be
described in the paper.
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566 K AOKI et al.

2. The closed bounded vessel

We denote by X a vessel with boundary dX and outward unit normal vector n(x).
The shape of this vessel may be arbitrary but for simplicity we shall assume that its
boundary is locally smooth: it may be composed of several disjoint connected components

Fig 1. — Bounded vessel of aibitraiy shape.

(see Fig. 1) with boundary a union of C! submanifolds of dimension two. The outward
normal n(x) is well defined everywhere on &X with the exception of a submanifold of
dimension one corresponding to the edges and corners of the boundary. The solution
15 a function defined on one of the following two phase spaces X xR? or X x§?
(S? denoting the unit sphere in R;).

As usual we shall denote by T, the set of points of éX x S? such that £n(x).Q>0
and by I', the set of points of X X R2? such that n(x). v>0

The description of the specular reflexion involves the reflected value of the velocity at
the boundary For any (x, Q)eT* we denote by QF the vector

o) R=0-2(Q.n(x)nx)
Similarly o*=|v|QF is defined by
(2) ®=0—-2(0.n(x)n(x)

Whenever this makes sense (classical trace theorems being invoked for this purpose (see
[Bardos, 1969]; [Cessenat, [1985], or [Dautray & Lions, [1968]), one introduces the
testriction to I'% (resp. I'.) of a function f defined in X xS? (resp. in X xR}J); this
1estriction is denoted by f,. For (x, Q)eX xS? denote by #(x, Q)>>0 the first positive
time at which the ray {x—1Qst. t>0} intersects the boundary JX. Then, for
{x, QeI we denote by j; (x, Q) the point

(3) ji (6, Q)= (xy, Q)= (x—1(x, QYOF, OF)
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Observe that j, defines a map from I'* into T'“ and also from I'_ into T _. Given »n
unit vectors @, 1<k=<n, one defines a broken ray of order # with end points x and y by
* the formulaes

4 X= Xq, X=X (1 ) 1<k<n, V=X,

An ergodicity assumption Ergodicity Hypothesis is introduced: For any pair
(x, ¥)e8X x §X there existes a broken ray of the above type with end points x and y
(see Fig. 1). This assumption is used to obtain the uniqueness of the solution and, since
the Q, can take any value, it coincides with the “bridge” hypothesis of [S, 1985].

The gas is so highly rarefied that collisions between gas molecules may be neglected
(this is the regime of free molecular —or Knudsen gas— flow). Therefore the evolution of
the gas density is governed by the formula

) 0, f+ov .V, f=0

f(x, v, 1) is a non-negative function of the variables (x, v, £)e X X R*x R™ . At each point
of the boundary an accommodation coefficient O0<a<a(x)=<1 is given as well as a
temperature T(x) The notation B(x)=1/2T(x) will be adopted in the sequel. The
functions o (x) and B (x) are assumed continuous on &X. Consider the following boundary

condition:
(6) f('xa U)l .1 (x)<0 = (1 —a (.x))_f(x, UR)
+a(x)B(x)?exp(—B(x)| z]H) zj flx, v)v . n(x)dv’.

v n(x)>0
This is a linear combination of the specular reflection and diffuse reflection (Maxwell
type boundary condition). The evolution Eq. (5) with the boundary condition (6) can be
written in the abstract form &, f+Af=0 where —A is a closed unbounded operator,
which is the generator of a strongly continuous semigroup in any

LPXxRH(1Lp<w).

Its adjoint —A* is an unbounded operator defined in L? (XxR}), 1/p+1/p’=1. For
1< p< o, its adjoint is also the generator of a strongly continuous semigroup. However
for p'=co, D(A¥*) is not dense in L= (X% R)); exp(—¢A*) is only a weakly continuous
contraction semigroup and only its restriction to the closure of D (A¥*) is strongly
continuous. In any case A* is defined for 1 £p=< oo by the formulae

{D(A*)={f*(x, 2)el? (XxR¥stv V, feL” (X xR},

7
™ A*f*=—p. V_f*

with the adjoint boundary condition

®) f*05 V) pnmmo= 1 —al(x)) [*(x, o)

r

v

o' n{x)dv'.

ra(n)’ 1% (x, o) B (0) exp (— B (%)

Tty n (x}<0C

EUROPEAN JOURNAL OF MECHANICS. B/FLUIDS voL 12, ne 5, 1903



568 K AOXief al

In particular, a simple explicit computation shows that

&) % f B2 (x)exp (= B(x)| v ) . n(x)dv'=1.
: TJo nx>0
In the present section we consider the homogeneous solution of the stationary problem
(19) v V,f=0,
and

(A1) (x, 90 nmeo— (=0 (Nf (5 25)
s (x)g J Flx, B2 ()exp(—B() o). n(x) &' =0.
v {xy>0

T

The problem (10) and (11) corresponds to the study of the nullspace of the operator A.
The relations (7), (8) and (9) show that 0 belongs to the spectrum of A* and that
£*(x, v)=1 is an associated eigenvector. Therefore 0 also belongs to the spectrum of A
and it is natural to discuss the existence of non-trivial solutions of (10) and (11). These
would correspond to steady molecular flows. Finally it will be convenient to introduce
for any function f defined on X xR the function U, defined in X ¥ S? by the formula

(12) U, (x, Q)=J‘wr3f(.x', r Q) dr

0

and the Banach space E of functions satisfying the estimate

= s [" 1 r ] <en

(% 0yeXx$?Jo

equipped with the corresponding norm.

TuporeM 1 — For any bounded domain X with piecewise C* boundary, there exists a
unique (up to a multiplicative constant) non-trivial, non-negative solution feE to the problem

(13) 0.V, /=0,
and
(19) 106 Dm0~ (1= () (5 o)

—a@ P @ep(-BEIeRE| 50 =0

v (x)>0

In particular, for any positive constant p there exists a unique solution such that

ij(x, v)dxdv=p.
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Proof. — Observe the relation

: (15) ZJ pSB(x)2e—ﬁ(x)p2dp=1

0

Fact n° 1. — If fis a solution of (13)-(14), then the function U, eL* (XX S?) defined
by (12) is a solution of the “1educed problem”

(16) Q V, U, (x, 2)=0

with the boundary condition

(17} U, (x, Q)ln(x)n.(o:(l —‘a(.x))Uf (x, QR)*i-oe(x)Ij n(x). QU,(x, Q) dQ.
Tdn(x).0>0

Define the operator Z:L® (T'_) - L® (X xR]) by the formula

(18) (Zh) (x, u):h(x-—-t(x, L)L v).
o] / |2]
For any heL® ([ _), f=Zh is the unique solution of
(19) 0.V, =0 f(x, 0})=hix, v) for (x,v)el ..

Introduce the operator J defined by the formula
(20) T4 Q=9 (x—1(x, O, OF)

which is an isometry on the space L® (I'_). Therefore the operator 1—(1—o(x))J is
invertible.

Fact n° 2. — Then, feE is a solution of (13)-(14) if and only if
1) f=ZN—-a()I]

X (oc (B exp (BN |v |2)§ U, (x, Q)Q .n(x) dﬂ').

Qonx)>0

Existence, et

(22) f=Z1—(1-a (NI Qa(x)B(x)*exp(—B ()| [*).

Then f satisties

(23) { 2. V:f=0, .
Flx, v)y=1—a(x) f(x, D) +2a(x) B(x) exp(—B()|v[}) (x, vel'_

Observing that

(24) J Q' n(xydY=mr,
Q"0 (x)>0
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it follows easily from (23)-(24) that
(25) Q.v,U,=0, U, (x, Q=1 —a(x) U, (x, Q) +a(x), (x, el

Use of the fact that J is an isometry on L*° (l"‘i), shows that (25) has a unique solution,
which turns out to be U,=1 It follows from the definition (22} of f that f satisfies
Eq. (21) or, in other words, that f'is a solution of (13)-(14) in E (Fact n° 2).

Uniqueness (up to a multiplicative constant). — Let f; and f, be two solutions of (13)-
(14). Tt follows from Fact n° 1 that U, and Uy, are solutions of (16)-(17). Following (21),
it suffices to show uniqueness (up to a multiplicative constant) of the solution of (16)-
(17), or moie precisely that any solution U of (16)-(17) is constant.

Let U be a solution of (16)-(17). Multiplying (16) by U, integrating over X x §* and
applying Green’s formula leads to

(26) jj U(x, D?Q.n(x)dddx=0.
ru
This last equality is split as follows;
27) J‘J‘ U(x, D*Q n(x)dQdx=1,-1,
r“
where
I,= Jj U(x, 0?2 Q. n(x)dQdx
4
and
I,= J‘J U(x, Q)*|Q .n(x)|dQdx.
It
Using the boundary condition (17) transforms the above integral into
(28) I,= Jf |Q n(x)] [(1 —a () U (x, Q8
e
1 2
+or(x) — Q' n(x)Ufx, Q) dﬂ’] dQ dx.

R Jon=>0

Expanding the square in (28) leads to a new form of equality (26):

(29) j J (2o (x)—a{x)?) (J Q n(x)U(x, Q) a )2 dx
X JQ (x>0 Q' n(1)>0 n

=j j Ra()—o(x)?) (J‘ Q' n(x)U({x, Q’)zﬁ)dx.
X JQ 1 (>0 Q'n(x)>0 s
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Fig. 2 — Pipe between two 1¢servoirs.

1t follows from (29) that

aqy’

T

N2
(30) (j Q . n(x)Ux, Q) ax ) mJ‘ Q' . n(x)U(x, Q’)2
Q1 (x)>0 T O n(x)>0

Observe that this is precisely the equality case in the Cauchy-Schwartz inequality for the
probability measure Q' n{x)dQ'/n. Therefore the trace of U on X does not depend on

the angle Q:

(31) UGy, Q=¥ (x), xedX, QeS%

Since U{x+1Q, Q)=U(x, Q) whenever x and x+:Q belong to X, it follows from the
Ergodicity Hypothesis that the trace of U on 0X is a constant and thus that U itself is a

constant.

CoroLLARY 2. — The solutions f of (13)-(14) defined in Theorem 1 have zero bulk
velocity:

pu}c=J~ vf (x, v) de=0.
R3
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Proof. — Observe that

J. zf (x, v)dv=f Q(J“’,’s‘f'(pg rQ)dr)dQ=J QU,(x, 0)d2=0
r3 s? 52

¢

since U, is a constant according to Theorem 1. Yl

3. Existence and uniqueness of the solution in the case of an open system.

We now consider two reservoirs
A={(x,y,2)/ ~0<x<0} and B={(x, y, 2)/L<x<c0}

joined by a pipe of length L. (see Fig 2), treated as an example of the general solution
in S, 1985]. The pipe denoted by X has boundary composed of two parts, the physical
boundary and an artificial boundary corresponding to the inlet (x=0 denoted by Z%)
and outlet (x=L denoted by ZZ). The distributions of molecules starting at the infinity
of A and B are given by the formulae

(32) fa=CyBiexp(~B4[v[) and  fy=CgBiexp(~Bsi[’)

The pipe can be viewed as a closed system (but of course on Z&\ ) Z2 the boundary
conditons will have to be modified as described below). Therefore we begin with a
theorem concerning the inhomogeneous boundary value for the stationary problem.
Unlike the case dealt with in the previous section, this is not a spectral problem, provided
some Transport Hypothesis (to be defined below), is satisfied.

TrEOREM 3. — Let X denote a bounded open set of R® with piecewise C' boundary 0X
and exterior normal denoted by n(x). The boundary §X admits a non-trivial (in the measure
sense) patrtition

dX=G, UG,

which induces partitions of T and TV denoted
I=I'1Ul, and =T1UTI5%.

Assume the following Transport Hypothesis: For any xeG, there exists a broken ray of
finite order, N say, with end points x and ye (. Let g (x, v) be a function defined on I’y

such that

J lg (x, )| |v.n(x)|dve L= (Gy).
v (xy<0

Then there exists a unique solution f of the following boundary value problem:.

(33) v (x, )eX xR? v .V, f=0,
(34) V(x, 'U)Erl—- f‘(‘xa U)=g(x7 U)
(35) V(x, )elo (% Dpneo=(1—a()f(x, o)
b () B (D exp (~ B0 fr, 9) n(Ddy
o' n(x}>0
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Progf — Asin the previous section, the existence and uniqueness of the solution f of
(33)-(34)~(35) can be reduced to the existence and uniqueness of the solution U, of the

following;
(36) Vix, Q)eXx8? Q V. U=,

U, Q=U,(x, Q), (x,)el*_,

G Uk, 9=(1- 2 () U (x, ) o (9~ Ue QQ n(ydn

TJan>o0

(38) (x, Qeky_.

The existence and uniqueness of the solution of (36)-(37)-(38) is achieved with the help
of the following lemma

Lemvma 4. — We keep the notations and assumptions of Theorem 3. Let
U, (x, Qe L* (X xS?) be the solution of (37)-(38)-(39) with Eq. (39) given by '

(39) AU, +Q.V, U, =0, (x, Q)eXxS?

(the existence and uniqueness of such a U, is classical: see [D & L, 1968]) Then fﬁc_‘ S

following estimate holds uniformly for A =0:
(40) U= cxs2y Sl gl oty
The above lemma proves Theorem 3 as follows. Indeed, uniqueness is obtained by setting

A=0 and g=0 in the lemma. Existence is obtained by letting A — 0 after extraction of a
subsequence of U, converging in L® (X x §?) weak-*. ./

Proof of Lemma 4. — Let M=|U, |~ Multiply (39) by 2(U,—M), (we denote
sup(z, 0) by z,) and integrate over the domain X x 82 Green’s formula gives
4D Zk.ff (U,—M)2 dex—l-J‘J‘ (U,— MY Q n(x)dddx=0
X x g2 Y
The second integral in (41) is split as

(42) j j (U, —M)2 Q. n(x) dQ dx

=H (Ul—M)iQ.n(x)dex%—jf (U, —M)2Q n(x)dQdx
I+

%

~” ((1 ~ () (U (5, =)+ 22 J (U (x, @) M) .n(x)_d;é%j)
4o Q n(x}>0 o

T
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In treating the second integral on the right hand side of (42), one should observe the
following three simple inequalities:

g) For all feR and 0=y =1, fx=f;

By (A+B),=A,. 1+ B,

¢) if p denotes a probability measure, 0=y =1 and fe L' (), Jensen’s inequality shows

that ¥ jfdu = Jf +

Then it follows from (42) that
(43) “‘ (U, — M) Q. n(x)dQdx
I

gﬂ (Ul——M)iQn(x)dex—!-j_[ (U, —M)2 Q n(x)dQdx

ra+

—~ ” ((1 —a () (U (x, Q) —M), + 2x) (U(x, @)—M). Q .n(x) dﬂ’)

T Jon(x)>0

x| Q n(x)]dQdx.

Expanding the sum of squaies above leads to
(44} Jf (U, —M)2 Q n(x)dQdx
il

> J‘J‘ (U, ~ M) Q.n(x)dQdx+ jJ. QRa(x)—a(x)?) (U, —M) (x, QQ.2(x)dQdx
I+ 5+

J (2o (x)—u(x)?) (j (U, -M), (x, @YY n(x) il )2 |Q‘.n(x)|dQ dx
Gy Q n(x)>0 n

Inequality (41) employed with (44) shows that

(45) U (x, =M (, Qelh,

and (since o >0)

(46) (J (U~ M), (x5, D) n ()L )
Q' n(x)>0 £

= j (U,— M) (x, Q)Y Q' n{x) an .
Q n{x)>0 T

The equality case in the Cauchy-Schwartz inequality shows that
(U, (x, ©)— M), = ¢ (x) for almost every (x, Dels,,
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which, by the boundary condition (38), shows that

(47) (U, (x, —M). =0 (x) for almost every (x, Q) eTl%_.

The equation governing (U, —M), is obtained by multiplying (39) by sign, (U, — M):

(48) AU, —M), +Q V (U,~M), = —AMsign., (U,—M)<0.

Eq. (48) shows that the map
t et (U, — M), (x+Q1, Q)

is non-increasing for almost every (x, Q) e X xS? Let xeG,, then in accordance with
the transport hypothesis a broken 1ay of finite order with end points (x, Q)el%, and
(y, Q)elfi_ can be introduced, and the relation (40) implies that along this broken ray
the quantity (U, —M), is equal to zeto. Therefore $=0 on 9X and thus (U,—M), =0
everywhere in X. This shows that U, <M. To prove that | U, | <M one need only apply
the result to —U,.

COROLLARY 5. — Assume the following Transport Hypothesis: For any xedX there exist
an integer N and a unit vector Q such that the point xy defined by (3) and (4) belongs to
Z&\ ) Z2. Then there exists a unique function f such that

(49) 2.V, f=0 in XUAUBxR?

and the following boundary conditions are satisfied.

(50) fx, )=C,Biexp(—Bo|v[HDVxeA and  v,>0
(51) f(x, )=CgBiexp(—Bg|v|) YxeB  and  v,<0
(52) VxedX  f(x, 0),nm<o=T—a(x)/(x, 2%
fa(o® 0.1 () (5, )do B (D exp(—B(9)] o]
v h(x)>0
(53) fix, o)=f(x, ®)VxelA  and VxeiB.

Proof. — The “physical boundary” of the tube ¢X is identified with the subset G, of
Theorem 3 and the “artificial boundary” Z U Z§ is identified with the subset G,. On
this subset the incoming density of particles g(x, ») is defined by

(54) {g(-x: v)=CA Bi GXP(_BA|’U|2) lf XEZQ and ‘Ul>0

g(x, )=CyBiexp(—Pg|eol®) if xeZ§ and v, <0

Theorem 3 shows that there exists a unique solution fy (x, v) which is defined in X Thls__ '.
solution is extended to A by the following explicit construction: L

(55) fx, )=C,Biexp(—Ba|v]®) if »,>0, xeA
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For xeA and v, <0 there exists a unique >0 such that x—rveZg{J #A Then

(56) {f(xz 0)=CuBiexp(—Bafv[) if x—twedA

F(x, v)=fx(x—tv, v) if x—mweZd

A similar construction if done in B. The function f obtained in this way is obviously the
unique solution of the problem (49)-(53)

With the thermodynamical equilibrium states given by (32), the temperature and the
pressure in regions A and B are defined by the formulae

3/2

1 5 2 312 1 of 2 .
(57) T,= 5 BAs Pa— CA_ Ba ;I'TA Ta, Ty= EBBS Pp= Cg B3 ;TA_ Tp.

PROPOSITION 6. - Under the relation p,/ps=(15/T )" there is no flow induced in the
system More precisely at any point x of the domain the following relation holds.

pu=fvf(x, v)de=0
Proof — The proof follows the same lines as in Section I One introduces the function

U (x, Q)=J® P f(x, 1 Q) dr

and pu= JQ U, (x, Q) dQ. Now U, (x, Q) is a solution of the problem Q 'V, U, (x, &)=0
with the boundary condition

(58) U, (x, Q) |Q n(x)<0=(1_a(x)) Uf‘(xs QF)

+cx(x‘)[%j v n(x)f(x, v)a’v_:l
v {x)>0

fmrS B2 (x)exp(—P(x)r)dr on éX

0

which, as above, reduces to the relation

(59) U, (x, Dl »myeo={1—2 () U, (x, Q) +a(x) Q. n(x) U, (x, Q)do

Qa(x)>0

On Z2 and Z3 it satisfies the relations
U (x, D=C, if xeZp and Q,>0,
Up(x, @=Cy if xeZ and ;<0

With Theorem 3 it is known that this problem has a unique solution which will be equal
to C=C, =C, whenever these two numbers coincide. According to (57), this is equivalent
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to the relation
PA/PB = (TB/TA)”Z :

We conclude as in the Corollary 2.
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