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2 LECTURES ON THE CREMONA GROUP

1. Lecture 1

1.1. Basics. A birational map f : C2 → C2 is a rational map admitting a rational inverse.
The group of all birational map is the Cremona group Cr(2).

We aim at describing some recent results on Cr(2), and we shall take this opportunity to
advertise (new) technics in algebraic geometry that are useful for dealing with asymptotic
problems.

1.2. The first period: 1860-1920. Cremona, Noether, De Jonquières, Castelnuovo, En-
riques: the Cremona group is a central object of algebraic geometry.

First examples: PGL(3,C) ⊂ Cr(2).
The Cremona involution σ(x, y) = ( 1x ,

1
y ). In homogeneous coordinates σ[x : y : z] = [yz :

xz : xy]. Points of indeterminacy in P2(C) are [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], contracted
curves are {xyz = 0}.

Noether’s theorem: Cr(2) is generated by PGL(3,C) and σ.

1.3. The intermediate period: 1930-1990. The Cremona group is no longer the main
focus in algebraic geometry. Still we have important results: Nagata in the 60’s; Iskovskikh,
Gizatullin, Danilov obtain a presentation of the Cremona group in 80’s.

Two trends converge: classification of finite subgroup of Cr(2) (Iskovshikh and Dol-
gachev); and the beginning of the study of iteration problems (Friedland-Milnor, Bedford-
Smillie, Hubbard, Fornaess-Sibony).

1.4. Maturity. Main problem: understanding the structure of Cr(2) by way of its finitely
generated subgroups (the case of a cyclic group amounts to the study of the iteration of a
single map).

Main tool: construction of a natural representation of Cr(2) in some infinite dimensional
vector space that leads to an action of Cr(2) on a hyperbolic space.

Examples of statements that can be proved.
Theorem (Deserti): suppose ρ : SL(n,Z) → Cr(2) is an injective morphism, then n ≤

3, and if n = 3, then ρ is (conjugated to) the standard injection in PGL(3,C) (or its
conragredient).

Theorem (Cantat): Cr(2) satisfies the Tits alternative (a finitely generated subgroup of
Cr(2) is either virtually solvable or admits a free non-abelian subgroup)

Remark: these results are true for PGL(3,C). But in fact Cr(2) is very far from being a
linear group.

Observation (Cerveau-Deserti): Cr(2) can not be realized as a subgroup of GL(n,C) for
any n.

Theorem (Cantat-Lamy): Cr(2) is not a simple group.

1.5. The asymptotic degree. There exists no morphism λ : Cr(2) → (R∗+,×) (use

Noether’s theorem). But the function λ(f) = limn deg(fn)1/n satisfies λ(g ◦ f ◦ g−1) = λ(f),
and λ(fn) = λ(f)n for all n ≥ 0.

1.6. Examples: bounded degree. Any birational map of bounded degree admits an
iterate that is birationnally conjugated to an element of PGL(3,C).

1.7. Examples: linear growth. An element of PGL(2,C(x)) has linear growth or bounded
degree. Any birational map of linear growth preserves a rational pencil.
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1.8. Examples: quadratic growth. The blow-up of P2(C) at 9 points at the intersection
of two smooth transversal cubics of P2 admit automorphisms preserving an elliptic fibration.
Any birational map of quadratic growth preserves an elliptic pencil, see [G].

1.9. Examples: exponential growth. If λ(f) > 1, then deg(fn) = c · λ(f)n + O(1) for
some c > 0. Examples include Hénon maps ((x, y) 7→ (y, x + y2)). For A ∈ PGL(3, C)
generic, deg((A ◦ σ)n) = deg(A ◦ σ)n = 2n for all n (Cerveau-Deserti).

1.10. Notes and references. Julie Deserti is mananing a record of all references that are
connected to the Cremona group, see www.math.jussieu.fr/∼deserti/cremona.html. We
also refer to her survey [De1] for an account on the history of the Cremona group.

The survey of Serre [Se] contains a classification of finite subgroups of Cr(2).
For a proof of the fact that SL(n,Z) does not embed in Cr(2) for n ≥ 4, and for the

Tits alternative, one may look at [F] beside the orginal papers [De2] and [Can]. The non-
simplicity of Cr(2) is proved in [CL]. One can also endow Cr(2) with a natural topology and
prove that Cr(2) is topologically simple [Bl].
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2. Lecture 2

2.1. Foreword. Recall definitions of Cr(2), deg(f), λ(f). State the trichotomy for the
behaviour of deg(fn) if f ∈ Cr(2):

(1) Elliptic case: deg(fn) = O(1), then fk is conjugated to an element of PGL(3,C) for
some k ≥ 1.

(2) Parabolic case: deg(fn) � n, or � n2, then f preserves a rational (or elliptic)
fibration.

(3) Hyperbolic case: deg(fn) = c · λ(f)n +O(1), and λ(f) > 1.

The idea of the proof is to linearize the action of f , i.e. look at its action on the cohomology
of the projective plane. But it is a priori not clear how to define it since f admits point of
indeterminacies. Eventually we shall resolve all singularities of the map, and this will lead
to a natural infinite dimensional representation of Cr(2).

2.2. Cohomology of rational surfaces. The space H2(P2(C)) = H2(P2(C),Z) is gen-
erated by the fundamental class of a line L.

Castelnuovo’s theorem: any birational map between smooth complex surfaces is the com-
position of a finite sequence of blow-ups followed by a sequence of blow-downs.

A rational surface is a complex compact smooth surface that is birational to P2(C).
Use Castelnuovo’s theorem to build an explicit basis of H2(X) for any rational surface
dominating P2(C) by pulling back L and the exceptional divisor appearing in the sequence
of blow-ups defining X.

2.3. Action of a birational map. Define f# : H2(X)→ H2(X) for any f ∈ Cr(2) using
Castelnuovo’s theorem. State f#α · β = f#α · f#β, and f#α · f#β = α · β + Q(α, β) for
some semi-positive bilinear form Q.

2.4. Universal cohomology of rational surfaces. The set

B = {π : Xπ → P2(C), π is a finite sequence of blow-ups }

is an inductive set. If π1, π2 ∈ B, one can find π such that π−1i ◦ π : Xπ → Xπi are finite
sequence of blow-ups. One can define the space X := lim←−B

Xπ, but only the cohomology of
X is of some interest to us.
Definition of Weil classes:

W (X) = {α = (απ)π∈B, απ ∈ H2(Xπ), µ∗απ′ = απ, if µ = π−1◦π′ is a sequence of blow-ups}

Definition of Cartier classes:

C(X) = {α ∈W (X), there exists π0 ∈ B s.t. απ = µ∗απ0 if µ = π−10 ◦π
′ is a sequence of blow-ups}

Terminology: such a π0 is called a determination of the Cartier class α.

2.5. The space of Cartier classes. For any rational surface H2(X) embeds in C(X) in a
canonical way, and C(X) is the ”union” (formally the injective limit) of all spaces H2(Xπ)
for all π ∈ B.

Define L ∈ C(X) such that Lπ = π∗L with L = c1(OP2(C)(1)).

Define V = {(p, π), p ∈ Xπ} modulo the equivalence relation (p, π) ∼ (p′, π′) iff ϕ =
π−1 ◦ π′ is a local biholomorphism at p′ sending p′ to p.
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For any ν ∈ V, let E(ν) ∈ C(X) be the class determined in the blow-up of Xπ at p by the
exceptional divisor.

State that C(X) = ZL ⊕ν∈V ZE(ν).

2.6. Notes and references. The result stated in §2.1 is proved in [DF] with methods
alluded to in Lecture 4. Ultimately it relies on the analoguous statement for automorphisms.
In that case, the linear growth of degrees never appears and the trichotomy was obtained
by Gizatullin [G].

For the action of birational maps, look at [DF]. The formula computing f#α · f#β is a
key result in this paper, where a geometric interpretation of the bilinear form Q is given.

For the universal cohomology of rational surfaces and the space of Cartier classes, four
references are now available [BFJ], [Can], [CL], and [F].
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3. Lecture 3

3.1. A basis for the space of Weil and Cartier classes. Recall the definitions of B,
W (X) ⊃ C(X) ⊃ H2(Xπ) for any π ∈ B.

Define the intersection product C(X)×W (X)→ Z. If α ∈ C(X) is determined by π, then
set α · β = απ · βπ. This does not depend on π.

Show that L2 = +1, E(ν)2 = −1, E(ν) · L = E(ν) · E(ν ′) = 0 if ν 6= ν ′.
For any α ∈W (X), one can write

α = aLL+
∑
V
aνE(ν) (3.1)

with aL = α · L, aν = −α · E(ν). The sum is a priori infinite: the equality means that the
incarnation of both sides in any Xπ is the same.

A class is Cartier iff the sum in the right hand side is finite.

3.2. Action of Cr(2) on Weil and Cartier classes. For f ∈ Cr(2), and α ∈ W (X).
Define f∗α. For f ∈ Cr(2), and α ∈ C(X). Define f∗α.

State that f∗α · β = α · f∗β, and f∗α · f∗β = α · β for any classes in C(X).

3.3. Completion of the space of Cartier classes. Definition in terms of the decompo-
sition (3.1)

L2(X) = {α ∈W (X),
∑
V
a2ν <∞} .

The intersection form defined on C(X)×W (X) extends to an intersection product L2(X)×
L2(X)of Minkowski’s type given by α · β = aLbL −

∑
V aνbν .

The operators f∗ and f∗ preserve L2(X) and are isometries for the intersection product.

3.4. Application: control of the degrees. Since f∗L·L = deg(f), the control of deg(fn)
follows from the spectral properties of f∗ acting on L2(X).

Some hyperbolic geometry: the light cone is C = {α ∈ L2(X), α2 ≥ 0, α · L > 0}, the
hyperbolic space is H = {α ∈ C, α2 = +1}.

In finite dimension, the restriction of the intersection product to H induces a riemannian
metric of constant negative curvature. Setting cosh dH(α, β) = α · β induces a complete
metric dH on H for which f∗, f∗ are isometries.

Suppose deg(fn) = O(1).
Then {fnL} is bounded in H, and the lemma of the center yields a unique point minimiz-

ing supn d(·, fnL). This point θ ∈ H is fixed by L. One can show θ is Cartier determined y
an ample class which proves we are in Case (1) of §2.1.

Suppose deg(fn) is unbounded.
Preparation steps. Set ∆̄ = C ∩{α ·L = +1}, ∆ = ∆̄∩H. Define the projectivized action

f̄ : ∆̄→ ∆̄ by f̄(α) = f∗α/(f∗α · L).
Construction of an invariant class in ∂∆. Pick a subsequence f̄nkL → θ+ (weakly in

L2(X). Since dH(f̄nk+1L, f̄nkL) is constant, f̄nk+1L → θ, and f̄ θ+ = θ+ so that f∗θ+ = tθ+.
Construct in an analoguous way an invariant class θ− associated to f−1.

If θ+ = θ−, then f̄nα → θ+ for all α ∈ H. In that case, one needs geometrical methods
to prove that α is the class of the fiber of an invariant fibration. We are in case (2) of §2.1.
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If θ+ 6= θ−, then f∗θ+ = tθ+ and f∗θ− = t−1θ1 for some t > 1. The intersection
form is negative definite on H the orthogonal complement of Rθ+ + Rθ−. Decomposing
L = c+θ+ + c−θ− + h with h ∈ H, one gets deg(fn) = fn∗L = c+t

nθ+ + t−nc−θ− + fn∗h
which yields

deg(fn) = c+t
nθ+ · L+O(1)

as in case (3) of §2.1.

3.5. Notes and references. Again we refer to [BFJ, Can, CL, F]. The approach of [BFJ]
does not rely so much on the geometry of the hyperbolic space but makes an extensive use
of positivity properties of classes of curves, so as to obtain the existence of a fixed point for
f̄ .

The line of arguments presented here leads to the main result of [Can] on the Tits alter-
native. If G is finitely generated subgroup of Cr(2) and the family g∗L is bounded then the
group fixes a class in H. If G contains two hyperbolic elements with disjoint fixed point set
in ∆̄ then a classical ping-pong argument produces a free subgroup inside G. We refer to [F]
for more details.

The parabolic case is in fact quite subtle to handle, and one needs more geometric argu-
ments in the spirit of Lecture 4 to conclude.
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4. Lecture 4

4.1. Automorphism vs birational maps. A map f ∈ Cr(2) lifts to an automorphism if
there exists φ : X 99K P2(C) such that fX = φ−1 ◦ f ◦ φ ∈ Aut(X).
Problem: characterize those f ∈ Cr(2) that lifts to an automorphism.

Recall the definition of deg(f), λ(f).
If λ(f) = 1, then f lifts to an automorphisms iff deg(fn) = O(1), or ∼ n2.
In the sequel, we assume λ(f) > 1.

4.2. Examples. Non examples: if deg(fn) = deg(f)n for all n, then f does not lift to an
automorphism (see the next section).

Note that a generic birational map of degree ≤ 3 satisfies deg(fn) = deg(f)n for all n
(hence does not lift to an automorphism).

If a curve C is mapped to a point p that is fixed by f and belongs to C, then f does not
lift as an automorphism (exercise!).

If f does not lift as an automorphism, then A ◦ f does not lift either for general A ∈
PGL(3,C) (exercise!).

Examples: the quotient of A = (C/Z[i])2 by the order 4 group generated by (iz, iw) in
C2 is a rational surface X in which GL(2,Z) ⊂ Aut(X). If M ∈ GL(2,Z), then λ(fM ) is the
square of the spectral radius of M . More examples of this kind can be obtained replacing
Z[i] by Z[ζp] with ζp a p-th root of unity and p = 3 or 5.

Classical construction of Coble: pick a generic rational sextic with 10 double points. The
surface obtained by blowing up these 10 points admits many automorphisms with λ > 1.

Other constructions: maps with a Siegel disks (McMullen), non-trivial families of auto-
morphisms (Bedford-Kim), examples on rational surfaces whose anticanonical bundle is not
pseudo-effective (Bedford-Kim), see the notes thereafter for more references.

4.3. Asymptotic degrees of automorphisms. Take f ∈ Aut(X) with λ(f) > 1. Then
f∗ : L2(X) → L2(X) preserves the finite dimensional space H2(X). This shows λ(f) is the
spectral norm of f# : H2(X) → H2(X). In particular, λ(f) is an algebraic integer whose
conjugates are 1/λ(f) and possibly some complex numbers of modulus 1 (i.e. λ(f) is a
quadratic integer or a Salem number).

A partial converse holds (Blanc-Cantat): if λ(f) is a Salem number, then f lifts to an
automorphism.

4.4. Algebraic stability. A notion introduced by Fornaess and Sibony.
Fact: (f#)n 6= (fn)# for some n iff a curve is contracted to a point and eventually mapped

to a point of indeterminacy. This ”means” f is dynamically very singular.
If (f#)n 6= (fn)# on H2(X), then we say f is algebraically stable on X.
Theorem: there exists π : X → P2(C) s.t. fX is algebraically stable.
Consequence: pick an ample class a ∈ H2(X), and look at its associated Cartier class

α ∈ C(X). Then fn∗α · α = (fn)#a · a = (f#)na · a. Since fn∗α · α = c · λ(f)n +O(1), the
asymptotic degree λ(f) is an eigenvalue of f# (hence an algebraic integer).

The same argument can be pushed to prove that all conjugates of λ(f) lie in the closed
unit disk.

Indication of the proof of Cantat-Blanc: exploit the push-pull formula f#a · f#b = a · b+∑
(a, Zk) (b, Zk) for some effective (integral) curve.



LECTURES ON THE CREMONA GROUP 9

4.5. Notes and references. The construction of automorphisms of rational surfaces with
λ > 1 has received a lot of attention in the recent years. Here is an incomplete list of
papers related to the problem: [De2]. For Coble’s construction, we know only of the original
paper [Co].

The notion of algebraic stability (also referred to as 1-regularity sometimes) was intro-
duced in [FS]. The fact that a birational surface map can be made algebraically stable is
the key result of [DF]. Beside birational surface maps, polynomial maps are known to admit
model in which they become algebraically stable (Favre-Jonsson). For arbitrary rational
surface maps, and in higher dimension the situation is completely open except in the very
special case of monomial maps (recent work of J.L Lin and Favre-Wulcan).

The push-pull formula is proved in [DF].
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