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What is holomorphic dynamics?

Let X be any complex manifold (C, C = C U {oc}, C/A, C9, P,
etc.)

Q1 Pick f: X — X holomorphic.
Describe the orbits {f°"(z)}nen for all z € X.

Q2 Suppose {ft}ten is a family of holomorphic maps.
Describe the changes in the dynamics of f; in terms of ¢.

Focus on X = C = C U {o0}

f(z) = 28 with P, Q € C[z], P~1(0) n Q" (0) = 0,

d := max{deg(P),deg(Q)} > 2

Generalizations: meromorphic maps, groups,
correspondences, ...
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QC revolution (1980 —)
» Quasi-conformal techniques and renormalization

» Sullivan, Douady-Hubbard, McMullen, Lyubich, Yoccoz,
Thurston, ...
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Brief history (iteration of complex algebraic maps)

Dynamics in several complex variables (1990 —)
» Currents, pluripotential theory

» Bedford-Smillie, Fornaess-Sibony, Hubbard, Dinh, Gued,],
Diller, Jonsson, ...

Algebraic and arithmetic dynamics (2010 —)
» Algebraic and arithmetic intersection theory

» Silverman, S.-W. Zhang, DeMarco, Ghioca, Xie, Cantat,
Dujardin, ...
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Fatou and Julia sets

(2)
(2)

f(z) = g of degree d > 2.

» Fatou set: F;:= {z,{f"}, normal family near z} (tame
dynamics)
» Julia set: Js = C \ F¢ (chaotic dynamics)
feu
Observation
The Fatou set (resp. Julia set) is open (resp. closed) and totally
invariant.
Theorem
The Julia set is always non-empty (uncountable and perfect)
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Examples of Julia sets

> f(2) =z, J(f) = S' = {|z| =1}, {0, 00} = {0, 00};
f(2) = z+9 + ¢, J(f) is a quasi-circle.
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Examples of Julia sets

> Lattes maps: 7: C/A — C, fi(w(2)) = =(az) with |al? > 1,
ah c A\, J(f) = C;

Observation
a=2,mis2:1, then

4z(1 — 2)(1 — t22)

f(z) = (1— 222)2

» Many small perturbations of f, have Julia sets equal to C
(Rees,...)
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Polynomial Julia sets

f(z) :Zd—Fa‘]Zd*‘l ++ad€(C[Z], f71{oo} _ {Oo}
> For [z| > R>> 1, then |f(z)| > }|z|9, and
[1°(2)| ~ 127" — o0
» Filled-in Julia set K(f) = {z,|f"(z)| = O(1)}.

Observation
J(f) = 0K(f).



F

Examples of Julia sets (pictures)
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Fatou-Julia and periodic orbits

Theorem
Suppose f(z) = z, and write \ := f'(2).

1.
2. if |\ > 1, then z € J(f) (repelling);

3.

4. \ = €™ ¢ badly approximable by rationals (Siegel,

If|\| < 1, then z € F(f) (attracting);

if X is a root of unity then z € J(f) (parabolic);

Brjuno), then z € F(f).

_ Pn log gn1
=g and} , = < oo

Remark
When f(z) = z2 + ¢ and 6 is well-approximable then z ¢ J(f)
(Yoccoz). Open in general (Perez-Marco, Cheraghi, ...)



Fatou components

Theorem
Let U be a fixed Fatou component. One of the following
possibilities occur:

1. U contains an attracting fixed point p and f"|y — p;
2. 9U contains a parabolic fixed point p, and f"|y — p;

3. U is a disk or an annulus and f| is conjugate to z — '™,
0 € R\ Q.
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Theorem
Let U be a fixed Fatou component. One of the following
possibilities occur:

1. U contains an attracting fixed point p and f"|y — p;
2. 9U contains a parabolic fixed point p, and f"|y — p;
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Theorem
The set of periodic Fatou components is finite.



Sullivan’s theorem

Theorem

Any Fatou component is eventually mapped to a periodic
component.

Remark

» Not true if f is transcendental (Baker, Rippon-Stellard,
Benini-Fagella-Evdoridou, Marti-Pete-Rempe-Waterman),

» not true in higher dimensions
(Astorg-Buff-Dujardin-Peters-Raissy, Berger-Biebler).
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Dynamics on the Julia set

Slogan
The dynamics f: J(f) — J(f) is chaotic!

Theorem
1. Up>o f7"(2) is dense in J(f) for all z € J(f);
2. the set{z € J(f), {f"(2)}n = J(f)} is dense;
3. repelling periodic orbits are dense in J(f);
4. z € J(f), U > z, then f"(U) D J(f) for some n.

Observation

f admits a unique measure of maximal entropy log d, which is
ergodic, and represents the distribution of the repelling periodic
orbits.
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