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What is holomorphic dynamics?
Let X be any complex manifold (C, Ĉ = C ∪ {∞}, C/Λ, Cd , Pd

C,
etc.)

Q1 Pick f : X → X holomorphic.
Describe the orbits {f ◦n(z)}n∈N for all z ∈ X .

Q2 Suppose {ft}t∈Λ is a family of holomorphic maps.
Describe the changes in the dynamics of ft in terms of t .

Focus on X = Ĉ = C ∪ {∞}

f (z) =
P(z)

Q(z)
with P,Q ∈ C[z], P−1(0) ∩Q−1(0) = ∅,

d := max{deg(P), deg(Q)} ≥ 2

Generalizations: meromorphic maps, groups,
correspondences, ...
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Brief history (iteration of complex algebraic maps)

Original developments (1910 – )
I Normal families
I Fatou, Julia, Montel

QC revolution (1980 – )
I Quasi-conformal techniques and renormalization
I Sullivan, Douady-Hubbard, McMullen, Lyubich, Yoccoz,

Thurston, ...
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Dynamics in several complex variables (1990 – )
I Currents, pluripotential theory
I Bedford-Smillie, Fornaess-Sibony, Hubbard, Dinh, Guedj,

Diller, Jonsson, ...

Algebraic and arithmetic dynamics (2010 – )
I Algebraic and arithmetic intersection theory
I Silverman, S.-W. Zhang, DeMarco, Ghioca, Xie, Cantat,
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Fatou and Julia sets

f (z) = P(z)
Q(z) of degree d ≥ 2.

I Fatou set: Ff := {z, {f n}n normal family near z} (tame
dynamics)

I Julia set: Jf = Ĉ \ Ff (chaotic dynamics)

Observation
The Fatou set (resp. Julia set) is open (resp. closed) and totally
invariant.

Theorem
The Julia set is always non-empty (uncountable and perfect)
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Examples of Julia sets

I f (z) = z±d , J(f ) = S1 = {|z| = 1}, f−1{0,∞} = {0,∞};
f (z) = z±d + ε, J(f ) is a quasi-circle.



Examples of Julia sets

I Lattès maps: π : C/Λ→ Ĉ, fL(π(z)) = π(az) with |a|2 > 1,
aΛ ⊂ Λ, J(fL) = Ĉ;

Observation
a = 2, π is 2 : 1, then

f (z) =
4z(1− z)(1− t2z)

(1− t2z2)2

I Many small perturbations of fL have Julia sets equal to Ĉ
(Rees,...)
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Polynomial Julia sets

f (z) = zd + a1zd−1 + · · ·+ ad ∈ C[z]; f−1{∞} = {∞}

I For |z| ≥ R � 1, then |f (z)| ≥ 1
2 |z|

d , and
|f n(z)| ∼ |z|dn →∞

I Filled-in Julia set K (f ) = {z, |f n(z)| = O(1)}.

Observation
J(f ) = ∂K (f ).
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Examples of Julia sets (pictures)

c = i

e2iπt 2(z − 4)/(1 − 4z) with

t = .6151732

z2 − 0, 06/z2



Fatou-Julia and periodic orbits

Theorem
Suppose f (z) = z, and write λ := f ′(z).

1. If |λ| < 1, then z ∈ F (f ) (attracting);
2. if |λ| > 1, then z ∈ J(f ) (repelling);
3. if λ is a root of unity then z ∈ J(f ) (parabolic);
4. λ = e2iπθ, θ badly approximable by rationals (Siegel,

Brjuno), then z ∈ F (f ).

θ = pn
qn

and
∑

n
log qn+1

qn
<∞

Remark
When f (z) = z2 + c and θ is well-approximable then z ∈ J(f )
(Yoccoz). Open in general (Perez-Marco, Cheraghi, ...)
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Fatou components

Theorem
Let U be a fixed Fatou component. One of the following
possibilities occur:

1. U contains an attracting fixed point p and f n|U → p;
2. ∂U contains a parabolic fixed point p, and f n|U → p;
3. U is a disk or an annulus and f |U is conjugate to z 7→ e2iπθ,

θ ∈ R \Q.

Theorem
The set of periodic Fatou components is finite.
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Sullivan’s theorem

Theorem
Any Fatou component is eventually mapped to a periodic
component.

Remark
I Not true if f is transcendental (Baker, Rippon-Stellard,

Benini-Fagella-Evdoridou, Martí-Pete-Rempe-Waterman),

I not true in higher dimensions
(Astorg-Buff-Dujardin-Peters-Raissy, Berger-Biebler).



Dynamics on the Julia set

Slogan
The dynamics f : J(f )→ J(f ) is chaotic!

Theorem
1. ∪n≥0 f−n(z) is dense in J(f ) for all z ∈ J(f );

2. the set {z ∈ J(f ), {f n(z)}n = J(f )} is dense;
3. repelling periodic orbits are dense in J(f );
4. z ∈ J(f ), U 3 z, then f n(U) ⊃ J(f ) for some n.

Observation
f admits a unique measure of maximal entropy log d, which is
ergodic, and represents the distribution of the repelling periodic
orbits.
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