8 CHARLES FAVRE

Theorem 1 (Lech’s embedding theorem). Let L be any field which is finitely generated
over Q, and S be a finite subset of L. Then for infinitely many primes p, there exists a field
embedding ¢: L — Q, such that «(S) C Z,.

Proof. We begin with the following lemma.

Lemma 1. For any non-constant polynomial g € Q[z] there exists infinitely many primes p
such that g admits a solution modulo p (in the sense that there exists an integer b € N such
that |g(b)|, < 1).

Granting this lemma we proceed with the proof of the theorem.

Let d be the degree of transcendance of L over Q. Then L is a finite extension of the field
F = Q(t1,--- ,tq). By the primitive element theorem, we may find 6 such that L = F[6)].
Denote by f(x) = 2%+ ¢;(t)z4™1 + - -+ + ¢4(t) the minimal polynomial of § over F. This is
an irreducible polynomial, which has only simple roots. In particular its discriminant A(f)
is a non-zero constant in F'.

We may (and shall) suppose that § and all ¢;’s belong to S.

Note that any element of L is a polynomial in # with coefficients in F', hence we may find
P € Z[t] such that P-s € Z[t,0] for all s € S.

Lemma 2. For any non-zero element ® € F there exist infinitely many a € N such that
O(ay, - ,aq) #0.

Apply the previous lemma to ® := A(f) x P, and fix a € N? such that ®(a) # 0. Now
pick a prime p such that the following conditions hold:

(1) |fa(b)], < 1 for some b € N;

(2) [A(fa)lp = 1;
(3) [P(a)lp = 1.
Observe that conditions (2) and (3) are satisfied for all but finitely many primes since

®(a) € Q. And condition (1) is satisfied for infinitely many primes by Lemma 1. In
the remaining of the proof p, b and a are fixed.

We first build the field embedding on F. As Q, is uncountable, we may find €;,--- , €4 € Q,
which are algebraically independent over Q. Dividing them by a suitable power of p, we may
suppose that |¢;| = for all i. We set «(t;) := a; + pe;. Note that a; + pey, -+, aq + peq € Q,
are algebraically independent over Q, hence + extends to a field embedding 2: F' — Q,. Our
aim is now to extend ¢ to L.

Recall that by construction P(t) € Z(t) and P(t) - ¢;(t) € Z[t]. Consider the polynomial
Jaspe(®) = 2%4c1(a+pe)z®t +- - +cq(a+pe) € Z,[z]. By (3), we have | P(a+pe) — P(a)l, <
1/p < 1, and |¢;(a + pe) — ci(a)|, < 1/p < 1, so that

[ fatpe(D)lp = [farpe(b) = fa(b)]p < max{lei(a + pe) —ci(a)lp} <1
Since |A(f,)|, = 1, we obtain A(f,) = A(f,) # 0 hence f, € F,[z] has only simple roots.
It follows that f,(z) = (z—b)Q(x) with Q(b) # 0 and f/(b) # 0, which implies | farpe(D)lp =
1. We may thus apply Hensel’s lemma to the polynomial f,.,. and the approximate root b,
and we conclude to the existence of 5 € Q, such that f,.,.(5) =0 and | —b| <1 (hence in
particular |5 < 1).
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Extend 2 to a ring homomorphism ¢: F|z] — Q, by setting «(z) = 8. By construction the
kernel of ¢+ contains the polynomial f, since

1(f) =02 + e ()™ - Fea(t) = B+ ei(a+ pe) BT -+ cqla 4 pe) =0

It follows that @ factors through F[z]/(f) which is isomorphic to L. We obtain in this way
a field embedding 2: L — Q, satisfying ¢(0) = .

Now pick any s € S, and write P-s = Q(t,6) with Q € Z[t, z|. Then |i(s)|, x |P(a+pe)|, <
1, and since P € Z[t], and |P(a)|, = 1 we conclude that |2(s)|, < 1 as required. O

Proof of Lemma 2. We may suppose that & is a polynomial. We prove the theorem by
induction on d. For d = 1, then it follows from the fact that N is infinite and a non-constant
polynomial admits only finitely many zeroes. Write ®(to,t1, - ,ta) = Y., Pr(to)T" with
T = (t1, - ,tq). By the previous argument there exists an integer ag such that ®;(ag) # 0
for all multi-indices I such that ®; # 0. To conclude, we apply the induction step to
(I)(ao,tl,"' ,td). O

Proof of Lemma 1. We may suppose that f € Z[zx]. We proceed by contradiction, and pick
a finite set of primes P := {p1,--- ,p,} such that all primes factors of f(b) belong to P for
all b € N.

Set N = p; - - py and choose an integer a € N such that f(a) # 0. Since all prime factors
of f(a) belongs to P, there exists an integer j > 1 such that f(a)| N77'. Observe that for
each n, we have f(a + N7n) = f(a) mod (N7). Note that

|f(a)|pi > |Nj_1|pi :pzl_j > ’Nj|pi

hence |f(a + Nin)|,, = |f(a)|,, foralli=1,--- k.

Since all prime factors of f(a + N’n) belong to P, we infer f(a + N'n) = 4f(a). This
implies one of the two polynomials f(a + N?T) & f(a) to have infinitely many roots which
is absurd. 0J
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