Topology of the Lyubich-Minsky
Laminations
for Quadratic Maps:
Deformation and Rigidity
(2nd lecture)
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The Riemann Surface
Laminations
Constructions/|Examples
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Lyubich-Minsky C-laminations




Abstruct of Today's Talk

Riemann Surf. Lamin.
Topology/Geometry
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Natural Extension
Q Rational map:; f : C — C, deg f > 2

o A "
-« N — o — g - % "
<0 Z—1 Z—2 z_3  backward orbits

anverse limit: im(C, f) :{ 2= (20,2-1,...)" 20 €C, }
N fz—n — Z—n+1
CCxCx--- natural extension
Q Natural lifted action: f N Nf — lim(@, f)
right shift f2 = (fz0, f2-1,...) = (f20,20,...)
left shift F12:=(2_1,2_9,...) PN
projection T n(2) =24

semiconj. l T—n
g

f~C




"Regular” Backward Orbits
0 Ex. fz=2% 2= (20,2-1,...), 20# 0,00

20 Z:_1 ®22—2 =
O = T e <Ef©®®3
=D % backward univalent orbits

-
OEX. fz:zQ, Z=1(z0,21,...), 20=00roo

20 20 20 Z Z0)
D D@D

sinqular backward orbit

Q Definition: A backward orbit Z = (29, 2_1,...) is reqular if
there exists a nbd. U, of 2o st

eventually univalent



Regular Part

< Definition: The set of regular backward orbits in /s = lim(C, f)
is called the regular part R ;. T

0 Ex: Backward orbits in a repelling cycle: R ; regular pt.
In an attracting or parabolic cycle: Nf — R irregular pt.

O{Fact 1: The regular part Rf IS a "rough" Riem. surf. lamin. }
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Q Fact 2: The leaves are ~ C, I, or annuli (only Herman rings).
In particular, any leaf ~ C is dense in j\/f .

\
;

Q Fact 3: The action /| ™ R is a leafwise conformal homeo. = 5
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Affine Part: C-lamination

Q Definition: For future 3D extension (" C — {3 ") we denote
the union of leaves >~ C by A; , and call it the affine part.

Q Ex: Backward orbits in a repelling cycle are in A+ .

QEx:When fz = 2?, we have FfAaAd X f O 0

Ry = N — {0,50] , 'j \ »Sl
0 0
)

= lim(C*, f) = Ay

0(Proposition(Lyubich-Minsky):
If f is critically non-recurrent, then

_ _ o cyclic backward orbits in
Ry Af Nf { attracting/parabolic cycles }
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Deformation and Rigidity of
L-M Affine Parts (C-laminations)




Deformation of Hyperbolic Maps

0 A rational map f is called Hyperbolic if all critical points are
attracted to attracting cycles.

0 Consider a perturbation of Hyperbolic f in the space of
rational functions of the same degree >1.

0 Fact: For small enough perturbation f. of f, the dynamics
near the Julia sets are quasiconformally the same. (NOT
globally conjugate, because of superattracting cycles!)

0 Stable dynamics implies stable topology:

Theorem(K): For small enough perturbation f. of f, the
affine parts A rand A #.are quasiconformally homeomorphic.
(No matter how many superattracting cycles are!)
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Quadratic Maps: Cabrera’'s Theorem

O Let fez =22+ ¢ and foz = 22 + ¢ be hyperbolic quadratic
maps. If ¢ and ¢’ are in the same hyperbolic component of
the Mandelbrot set, then we have A. ~ 4., (qc homeo) by
previous Theorem (K). As we expect, the converse is true:

0 Topology determines the holomorphic dynamics!

Theorem(Cabrera): If there exists an orientation
preserving homeo. between A. and A., ¢ and ¢ must be
in the same hyperbolic component,

Cor 1: These laminations are actually gc homeo.

Cor 2: [f they have superattracting cycles, ¢ = c'.

0 Cf. Mostow's Rigidity: If two complete finite volume hyperbolic
3-manifolds are homeomorphic, then they are isometrically homeo.
(hence are quotients of conformally the same Kleinian groups). @]




Topology and Rigidity of
LM’'s C-lamination for
infinitely renormalizable
quadratic maps




Quadratic-like maps | Straightening

0 A Quadratic-like map g : U — V' is a proper holo. branched
covering of degree 2, like this:

q qgc-LENS 2 22 + C

7

conformal on the filled Julia

A technical assumption: The critical orbit never goes out by
iteration (This implies the connected filled Julia set.)

0 By Douady-Hubbard's Straightening Map, we may regard
the Q-like map 9 : U — V' as a deformed image of a
quadratic map z2 + ¢ with uniquely determined ¢ = ¢(g).



Renormalization | Combinatorics

AQ-like map g : U — V' is renormalizable if there exists
"sub-Q-like map" 91 = ¢"'| U1 — Vi like this:

g:U—=V DH-Straightening Z s 2%+ c(g)

C 0 M

g1=9"
Another technical assumptlon.
Renormalization "non-crossing"

&> By Douady-Hubbard's Tuning
Theorem, we can represent the
combinatorics by a uniquely

21— 2"+ 5(g,01)




Infinite Renormalization

0 A quad. map f.(z) = 2% + c is infinitely renormalizable if
there exist "nested-Q-like maps” {g, : U, — V,.},,-, like this:

(go=J.:C—C
gn+1 = g5 |Ups+1 renormaliazation with m,, > 2

0 The sequence of superattracting
parameters o(c) = (sg, S1,--.)
GO @ () given by s, = s(gn, gn+1)
IS called the combinarotics
of ¢ or fo(2) =2°+c.

{ | Question (Combinatorial Rigidity):
olc)=0(c) = c=c 7
(Comb. Rigidity <——MLC —> Hyperbolic Density)
|




Rigidity of Combinatorics

0 An infinitely renormalizable f.(z) = 2% + c has a priori
bounds when each level of the renormalization is separated
by a definite size (modulus) of annulus:

=) =) oo oo & )
oo oo oo oo oo oo

0 Proposition (Kaimanovich-Lyubich):
fe has a priori bounds — R_. = A, (C-lamination)

0 Topology of lamin. determines the combinatorics:

Theorem(Cabrera-K): |f f. and f. have a priori bounds
then: A.~ A. (homeo.) —> o(c) = o(c)

Cor: Plus, MLCat ¢ —> c=C [m




Structure Theorem

Q For the proof, we use the following theorem:

,
Structure Theorem(C-K): For infinitely renormalizable f.

with combinatorics o(c) = (so, s1,--.), its natural extension
supports a decomposion by blocks {By, i} and {W,, ;} as
follows: B, ; ~ A, ,

Whi,j & hin(C?fC(gn)) ) aWn,j ~ @(SlafO)

N ( |_| |_| Bn,i) L] ( |_| WN+1,j> forany N > 0

0<n<N 1<:i<p_

1<j<pn+1
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