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Introduction

This paper stems from notes of a course given at the “Ultrametric Dynamical Days”
in Santiago de Chile. The purpose of this course was to explain the compactifications of
spaces of representations, as this tool applies for questions in low-dimensional topology
and in hyperbolic geometry.

The use of methods from algebraic geometry for studying spaces of representations
originates in [10]. Marc Culler and Peter Shalen were motivated by questions from 3-
dimensional topology, in particular by the Property P (if K ⊂ S3 is a nontrivial knot and
Kp/q denotes the 3-manifold obtained by p/q-Dehn surgery along K, then the fundamental
group π1(Kp/q) is nontrivial when q 6= 0.) The theory of Culler and Shalen can be very
briefly summarized as follows. Let G be the fundamental group of the complement of an
hyperbolic knot. Let R(G) the set of representations of G into SL(2,C) and let X(G) the
quotient of R(G) by the action of SL(2,C) by conjugacy: both spaces are affine algebraic
sets defined over Q. A theorem of Thurston says that X(G) contains an irreducible
component which is an affine curve C. Let R be an irreducible component of R(G) above
C. Let Q(C) and Q(R) denote the fields of rational functions on C and on R respectively.
Any point at infinity of C can be interpreted as a valuation on Q(C). There is also
a “tautological” representation of G into SL(2,Q(R)). A classical construction due to
Serre associates to such a valuation v a simplicial tree with an action of SL(2,Q(R)), and
therefore with an action of G. Transversality constructions permit then to deduce an
incompressible surface in the knot complement. The surfaces obtained on that way give
important topological informations on the knot. For instance one important achievement
of this theory is the Cyclic Surgery Theorem of Culler et al. [8]: if surgery on a nontrival
knot produces a manifold with cyclic fundamental group, then the surgery slope is an
integer.

This interpretation of the points at infinity of C was extended by John Morgan and
Peter Shalen when G is a general finitely generated discrete subgroup of SL(2,C) to define
a compactification of X(G) [17]. It led first to a new proof of the following Compactness
Theorem of Thurston. Let G denote the fundamental group of an acylindrical hyperbolic
3-manifold with incompressible boundary (in terms of the limit set of a convex cocompact
model of the manifold, these hypothesis simply mean that this limit set is connected
and cannot be disconnected by removing two points). Denote by DF(G) the space of
discrete and faithfull representations up to conjugacy of G into SL(2,C). Then DF(G)
is compact. The approach of Morgan-Shalen of this fundamental result can be sketched
as follows. They argue by contradiction and consider an irreducible component C of
X(G) such that C ∩ DF(G) is not compact. To an unbounded sequence (xi) in this
intersection, they associate a valuation v on Q(C). Since C is not a curve in general,
v is not necesarily discrete: its value group is a totally ordered abelian group Λ. The
Serre construction can be adapted to this situation and produces a Λ-tree Tv. When Λ
is isomorphic to Z, this is an equivalent notion to that of a simplical tree; when more
generally Λ is archimedean, this determines a R-tree. When Λ is not archimedean, it
has always a non-trivial archimedean quotient and a non-trivial R-tree T can always be
determined from Tv. The group G acts by isometries on T minimally and furthermore
with the property that any subgroup which stabilizes a non degenerate segment is virtually
abelian. The proof by Morgan-Shalen of Thurston’s Compactness Theorem reduces then
to the theorem from the domain of R-trees that no action with property exists when G
is the fundamental group of an hyperbolic 3-manifold which is boundary-incompressible
and acylindrical. They proved this using tools from 3-dimensional topology and foliations.
This theorem has been now widely generalized by Eliyahu Rips beyond the context of 3-
manifolds [2] [25] under the hypothesis that G is not an amalgamated product over a
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virtually abelian subgroup. Morgan and Shalen applied also their theory to the case
when G is the fundamental group of a closed surface S. Then some component of the
space of real points of X(S) can be identified with the Teichmüller space of S. Their
construction gives a compactification where the points at infinity correspond to actions
of π1(S) on R-tree with the property that the subgroups which stabilize non-degenerated
segments are cyclic. Such a tree is isometric to the dual tree to a measured lamination
on S ([17], [16], [31]). Thus their theory offered a different perspective on Thurston’s
compactification of Teichmüller space by measured laminations.

The paper is organized as follows. In chapter 1 we describe, following Culler-Shalen,
the explicit structure of an affine algebraic set on the space of characters of a group
finitely generated group G. Then we describe the general construction of Morgan-Shalen
of particular compactifications of affine algebraic sets.

In chapter II, we recall classical properties of valuations and we explain the general
procedure of Morgan-Shalen for associating to any unbounded sequence of points on an
affine algebraic variety X defined over Q a valuation on Q(X).

Chapter III presents certain basic properties of Λ-trees. These are metric spaces which
share many common properties with R-trees but the distance takes value in an abelian
totally ordered group Λ. The basic examples are provided by the Bass-Serre tree of
SL(2, F ) when the field F is endowed with a valuation with value group Λ.

In Chapter IV, we explain how Morgan and Shalen interpret the valuation v on the
Q(X) associated in chapter II to an unbounded sequence (xi) on X, one component of
the space of characters of a group G: the actions of G on H3 converge (in an appropriate
sense) to an action by isometries of G on a Λ-tree (this tree is a subtree of the Bass-Serre
tree of SL(2, F ) with the valuation v). When the sequence (xi) consists of characters of
discrete representations of G, the action has the important property that any subgroup
which stabilizes a non degenerate segment is “small”, i.e. contains an abelian subgroup
of finite index.

Chapter V exhibits geometric examples of Λ-trees: they arise from codimension 1 lam-
inations of a closed manifold with a “Λ-valued transverse measure”. We sketch the proof
of the theorem of Skora that any minimal action of a surface group on an R-tree such
that the segment stabilizers are small is geometric.

The presentation given here follows closely the papers [10] and [17]. There are other
approaches of the convergence of sequences of representations of a group to an action of
the group on a tree: Betsvina [1] and Paulin [24] for a geometric proof of the convergence
to an R-tree in much borader context, [6] for a proof using non standard analysis of the
convergence to a Λ-tree.

I thank Jan Kiwi and Charles Favre for the invitation to give a course to the “Ultra-
metric Dynamics Days”. Many thanks also to Charles for his numerous comments to the
first version.

Notations. Throughout this paper we follow the conventions of [12, Chapter 1]. We let
An

C be the standard complex affine space of dimension n. Its ring of regular functions
is C[X1, ..., Xn], and the set of its complex points is Cn. An affine variety X is an
irreducible algebraic subspace of some An

C. Its set of complex points XC = X(C) is in
bijection with the zero locus of a finite family of polynomials P1, ..., Pk ∈ C[X1, ..., Xn].
When all polynomials have coefficients in a field k ⊂ C, one says that X is defined over
k.



4 JEAN-PIERRE OTAL

1. The space of characters of a group

We first review the construction of the space of representations of a finitely generated
group G into SL(2,C) as an affine algebraic set. We follow Culler-Shalen for the presenta-
tion of the space of characters of G, which is an explicit model for the algebraic quotient
of the space of representations and make then a link between the two presentations. We
then describe the Morgan-Shalen compactification of a general affine variety.

1.1. The space of characters as an affine algebraic set.
Definitions. Let G be a finitely generated group generated by n elements.

Denote byRC(G) the set of representations (i.e. of group morphisms) of G into SL(2,C).
Each point in RC(G) is determined by its value on the elements of a generating family of
G, that is by a point in (SL(2,C))n which is an algebraic subset of the affine space A4n

C .
The points in RC(G) hence naturally form an affine algebraic set R(G) defined by the
vanishing of a family of polynomials with integer coefficients. In this way, R(G) can be
identified with an affine algebraic set defined over Q. This algebraic set does not depend
on the particular choice of a generating family: different choices of generating systems
lead to isomorphic algebraic sets.

In the sequel we shall be interested in the quotient of R(G) under the action of SL(2)
by conjugacy, that is its quotient where one identifies any two representations ρ1 and ρ2

when ρ2 = M ◦ ρ1 ◦M−1 for M ∈ SL(2). This quotient space has a natural algebraic
structure. We will first describe the explicit construction due to Culler and Shalen of the
space of characters. Then we will indicate how this construction enters the general theory
of algebraic quotients.

For each g ∈ G the function R(G) → C, ρ 7→ tr(ρ(g)) is a regular function on R(G),
that is an element of the ring Q[R(G)].

Proposition 1. The ring Q[tr(ρ(g)), g ∈ G] is finitely generated.

Proof. The proposition follows from the classical identity satisfied by all A,B ∈ SL(2,C) :
tr(AB) + tr(AB−1) = tr(A)tr(B). �

Definition 2. Choose a set of generators (Xi) of Q[tr(ρ(g)), g ∈ G], Xi = tr(ρ(gi)),
i = 1, ...N . For any element g ∈ G, we denote Tg the polynomial in the variables Xi such
that tr(ρ(g)) = Tg(X1, · · · , XN). Consider the regular map t : R(G) → CN , ρ 7→ t(ρ) =
(Xi(ρ)): its image, denoted by X(G), is the space of characters of G.

The space of representations R(G) is clearly an affine algebraic set defined over Q; the
same property holds for the space of characters.

Proposition 3. [17] The space X(G) is an algebraic set defined over Q.

Before starting the proof we recall a few definitions.
Reducible representations. A representation ρ : G→ SL(2,C) is reducible when there
exists a 1-dimensional subspace of C2 that is invariant by any element of ρ(G). This is
equivalent to saying that the representation can be conjugated to take value in the group
of upper-triangular matrices. Recall that the group of isometries of the hyperbolic space
H3 is isomorphic to PSL(2,C). In the model of the upper half-space, the ideal boundary
of H3 is identified to C ∪ {∞} ' CP 1 with its natural conformal structure. On this
boundary, PSL(2,C) acts by Möbius transformations. The group SL(2,C) also acts on
H3 via the quotient map SL(2,C)→ PSL(2,C). In terms of the action of SL(2,C) on H3

a representation ρ : G → SL(2,C) is reducible if and only if ρ(G) has a fixed point in
CP 1.
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Lemma 4. A representation ρ ∈ R(G) is reducible if and only if for any element g in
the commutator subgroup [G,G], one has tr(ρ(g)) = 2.

Proof. Since a reducible representation is conjugated to a group of upper-triangular
matrices, the trace of any element in ρ([G,G]) is equal to 2.

Conversely suppose that each element of ρ([G,G]) has trace equal to 2. Suppose also
that this group is not reduced to the identity element Id (if not ρ(G) would be abelian and
would then leave a one-dimensional subspace). Let h ∈ ρ([G,G]), h 6= Id; since tr(h) = 2,
h leaves invariant a unique point p ∈ CP 1. If any element of ρ([G,G]) leaves p invariant,
then p is also invariant by the entire group ρ(G), since ρ([G,G]) is a normal subgroup.
Thus we can suppose that some element k of ρ(G) does not fix p. Then k and h are two
parabolic elements which fix distinct points of CP 1. The Ping-pong Lemma (see [26])
produces then an element of < h, k > which is hyperbolic, and in particular has a trace
6= 2. �

Lemma 4 says that the set of the characters of reducible representations is the algebraic
subset defined by the vanishing of the polynomials Tg − 2 for g ∈ [G,G].

The proof of Proposition 3 is based essentially on the following result of independent
interest.

Proposition 5. Let (ρi) be a sequence of representations in RC(G). Suppose that for
any g ∈ G, the sequence (tr(ρi(g))) is bounded. Then one can conjugate ρi so that the
sequence (ρi) is bounded, i.e. for all g ∈ G, (ρi(g)) stays in a compact set of SL(2,C).

Proof. It is sufficient to deal with the following two different cases: either all represen-
tations are reducible or they are all irreducible.

— Suppose we are in the first case. By conjugating each ρi by a suitable matrix,
we may also assume that all representations take their values in the subgroup of upper-
triangular matrices. By assumption, for each element g of G, the diagonal terms of ρi(g)
are uniformly bounded. Conjugating ρi by a suitable diagonal matrix, one can also get
a uniform bound on the upper-right term of ρi(g) also. Applying this to a finite set of
generators gj of G, one concludes that up to conjugacy the family (ρi(gj))i,j is bounded,
thus proving Proposition 5 in this case.

—Suppose now that each representation ρi is irreducible. We proceed by induction on
the number of generators of G and use the geometric action of SL(2,C) on H3.

Pick g ∈ PSL(2,C), R ≥ 0, and denote by CR(g) the following subset of H3:

CR(g) = {x ∈ H3| d(x, gx) ≤ R} .

Each set CR(g) is closed, convex and invariant under the normalizer of g in PSL(2,C).
Therefore CR(g) can be described as follows when g 6= Id. If g is hyperbolic CR(g) is a
neighborhood of constant radius of the axis of g. In the model of the upper half space,
and if the axis of g points towards infinity, then CR(g) is a circular cone based at the
finite endpoint of the axis. When g is parabolic CR(g) is an horoball centered at the fixed
point of g on ∂H3; when g is elliptic CR(g) is a neighborhood of constant radius of the
(axis of) fixed points of g. We shall make use of the following observation.

Claim 6. For x ∈ ∂CR(g), the geodesic segment x.gx is contained in CR(g) and makes
an angle with ∂CR(g) which tends to π/2 as R → ∞; furthermore, this convergence is
uniform in g, as long as the modulus of tr(g) is bounded from above.

Suppose that G is generated by n elements g1, ..., gn. Saying that a sequence of rep-
resentations ρi : G → SL(2,C) can be conjugated inside SL(2,C) to become bounded is
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equivalent to the existence of a constant R > 0 such that the intersection of the neighbor-
hoods CR(ρi(gj)) is non-empty: CR(ρi(g1), ..., ρi(gn)) = ∩jCR(ρi(gj)) 6= ∅. To see that,
pick for each i a point pi in this intersection and conjugate ρi by an element of PSL(2,C)
mapping pi to the origin in H3. Then all isometries ρi(gj) belong to a compact set of
PSL(2,C).

We now observe that each set CR(g1, · · · , gk) is convex since each CR(gj) is. The
boundary of CR(g1, · · · , gk) is also contained in the union of the boundaries of the tubes
CR(gj). Suppose that Proposition 5 has been proven for all groups generated by ≤ n− 1
elements, and let G be a group generated by n elements g1, ..., gn. By the induction
hypothesis there is an R > 0 such that CR(ρi(g2), · · · , ρi(gn)) and CR(ρi(g1)) are non-
empty. Using Claim 6 and the fact that the traces are bounded, we may also choose R
sufficiently large so that the angles between x.ρi(gj)x and ∂CR(ρi(gj)) are uniformly close
to π/2 for all x ∈ ∂CR(ρi(gj)).

For any i, set di = inf{d(x, y)|x ∈ CR(ρi(g1)), y ∈ CR(ρi(g2), · · · , ρi(gn))}. Let us
first show that for all i this infimum is attained. Pick xk ∈ CR(ρi(g1)) and yk ∈
CR(ρi(g2), · · · , ρi(gn)) such that d(xk, yk) tends to di. Suppose, by contradiction, that
di is not a minimum. Then xk and yk tend to ∞ in H3. Up to extracting a subsequence
we may assume that they converge in H3∪∂H3 to the same limit x. Since xk ∈ CR(ρi(g1)),
x = limk xk is fixed by ρi(g1). In the same way yk ∈ CR(ρi(gj)) for j ≥ 2, hence x is fixed
by all ρi(gj)’s for j ≥ 2. We conclude that x is fixed by ρi(G), hence the representation
ρi is reducible, contradicting the hypothesis.

We may thus find points ei ∈ CR(ρi(g1)) and fi ∈ CR(ρi(g2), · · · , ρi(gn)) such that
di = d(ei, fi).

If the sequence (di) is bounded, say less than A, then CR+A(g1, · · · , gn) is non-empty
which proves Proposition 5 in that case.

Suppose that di tends to ∞. Denote by ki the geodesic in H3 with endpoints ei
and fi. Since the boundary ∂CR(ρi(g1)) is smooth, ki is orthogonal to ∂CR(ρi(g1)) at
ei, by the first variation formula. The tangent vector to ki at ei is thus equal to the
outward-pointing normal to ∂CR(ρi(g1)). Observe that the hyperplane orthogonal to ki
at fi separates H3 into two half-spaces, one of which contains ki, and the other contains
CR(ρi(g2), · · · , ρi(gn)). This implies that the tangent vector to ki at fi makes an angle
smaller than π/2 with the inward-pointing normal of CR(ρi(gj))’s for some j ≥ 2, say of
CR(ρi(g2)).

Consider the piecewise geodesic γ which is the concatenation of the four geodesics
ρi(g

−1
1 )ei.ei, ki, fi.ρi(g2)fi and ρi(g2)ki. The choice of R implies that for any x ∈

∂CR(ρi(gj)), the geodesic x.ρi(gj)x is almost orthogonal to CR(ρi(gj)) at its endpoints. In
particular, the angles of two consecutive geodesic segments of γ are almost flat. The same
remark implies that the union of the segments ρi(g1g2)l(γ), l ∈ Z is a quasi-geodesic. This
quasi-geodesic is invariant under ρi(g1g2) with fundamental domain γ. It is a classical re-
sult [26] that in these circumstances ρi(g1g2) is an hyperbolic element of PSL(2,C) with
translation distance comparable to the length of γ. Since di tends to ∞ this contradicts
that the trace of ρi(g1g2) is bounded. �
Proof of Proposition 3. The algebraic set X(G) is the union of the images of the
irreducible components of R(G) by the polynomial map t. We show that the image of
any irreducible component is an algebraic variety defined over Q. We use the following
classical result from Elimination Theory (cf. [22]).

Lemma 7. Let S ⊂ Cn be an algebraic variety defined over a field k ⊂ C and P : S →
Cq be a polynomial map with coefficients in k. Then the Zariski closure P (S) of the
image P (S) is an algebraic variety defined over k and there is an algebraic set W strictly

contained in P (S) such that P (S) ∪W = P (S).
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To show that X(G) is an algebraic set, it suffices to prove that for each irreducible

component R0 of R(G), the algebraic set W = t(R0) − t(R0) provided by Lemma 7 is
empty. Let x ∈ W . Let (xi) be a sequence in t(R0) which converges to x. There is a
sequence (ρi) in R0 with t(ρi) = xi. By Proposition 5, we can conjugate ρi so that some
subsequence of (ρi) converges to a representation ρ∞. By continuity t(ρ∞) = lim t(ρi) = x.
Therefore x ∈ t(R0). �

Relations with the Geometric Invariant Theory.
Another way to describe the algebraic structure of the quotient of R(G) under the

action of SL(2) relies on Geometric Invariant Theory (cf. [21]). The group SL(2) is
reductive and acts rationally in the sense of [21] on R(G). By a theorem of Hilbert
the ring Q[R(G)]SL(2) of regular functions on R(G) which are invariant by SL(2) is thus
finitely generated. It is the ring of regular functions of an algebraic variety over Q which
we denote by R(G)//SL(2). The canonical map R(G) → R(G)//SL(2) which is dual
to the inclusion of coordinates rings is onto: this is a particular case of a theorem of D.
Mumford [21]. The complex points of R(G)//SL(2) are in bijection with the closed orbits
of SL(2,C) in RC(G). It is important to note that it is possible that two representations
in R(G) are not conjugated one to another, but are mapped however to the same point
in R(G)//SL(2). This is the case for instance (when G =< g >) for representations of
the form:

ρ1(g) =

(
λ(g) b(g)

0 λ−1(g)

)
and ρ2(g) =

(
λ(g) 0

0 λ−1(g)

)
,

the representation ρ2 is in the closure of the SL(2)-orbit of ρ1.
In our case the ring of invariant regular functions is generated by the traces, i.e.

Q[R(G)]SL(2) = Q[tr(ρ(g)), g ∈ G] [17]. Let Xi = tr(ρ(gi)) for i ≤ N , be a basis of
this ring (cf. Proposition 1). Let I be the ideal generated by all polynomials P in N
variables such that ρ 7→ P (tr(ρ(g1)), ..., tr(ρ(gN))) is identically zero. Then R(G)//SL(2)
is isomorphic to the algebraic subset of AN

C , Y (G) = {(Xi)|P (X1, ...., XN) = 0,∀P ∈ I}.
Clearly X(G) ⊂ Y (G) and the trace map t is equal to the canonical map. It follows from
the Mumford Theorem quoted above that X(G) = R(G)//SL(2).
Remark. In general R(G) is reducible and the dimension of its irreducible components
may vary. The Hyperbolic Dehn Surgery Theorem of Thurston states (among other
things) that if G is the fundamental group of a finite volume hyperbolic manifold with k
boundary components, then one irreducible component of X(G) is k-dimensional. This
component actually coincides with the set of all discrete and faithfull representations
DF(G). But one can construct examples where the group G maps onto the free group
F2 with two generators. Since any representation of F2 induces a representation of G we
have an inclusion of X(F2) into X(G) and its image is a component disjoint from DF(G).

1.2. The tautological representation of G.
This representation will be an important tool in Chapter 4 for the construction of trees.
We identified representations of G → SL(2,C) with the complex points in the affine

algebraic set R(G). Fix an element of g ∈ G, and consider the matrix

ρ(g) =

(
ag(ρ) bg(ρ)
cg(ρ) dg(ρ)

)
.

The coefficients of this matrix are polynomials with integers coefficients in the coordi-
nates of the affine space (A4)n which contains the algebraic set R(G). Therefore ρ(g)
is an element of SL(2,Q[R(G)]). The map g → ρ(g) defines a representation of G into
SL(2,Q[R(G)]), called the tautological representation. IfR0 is an irreducible component of
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R(G), we have an obvious restriction map Q[R(G)]→ Q[R0]. We can therefore consider,
for each irreducible component, the representation of G with values in SL(2,Q[R0]). It will
be more convenient in the applications to think of it as a representation into SL(2,Q(R0)).

1.3. A compactification of affine algebraic sets.
Let X ⊂ AN

C be an affine algebraic set defined over a countable field k ⊂ C. Let k[X]
be the ring of the regular functions on X: it is a countable set. Let F ⊂ k[X] denote any
finite or countable set which generates k[X] as a ring.

Notations. Consider the direct product [0,∞[F with its product topology. The projective
space PF is defined as the quotient of [0,∞[F−{0} by the equivalence relation which
identifies any sequence (tf ) with the sequence (αtf ) for α ∈ R∗+. We denote by π the

natural projection π : [0,∞[F−{0} −→ PF .
Define a map θ0 : X → [0,∞[F by sending x to θ0(x) = (log(|f(x)|+ 2))f∈F , and write

θ = π ◦ θ0. The projective space PF is not compact, however the following holds:

Proposition 8. The closure of the image θ(X) in PF is compact and metrizable.

Proof: This is a consequence of the next easy fact.

Claim 9. Let h1, · · · , hm ∈ F be a finite set of functions which generate k[X]. Then for
any f ∈ F , there is a constant cf such that

log(|f(x)|+ 2) ≤ cf max log(|hj(x)|+ 2).

Therefore θ̃(x) = θ0(x)/max log(|hj(x)|+ 2) is contained in the product [0, cf ]
F , which

is compact and metrizable. In particular, θ̃(F) has compact closure in [0,∞[F . This

closure does not contain the point {0}: indeed by definition of θ̃, one of the coordinates

of θ̃(x) with index 1, · · · ,m is equal to 1. Since θ(X) = (π ◦ θ̃)(X), the closure of θ(X)
in PF is thus compact and metrizable. �

Notice that the closure θ(X) might not be a compactification of X since θ : X → PF
is in general not injective. In order to avoid this difficulty we introduce the one-point-
compactification X̂ of X and take the fibered product. Concretely let us define θ̂ : X →
X̂ × PF by θ̂(x) = (x, (π ◦ θ)(x)). The map θ̂ is clearly injective. The closure of θ̂(X) in
X × PF is then a metric space which contains a dense open subset homeomorphic to X.

Definition. The compactification of X associated to the family F is X
F

= θ̂(X). The

boundary of X in X
F

is by definition BF(X) = θ̂(X)−X and can be identified with the
set of cluster values of θ(X) in PF .

Example. Although we shall be more interested in the case where F is countable, the
following simple example sheds some light on the general structure of the compactification
described above. Take X = Cn, and let F = {X1, ..., Xn} be a set of coordinates. Then
PF is naturally homeomorphic to the set of (si) ∈ [0, 1]n such that max s1 = +1: it is
a piecewise real affine space of dimension n− 1 homeomorphic to the closed unit ball in

Rn−1. The map θ is surjective but not injective. The space X
F

is homeomorphic to the
sphere of real dimension 2n.

1.4. Thurston’s compactification of Teichmüller space.
The previous compactification can be compared with Thurston’s compactification of

Teichmüller space. Fix a hyperbolic surface S of finite volume and consider its Teichmüller
space TS. It is the set of orientation-preserving homeomorphisms φ : S → S ′ where S ′ is
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a hyperbolic surface of finite volume modulo the equivalence relation (S1, φ1) ' (S2, φ2)
when φ2 ◦ φ−1

1 : S1 → S2 is isotopic to an isometry.
Now choose a base point in S, and consider the fundamental group π1(S). One has

a natural map from T (S) to the set of real points in XR(π1(S)) which is constructed
as follows. Pick a point (S ′, φ) ∈ T (S). Take a universal cover H → S ′ by the upper
half-plane. Then π1(S ′) acts by isometries on H, giving us a representation of π1(S)
into PSL(2,R). Note that changing the universal cover or the base point amounts to
conjugate the representation. Also this representation lifts to a representation with values
in SL(2,R), so that we get a well-defined map from T (S) to XR(π1(S)), the real points of
R(π1(S))//SL(2). This map is injective and it is a theorem that when S is compact, TS
is isomorphic to a connected component of XR(π1(S)); when S has finite volume, T (S)
gets identified with a connected component of an analytic subset of XR(π1(S)), defined
by the equality of the traces of ρ(g) to ±2 for all punctures of S.

Consider now the collection S of all homotopy classes of simple closed curves on S.
There is a natural map θ : XR(π1(S)) → PS , defined like in section 1.3 whence a map
θT : TS → PS .

One can construct another map L : T (S) → PS as follows. Fix σ = (S ′, φ) ∈ T (S),
and let σ be the pull-back by φ of the Poincaré metric on S ′. For any γ ∈ S, we
denote by lengthσ(γ) the shortest length on S ′ of a representative of the homotopy class
φ(γ). Set L(σ) = (lengthσ(γ)). One can prove that this map is injective and that its
image is relatively compact in PS . The set L(T (S)) is Thurston’s compactification of the
Teichmüller space of S.

Pick a point σ ∈ T (S) and consider the representation ρ : π1(S)→ SL(2,R) associated
to it. Then for any γ ∈ S, one has:

c1 lengthσ(γ) ≤ log(|tr(ρ(γ))|+ 2) ≤ c2 lengthσ(γ),

the constants c1 and c2 being independent of σ and γ. Therefore the boundary of L(TS)
in PS coincides with the boundary of θT (TS).

2. The compactification of an affine algebraic variety by valuations.

Morgan and Shalen have shown that points in the boundary BF(X) of the compact-
ification of the previous chapter can be described in terms of valuations on the field of
rational functions k(X). We first recall some elements of valuation theory and then prove
their result, Proposition 17 below.

2.1. Valuations.
For any field k, write k∗ = k \ {0}.

Definition. Let F/k be a field extension. A valuation on F/k is a group homomorphism
v : F ∗ → Λ where Λ is an ordered abelian group such that

(i) for all f , g ∈ F ∗, such that f + g ∈ F ∗, then v(f + g) ≥ min(v(f), v(g)); and
(ii) the restriction v|k∗ = 0.

The group Λ is called the value group of v.
Two valuations v : F ∗ → Λ and v′ : F ∗ → Λ′ are equivalent if there is an isomorphism

of ordered groups i : v(F ∗)→ v′(F ∗) such that v′ = i ◦ v.

Let v be a valuation on K/k. The valuation ring of v is

ov = {f ∈ F | f = 0 or v(f) ≥ 0}.
It contains the field k and possesses a unique maximal ideal

mv = {f | f = 0 or v(f) > 0}.
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The subadditivity property (i) has the following consequence. If f1, · · · , fn are elements
of F ∗ such that the minimum of the valuations v(fi) is reached by a single function fj,
one has : v(f1 + · · · + fn) = v(fj). One deduces from this that if a non-trivial sum

∑
fj

is 0, then there exist two distinct indexes k and l such that v(fk) = v(fl).
We give examples of valuations in section 2.4 below. There are three basic invariants

attached to a valuation of F/k.
The rational rank of a valuation. This is the dimension of the Q-vector space Q⊗Λ,
and is denoted by rat.rk(v). The last remark in the paragraph above implies that rat.rk(v)
is bounded from above by the transcendence degree of the extension F/k.
The rank of a valuation. Let Λ be an ordered abelian group. A subgroup Λ′ of
Λ is said to be convex if for all x > 0 in Λ′ the interval [0, x] = {0 ≤ y ≤ x} is
contained in Λ′. When Λ is finitely generated, its convex subgroups form a finite sequence
Λ0 = {0} ⊂ Λ1 ⊂ · · · ⊂ Λr = Λ. The integer r is called the rank of v and is denoted
by rk(v). By induction, one proves that r is less than the rational rank of v. Each
successive quotient group Λj+1/Λj carries a natural order relation, the quotient ordering
and is archimedean for that ordering, i.e. when x and y are > 0 then there is n > 0 such
that ny > x. It is well-known that any archimedean totally ordered group is isomorphic
to a subgroup of R. The isomorphism is well-defined up to multiplication by a positive
real number. In particular any valuation of rank 1 is equivalent to a valuation taking
values in R.
The transcendence degree of a valuation. The quotient of the valuation ring ov
by its unique maximal ideal mv is a field kv called the residue field of v, which naturally
contains k. The transcendence degree of v is by definition the transcendence degree of the
field extension kv/k, and is denoted by deg.tr(v). It is also bounded from above by the
transcendence degree of F/k.

Abhyankar inequality. Although we shall not use it in the sequel, we mention that
the three invariants above satisfy the following fundamental inequality which is usually
referred to as Abhyankar inequality:

rk(v) + deg.tr(v) ≤ rat.rk(v) + deg.tr(v) ≤ deg.tr(F/k) .

This inequality is actually valid in a much broader context of ring extensions. For fields
it is due to Zariski. The case of equality in the inequalities above is realized by valuations
of simple nature. We refer to [, ] for a geometric description of these valuations.

Places. Let v be a valuation of F/k. If f /∈ ov then v(f) < 0; therefore 1/f ∈ mv. This
motivates the following definition.
Definition. A place of F/k is the data of a ring o ⊂ F containing k and a maximal ideal
m ⊂ o such that if f ∈ F and f /∈ o, then 1/f ∈ m.

Remark. The notions of place and valuation are equivalent. The valuation ring of a
valuation is a place. Conversely, for any place there is a valuation v such that ov = o, and
this valuation is unique up to equivalence. One can indeed prove that Λ = F ∗/(o−m) is an
ordered (multiplicative) abelian group [37, p. 35]: positive elements are in bijection with
cosets m(o−m), with m ∈ m∗. The valuation v is the quotient map F ∗ → F ∗/(o−m).

However even if both concepts equivalent, they offer two different perspectives on the
same object. A place m ⊂ o of F/k determines an homomorphism of o to a field, namely
to the field o/m. Viewed on this way a place can be compared with the “evaluation of a
function at a point”; it assigns to f ∈ F an element in o/m if f ∈ o or ∞ if f /∈ o. While
the valuation associated to this place rather measures “the order of vanishing of f at the
same point”.
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2.2. The Riemann-Zariski space of F/k.

Definition 10. Let F/k be a field extension. The Riemann-Zariski space of F/k is the
set V(F/k) of valuations on F/k. We put on V(F/k) the topology generated by the open
sets {v| v(f) ≥ 0} as f ranges over F ∗.

Theorem 11. The Riemann-Zariski space of F/k is quasi-compact: from any open cover
one can extract a finite cover.

Note however that the Riemann-Zariski space of F/k is never Hausdorff except when
F has transcendence degree 1 over k.
Proof [33]. Consider the product of discrete spaces Z = {−, 0,+}F ∗ with the product
topology of the topologies whose open sets are ∅, {−, 0,+} and {0,+}. The Riemann-
Zariski surface V(F/k) can be mapped into Z using the map v → (s(f))F ∗ where s(f) is
the sign of v(f). This map is injective and its image is a closed set. One concludes using
Tychonoff’s Theorem. �
Remark. The definition of the Riemann-Zariski space and Theorem 11 are due to Za-
riski [36]. It is an interesting fact that the Zariski topology (for algebraic set) was in
fact designed to prove the aforementioned theorem. For the same reason, Zariski was
naturally led to enrich the set of points of a fixed algebraic set in order to include all
irreducible subvarieties as well. This feature is a characteristic of scheme theory, and was
later formalized by Grothendieck in a much broader context.

The center of a valuation on a projective model.
Notations. Let us first review some basic aspects of complex algebraic geometry as
developed in [12, Chapter 1].

A projective variety V ⊂ CPN is by definition the set of common zeroes of all polyno-
mials lying in a fixed prime homogeneous ideal IV of the ring of homogeneous polynomials
in N+1 variables. In other words, it is an irreducible closed subset of CPN endowed with
its Zariski topology. The function field of V is the quotient ring of the ring of rational
functions P/Q, where P and Q are homogeneous of the same degree and Q /∈ IV by the
ideal of the functions P/Q with P ∈ IV . We denote it k(V ).

Let V,M be any two projective varieties. Then V ⊂ M if and only if IM ⊂ IV . We
denote by oV the subring of k(M) which consists of all rational functions P/Q with P
and Q /∈ IV . This ring is called the local ring of M at V . Its maximal ideal mV consists
of rational functions P/Q, with P ∈ IV . The quotient oV /mV is isomorphic to k(V ), the
function field of V .

Let F/k be any extension of finite transcendence degree. Suppose that k is a subfield of
C. A projective model of F/k is a pair (M, i) where M is a projective variety M ⊂ CPN

defined over k and i : k(M)→ F is an isomorphism between the field of rational functions
k(M) and F .

We now explain the definition of Zariski [35, p. 497] of the center of a valuation on the
function field of a variety.

Lemma 12. Let M be a projective variety and let v be any non-trivial valuation on
k(M)/k. Then, there exists a unique proper variety W ⊂ M whose valuation ring and
maximal ideal satisfy : oW ⊂ ov and mW ⊂ mv.

The variety W = WM,v is called the center of the valuation v in M .
Proof. Let (X0, · · · , XN) be a system of homogeneous coordinates of the projective space
which contains M . Consider a coordinate function X = Xi which is minimal in the sense
that v(Xj/X) ≥ 0 for all j = 0, · · · , N .

Since v is a valuation on k(M)/k, for each homogeneous polynomial P of degree m,
one has v(P/Xm) ≥ 0. Now define the subset I ⊂ k[X0, · · · , XN ] containing 0 and all
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polynomials P such that v(P/Xm) > 0 with m equal to the degree of P . Then I is an ideal
that contains IM . It is even a prime ideal since if P and Q are homogeneous polynomials
with respective degrees r and s such that v(PQ/Xr+s) > 0, then either v(P/Xr) > 0
or v(Q/Xs) > 0. It contains IM strictly since v is a non-trivial valuation. So there is a
proper variety W ⊂M such that I is the defining ideal IW of W .

Let P/Q ∈ oW . Then v(P/Xd) + v(Xd/Q) ≥ 0 since Q /∈ IW . Therefore oW ⊂ ov. The
same argument shows that mW ⊂ mv.

For the uniqueness, let W ′ ⊂ M be any variety such that oW ′ ⊂ ov and mW ′ ⊂ mv.
Then for any P and any Q /∈ IW ′ both of degree d, one has v(P/Xd) + v(Xd/Q) ≥ 0,
hence v(Xd/Q) ≥ 0. By the definition of IW , we infer Q /∈ IW , thus W ′ ⊂ W . Suppose
W 6= W ′. Then one can find a homogeneous polynomial P in IW ′ but not in IW . The
rational function P/Xd ∈ mW ′ has positive valuation, but the valuation of its inverse
Xd/P is also non negative, since this element lies in oW . This is impossible. Therefore
W = W ′. �
Remark. Any rational function f = P/Q ∈ F = k(M) defines a regular map with values
in CP 1 outside the intersection of the zero loci of P and Q. This intersection is called the
indeterminacy locus of f . When this locus does not contain the center W of v in M , then
f ∈ ov if and only if f takes finite values on an open set of W ; and f ∈ mv if and only if
f vanishes on a Zariski open subset of W . Note that when the indeterminacy locus of f
contains W one cannot see directly whether or not f belongs to ov.

The inverse system of the projective models of F/k.
We now suppose that X is an affine variety defined over k and set F = k(X). Two

models (M, i) and (M ′, i′) of F/k are said to be equivalent if and only if there is an
isomorphism M → M ′ which induces the isomorphism i ◦ (i′)−1 between the function
fields k(M) and k(M ′). We denote byM the set of equivalence classes of models of F/k.
Given any two models M and M ′, there is a birational map which induces i′ ◦ (i)−1 on
the function fileds: we denote this map by jM ′,M : M ′ → M . The set M thus carries a
natural partial order, defined by (M, i) ≤ (M ′, i′) when jM ′,M is a regular map. When
(M, i) ≤ (M ′, i′), we say then that M ′ dominates M .

In order to state and prove properly Theorem 13 below it is necessary to work with the
scheme-theoretic description of the variety associated to M . Concretely this amounts to
replacing M by the set of all its proper subvarieties which are defined over k, and put the
Zariski topology on this set (a closed set consists in all proper subvarieties included in
a fixed algebraic subset of M). To lighten notations we keep the same letter M for this
object. Note that a subvariety is now a point.

If (M, i) ≤ (M ′, i′) the regular map jM ′,M : M ′ → M is continuous for this topology.
So we can consider the projective limit M = lim←−MM with the projective limit topology.
A point w ∈ M is the data for each M ∈ M of a subvariety WM ⊂ M such that
whenever M ≤ M ′, then the regular map jM ′,M : M ′ → M maps WM ′ to WM . The set
of subvarieties of M with the Zariski topology is quasi-compact. Therefore the projective
subset M, as a closed subset of the direct product of all models of F is quasi-compact
also. The following theorem is due to Zariski (cf. [37]).

Theorem 13. The projective limit M is homeomorphic to the Riemann-Zariski space V
of k(X)/k.

Proof. one can define a natural map W : V → M as follows. Pick a valuation v ∈ V ,
and for each projective model M , consider the center WM,v of v in M . Suppose that M ′

dominates M . Then jM ′,M is regular and maps WM ′,v to a subvariety W ⊂M . The local
ring oW is mapped to the local ring of WM ′,v and its maximal ideal mW is mapped to the
maximal ideal of WM ′,v. By the characterization of the center given in Lemma 12, one
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has : W = WM,v. This shows the collection of subvarieties (WM,v) is a point in M. In
this way, we get a mapW which is easily seen to be continuous. Since V is quasi-compact
it is enough to prove that this map is bijective to conclude.

— W is surjective. Let w = (WM) ∈M, and write Rw = ∪oWM
. It is a ring contained

in k(X). Let us show that it is a valuation ring. The ideal mw = ∪mWM
is a maximal

ideal of Rw. We need to show that for any f ∈ F ∗, either f ∈ Rw or 1/f ∈ mw. For
this, we use the simple fact that for any model M , there exists a (not necessarily smooth)
model M ′ which dominates M and on which f is a regular map M → CP 1 (this can be
seen by taking M ′ to be the closure of the graph of f in M × CP 1). Now either f is
infinite on WM ′ , in which case 1/f ∈ oWM′

⊂ Rw; or f is finite on a Zariski dense open
set of WM ′ , in which case f ∈ mWM′

⊂ mw. This shows that Rw is the ring of a valuation
v. By the Lemma 12 one has: W(v) = w.

— W is injective. If W(v) = w then the local ring Rw constructed above is necessarily
included in Rv. But we saw that Rw was a valuation ring. Whence Rw = Rv and v has
a unique preimage, so that W is injective. �

Valuations centered at ∞. Suppose that F is the function field of an affine variety
V ⊂ AN

C defined over k. Then one says that a valuation v ∈ V(K/k) is centered at ∞
when the coordinate ring k[X] is not contained in the valuation ring ov. This is equivalent
to saying that the center of v on the model X ⊂ CPN is contained in the hyperplane at
infinity CPN − AN

C . In particular, the valuations centered at ∞ form a closed subset of
V(F/k).

2.3. Construction of valuations from sequences of points.
Let k be a countable field contained in C, and let X ⊂ AN

C be a variety defined over k.
Then k(X) is countable.

We now describe a construction due to Morgan-Shalen of valuations of k(X)/k from
sequences of points in X. We shall see that all valuations on k(X)/k arise in this way.

We say that a complex point x on a variety X is k-generic on X, if it is not contained in
any proper subvariety of X defined over k, i.e. if it is dense in X for the Zariski topology.
For instance a point in AN

C is k-generic if and only if its coordinates generate an extension
of Q of transcendence degree equal to N .

Since X is irreducible a Baire category argument implies that the set of k-generic points
is dense in X for the classical topology. Any element of k(X) can be written as the ratio
P/Q of two polynomials, where Q is not in the ideal defining X. If x is a k-generic point
any meromorphic function in k(X) can thus be evaluated at x.

Definition 14. A sequence (xi)i∈N in X is a valuating sequence if

(i) each xi is k-generic, and
(ii) for any f ∈ k(X), limi→∞ f(xi) exists in C ∪ {∞}.

From any sequence of k-generic points which is contained in X, one can extract a
valuating sequence using a Cantor diagonal argument.
The valuation associated to a valuating sequence.

Any valuating sequence (xi) defines a place: the ring is the set o of rational functions
f ∈ k(X) for which limi→∞ f(xi) belongs to C, and its maximal ideal is the kernel of the
natural homomorphism o→ C, f 7→ limi→∞ f(xi). This place corresponds to a valuation
called the valuation associated to the valuating sequence (xi). In the applications the
sequence (xi) will be unbounded. This implies that the associated valuation is non-trivial
since for some coordinate Xj the rational function 1/Xj tends to 0 and therefore Xi /∈ ov.
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However, for an arbitrary sequence this valuation could be trivial. This happens for
instance when (xi) tends to a k-generic point.

Let us give an application of Theorem 13.

Proposition 15. Any valuation of k(X)/k is associated to a valuating sequence (xi) on
X. The valuation is centered at infinity if and only if (xi) tends to infinity in X.

Proof. Let v be a valuation on k(X)/k. Let w = (WM) be the corresponding point in the
projective limit M. Since k is countable there is a sequenceM0 = X, Mn ≤Mn+1 of totally
ordered models of k(X)/k such that any model M is dominated by some model Mj. Since
the maps jn+1 = jMn+1,Mn are regular, in particular continuous, we can choose distances dn
on Mn such that the maps jn are distance-decreasing. We define by induction a sequence
of points ξn ∈ Mn such that ξn is k-generic on WMn and jn+1(ξn+1) = ξn. For each n we
choose a point xn ∈ Mn which is k-generic on Mn and such that dn(xn, ξn) ≤ 1/n. Then
for any n ≥ m, one has jMn,Mm(xn)→ ξm as n→∞. Define x′n = jMn,M0(xn). The point
x′n is k-generic on X hence belongs to X. Now pick f ∈ k(X) and let m ∈ N be an integer
such that f defines a regular map Mm → CP 1. By definition of Wm, f ∈ ov if and only
if f(ξm) is finite. This is equivalent to say that the sequence (f(xn)) has a finite limit
as n → ∞. In the same way, by definition of jMn,M0 , we have f(xn) = f(x′n). Therefore
f ∈ ov if and only if the sequence (f(x′n)) tends to a finite limit as n → ∞. Hence (xn)
is a valuating sequence and the valuation it defines is v. �

In the next proposition we show that the valuation associated to a valuating sequence
(xi) which tends to infinity in X measures the growth rate of the sequence f(xi) when
f ∈ k(X). Before doing that, we need to define the ratio λ1/λ2 of two negative elements
λ1 and λ2 in the value group Λ of v, when the group is not necessarily archimedean.

Let Λ0 = {0} ⊂ Λ1 · · · ⊂ Λr = Λ be the sequence of convex subgroups of Λ. Let j ≥ 1
be the smallest index for which λ1 ∈ Λj. Suppose first that j is also the smallest index for

λ2. Then λ1 and λ2 map to non-zero elements λ̃1, λ̃2 in the quotient group Λj/Λj−1. Since
this group is archimedean it can be embedded in R in a unique way up to multiplication
by a positive real number, so that the ratio λ̃1/λ̃2 is a well-defined real number. We set

λ1/λ2 = λ̃1/λ̃2 ∈ R. When the smallest index for λ2 is < j, we set λ1/λ2 = 0 and when
it is > j, we set λ1/λ2 = ∞. Observe from the definition that if λ1 and λ2 are both < 0
and if r and s are positive integers, we have : λ1/λ2 ≤ r/s if and only if rλ2 ≤ sλ1.

Proposition 16. Let (xi) be a valuating sequence on X and v be the valuation of k(X)/k
associated to it.

(1) For any f ∈ k(X), v(f) ≥ 0 if and only if log |f(xi)| is bounded from above.
(2) Let f and g ∈ k(X) such that v(f) ≤ 0 and v(g) < 0. Then

lim
i→∞

log |f(xi)|
log |g(xi)|

=
v(f)

v(g)
.

Proof. The first statement is a rephrasing of the definition of v in terms of the valuating
sequence. For the second statement, suppose first that v(f) = 0; then limi→∞ |f(xi)| ∈ C∗.
Since v(g) < 0, |g(xi)| → ∞. So both terms in the formula are equal to 0 in this case.
Suppose now that v(f) < 0. After exchanging the role of f and g we see that the proof
will be complete if we show

lim
i→∞

log |f(xi)|
log |g(xi)|

≤ v(f)

v(g)
.

Let r and s be positive integers with v(f)/v(g) < r/s. Then rv(g) − sv(f) < 0 so that
limi→∞ g

r(xi)/f
s(xi) = ∞. In particular limi→∞(r| log g(xi)| − s| log f(xi)|) = ∞. This

implies the required result since this holds for all integers r and s with r/s > v(f)/v(g).
�
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For any affine variety X defined over a countable field k, we defined in section 1.3

a compactification X
F

of X which depends on the choice of a family of polynomials

F ⊂ k[X]. We saw that the boundary of this compactification BF(X) = X
F \X can be

identified with the set of cluster points of θ(X) inside PF . The next proposition states
that this boundary can be described in a precise way using valuations on k(X)/k.

Recall that the rank of a valuation is equal to 1 when the ordered group Λ is archimedean,
in which case one can suppose Λ ⊂ R. For any rank one valuation v on k(X)/k, denote
by U(v) ∈ PF the point with homogeneous coordinates (−min(0, v(f))). We now extend
this map to higher rank valuations as follows.

Let v be an arbitrary valuation on k(X)/k centered at infinity. Let Λ denote its value
group, and Λ0 = {0} ⊂ Λ1 · · · ⊂ Λr = Λ be the sequence of its convex subgroups. Let s
be the smallest index such that for all polynomials f ∈ k[X] either v(f) ≥ 0 or v(f) ∈ Λs.
We define a new valuation v by composing v with the quotient map Λ → Λ = Λ/Λs−1.
Then v is a valuation on k(X)/k which is still centered at infinity. By construction, v
also enjoys the following property (P): for any polynomial f ∈ k[X], either v(f) ≥ 0 or
v(f) belongs to the largest convex archimedean subgroup Λ1 of Λ.

Denote by V0 ⊂ V(k(X)/k) the set of the valuations on k(X)/k which are centered at∞
and satisfy the property (P). One can then copy the definition that we gave for valuations
of rank 1 and define a natural map U : V0 → PF by setting: U(v) = (−min(0, v(f))).
Note that U(v) does not depend on the choice of an embedding of Λ1 in R.

Proposition 17. The map U maps continuously and surjectively V0 onto BF(X).

Proof. It is clear that U is continuous. We claim that if (xi) is a valuating sequence for
a valuation v and xi → ∞, then limi→∞ θ(xi) = U(v̄), where v̄ is the quotient valuation
defined by composing v with an homomorphism Λ→ Λ/Λs−1 as defined above.

Suppose that this claim is proved. Then pick v ∈ V0 and take a valuating sequence
(xi) for v. As v is centered at infinity the sequence (xi) tends to infinity, and thus
U(v) = limi→∞ θ(xi) is a cluster point of θ(X). We conclude that U(v) ∈ BF(X) which
shows U(V0) ⊂ BF(X). Conversely pick a point ξ ∈ BF(X) and a sequence (xi) tending
to ∞ such that θ(xi) → ξ. Using a Cantor diagonal argument we can approximate the
sequence (xi) by a valuating sequence (x′i) contained in X such that θ(x′i)→ ξ. By what
precedes we conclude U(v̄) = ξ.

To prove the claim we proceed as follows. Choose a function g ∈ F such that v(g) < 0.
Then |g(xi)| → ∞ as i→∞. The point ξ is the limit of the sequence with homogeneous
coordinates (log(|f(xi)|+ 2)/log(|g(xi)|+ 2)).

For a function f ∈ F such that lim
i→∞

f(xi) ∈ C, then

lim
i→∞

log(|f(xi)|+ 2)

log(|g(xi)|+ 2)
= 0

which is also −min(0, v(f))/v(g). When lim
i→∞

f(xi) = ∞, then v(f) < 0. By Proposi-

tion 16,

lim
i→∞

log(|f(xi)|+ 2)

log(|g(xi)|+ 2)
=
v(f)

v(g)
.

From the definition of the ratio of two elements in an ordered group, this limit is also
v(f)/v(g). �

2.4. Examples of valuations.
Discrete valuations of rank 1. A valuation v on a field K is said discrete of rank 1 if
its value group is equal to Z. In a geometric context the main examples arise as follows.
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Suppose X is an algebraic variety over C and D is an irreducible divisor on X. Then the
function attaching to any rational function f ∈ C(X) its order of vanishing ordD(f) along
D defines a discrete valuation of rank 1. More generally if π : Y → X is a birational
morphism and D an irreducible divisor in Y , then the function ordD(f ◦ π) is a discrete
valuation of rank one on C(X). Such valuations are called divisorial valuations.

In fact any discrete valuation v of rank 1 on the field of rational functions of an algebraic
variety X such that tr.deg(v) = dimX − 1 is divisorial (see []).
(Quasi)-monomial valuations. Let X ⊂ AN

C be an affine variety of dimension n
defined over C. Take local coordinates x1, ..., xn at a point p ∈ X and fix non-negative
real numbers s1, ..., sn ≥ 0. Pick any function f that is regular at p, and expand it locally

in power series f(x) =
∑

I aIx
I , with aI ∈ C, and xI =

∏
x
ij
j if I = (i1, ..., in). Denote

s.I =
∑n

1 skik. Then the function vs,x(f) = min{s ·I, aI 6= 0} defines a valuation of rank 1
whose value group is equal to

∑n
i=1 Zsi. It is not difficult to check that any such valuation

satisfies rk(v) + deg.tr(v) = dim(X). Conversely suppose v is a valuation of rank 1 on
C(X) for which rk(v) + deg.tr(v) = dim(X). Then, using Hironaka’s Desingularization
Theorem one can show the existence of a birational morphism π : Y → X, a point p ∈ Y ,
and local coordinates near p, such that the valuation f 7→ vs,x(f ◦ π) is equivalent to v
(see []).
More complicated examples. In general, the structure of a valuation can be quite
complicated, even on the field of rational functions of an algebraic varietyX. IfXis a curve
then any valuation is discrete of rank 1. When X is a surface a complete classification can
be obtained (see []). In higher dimension though, the picture is less clear (see however []
for recent progress).

Let us mention that given any sequence of integers mi ≥ 1 one can construct a valuation

of rank 1 on the ring C[x1, x2] with value group
∑
i

1

m1...mi

Z (see [37, §15]). In particular

choosing mi = p for all i, one may obtain a valuation with value group Z[
1

p
].

3. Λ-trees.

In the preceding two chapters we have constructed a compactification of the space of
representations of a group G into SL(2,C) and we interpreted the boundary points in
terms of valuations. In the next chapter, we will describe a construction due to Morgan-
Shalen of a geometric object associated to a valuation v on the character variety. This
construction extended one by Tits, and also by Bass-Serre of a simplicial tree associated
to a discrete valuation of rank 1. Here the geometric object is a Λ-tree, an object similar
to a tree but the distance takes its values in a general abelian ordered group Λ. We review
now the basic elements of this theory (cf [15], [5]).

3.1. Λ-trees.
Λ-metric spaces. Let Λ be an abelian ordered group; denote by Λ+ the set of its positive
elements. A Λ-metric space is a set Z with a map d : Z × Z → Λ+ which satisfies the
axioms of a distance: d(x, y) = 0 if and only if x = y; d(x, y) = d(y, x); and the triangular
inequality d(x, z) ≤ d(x, y) + d(y, z). The simplest example is given by the group Λ itself,
which is a Λ-metric space with the distance d(λ1, λ2) = |λ2−λ1| = max{λ2−λ1, λ1−λ2}.
The isometry group of Λ with this distance is generated by the translations λ → λ + δ
together with the involution λ→ −λ.

A subset I ⊂ Λ is called an interval when it is convex, that is if for all λ1 < λ2 ∈ I the
subset [λ1, λ2] = {λ ∈ Λ|λ1 ≤ λ ≤ λ2} is contained in I. A closed interval is an interval
of the form [λ1, λ2] = {λ|λ1 ≤ λ ≤ λ2} that is when it contains both its upper and lower
bounds. One defines the analogous notions of open, left-, right-open interval and denote
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them in a natural way by ]λ1, λ2], ]λ1, λ2], etc. Note that in non-archimedean group Λ, a
bounded interval is not always of this type. Take for instance {p} × Z in Z× Z endowed
with the lexicographic order.

Let Z be a Λ-metric space. A segment in Z is a subset isometric to an interval I
contained in Λ; a segment is closed (resp. open) when the interval I is closed (resp.
open). When the upper or lower bounds of I are contained in I, the corresponding points
in Z are called endpoints. A segment is non-degenerate when it is not reduced at a single
point.

Definition 18. A Λ-tree is a Λ-metric space T which satisfies the following three axioms:

(i) T is “uniquely connected by segments”, i.e. any two points are the endpoints of a
closed segment; such a closed segment is unique and will be denoted x.y;

(ii) when two segments have a common endpoint, then their intersection is a segment;
(iii) when two segments x.y and y.z have only the point y in commun, then the union

x.y ∪ y.z is a segment.

Remark. When Λ = Z, we get back the notion of simplicial tree: any Z-tree is isometric
to the set of vertices of a simplicial tree. The notion of Λ-tree in the case Λ = R coincides
with the standard notion of R-tree as defined in [13]. In the sequel, we shall be interested
in Λ-trees when Λ is the value group of a valuation which is not necessarily of rank 1.

A broken segment is a map µ : [λ, λ′]→ T such that there exists a subdivision of [λ, λ′],
λ0 = λ < λ1 < · · · < λn = λ′ for which the restriction µ to the interval [λi, λi+1] is an
isometry to a closed segment of T .

Proposition 19. Let T be a Λ-tree and let µ : [λ, λ′]→ X be a broken segment. Then

(i) the segment between µ(λ) and µ(λ′) is contained in the image of µ;
(ii) if d(µ(λ), µ(λ′)) = λ′ − λ, then µ is an isometry to its image.

Proof. We argue by induction on the integer n appearing in the definition of a broken
segment. The case n = 1 is trivial. We consider the case n = 2. By assumption, µ([λ, λ1])
and µ([λ1, λ

′]) are segments. By the property (ii) of Λ-tree, their intersection is a segment
which can be equally parameterized by the restrictions µ|[α, λ1], for some α ∈ [λ, λ1]
or by µ|[λ1, β] with β ∈ [λ1, λ

′]. Then the images µ([λ, α]) and µ([β, λ′]) are segments
which intersect only at µ(α) = µ(β). By the property (iii) of a Λ-tree, the union of these
segments is a segment, so it is equal to the segment µ(λ).µ(λ′). This proves Proposition 19
(i). Since the length of the segment µ(λ).µ(λ′) is equal to λ′−λ−2(λ1−α), Proposition 19
(ii) follows also. The case n > 2 reduces to the case n = 2, using the induction hypothesis.

�

3.2. Classification of isometries of a Λ-tree.
Let T be a Λ-tree. An isometry of T is a bijection g : T → T such that d(gx, gy) =

d(x, y) for all x, y in T . Isometries of T fall into three categories: elliptic isometries,
phantom inversions, and hyperbolic isometries. In this section we explain this trichotomy
and describe with details the structure of hyperbolic isometries.

Let g be an isometry of T . Pick a point x ∈ T and consider the segment x.gx. The
image of this segment by g is the segment gx.g2x. From the axioms of a Λ-tree we
deduce that the intersection x.gx∩x.g2x is a closed segment: it is equal to gy.gx for some
y ∈ x.gx. The classification of g will be done according to the value of d(y, x) compared
to that of d(x, gx).
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—2d(x, y) = d(x, gx). Then y is the midpoint of x.gx and it is fixed by g. One says
that g is an elliptic isometry. Observe that since g is an isometry, the set Fix(g) of its
fixed points is a convex subset of T : for any two points x and y in Fix(g), the segment
x.y is contained in Fix(g).

— 2d(y, x) > d(x, gx). Then y and gy are exchanged by g. Therefore the segment y.gy
is mapped to itself by g but g reverses the order on that segment. If the distance d(x, gx)
is divisible by 2 in Λ then g fixes this midpoint. In that case g is an elliptic isometry. If
this distance is not divisible by 2 g has no fixed points. It is called a phantom inversion.

We now suppose that g has no fixed points and is not a phantom inversion.
— 2d(y, x) < d(x, gx). Then y and gy are distinct and y ∈ [x, gy], gy ∈ [y, gx]. The

two closed segments y.gy and gy.g2y thus intersect only at gy. Observe that the smallest
convex subgroup Λy containing d(y, gy) is the union

⋃
n∈Z[nd(y, gy), (n + 1)d(y, gy)]. By

induction on n we can define a map from Λy to T whose image is the reunion of segments
Ay =

⋃
Z g

ny.gn+1y and which conjugates the action of g to the translation of length
d(y, gy) on Λy. In this case g is called a hyperbolic isometry.

Let us introduce the following notion. A partial axis for a hyperbolic isometry g is a
segment A ⊂ T which is invariant by g and such that there exists an isometry from A
onto an interval I ⊂ Λ which conjugates the restriction g|A to a translation on I. An
example of a partial axis is the segment Ay defined above. An axis for g is a partial axis
A which is maximal for the inclusion: any partial axis which contains A is equal to A.

Proposition 20. If an isometry of T has a partial axis, then it has a unique axis, and
this axis contains all partial axis.

Proof. We first prove the following lemma.

Lemma 21. Suppose that A1 and A2 are two partial axis for an isometry g. Then A1∪A2

is contained in a partial axis.

Proof. Denote by δi the translation distance of g on Ai. Two cases appear according to
A1 ∩ A2 is empty or not.

—Suppose that A1 ∩ A2 = ∅. This situation occurs for instance when T is the group
Λ = Z × Z endowed with the lexicographic order, g is the translation by (0, 1), and A1,
A2 are two vertical distinct segments a1 × Z, a2 × Z.

Choose arbitrary points a1 ∈ A1, a2 ∈ A2. Suppose first that some closed segment
k1.a2 contained in a1.a2 has the property that its intersection with A1 is reduced to k1.
In that case we shall reach a contradiction. By Proposition 19, the segment a2.ga2 is
equal to the union of a2.k1, k1.gk1 and gk1.gk2; it follows that g moves the point a2 by
a length d(a2, ga2) = 2d(a2, k1) + δ1. Suppose now that the segment a2.k1 contains a
point a′2 ∈ A2 distinct from a2 : in particular d(a′2, k1) < d(a2, k1). Since d(a′2, ga

′
2) =

2d(a′2, k1) + δ1 < d(a2, ga2), the restriction of g to A2 cannot be conjugated a translation.
This contradiction implies that a2.k1 ∩A2 = {a2}. But then for any point a′2 6= a2 on A2,
the segment k1.a

′
2 is the union of k1.a2 and the segment a2.a

′
2. In particular g moves the

point a′2 at a distance d(a′2, ga
′
2) = 2d(k1, a

′
2) + δ1 which is strictly greater than d(a2, ga2):

this is again a contradiction. We deduce that the intersections a1.a2 ∩ A1 and a1.a2 ∩ A2

are ends of A1 and A2 respectively. This means the following.
For j = 1, 2, pick an isometry ij from an interval Ij ⊂ Λ to Aj which conjugates g|Aj to

a translation on Ij. Write αj = i−1
j (aj) ∈ Ij. Then after possibly exchanging the role of A1

and A2, one has: i−1
1 (a1.a2∩A1) = {λ ∈ I1|λ ≥ α1} and i−1

2 (a1.a2∩A2) = {λ ∈ I2|λ ≤ α2}.
In particular A′j = Aj − (Aj ∩ a1.a2) ∪ {ai}, j = 1, 2 is a segment with endpoint aj. The
set A1 ∪ A2 is thus the union of three segments A′1, a1.a2 and A′2 each intersecting the
next at its endpoints: it is therefore a segment. This segment is invariant by g and g acts
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on it as a translation (since it does so on A1 and on A2). Therefore A1 ∪ A2 ∪ a1.a2 is a
partial axis for g.

—Suppose that A1 ∩ A2 6= ∅. Denote as before i1 : I1 → A1 the isometry between an
interval I1 ⊂ Λ and A1. Then i−1

1 (A1 ∩ A2) is an interval J contained in I1. The axioms
of a Λ-tree imply that one of the three following possibilities does occur. (1): J has one
endpoint, (2): J has two endpoints, or (3): each end of J is mapped by i1 to an end of
A1 or A2 (an upper end in a segment is a subsegment of the form {a| a ≥ a0} for some a0;
one defines in an analogous way the notion of lower end.)

Since A1∩A2 is invariant under g the interval J is invariant by a non-trivial translation
of Λ: this rules out (1) and (2). When both ends of J are mapped to ends of A1 (resp.
A2), then J = A1 and therefore A1 ⊂ A2 (resp. A2 ⊂ A1). When one end of J is mapped
to an end of A1, and the other to an end of A2, then A1 ∪ A2 is a segment. In that case
A1 ∩ A2 is a partial axis for g. �

We notice also the following consequence of the proof. Suppose that A1 and A2 are two
partial axis for g with A1 ∩ A2 6= ∅. Then any isometry i1 : I1 → A1 which conjugates
g to a translation on I1 extends in a unique way to a isometry from an interval which
contains I1 to A1 ∪ A2.

We continue the proof of Proposition 20. Let A0 ⊂ T be a partial axis for g. Let
i0 : I0 → A0 be the isometry between an interval I0 ⊂ Λ and A0 which conjugates g and
the translation of length δ. For any partial axis Aj which contains A0 there is a unique
interval Ij ⊂ Λ and a unique isometry ij : Ij → Aj such that I0 ⊂ Ij and ij|I0 = i0.
Let J be the set of all partial axis Aj which contain A0. Denote by I the union of all
intervals Ij as j ∈ J ; and by A the union of all partial axis Aj, for j ∈ J . Then I is an
interval of Λ since the interval which parameterizes A1 ∪ A2 contains I1∪ I2 thanks to the
previous observation. Also the uniqueness of the map ij implies that the restrictions of
the isometries i1 and i2 to I1 ∩ I2, are equal. Therefore the maps ij, j ∈ J can be glued
together to define an isometry i : I → T , the image of which is equal to A. It is clear
that A is invariant by g and that the isometry i conjugates the translation by δ on I to
the restriction of g to A. This shows that A is a partial axis. Since any partial axis for g
is contained in a partial axis element of J , we conclude that A is an axis. �

Length of an isometry. Let g be an isometry of a Λ-tree. The length of g is by definition
the infimum of d(x, gx) over all x ∈ T . We denote it by lg. When g is an elliptic isometry
the infimum is attained and lg = 0 by definition. When g is a phantom inversion lg may
or may not be equal to 0 and the infimum may or may not be attained.

Suppose g is an hyperbolic isometry which translates by a distance δ along its axis Ag;
for all x ∈ Ag d(x, gx) = δ. When x /∈ Ag, then the segment x.gx intersects a partial axis
Ax for g along a closed segment. Therefore there is some closed segment with endpoints
x and a point k ∈ Ax such that the intersection of x.k and Ax is reduced to k. It follows
that d(x, g.x) = δx + 2d(x, k), where δx is the length of g along the partial axis Ax. Since
each partial axis for g is contained in Ag, we infer δx = δ. In particular for any x /∈ Ag,
d(x, gx) > δ. We summarize what we proved in the following proposition.

Proposition 22. Let g be a hyperbolic isometry of T . Then lg = inf{d(x, gx), x ∈ T } is
attained and lg > 0. The axis Ag of g coincides with the set of points x such that lg =
d(x, gx). Furthermore, for any point x /∈ Ag there exists k ∈ Ag such that x.k ∩Ag = {k}
and d(x, gx) = lg + 2d(x, k).

3.3. Groups acting on Λ-trees.
Length functions. Let G be a group and let : G× T → T , (g, x) 7→ gx be an action of
G by isometries on a Λ-tree T . The length function of this action is the function G→ Λ+,
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g 7→ lg. Since lg only depends on the conjugacy class of g we can view this function as a
function C → Λ+, where C is the set of conjugacy classes of G.

Proposition 23. Let G be a finitely generated group which acts by isometries on a Λ-tree
and without phantom inversion. Then G has a fixed point if and only each of its elements
has a fixed point (that is if the length-function of G is 0 : lg = 0 for all g ∈ G).

Proof. We argue by induction on the number of generators of G. Suppose that G is
generated by n elements g1, ..., gn and that lg = 0 for all g. Then by assumption, the set
of the fixed points of the group generated by 〈g1, ..., gn−1〉 is non-empty: it is a non-empty
convex set C. To prove the proposition, we show that the fixed point set of gn intersects
C. We begin with the following observation.

Lemma 24. Let g, h be isometries of T and let x, y ∈ T be fixed points of g and h
respectively. Then either the segment x.y contains a common fixed point of g and h or hg
is an hyperbolic isometry.

Proof. Let x, y ∈ T with gx = x and hy = y. The intersection x.y ∩ x.gy is a closed
segment x.x′. Since g is an isometry any point in x.x′ is fixed by g and the intersection
x′.y ∩ x′.gy is equal to x′. The same property is satisfied by the intersection x.y ∩ hx.y.
In this way, we find a segment x′.y′ contained in x.y where

(i) gx′ = x′ and hy′ = y′;
(ii) x′.y′ ∩ x′.gy′ = {x′}; x′.y′ ∩ hx′.y′ = {y′}.

If the segment x′.y′ is degenerate then x′ = y′ is fixed by g and h. If it is non-degenerate,
consider the union x′.y′ ∪ y′.hx′: it is the segment x′.hx′. One deduces from (ii) that
x′.y′ intersects its image by hg only at hx′. This implies that the non-degenerate segment
x′.hx′ is a fundamental domain for hg; in particular hg is an hyperbolic isometry. �

Let x ∈ T fixed by g1, ... and gn−1; let y ∈ T fixed by gn. After applying the Lemma
to these x and y, we obtain either a point fixed by the entire group G or an hyperbolic
element of the form gngi for some i ≤ n− 1. �

Minimal action. Let G× T → T be an isometric action without phantom inversion of
a group G on a Λ-tree T . The action is said to be minimal if any Λ-tree T ′ ⊂ T which is
invariant by G is equal to T . There exists an invariant subtree contained in T on which
the action of G is minimal.

Small actions. An action G × T → T is small when for any non-degenerate closed
segment x.y ⊂ T , the subgroup of G which fixes x.y pointwise is “small” in the sense
that it is virtually abelian. Recall that a group is said virtually abelian when it contains
an abelian subgroup with finite index. For instance any free action is small.

Remark. We will be mainly interested in groups which can be embedded into SL(2,C)
as discrete subgroups. Such a group is either virtually abelian or contains a subgroup
isomorphic to a free group with two generators. In particular, if a group is not virtually
abelian its commutator subgroup is not virtually abelian either. This motivates the
assumption made in the following result.

Proposition 25. Let G× T → T be a minimal action of a group G on a Λ-tree T such
that any subgroup of G which stabilizes a non-degenerate segment is small. Suppose that
g and h are hyperbolic elements of G such that 〈g, h〉 and its commutator subgroup are
not small. Then,

(1) if the axis Ag and Ah intersect their intersection Ag ∩Ah is a closed segment, and
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(2) if the axis Ag and Ah are disjoint, there is a closed non-degenerate segment k.l ⊂ T
with k.l ∩ Ag = {k}, k.l ∩ Ah = {l}.

Proof. Suppose that Ag ∩ Ah 6= ∅. Since Ag is an axis, there exists an interval I ⊂ Λ
and an isometry ι : I → Ag which conjugates g to the translation by lg on I. Then
ι−1(Ag ∩ Ah) is a convex subset of I, and is therefore equal to a sub-interval J ⊂ I.
Denote by {0} = Λ0 ⊂ Λ1... ⊂ Λr = Λ the sequence of convex subgroups of Λ. Up to
translation, one can assume that J is contained in Λs but not in Λs+1. Pick ξ ∈ J , and
consider the interval [ξ,∞[∩J ⊂ Λs with [ξ,∞[= {λ ∈ Λs| ξ ≤ λ ≤ ∞}. We will show
that this interval is closed. The same reasoning applied to the interval ]∞, ξ] ∩ J will
imply (1).

Suppose by contradiction that the interval [ξ,∞[∩J is not a closed interval of Λs. We
may then assume that the segment ι([ξ,∞[∩J) is an end of Ag and that it is mapped into
itself by all positive powers of g.

— Suppose ι([ξ,∞[∩J) is also an end of Ah, stabilized by all positive powers of h. Since
g and h act by translation on ι([ξ,∞[∩J) any element in the commutator group of 〈g, h〉
acts as the identity on an end of ι([ξ,∞[∩J). Since the action of G on T is small the
commutator subgroup of < g, h > is virtually abelian. This contradicts our assumption.

— Suppose now that ι([ξ,∞[∩J) is not an end of Ah. One can find a point y ∈ Ah
such that the segment x.y contains ι([ξ,∞[∩J). Then x.y contains the upper end of Ag.
By invariance, gx.gy also contains the upper end of Ag. Since x.gy = x.gx ∪ gx.gy, the
intersection x.y ∩ x.gy contains the upper end of Ag. As T is a Λ-tree, the intersection
x.y ∩ x.gy is a closed segment x.z. If z ∈ Ag, then gz ∈ Ag, and so x.gz is contained in
x.y ∩ x.gy. But z is between x and gz, hence x.gz is strictly contained in x.y ∩ x.gy. We
conclude that z /∈ Ag.

On the other hand, one has z ∈ x.y hence gz ∈ x.gy. Since g is an isometry d(gz, gy) =
d(z, y), d(x, y) = d(gx, gy) = d(x, y) − d(x, gx), therefore, d(z, y) = d(z, gy) − d(x, gx).
We infer gz ∈ z.gy, and it follows that d(z, gz) is equal to d(x, gx) the length of g, hence
z ∈ Ag. This gives a contradiction and proves that ι([ξ,∞[∩J) is a closed segment. This
concludes the proof of (1).

To prove (2) choose points a and b in T with a ∈ Ag and b ∈ Ah. Let k ∈ Ah be the
point provided by Proposition 22 such that the intersection of the segment k.b and Ag is
equal to {k}. In a similar way let l ∈ Ah be the point such that the intersection of a.l
and Ah is reduced to {l}. Then the segment k.l satisfies (2). �

The segment k.l defined in Proposition 25 (2) is the shortest among all segments a.b
connecting a point a ∈ Ag and a point b ∈ Ah. Indeed, the axioms of a Λ-tree easily
imply that a.b is the union of the three segments a.k, k.l and l.b, with a.k ∩ k.l = {k}
and k.l ∩ l.b = {l}. We will call the length of k.l the distance between the two axis Ag
and Ah and we will denote it by d(Ag, Ah).

Lemma 26. For any hyperbolic isometries a, b on a Λ-tree, the distance between the two
axis Aa and Ab is determined by the lengths of the elements a, b and ab. More precisely,
one has

(1) d(Aa, Ab) =
1

2
max(0, lab − la − lb).

Proof. the proof is the same as for R-trees. We are reduced to the case when the axis
are disjoint. Then let k.l be the shortest segment with k ∈ Aa and b ∈ Ab provided
by Proposition 25 (2). A fundamental domain for ab on its axis is then the union of
the segments a−1k.k, k.l l.bl and bl.bk. Therefore the length of ab is la + lb + 2d(k, l)
proving (1). �
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3.4. Conjugated actions.
We will now generalize to arbritrary Λ-trees a fundamental result first proved by Culler

and Morgan in the case of R-trees (see [9, Theorem 3.7]). Our proof in the general case
closely follows their one, and relies in an essential way on Proposition 25.

Theorem 27. [9] Let T1 and T2 be Λ-trees and ρ1 : G× T1 → T1 and ρ2 : G× T2 → T2

be small and minimal actions of a group G on T1 and on T2. Then there is an isometry
between T1 and T2 which conjugates ρ1 and ρ2 if and only if the length-functions of these
actions are equal.

Being equivariantly isometric the existence of an isometry φ : T1 → T2 such that
φ(ρ1(g)x) = ρ2(g)φ(x) for all g ∈ G and all x ∈ T1.

Proof. We follow the main steps of the proof in [9]. One ingredient in their proof is the
classification (up to isometry) of groups acting on trees in terms of their based length-
functions. This classification is due to Chiswell [4, 5], see also [23, p. 22]. In what follows,
we do not rely on this classification although our argument are very close in essence.

— One can find two elements g, h ∈ G which form a good pair of isometries of T1. This
means they satisfy the following three properties:

(1) the axis A1
g and A1

h have non-empty intersection ;

(2) the intersection of A1
g ∩ A1

h is a closed segment and g and h move in the same
direction along this segment;

(3) the length of A1
g ∩ A1

h is shorter than lg and lh.

To see this, pick two hyperbolic isometries a and b in G, and denote by A1
a and A1

b their
respective axis in T1. If A1

a ∩ A1
b = ∅, then one checks using Proposition 25 (2) that the

axis of the isometries a and ab have non-empty intersection. The intersection of these axis
in then a closed segment by Proposition 25 (1). Up to replacing a by a−1 if necessary,
both isometries a and ab translate in the same direction. After taking sufficiently large
positive powers these isometries, (3) is satisfied.

— Since the length-functions of ρ1 and ρ2 are equal, g and h form also a good pair of
isometries of T2.

—Let pi ∈ Ti be the unique point common to the three axis Aig, A
i
h and Aigh−1 (it is

the “upper” endpoint of the closed segment Aig ∩Aih if the isometries move in the positive
direction). Then there is a formula for the displacement distance of pi under an element
k ∈ G : d(pi, kpi) is the maximum of the distances between one of the axis Aig, A

i
h, A

i
gh−1

and the image by k of one of these axis. To see this, consider the segment pi.kpi. Then
for at least one of the axis C ∈ {Aig, Aih, Aigh−1}, the intersection C ∩ pi.kpi is equal to

{pi}. A similar result holds for the intersection with the other three axis.
— It follows that the displacement function (or Chiswell length-function) of pi in Ti,

that is the function from G to Λ, defined by k → d(pi, kpi) is determined by the length-
function of the action ρi : G × Ti → Ti. In particular the displacement function of p1 in
T1 is equal to that of p2 in T2.

— Let us now explain the argument of Chiswell for constructing at this point an explicit
isometry from T1 to T2. Pick any x1 ∈ T1. By minimality, there exists g ∈ G such that
x1 ∈ p1.gp1. Since d(p1, gp1) = d(p2, gp2), there is a unique point denoted x2 ∈ T2 such
that x2 lies in the segment p2.gp2 and satisfies d(p2, x2) = d(p1, x1). Let us check that this
definition does not depend on the choice of g. Let g′ be any other element of G such that
x1 ∈ p1.g

′p1. Since the displacement functions of G in T1 and in T2 are the same, one has
d(p1, gp1) = d(p2, gp2), d(p1, g

′p1) = d(p2, g
′p2) and d(gp1, g

′p1) = d(gp2, g
′p2). Therefore

the length of the common part of the segments p1.gp1 and p1.g
′p1 is equal to that of the
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common part of p2.gp2 and p2.g
′p2. This implies that the definition of the point x2 is

whether one uses g′ or g. Set Ψ(x1) = x2. One easily checks that Ψ is an isometry. By
definition Φ(gp1) = gp2, thus Ψ is G-equivariant in restriction to the orbit Gp1. Since Ψ
is an isometry, Ψ is also G-equivariant on T1. This proves Proposition 27. �

4. The Bass-Serre tree associated to a valuation of F/k.

4.1. The Λ-tree of the lattices in a two dimensional F -vector space.
Let F/k be a field extension. Let v be a valuation of F/k, ov its valuation ring, and Λ

its value group. Denote by V the n-dimensional F -vector space F n. A lattice or ov-lattice
in V is a ov-module L ⊂ V of the form L = ove1 ⊕ · · · ⊕ oven for some basis e1, · · · en of
V . When we take as basis the canonical basis of V = F n, we obtain the standard lattice.
By definition, any lattice is a free ov-lattice of rank n.

We say that two lattices L and L′ in V are equivalent when they differ by an homothety
of V : for some α ∈ F , L′ = αL. Denote by [L] the equivalence class of L.

Our aim is now to show that when n = 2, the set Tv of equivalence classes of lattices
in V has the structure of a Λ-tree. We define first a Λ-distance on Tv. Let L, L′ be two
lattices in V . Up to replacing L′ by an homothetic lattice we can suppose that L′ ⊂ L
and that L′ has a basis

(e′1, e
′
2) =

(
a b
c d

)
(e1, e2)

where (e1, e2) is a basis of L and where the coefficients a, b, c and d are in ov. Up
to permuting the basis vectors if necessary, we may also impose the condition v(a) =
min(v(a), v(b), v(c), v(d)) (with the convention v(0) = +∞). Then a divides in the ring
ov all others coefficients of the matrix so that after operations on the rows and colums,
we obtain a new basis for L′

(2) (e′1, e
′
2) =

(
a 0
0 d− b

a
c

)
(e1, e2).

In that case, the representative L′0 =
1

a
L′ of the equivalence class [L′] satisfies L/L′0 '

ov/βov with β =
da− bc
b2

.

We introduce the following terminology: a lattice M ′ contained in a lattice M such that
M/M ′ ' ov/γov is said cocyclic in M . We claim that there exists a unique lattice in the
equivalence class [L′] which is cocyclic in L. We already proved the existence of such a
cocyclic lattice L′0. Suppose now that L′1 is another lattice cocyclic in L. Then L′1 = αL′0
for some α ∈ F ∗. Assume by contradiction that v(α) 6= 0. We can assume v(α) > 0, so
that L′1 ⊂ L′0 ⊂ L. It follows that L/L′1 ' ov/αov ⊕ ov/αβov. This contradicts the fact
that L′1 cannot be cocyclic in L since v(α) > 0 and v(β) ≥ 0. Whence v(α) = 0, α is a
unit in ov, and we conclude L′1 = L′0 as required.

Note that different choices of the basis of L might possibly affect β but only by mul-
tiplying it with a unit, therefore v(β) is well-defined. For any two equivalence classes
[L], [L′] ∈ Tv given by two basis satisfying relation (2), we set:

(3) d([L], [L′]) = v(ad− bc)− 2 min(v(a), v(b), v(c), v(d)).

The preceding discussion shows this expression does not depend on the particular repre-
sentatives of the classes [L] and [L′].

Proposition 28. The function d : Tv × Tv → Λ is a Λ-distance for which Tv is a Λ-tree.
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Proof. We first prove that d is a Λ-distance. We keep the same notations as above.
Suppose d([L], [L′]) = 0 for two lattices L,L′, with L′ cocyclic in L. Then L/L′ ' ov/βov
with v(β) = 0, hence L = L′. The symmetry axiom is easy to check. To check the
triangular inequality, consider three equivalence classes x, x′ and x′′ in Tv. Let L′ be
a representative of x′ and (e, f) be a basis of L′, such that a representative of x is the
lattice L generated by e and αf , for some α ∈ ov. Similarly take (u, v) a basis of L′ and
a representative of x′′ generated by the two vectors u and βv, for some β ∈ ov. We can

write (u, v) =

(
a b
c d

)
(e, f) for some invertible matrix with coefficients in ov, hence

(u, βv) =

(
a b

α

βc βd
α

)
(e, αf).

A particular representative of [L′′] contained in L has basis (αu, αβv) = M(e, αf) with

M =

(
αa b
αβc βd

)
. Since all coefficients of M lie in ov we can apply (3), and we infer

d([L], [L′′]) ≤ v(det(M)) = v(ad − bc) + v(α) + v(β) = v(α) + v(β). This proves the
triangular inequality, and show that Tv is a Λ-metric space.

Suppose that equality holds in the triangular inequality for three distinct equivalence
classes: d(x, x′′) = d(x, x′) + d(x′, x′′). Keeping the same notations as above, the three
lattices x, x′ and x′′ can be represented respectively by L = ove⊕ovαf , L′ = ovαu⊕ovαv
and L′′ = ovαu ⊕ ovαβv with v(α), v(β) > 0. Now if equality holds in the triangular
inequality then the minimum of the valuations of the coefficients of the matrix M must
be 0. This implies v(b) = 0 hence (u, v) can be chosen to be u = f , v = e.

We conclude that d(x, x′′) = d(x, x′)+d(x′, x′′) if and only if there is a basis (e1, e2) of L
such that L′, L′′ are generated respectively by (e1, αe2) and (e1, αβe2) with d(x, x′) = v(α)
and d(x′, x′′) = v(β).

We now check that Tv satisfies the three axioms of a Λ-tree.
— We first construct a segment connecting any two points x, x′ ∈ Tv. Let L′, L be any

representatives of x and x′ such that L′ ⊂ L and cocyclic in L. There is a basis (e, f)
of L such that L′ is the lattice ove ⊕ ovβf , with β ∈ ov and d(x, x′) = v(β). For any
z in the interval [0, v(β)] ⊂ Λv choose a γz ∈ ov with v(γz) = z. Consider the lattice
Lz = ove ⊕ ovγzf . By construction one has: d([Lz], [Lz′ ]) = |v(γ′z) − v(γz)|. So the map
z → [Lz] from [0, v(β)] to Tv is an isometry onto a segment which connects x and x′.
The fact that this segment is unique follows from the characterization of the equality case
in in the triangular inequality. Observe that the segment x.x′ coincides with the set of
equivalence classes of lattices L′′ such that L′ ⊂ L′′ ⊂ L.

— Let x1.z and x2.z be any two closed segments having common endpoint z. Consider
the representatives L1, L2 and L0 of x1, x2 and z such that L1 ⊂ L0 and L2 ⊂ L0 and both
lattices L1, L2 are cocyclic in L0. Then xi.z = {[L]|Li ⊂ L ⊂ L0} for i = 1, 2 therefore
x1.z ∩ x2.z = {[L]|L1 + L2 ⊂ L ⊂ L0}. The sum L1 + L2 is an ov-module contained
in L0 which is torsion free and finitely generated: therefore L1 + L2 is a lattice. So the
intersection of x1.z and x2.z is the segment with endpoints [L0] and [L1 + L2].

— Suppose that x1.z and x2.z are any two closed segments intersecting only at z.
We need to show that the union of x1.z and z.x2 is again a segment. Keeping previous
notations, we know that L1 + L2 represents z, i.e. is equivalent to L0. But since L1 + L2

contains L1 and is contained in L0, it must be cocyclic in L0, hence L1 + L2 = L0. We
can write L1 = ove1 ⊕ ovβ1f1 and L2 = ove2 ⊕ ovβ2f2 where (e1, f1) and (e2, f2) are basis
of L0. We have v(βi) > 0 since the segments are non-degenerate. Let mv = v−1{> 0} be
the maximal ideal of ov. Since ove1 + ove2 + mL0 = L0, we must have ove1 + ove2 = L0.
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Hence the vectors e1 and e2 form a basis of the lattice L0. This allows to write L1 and
L2 as L1 = ove1 ⊕ ovβ1e2 and L2 = ove2 ⊕ ovβ2e1. From the previous description of the
segments in Tv we deduce that [L0] belongs to the segment [L1].[L2]. Therefore the union
of x1.z and z.x2 is the segment [L1.L2]. �

4.2. The action of SL(2,F).
The group GL(2,F) naturally acts on the set of lattices preserving equivalence classes. It

acts therefore on the Λ-tree Tv and this action is isometric. The action of GL(2,F) is tran-
sitive on lattices and therefore also on Tv: any point in Tv is equivalent to the class x0 of

the standard ov-lattice in F 2. Pick g =

(
a b
c d

)
any element of SL(2,F). Since the deter-

minant of g has valuation 0, relation (3) gives: d(x0, g.x0) = −2 min(v(a), v(b), v(c), v(d)).
It follows that d(x, g.x) is divisible by 2 in Λ for any point x ∈ Tv. In particular g is not
a phantom inversion. Whence SL(2,F) acts on Tv by hyperbolic or elliptic isometries.

Elliptic isometries of Tv. Let g ∈ SL(2,F) be an elliptic isometry. Let x = [L] ∈ Tv
be a point fixed by g: gL = αL for some α ∈ k∗. Suppose that v(α) 6= 0. After possibly
replacing g by g−1 we can assume that v(α) ≥ 0; then gL ⊂ L. Since g has determinant 1
L/gL = {0}. However, since v(α) > 0, L/αL is not zero, since its dimension as a vector
space over the field ov/mv is equal to 2. Therefore v(α) = 0. This means that gL = L:
the expression of g on any basis of L has coefficients in ov. Note that L is the image of
the standard lattice by some element of GL(2,F). We have thus proved that the elements
of SL(2,F) acting by elliptic transformations on Tv are those which are conjugated in
GL(2,F) to elements of SL(2, ov). In particular their trace lies in ov. Conversely any
element of SL(2,F) whose trace belongs to ov is conjugated in GL(2,F) to an element in
SL(2, ov) (consider the matrix of this element on the basis (e, ge) for a vector e which is
not an eigenvector of g).

The following is now a direct consequence of Proposition 23.

Proposition 29. Let G ⊂ SL(2,F) be a finitely generated subgroup such that the trace
of any g ∈ G belongs to ov (i.e. v(tr(g)) ≥ 0). Then G is conjugated in GL(2,F) to a
subgroup of SL(2, ov).

Hyperbolic isometries of Tv. Take g ∈ SL(2,F). For any x ∈ Tv let g =

(
a b
c d

)
be the matrix representation of g in a basis of a representative of x. By (3), we have
d(x, gx) = −2 min(v(a), v(b), v(c), v(d)). In particular d(x, g.x) ≥ −2 min(v(a), v(d)) ≥
−2v(a+ d) = −2v(tr(g)). Pick a vector e which is not an eigenvector of g. The ov-lattice
generated by e and g.e satisfies: d([L], [gL]) = −2v(tr(g)). If v(tr(g)) < 0, the minimum
displacement of g is thus positive: thus g is an hyperbolic isometry with translation
distance −2v(tr(g)) and axis consisting of all the equivalence classes of lattices of the
form ove⊕ ovge.

Segment-stabilizers. Consider the subgroupGx.x′ of SL(2,F) which fixes a non-degenera-
te segment s = x.x′. Let [L] and [L′] be respective representatives of x and x′ with L′ co-
cyclic in L and pick (e, f) ∈ L such that L′ = ove⊕ov.βf . The matrix expression on the ba-
sis (e, f) of the stabilizer of x is the group SL(2, ov) and Gx.x′ is isomorphic to the subgroup

Gs of SL(2, ov) which fixes L′. Therefore Gs consists of all matrices

(
a b
c d

)
∈ SL(2,ov)

with v(c) ≥ v(β). The group Gs is thus identified with the preimage of the triangular

group

(
α β
0 δ

)
under the canonical homomorphism SL(2,ov)→ SL(2, ov/βov).
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We have thus proved.

Proposition 30. Let Gx.x′ ⊂ SL(2,F) be the stabilizer of a non-degenerate segment x.x′

of length v(β), with β ∈ F . Then Gx.x′ is conjugated in GL(2,F) to a subgroup Gs

of SL(2,ov) such that the commutator subgroup [Gs, Gs] maps to the identity under the
homomorphism SL(2,ov)→ SL(2,ov/βov).

4.3. Applications to the character variety.
Let X0 be an irreducible component of the character variety X(G). Recall that to any

sequence of points (xi) in X0 tending to infinity is associated a valuation on Q(X0)/Q (cf.
section 2.3). Our aim is to attach to any such valuation an action of G on a Λ-tree.

It is technically easier to work with the space of representations than with the character
variety. In doing so, we shall use the following classical result.

Proposition 31. [37, Chap. 6, §4], [3, Chap. 6] Let K/k be a field extension and v
be a valuation of K/k. Let K ′ be an extension of K. Then there is a valuation v′ on
K ′/k extending v. Furthermore one can choose v′ such that its value group Λ′ is a finite
extension of the value group Λ of v: the index of Λ in Λ′ is finite.

Proof. In the sequel, we shall only make use of the case K ′/K has finite transcendental
degree. We hence give a proof only under this assumption. The extension K ′/K is the
composition of a purely transcendental extension and a finite extension. By induction,
it suffices to consider the case of an extension of transcendental degree 1. The case of
a purely transcendental extension K ′ = K(x) can be solved in an explicit way. Define
for a non-zero polynomial P (x) =

∑
ajx

j. Clearly this defines a valuation on K[x] that
extends to K(x) and has the same value group as v.

Suppose now K ′/K is a finite extension. Consider the set R of all rings R ⊂ K ′ that
contain ov = {v ≥ 0} ⊂ K and such that R.mv 6= R with mv = {v > 0}. The set R is
partially ordered by the inclusion and one easily checks that any totally ordered subset
(Rα) has an upper bound. Hence by Zorn’s Lemma R admits a maximal element R′

which satisfies R′.mv 6= R′.

Claim 32. The ring R′ has the following property: if x ∈ K ′ is 6= 0, then either x or
1

x
is in R′.

Granting this claim we finish the proof. Denote by m′ the subset of R′ consisting of 0
and all inverses of elements of K ′ −R′. Since R′ satisfies the claim m′ is a maximal ideal
(see for instance [37, Theorem 1, Ch. VI]). Therefore R′ is a place of K ′, whence the
valuation ring of a valuation v′. Let us prove that K ∩R′ = ov. Suppose by contradiction
that x ∈ K − ov lies in R′. Then we have x−1 ∈ mv, so 1 = x.x−1 lies in R′.mv, which is
absurd. In the same way we get K ∩m′ = mv and v′ is an extension of v. Notice that the
extension v′ is not unique (cf. [34] for a description of the possible extensions in the degree
1 case). Suppose that Λ′/Λ contains m elements represented by v(x1), · · · , v(xm). Then
the xj’s must be linearly independent over K; in particular, m is less than the degree of
the algebraic extension K ′/K. Therefore the index of Λ in Λ′ is less than the degree of
K ′/K. �

Proof of the claim. By the maximality property of R′ it suffices to show that either
R′[x].mv 6= R′[x] or R′[x−1].mv 6= R′[x−1]. Assume by contradiction that both are not
satisfied. Then there are polynomial relations 1 = a0 + · · ·+anxn, 1 = b0 + · · ·+bm(x−1)m,
with coefficients ai and bj in the ideal mv. We may assume thatm ≤ n and that the degrees
m and n are the smallest possible. The first equation gives: 1 − b0 = a0(1 − b0) + · · · +
an(1−b0)xn and the second (1−b0)anx

n = b1anx
n−1 + · · ·+bmanx

n−m. After adding these
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equations and simplifying we get a polynomial equation of degree ≤ n− 1 satisfied by x.
This is a contradiction. �

We are now ready for the main result of this section.

Theorem 33. Let ρi : G → SL(2,C) be a sequence of representations which does not
contain a sequence which converges up to conjugacy. Then there is a Λ-tree T and a
minimal action by isometries G× T → T such that (ρi) converges to T in the following
sense: for any conjugacy classes g, h in G with δT (h) is > 0, one has:

(4) lim
i→∞

log |(tr(ρi(g))|+ 2)

log(|tr(ρi(h))|+ 2)
=
δT (g)

δT (h)
.

Proof. Denote by xi = t(ρi) ∈ X(G) the character of ρi. We may assume that (xi)
is contained in the same irreducible component X0 of X(G). By Proposition 5 and
since (ρi) does not contain subsequences which converge up to conjugacy, the sequence of
characters (xi) is unbounded. We may assume that (xi) is a valuating sequence and defines
a valuation v on Q(X0)/Q. Recall that we defined Ig(ρ) = tr(ρ(g)). By Proposition 16,
if v(Ih) < 0 then

(5) lim
i→∞

log(|Ig(xi)|+ 2)

log |(Ih(xi)|+ 2)
=
v(Ig)
v(Ih)

.

Let R0 be a component of R(G) mapped by t onto a Zariski open subset of X0. By
Lemma 31, we may pick a lift v′ of v to a valuation on Q(R0)/Q. Denote by T the
Bass-Serre tree of SL(2,Q(R0)) associated to v′. We may identify G with a subgroup of
SL(2,Q(R0)) via the tautological representation. Therefore G acts on the Λ-tree T . Since
(xi) is unbounded this action has no global fixed point. Up to replacing T by a subtree
we may assume that this action is minimal.

Now note that for any g ∈ G we have −2 min(0, v(tr(g))) = −2 min(0, v′(tr(g))) =
δT (g) > 0 (see §4.2). We conclude by comparing (4) and (5) using Ig(t(ρ)) = tr(ρ(g)).

�
To the sequence (ρi), we have thus associated an action of G on a Λ-tree. This action —

through the length-function — gives a precise information on the growing rate of traces
of group elements. If one wants to describe only the “top order terms”, one possibility is
to look at the embedding of the space of characters into PF as in Chapter 1.

Consider as set of functions F ⊂ Q[X] the set {Ig} where g ranges over all conjugacy
classes of G. Let X̄F be the Morgan-Shalen compactification of X as explained in § 1.3,
and denote by B(X) = X̄F −X the frontier. Then we may interpret points of B(X) as
length-functions of an action of G on a Λ-tree where the ordered group Λ is archimedean.

Proposition 34. [17, Th.II.4.3] Any point in the frontier B(X) is the projectivized length-
function of an action of G on a Λ-tree with Λ archimedean; this action is minimal and
without phantom inversion.

Proof. Note first that the frontier B(X) is the union of the frontiers of the (finitely
many) irreducible components of X(G). Let X0 be any such irreducible component and
let ξ be a point in the frontier of X0. By Proposition 16, ξ has homogeneous coordinates
(−min(0, v(tr(g)))) ∈ PF where v is a valuation on Q(X0)/Q such that for any g ∈ G,
v(Ig) is either positive or in the smallest isolated subgroup Λ1 of the value group Λ.

As in the proof of the preceding Theorem and using the tautological representation,
we may identify G with a subgroup of SL(2,Q(R0)) where R0 is a component of R(G)
which dominates X0. Pick any valuation v′ on Q(R0)/Q extending v and let v̄ be the
quotient valuation obtained after post-composing v′ with the quotient homomorphism
Λ → Λ/Λ1. Denote by Tv̄ the Bass-Serre tree associated to v̄. Since for any element
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g ∈ G v̄(tr(g)) ≥ 0, g has a fixed point on Tv̄. By Proposition 29 the entire group G has
a fixed point, which is to say that the tautological representation of G is conjugated to a
representation ρ : G→ SL (2, ov̄). In particular, the matrix of ρ(g) in the standard basis
has coefficients ag, bg, cg, dg ∈ ov̄, and v′(ag), v

′(bg), v
′(cg), v

′(dg) are either positive or lie
in Λ1.

Let now Tv denote the Bass-Serre tree of SL(2,Q(R0)) associated this time to the valua-
tion v′. Denote by x0 the equivalence class of the standard lattice. Since d(x0, ρ(g)(x0)) =
−2 min(v′(ag), v

′(bg), v
′(cg), v

′(dg)), the distance between any two points of the orbit Gx0

is in Λ1. Observe now that the union of all segments x0.ρ(g)(x0) is a Λ1-tree T with Λ1

archimedean. The group G acts on T without phantom inversion and its length-function
is projectively the point ξ. �

4.4. The limit tree of a sequence of discrete and faithfull representations.
Recall that a group is said small if it contains an abelian subgroup of finite index.
A representation ρ : G → SL(2,C) is discrete if its image is a discrete subgroup, and

faithfull if it is injective. Denote DF(G) ⊂ R(G) the set of all the discrete and faithfull
representations.

Proposition 35. [7] Let G be a group which is not small. Then DF(G) is a closed subset
of R(G).

Theorem 33 admits the following refinement when (ρi) is a sequence of discrete and
faithfull representations.

Proposition 36. Let (ρi) be a sequence of representations in DF(G) which does not
contain any subsequence which converges up to conjugacy. Let T be any Λ-tree provided
by Theorem 33. Then any subgroup of G which stabilizes a non-trivial segment is small.

Proof. We keep the notations of the proof of Theorem 33. Recall that v is the valua-
tion associated to a valuating sequence (x′i) which approximates sufficiently closely the
sequence of characters t(ρi) so that by Proposition 5, v(f) ≥ 0 if and only if the se-
quence tr(ρi(f)) is bounded. Let x.y be a non-trivial segment of T and denote Gx.y the
subgroup of G which fixes x.y. Since Gx.y fixes x, it is conjugated to a subgroup Gs

of SL(2, ov), hence the traces tr(ρi(g)) are bounded for any g ∈ Gs. By Proposition 5
the sequence of representations ρi|Gs contains a sequence which converges to a repre-
sentation ρ∞ : Gs → SL(2,C). Since Gs stabilizes the segment x.y, its commutator sub-
group [Gs, Gs] is mapped to the identity by the homomorphism SL(2, ov)→ SL(2, ov/βov)
(Proposition 30). Therefore for any g ∈ [Gs, Gs], tr(ρ∞(g)) = 2. Suppose by contradiction
that Gs is not virtually abelian. By Proposition 35 ρ∞|Gs is then a discrete and faithfull
representation. Since tr(ρ∞(g)) = 2 ρ∞([Gs, Gs]) must be parabolic subgroup and so it
fixes a unique point in CP 1. This point must also be fixed by ρ∞(Gs). But any discrete
subgroup of SL(2,C) having a fixed point is virtually abelian. A contradiction. �

5. Geometric actions of groups on Λ-trees

Trying to understand unbounded sequences of points in R(G), Theorem 33 led us to
the study of isometric group actions on trees. In general, this tree is a Λ-tree with Λ
non-archimedean but the tree associated to the quotient rank 1 valuation already carries
a lot of informations (Proposition 34). In this section, we address the following two
questions: which groups G do have a non-trivial action on a Λ-tree (on a R-tree) such
that all segment stabilizers are small? When such an action exists can it be described in
a geometric way?
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We begin with the case of fundamental groups of n-dimensional manifolds and will after
focus on surface groups, i.e. of groups isomorphic to the fundamental group of a closed
surface.

5.1. Λ-measured laminations.
Let M be a manifold of dimension n. A (codimension 1) lamination of M is a closed

subset L ⊂M such that there is a cover of M by open sets Vi which satisfy:

(1) for each i, (Vi, Vi∩L) has a product structure, i.e. there is a compact set Fi ⊂]0, 1[
and an homeomorphism φi between the pairs (Vi, Vi ∩ L) and (Ui×]0, 1[, Ui × Fi);

(2) if two open sets Uj and Uk have non-empty intersection, then over their intersec-
tion, the homeomorphism φk ◦ φ−1

j : φj(L ∩ Ui ∩ Uj)→ φk(L ∩ Ui ∩ Uj) preserves
the product structure.

The open sets Vj in this definition are called flow-boxes for L. Consider a flow-box Vj
for L. The set Y of the connected components ]0, 1[−Fj is ordered by the order of the
interval ]0, 1[. Let Λ- be a countable totally ordered abelian group. A Λ-measure on
]0, 1[ supported on Fj is a monotonic bijection i from Y to an interval of Λ. This allows
to assign to any interval [a, b] ⊂]0, 1[ with endpoints disjoint from Fj a number in Λ+,
namely the absolute value |i(a)− i(b)|. This defines a finitely additive measure. Also the
measure of an interval [a, b] is 0 if and only if [a, b] is disjoint from Fj.

A Λ-measure transverse to L is the data, for each flow-box Vj = Uj×]0, 1[, of a Λ-
measure µj on ]0, 1[ such that the obvious compatibility relations are satisfied for flow-
boxes which intersect. A Λ-measured lamination is the data (L, µ) of a lamination L and
a Λ-measure µ transverse to L .

A continuous path c : [0, 1] → M in M is transverse to L if c(0) and c(1) are disjoint
from L and if c can be decomposed as a product c1.c2. · · · .cn of paths cj such that for each
j, cj is contained in a flow-box Ui and the projection cj ∩ L → Fj is strictly monotone.
A Λ-measure transverse to L induces a finitely additive measure on c with total mass
denoted µ(c). If c and c′ are two paths homotopic by an homotopy ct such that ct remains
transverse to L, the total mass µ(ct) remains constant.

The dual tree to a Λ-measured lamination
Denote by M̃ the universal cover of M . The preimage of a Λ-measured lamination in

M̃ is a Λ-measured lamination.

Proposition 37. Let L = (L, µ) be a Λ-measured lamination. Let L̃ denote the preimage
of L in M̃ . Suppose that its preimage in M̃ satisfies the following axioms:

(1) the leaves of L̃ are closed subsets of M̃ ;
(2) given any two connected components x and y of M̃ − L̃, there exists a path c :

[0, 1]→ M̃ with endpoints contained in x and y respectively which is transverse to
L̃ and which intersects each leaf of L̃ at most once.

Then the set TL of the connected components of M̃ − L̃ is a Λ-tree.

Proof: First, the set TL is a Λ-metric space. For complementary components x and y of
M̃ − L̃, define d(x, y) to be the mass of a path provided by (2). This does not depend on
the choice of the path, by (1) and the invariance property of a transverse Λ-measure. To
check the triangular inequality consider the induced lamination on a triangle in M̃ with
vertices x, y and z in components of TL such that the sides intersect exactly once the
leaves of L̃. Each leaf of the induced foliation which has one endpoint on the side from x
to z has its other endpoint either on the side from x to y or on the side from y to z. The
triangular inequality is a consequence of this.
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We define segments in TL. Let c be a path in M̃ joining two connected components
x and y of TL which satisfies (2). Then w 7→ d(x,w) is an isometry from the set of
components of TL that c intersects to the interval [0, d(x, y)]. When c is contained in a
flow-box, this follows from the definition of a Λ-measured lamination and the general case
follows from this one, since c can be written as a composition c1 · · · ck where each path cj
is contained in a flow-box. Therefore any two distinct points can be joined by a segment.
We call special those segments obtained on that way. We show that any segment in TL
is special. Suppose that there is another segment S in TL with endpoints x and y. Let
w be a point on S; since S is a segment, d(x,w) + d(w, y) = d(x, y). Consider the two
paths provided by (2) which connect respectively x to w and w to y. We can suppose
that the endpoints of these paths in the component w are the same: their composition is
a path c′ ⊂ M̃ . Let ∆ be a disk which realizes an homotopy fixing endpoints between c
and c′. Since L has empty interior, ∆ can be chosen to be transverse to L; then L ∩∆ is
a lamination of ∆. Each leaf of this lamination which has one endpoint in c has its other
endpoint on the special segment because c satisfies (2). Since µ(c′) = d(x, y), any leaf
starting from c′ ends on c. In particular, w is on the special segment.

We check now that TL satisfies the first axiom of a Λ-tree: the intersection of two
segments x.y and x.z is a segment issued from x. Let x, y and z ∈ TL. Let ∆ be the
triangle in M̃ whose sides are paths c, c′ and c′′ in M̃ whose endpoints succesively in x,
y, z and which intersect each leaf of L atmost once. This disc can be made transverse to
L. The induced lamination of ∆ has the property that each leaf with an endpoint on one
side has its other endpoint on another side. The set of the leaves from the side c to the
side c′′ is ordered by the inclusion of the disc containing x and bounded by the leaf on
∆. Some leaf is maximal for this order among the leaves from c to c′. The component of
M̃ − L̃ bounded by this leaf determines a vertex of TL such that x.y ∩ x.z = x.z.

The second axiom can be proven in the same way. �
Remark. When Λ ⊂ R, a Λ-measure with support a closed subset F ⊂]0, 1[ extends in a
unique way to a σ-additive measure on ]0, 1[ with support F . In that situation L = (L, µ)
is a Λ-measured lamination; it has a transverse measure, i.e. each transversal I carries a
Radon measure, supported on L∩I and these measures are invariant under the holonomy
pseudo-group (cf. [18]). When a lamination is the support of a transverse measure, it has
the following structure [18, Theorem 3.2]: it is the union of finitely components and each
component is either a family of parallel compact leaves or an exceptional minimal set.

When the ordered group Λ is not contained in R, there are no similar descriptions. In
particular, a Λ-measured lamination can contain Reeb components and this prevents in
general Property (2) in Proposition 37 to be satisfied and also the existence of a dual tree
in general.

5.2. Construction of laminations by transversality.
The kind of geometric models we will obtain for describing a given action of a funda-

mental group π1(M) on an abstract Λ-tree is the action on the dual tree of a Λ-measured
lamination on M . We will explain in the next section how such a description exists
when M is a closed surface. The first step for finding this geometric model, that is the
construction of the Λ-measured lamination, is achieved by “transversality” following a
method that was first introduced by John Stallings in the context of simplicial trees.
Definition. Let L = (L, µ) be a Λ-measured lamination contained in M and let T be a
Λ-tree. A transverse map φ : M̃ \ L̃ → T is a locally constant map such that any point
x ∈ L is contained in a flow-box V ' U×]0, 1[ for L̃ on which the restriction φ|(V \ L̃) is
the composition of the projection (U×]0, 1[) \ L̃→]0, 1[\F and map ]0, 1[\F → T which
induces a monotone bijection between the components of ]0, 1[\F and a segment in T .
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Proposition 38. Let M be a closed n-manifold. Let π1(M) × T → T be an action of
π1(M) on a Λ-tree T . Then there exists a Λ-measured lamination L = (L, µ) contained
in M and a transverse map from the set of connected components of M̃ \ L̃ to T which is
π1(M)-equivariant.

Proof. We select a triangulation τ of M and denote by τ̃ the lift of the triangulation to
M̃ . We construct the support of the measured lamination L by defining its intersection
with the i-skeleton of τ inductively.

Over the 0-skeleton we choose any equivariant map φ0 from τ̃0 to T . In order to extend
this map over the 1-skeleton, we use the following result.

Lemma 39. Let Λ be a countable ordered group and let [a, b] ⊂ Λ be an interval. There
is a Λ-measure µ on [0, 1] with the following properties:

(1) the support of µ is a closed subset F ⊂]0, 1[ with empty interior;

(2) the function t 7→ a+

∫ t

0

dµ is a monotone bijection from the connected components

of ]0, 1[\F to [a, b].

Furthermore if µ1 and µ2 are two Λ-measures on ]0, 1[ satisfying properties (1) and (2),
then there is an orientation-preserving homeomorphism h : [0, 1] → [0, 1] that carries µ1

to µ2.

Let τ1 be an edge of the 1-skeleton of τ ; let τ̃1 be one of its lifts to the universal cover,
and ã, b̃ the endpoints of τ̃1. Set a = φ0(ã), b = φ0(b̃). The edge τ̃1 can be identified with
[0, 1]. An application of Lemma 39 gives a Λ-measure with support contained in ]0, 1[
and a bijection from the complementary components of the support of this measure. This
support will be the intersection of L̃ with τ̃1 and we define φ1 will be the bijection. The
measures and φ1 can clearly be made equivariant.

In order to extend φ1 over the 2-skeleton, we consider a 2-simplex τ2; let τ̃2 be one of
its lifts to M̃ . The boundary of τ̃2 is the union of 3 edges e1, e2 and e3 of τ̃1. Each edge
ej contains a closed subset Fj and φ1 identifies ei \ Fj with a segment Ij ⊂ T . By the
axioms of a Λ-tree, there exists a unique point x ∈ T which is common to all segments
φ1(ej). Let cj ⊂ Ij be the connected component of ej \ Fj which is mapped by φ1 to v.
The uniqueness part of Lemma 39 provides for each j an homeomorphism between the
intervals components of ej\vj which are mapped to the same segment of T which identifies
the traces of ∪Fj on these intervals. Using these homeomorphisms one can construct a
lamination L of τ̃2 which intersects ∂τ2 along ∪Fj and a map φ2 from the components of

τ̃2 \ L̃ which extends φ1. These laminations and maps can be chosen invariant. Qu’on
promet When M is a surface, this construction ends the proof of Lemma 38. For the
higher dimensional case we refer to [16, Theorem II.3]. �
Remark. Suppose that the Λ-measured lamination L = (L, µ) constructed in the proof
above satisfies the properties of Proposition 37. Then L has a dual tree and φ induces a
map TL → T which is a morphism of trees [16, p. 175]. We don’t recall the definition
of “morphism” here; we just indicate that in our case it is an equivalent reformulation of
the fact that φ : M̃ \ L̃ is a transverse map. By the construction of L, TL is a union of
segments on which φ is an isometry.

5.3. Actions of surface groups.
We consider in this section a closed surface S of negative Euler characteristic. For

simplicity we assume that S is closed.
We denote by DF(π1(S)) the set of discrete and faithfull representations of π1(S) into

SL(2,C) and by DF(π1(S))R those with image contained in SL(2,R). In [16] the Λ-trees
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which are limits of a diverging sequence of discrete and faithfull representations (ρi)
belonging to DF(π1(S))R are characterized.

Definition 40. Let π1(S)× T → T be an action of π1(S) on a Λ-tree T . This action is
geometric if there is a Λ-measured lamination L = (L, µ) on S which has a dual tree TL
and a π1(S)-equivariant isometry between T and TL.

Theorem 41. [16] Let (ρi) be a sequence in DF(π1(S))R which converges to a minimal
action of π1(S) on a Λ-tree T in the sense of Theorem 33. Then π1(S) × T → T is
geometric.

We sketch the proof of this theorem and begin with the following complement to Propo-
sition 38.

Proposition 42. Let π1(S) × T → T be a minimal action of π1(S) by isometries on a
Λ-tree. Then there is a Λ-measured lamination L on S which has a dual tree TL and a
morphism TL → T which is π1(S)-equivariant.

Proof. In the case of surfaces the axioms for a lamination that guarantee the existence
of a dual tree can be formulated differently. Let us identify the universal cover S̃ with
the unit disk after choosing an arbitrary metric of constant curvature −1. Denote by
(S1 × S1 \ diagonal)/Z2 the set of pairs of distinct points of S1. Let L be a codimension
1 lamination of S and let L̃ its preimage in S̃. Suppose that L satisfies the following set
of axioms.

(1) there is a finite cover of S by flow-boxes for L such that each leaf of L̃ intersects
the lift of a flow-box in a connected set;

(2) each leaf of L̃ is proper;
(3) each leaf has two distincts ends defining a point in (S1 × S1 \ diagonal)/Z2;
(4) the map L̃ → (S1 × S1 \ diagonal)/Z2 which assigns to a point of L̃ the ends of

the leaf of L̃ which passes through it is continuous.

Then it is not difficult to show that L satisfies also the hypothesis of Proposition 37 (cf.
[16, Theo. I.4.2]). Therefore if L is the support of a Λ-measured lamination L, then L
has a dual Λ-tree.

In order to construct the lamination L = (L, µ), consider the lamination L′ = (L′, µ′)
provided by Proposition 38. This lamination might contain closed leaves that are ho-
motopic to 0 on S. One proves that the union of those leaves consist of finitely many
sublaminations of L′ which are the union of parallel leaves [16, Lemma III.1.4]. By re-
moving those sublaminations and modifying accordingly the transverse map, one obtains
a Λ-measured lamination L = (L, µ) and a transverse map S̃ \ L̃ → T . At this stage,
one can prove that each half-leaf of L̃ has one endpoint in S1; however this does not
suffice for verifying (2) and in particular the lamination might contain Reeb components.
A new modification of L is required which simplifies the annuli bounded by leaves of L
to guarantee that the lamination has a dual tree (cf. [16]). By Remark 5.2 there is an
equivariant morphism TL → T . �

Take back the sketch of the proof of Theorem 41. By Proposition 36 a first property of
T is that any subgroup of π1(S) which stabilizes a non-trivial segment of T is virtually
abelian: therefore non-trivial segments stabilizers are cyclic. A second one is the following.
Say first that g ∈ π(S) is hyperbolic when for some ρ ∈ DF(π1(S))R, ρ(g) acts on H leaving
invariant a geodesic, called its axis. This property is independant on the representation
ρ ∈ DF(π1(S))R. One denotes by lρ(g) the translation distance of the hyperbolic element
ρ(g). Let g and h be hyperbolic elements of π1(S) whose axis intersect in H. This property
also does not depend on ρ. By the triangular inequality the translation distance of the
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elementsgh satisfies for any ρ ∈ DF (π1(S)): lρ(gh) ≤ lρ(g) + lρ(h). Therefore since T is
the limit of the sequence (ρi) the translation distances in T satisfy δT (gh) ≤ δT (g)+δT (h).
A geometric interpretation of this inequality is that any partial axis (or the fixed points
sets) of g and h in T have non-empty intersection.

Theorem 41 follows therefore from the following:

Theorem 43 ([16], [30]). Let π1(S) × T → T be an action of π1(S) on a Λ-tree which
satisfies

(1) the action is minimal and without phantom inversions,
(2) the edge stabilizers are cyclic and
(3) if g and h are hyperbolic elements whose axis intersect in H, then any partial axis

of g and h in T intersect.

Then the action π1(S)× T → T is geometric.

The proof given in [16] of this theorem starts with the lamination L obtained in Propo-
sition 42 and with the π1(S)-equivariant morphism ι : TL → T . If ι is not an embedding,
there is a vertex v and two distinct segments issued from v such that ι(e1) ∩ ι(e2) is a
segment which is not reduced to v. The vertex v of TL corresponds to a connected com-
ponent C of S̃ \ L̃; for each segment ei there is a leaf l̃i of L̃ in the boundary C̃. Since

e1 6= e2, l̃1 6= l̃2. One distinguishes two cases according to the behaviour of the projec-
tions li of l̃i on S: first when both projections are compact and second when both are
non-compact. Using the equivariance of the map ĩ one sees that these two cases cover all
possible situations. These two cases contradict respectively (1) and (2) (cf. [16, Chapter
IV]). �

In [16] the question wether the conclusion of Theorem 43 was still true assuming only
condition (1) was left open. It was solved when Λ is archimedean by Richard Skora who
proved:

Theorem 44. [31] Let π1(S)×T → T be a minimal action of π1(S) by isometries on an
R-tree without phantom inversion and such that the edge stabilizers are cyclic. Then this
action is geometric.

Furthermore there is an action on a Λ-tree which satisfies (1) but which is not geometric.
The proof by Skora uses also the R-measured lamination L and the morphism ι : TL →
T . Assuming by contradiction again that ι is not an isometry, then two germs of segments
e1 and e2 in TL issued from some vertex v are identified; e1 (resp. e2) corresponds to a

leaf l̃1 (resp. l̃2) in the boundary of the component v of S̃ \ L̃. Since L is R-measured,
the structure theorem [18, Theorem 3.2] says that L is the union of finitely many disjoint
sublaminations which either are formed by parallel closed leaves or are exceptional minimal
[18, Theorem 3.2]. The case when each leaf li is closed contradicts that the edge stabilizers
are cyclic, as in the previous proof. The case when each leaf li is contained in a minimal
exceptional is handled differently: Skora uses interval exchanges to produce a subinterval
of ι(e1) ∩ ι(e2) which has a non-cyclic edge stabilizer [31] (see also [23]).

5.4. Actions of 3-manifolds groups.
Let M be a compact 3-manifold. One says that M is boundary-incompressible when

any closed curve embedded in ∂M which is homotopic to 0 in M bounds a 2-disc properly
embedded in M . One says that M is acylindrical when any properly embedded annulus
or any embedded 2-torus can be homotoped relatively to its boundary into ∂M .

Theorem 45. Let M be a compact boundary-incompressible and acylindrical 3-manifold.
Then the space of discrete and faithfull representations DF(π1(M)) is compact.
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This theorem was first proven by Thurston in [32]: it is one main step in his proof
of the Hyperbolization Theorem for non-Haken 3-manifolds. Morgan and Shalen gave a
entirely different proof in [19] using trees. Their proof can be outlined as follows. Set
G = π1(M). Suppose by contradiction that DF(G) is not compact. Then by Proposition
36, there exists an R-tree T and a minimal non-trival action of G on T by isometries such
that the subgroups of G which fix a non-degenerate segment of T are small. The proof
reduces then to show that such an action does not exist when M satisfies the hypothesis
of the theorem.

By Proposition 38 there is a a measured lamination L = (L, µ) in M and a transverse
map M̃ \ L̃ → T . The construction gave that L is carried with positive weights by a
branched surface [11]. A branched surface is a 2-complex B embedded in M with a local
model (cf. Picture). Particular neighborhoods of this 2-complex in M have a natural
decomposition in intervals. A measured lamination L = (L, µ) is carried by B if it
is contained in a neighborhood of this type in such a way that L is transverse to the
intervals.) A difficult part of the proof is to show that one can choose the dual lamination
to be carried by a branched surface which is incompressible (cf. [11]). This implies that the
fundamental group of each leaf l of L maps injectively into π1(M) = G. By equivariance
of the transverse map, π1(l) stabilizes a non-degenerate segment of T . The property of
the segment stabilizers implies that π1(l) is virtually abelian. Therefore the fundamental
group of any leaf of L is cyclic or trivial.

On another side, the incompressibility of B implies that no closed surface carried by B
is homeomorphic to a disk or a 2-sphere. Under these circonstances, Theorem 5.1 of [18]
implies that any surface carried by B has zero Euler characteristic. By approximating L,
one constructs compact surfaces carried by B. Such a surface is a union of annuli or tori.
This contradicts the acylindricity of M .

The hypothesis on M in Theorem 45 are of a topological nature, but they can also
be formulated equivalently in a group-theoretic way. The property that M is boundary-
incompressible and irreducible is equivalent to the fact that G is not isomorphic to a
free product. The acylindricity of M is equivalent to the non-existence of a non-trivial
splitting of G as an amalgamated product over a subgroup isomorphic to Z or to Z2. After
giving their proof based on 3-dimensional arguments, Morgan and Shalen conjectured the
following vast generalization which is now a theorem of Rips.

Theorem 46. Let G be a finitely presented group which can not be written as an amal-
gamated free product over a virtually abelian group. Then there are no non-trivial actions
of G on an R-tree such that the stabilizers of segments are virtually abelian.

We refer to [2] for a generalization and to [25] for a survey of the proof.

References

[1] Mladen Bestvina, Degenerations of the hyperbolic space Duke Mathematical Journal, vol. 56 (1988),
no. 1, 143-161

[2] Mladen Bestvina and Mark Feighn, Stable actions of groups on real trees, Inventiones Mathematicae,
vol. 121 (1995), no. 2, 287-321.
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[23] Jean-Pierre Otal, Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3, Astérisque
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Toulouse, France

E-mail address: otal@math.univ-toulouse.fr


