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Introduction

It is well known that, given a classical selfadjoint pseudodifferential
operator of order 1, one can define the strongly continuous group (Pt)
of unitary operators, such that ut = Ptu0 gives the solution of the hy-
perbolic equation ∂

∂t
+ iAu = 0 with Cauchy data u0. Moreover, the

operators Pt = e−itA are classical Fourier integral operators associated
to the canonical transformations Ft, where (t, x) 7→ Ft(x) is the flow of
the Hamiltonian field Ha = (∂a/∂ξj;−∂a/∂xj) and a is the principal
symbol of A. In particular, we have the following two properties :
— The operators Pt are bounded from the Sobolev space Hs into itself.
— The conjugate P−tBPt of a classical pseudodifferential operator B
(with principal symbol b) is a classical pseudodifferential, whose prin-
cipal symbol is b ◦ F−1

t .
It turns out that, for extending this theory to more general evolution

equation such as Schrödinger type equations, one has just to modify the
properties above. Let us consider for instance the harmonic oscillator
A = 1

2

(
− d2

dx2 + x2
)
. The group of unitary operators Pt = e−itA is

well known and, in particular, for t = π/2, Pt is, up to some factor,
the Fourier transformation while the canonical transformation (still
associated to the Hamiltonian flow of the principal symbol) becomes
Ft(x, ξ) = (ξ,−x). One has the corresponding properties :
— Pt maps the Sobolev spaces Hs into weighted L2 spaces.

— The symbols of B and of its conjugate B̃ = P−tBPt are still related

by b̃ = b ◦F−1
t but, if b is an symbol of order m satisfying the standard

estimates ∣∣∂α
ξ ∂

β
x b

∣∣ ≤ Cst(1+ |ξ|)m−|α|,

the symbol b̃ satisfies the exotic ones∣∣∂α
ξ ∂

β
x b̃

∣∣ ≤ Cst(1+ |x|)m−|β|.

Such b̃ can be considered as symbols of (generalized) pseudodifferential
symbols if we use the Weyl-Hörmander calculus.

In this theory, many different pseudodifferential calculi are defined,
each of which is associated to a “good” Riemannian metric g on the
phase space X = Rn×(Rn)∗. Moreover, to any “good” positive function
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M on X , one can associate a generalized “Sobolev space” H(M, g). In
the example above, the Pt maps the usual Sobolev spaces into unusual
ones (the weighted L2 spaces), and conjugates of usual pseudodifferen-
tial operators are unusual ones.

We will use systematically the Weyl-Hörmander calculus and, in or-
der to generalize Fourier integral operators and hyperbolic equations,
we have to study two problems.

1. Are given a canonical transformation F (symplectic diffeomor-
phism) of X onto itself, an initial calculus (defined by a Riemannian
metric g) and a final calculus (defined by g̃). One can then define
(under convenient assumptions) a class FIO(F, g, g̃) of operators whose
main property is the following : conjugates of g-pseudodifferential oper-
ators are g̃-pseudodifferential ones. These generalized Fourier integral
operators have good properties (composition, boundedness in gener-
alized Sobolev spaces) and enjoy a symbolic calculus. This has been
developped in [Bo3] and is recalled in section 2.

2. Are given an evolution equation ∂
∂t

+ iAu = 0 and an initial calcu-
lus (defined by a metric g0). Then, one can expect that the propagators
Pt exist and belong to FIO(Ft, g0, gt). The calculus at time t depends
on t and is actually forced by the Hamiltonian flow. Theorems 3.1
and 3.2 give sufficient conditions (on the symbol a and its Hamiltonian
flow Ft) for getting such results. Proofs will be sketched in sections 4
and 5.

Our assumption are exclusively expressed in terms of differential ge-
ometry, starting from the symbol a of A. In particular, no selfadjoint
extension in L2 is a priori given and an important part of the task
is to deduce from the dynamic assumption on a that A is essentially
selfadjoint. One can see easily that these assumptions are grosso modo
necessary if one wants to fulfil the program above. However, they are
not so easy to check : they require estimates which may be touchy, not
only on a but also on its Hamiltonian flow.

1. Weyl-Hörmander calculus of pseudodifferential
operators

We refer to [Hö, §§18.5, 18.6] but we will need some results from
[B-L], [B-C], [Bo1] and [Bo2].

1.1. Quantization. We will denote by X = (x, ξ) a point of the phase
space X = Rn × (Rn)∗. The symplectic form σ on X is defined by

σ(X, Y ) = 〈ξ, y〉 − 〈η, x〉 ; X = (x, ξ), Y = (y, η).

For a(x, ξ) belonging to the Schwartz space S(X ), the operator
aw(x,D), or aw for short, is defined by

aw(x,D)u(x) =

∫∫
ei(x−y)·ξ a

(
x+y

2
, ξ

)
u(y) dydξ

(2π)n . (1)
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Such an operator maps S ′(Rn) into S(Rn). If now a belongs to the
space S ′(X ) of tempered distributions on X , the same formula, taken
in the weak sense, defines an operator mapping S(Rn) into S ′(Rn).
One says that a is the Weyl symbol of aw.

The product of composition of two symbols a and b (belonging say to
S(X ), but this will be widely extended) is defined by (a#b)w = aw ◦ bw

and is given by the formula

a#b(X) =

∫∫
e−2iσ(X−S,X−T )a(S)b(T )dS dT

π2n . (2)

The following expansion is given here with a remainder of order 3,
which is sufficient for our purpose, but it exists at any order.

a#b = ab+ 1
2i
{a , b}+ 1

2

(
1
2i
σ(∂Y , ∂Z)

)2
a(Y )b(Z)|Y =Z=X +R3(a, b). (3)

Here, {a , b} is the usual Poisson bracket in X . There is an integral
formula, more or less similar to (2) and for which we refer to [Bo2],
giving the value of R3(a, b). An important point is that it depends
only on the derivatives of order 3 of a and b.

1.2. Admissible metrics. A Riemannian metric g on the phase space
is identified to a family Y 7→ gY of positive definite quadratic forms on
X . For each Y , one can choose symplectic coordinates (depending on
Y but still denoted by (x, ξ)) such that gY is diagonalized :

gY (dx, dξ) =
n∑
1

dx2
j

a2
j

+
n∑
1

dξ2
j

α2
j

. (4)

The aj and αj depend on the choice of the coordinates, but the products
ajαj depend just on Y .

Such a metric g is said admissible if the following 5 properties are
satisfied.

A1. Simplifying assumption. — The products ajαj above are equal
and their common value is denoted by λ(Y ). This means that there
is a (linear) symplectic transformation mapping the unit ball BY =

{X| gY (X−Y ) ≤ 1} onto the euclidean ball of radius
√
λ(Y ). One has

|σ(S, T )| ≤ λ(Y )gY (S)1/2gY (T )1/2.

A2. Fundamental assumption. — ∀Y, λ(Y ) ≥ 1.
This means that localising in unit balls is not a violation of the uncer-
tainty principle.

A3. Slowness. — There exists C > 0 such that

gY (Y−Z) ≤ C−1 =⇒
(
gY (T )/gZ(T )

)±1 ≤ C

uniformly with respect to Y, Z, T .

A4. Temperance. — There exist C and N such that

∀Y, ∀Z,∀T,
(
gY (T )/gZ(T )

)±1 ≤ C
(
1 + λ(Y )2gY (Y−Z)

)N
.
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A5. Geodesic temperance. — The geodesic distance D(Y, Z) for the
Riemannian metric λ(Y )2gY (dx, dξ) is equivalent to λ(Y )gY (Y−Z)1/2

in the following sense :

∃C,∃N,∀Y,∀Z
C−1(1+D(Y, Z))1/N≤ 1+λ(Y )gY (Y−Z)1/2 ≤ C(1+D(Y, Z))N .

In view of A4, this property is equivalent to

∃C,∃N,∀Y, ∀Z,∀T,
(
gY (T )/gZ(T )

)±1 ≤ C
(
1 +D(Y, Z)

)N
.

Remark. The first assumption A1 makes things simpler, for instance
it is not necessary to introduce the inverse metric gσ which in this
case is just λ2g, but it is not necessary. On the contrary, the geodesic
temperance plays an important rôle : thanks to A5, one has a simple
characterization of pseudodifferential operators (see n◦1.4), one can
define very easily the Fourier integral operators and thus prove in a
few lines our theorem 3.2.

It could be possible to define the Fourier integral operators without
A5, using localized twisted commutators (as in [B-C, th. 5.5]), but
the proofs are much more complicated. Moreover, there is no known
example of a metric satisfying A4 and not A5.

1.3. Weights and symbols. A positive function M defined on X is
a g-weight if it satisfies the following conditions (slowness and temper-
ance), for convenient constants C ′ andN ′.

gY (Y−Z) ≤ C ′−1
=⇒

(
M(Y )/M(Z)

)±1 ≤ C ′(
M(Y )/M(Z)

)±1 ≤ C ′(1 + λ(Y )2gY (Y−Z)
)N ′

.

Modifying the constants if necessary,
(
1 + λ(Y )2gY (Y−Z)

)
can be re-

placed above by
(
1 +D(Y, Z)

)
.

The classes of symbols S(M, g) (for admissible metrics and g-weights)
are defined as the set of functions a ∈ C∞(X ) such that

|∂T1 . . . ∂Tk
a(X)| ≤ CkM(X) for gX(Tj) ≤ 1. (5)

Here, ∂Ta = 〈T, da〉 denotes the directional derivative along T . The
space of operators aw for a ∈ S(M, g) (the pseudodifferential operators
of weight M) is denoted by Ψ(M, g). The following properties are now
well known.

• Ψ(M, g) ⊂ L(S,S) et Ψ(M, g) ⊂ L(S ′,S ′).
• Ψ(1, g) ⊂ L(L2, L2).

• In the expansion (3), for a ∈ S(M1, g) and b ∈ S(M2, g), one has

a#b and ab ∈ S(M1M2, g)

{a , b} , (a#b− ab) and(a#b− b#a) ∈ S(M1M2λ
−1, g) (6)

R3(a, b) ∈ S(M1M2λ
−3, g). (7)
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Let us recall some complements which are proved in [Bo2].

Proposition 1.1. The classes de symbols
∧∧

S (M, g) [resp.
∧∧∧∧

S (M, g),
∧∧∧∧∧∧

S (M, g)] are defined as the spaces of functions satisfying (5) for k ≥ 1
[resp. k ≥ 2, k ≥ 3].

(a) There exist a weight M ′ dépending on M such that
∧∧∧∧∧∧

S (M, g) ⊂
S(M ′, g).

(b) The properties (6) are still valid for a ∈
∧∧

S (M1, g) and b ∈
∧∧

S (M2, g).

(c) The property (7) is still valid for a ∈
∧∧∧∧∧∧

S (M1, g) and b ∈
∧∧∧∧∧∧

S (M2, g).

The semi-norms of the spaces S(M, g),
∧∧

S (M, g), . . . are the best

constants Ck in (5). The S(M, g) are Fréchet spaces, the
∧∧

S (M, g),
. . . are complete but not Hausdorf.

1.4. Characterization of pseudodifferential operators.

Theorem 1.2. (a) Given b ∈
∧∧

S (λ, g) and A ∈ Ψ(M, g), one has

ad bw · A def
= bwA− Abw ∈ Ψ(M, g).

When M = 1, this operator is thus bounded on L2.
(b) Conversely, let A be an operator which is bounded on L2 as well

as its iterated commutators

ad bw1 . . . ad bwk · A for bj ∈
∧∧

S (λ, g).

Then A belongs to Ψ(1, g).

The first part is an immediate consequence of the proposition 1.1 (b).
For the converse, we refer to [Bo1] where the geodesic temperance plays
a decisive rôle.

Generalized Sobolev spaces H(M, g). — We refer to [B-C] for
equivalent definitions ; the following properties will be sufficient
• For any g-weight M , there exist A ∈ Ψ(M, g) and B ∈ Ψ(M−1, g)
such that AB = BA = I.
• The Sobolev space H(M, g) (sometimes denoted H(M) for short), is
the set of u ∈ S ′(Rn) such that Au ∈ L2 for any A ∈ Ψ(M, g). It
is sufficient that Au ∈ L2 for one invertible A as above, and one can
choose ‖u‖H(M) = ‖Au‖L2 .

• For any g-weights M and M1, any A ∈ Ψ(M, g) maps continuously
H(M1) into H(M1/M).
• If A ∈ Ψ(M, g) est bijective from H(M1) onto H(M1/M) for some
g-weight M1, then A−1 belongs to Ψ(M−1, g).

2. Generalized Fourier integral operators

We recall here some of the definitions and results of [Bo3]. We con-
sider only Fourier integral operators P of weught 1 (or of order 0, i.e.
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bounded on L2), Fourier integral operators of weight M being just
products PA of such P with A ∈ Ψ(M, g).

An admissible triple (F, g, g̃) is made of a diffeomorphism F of X
onto itself, and of two Riemannian metrics g and g̃, such that the four
following conditions are satisfied.

B1. — F is a canonical transformation (or symplectomorphism), which
means that F∗σ = σ. For any Y ∈ X , the differential F ′(Y ) belongs to
the symplectic group Sp(n).

B2. — F is an isometry of (X , g) onto (X , g̃). This means that g̃ is
the direct image F∗g of g, i.e. the Riemannian metric defined by

g̃
F (Y )

(T ) = g
Y
(F ′(Y )−1 · T ).

B3. — g and g̃ are admissible metrics, satisfying conditions A1 to A5.

B4. — One has the following estimates on the derivatives of F , for
convenient constants Ck :

g̃
F (X)

(
∂T1 . . . ∂Tk

F (X)
)
≤ Ck for gX(Tj) ≤ 1. (8)

Remark. In most applications, the canonical transformation F and an
admissible metric g are given and g̃ is thus determined by B2. The
problem is to know and to prove that g̃ is also admissible. It is easy
to see that A1 and A2 are satisfied and that the slowness A3 is a
consequence of B4 for k = 2, but the temperance is touchy.

It cannot be expressed simply in terms of F and g because it mixes
up the symplectic and Riemannian structures (which are preserved by
F ) and the affine structure (which is not). One has to compare the
values of the quadratic forms g̃Y and g̃Z for the same vector T in two
points which can be very far, and this requires a good knowledge of the
behaviour of F at infinity.

For g and g̃, the functions defined in the n◦1.2 are denoted by λ and

λ̃. The quadratic forms gY and g̃F (Y ) being symplectically equivalent,

one has λ̃(F (Y )) = λ(Y ).
The condition B4 for k = 1 is automatically satisfied (with C1 = 1)

for F and F−1. A simple computation shows that the conditions B4
(for k > 1) are also valid for F−1 which imply that the triple (F−1, g̃, g)
is also admissible.

The condition B4 is actually equivalent to the following properties,
which are of course essential for our purpose.

Proposition 2.1. If m is a g-weight, then m̃ = m ◦ F−1 is a g̃-weight
and one has

a ◦ F−1 ∈ S(m̃, g̃) ⇐⇒ a ∈ S(m, g)

a ◦ F−1 ∈
∧∧

S (m̃, g̃) ⇐⇒ a ∈
∧∧

S (m, g)
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There is no analogous result for a ∈
∧∧∧∧

S (m, g) : an estimate of the
second derivatives of a◦F−1 requires an estimate of the first derivatives
of a.

Definition 2.2 (Fourier integral operators and twisted commutators).
The space FIO(F, g, g̃) of Fourier integral operators associated to the
admissible triple (F, g, g̃) is the set of operators P such that

ãd(b1) . . . ãd(bk) · P ∈ L(L2) for bj ∈
∧∧

S (λ, g), (9)

where ãd(b) · P is a notation for the twisted commutator :

ãd(b) · P = (b ◦ F−1)wP − Pbw. (10)

This definition is of course modelled on the characteristic property
of pseudodifferential operators given in theorem 1.2. It implies easily
the following properties

• FIO(I, g, g) = S(1, g)

• For P ∈ FIO(F, g, g̃), its adjoint P ∗ belongs to FIO(F−1, g̃, g).

• For P ∈ FIO(F, g, g̃) and Q ∈ FIO(G, g̃, g), where (F, g, g̃) and
(G, g̃, g) are two admissible triples, one has QP ∈ FIO(G ◦ F, g, g).

For proving the existence of non trivial Fourier integral operators, a
more concrete definition is necessary.

2.1. Principal symbol of Fourier integral operators. Let Γ be the
graph of F and for each point (Y, F (Y )) ∈ Γ, let χY the affine tangent
map, defined by χY (X) = Y + F ′(Y ) · (X−Y ). One can define a fiber

bundle Γ̃ → Γ such that its fiber at (Y, F (Y )) is made of the metaplectic
operators V associated to χY , i.e. such that aw V = V (a ◦χY )w for
any symbol a. Such a V is determined by χY up to multiplication by
a complex number ω ∈ U(1) and the fiber is thus a circle.

We refer to [Bo3] for the definition of the horizontal sections Y 7→
VY of Γ̃ as well as for the construction of a refined partition of unity
Y 7→ ψY . The following result is the theorem 6.6 of [Bo3]

Theorem 2.3. (i) For such VY and ψY and for p ∈ S(1, g), the fol-
lowing integral

P1 =

∫
p(Y ) VY ◦ ψw

Y
dY
πn (11)

defines an element of FIO(F, g, g̃).
(ii) Conversely, any P ∈ FIO(F, g, g̃) can be written P = P1 + R, with
P1 as above and R a regularizing Fourier integral operator, i.e. such
that

∀N, (λ̃w)N ◦R ◦ (λw)N ∈ FIO(F, g, g̃) (12)

(iii) The section (Y, F (Y )) 7→ p(Y )VY of the line bundle Γ̃ ⊗U(1) C is
said to be a principal symbol of P . The principal symbol of P is unique,
up to a symbol (Y, F (Y )) 7→ q(Y )VY with q ∈ S(λ−1, g)
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A principal symbol for the adjoint P ∗ is (F (Y ), Y ) 7→ p(Y )V ∗
Y . With

evident notations, forQ ∈ FIO(G, g̃, g), a principal symbol ofQ◦P is the
section (Y,G ◦F (Y )) 7→ p(Y )q(F (Y ))WF (Y )◦VY . Thanks to part (i) of
the theorem, there exist almost invertible Fourier integral operators.

3. Evolution equations

Let a be a real valued and C∞ function on X symbol, belonging to
a class of symbols which will be precised later, let g0 be an admissible
metric and T > 0. We make the following assumptions

C1. — The flow Ft of the hamiltonian field of a is global : it is defined
for all t ∈ R par d

dt
Ft(X) = Ha(Ft(X)) ; F0(X) = X. Set gt = Ft∗g0.

C2. — The metrics gt satisfy A1,. . . , A5 for any t ∈ [−T, T ], with
uniform constants.

C3. — The triples (Ft, g0, gt) satisfy B1,. . . , B4 for any t ∈ [−T, T ],
with uniform constants.

The group law Ft+s = Ft ◦Fs, imply that the triples (Ft, gs, gs+t) are
admissible when s and s+t belong to [−T, T ].

The ”function λ” defined in the n◦1.2 corresponding to gt will be
doneted by λt. One has λt = λ0 ◦ F−1

t . For any g0-weight µ0, we will
denote by µ∗ the family of gt-weight µt = µ0 ◦ F−1

t ; t ∈ [−T, T ].

Theorem 3.1. Assume that a belongs uniformly to
∧∧∧∧∧∧

S (λ3
t , gt) (i.e.

the kth semi-norm of a in these spaces is bounded by a constant Ck

independent on t). Then
(i) The operator aw with domain S(Rn) is essentially selfadjoint on L2.
The domain of its closure A is {u ∈ L2| awu ∈ L2}, which means that
weak and strong extension coincide.
(ii) A is thus the infinitesimal generator of a one parameter strongly
continuous group Pt = e−itA. For any g0-weight µ0 and for |t| ≤ T , the
operator Pt is bounded from H(µ0, g0) onto H(µt, gt).

The assumption on a is satisfied when a ∈
∧∧

S (λ3
0, g0) but it is not

sufficient in general that a ∈
∧∧∧∧∧∧

S (λ3
0, g0). For the same reason, it is

sufficient to assume a ∈
∧∧

S (λ2
0, g0) in the next theorem.

Theorem 3.2. Assume now that a belongs uniformly to
∧∧∧∧∧∧

S (λ2
t , gt).

Then Pt belongs to FIO(F, g0, gt) for |t| ≤ T .

Remark. The meaning of the condition a ∈
∧∧∧∧∧∧

S (λ2
0, g0) depends strongly

on the choice of the initial metric g0. For instance, for the standard

metric dx2 + dξ2

1+|ξ|2 , terms like |ξ|2 log |ξ| or x3 are allowed. If g0 is the

euclidean metric, any polynomial of total degree 3 (in x and ξ) belongs

to
∧∧∧∧∧∧

S (1, g0).
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It is clear on these examples that the assumption on the class of a
cannot imply the global character of the flow nor the essential selfad-
jointness of aw. The dynamic assumption C1 is crucial.

4. Proof of theorem 3.1

Let us write A = aw. If we think of the equation d
dt
ut + iAut =

ft as a Schrödinger equation, the associated “Heisenberg equation” is
d
dt
Bt = i(BtA−ABt). It turns out that our dynamic assumptions give

immediately approximate solutions of this last equation, which will give
a priori estimates.

Let b0 a symbol for the metric g0 whose weight will be specified later,
and bt = b0 ◦ F−1

t . We have ∂
∂t
bt = {bt , a} and thus, according to (3)

bt#a = abt + 1
2i
{bt , a}+ order 2 +R3(bt, a)

a#bt = bta+ 1
2i
{a , bt}+ order 2 +R3(a, bt)

Terms of order 0 and 2 are symmetric in a and b, and thus
d
dt
Bt = i(BtA− ABt) +Rt (13)

where the symbol of Rt belongs to the same class as R3(a, bt). As
a consequence of the proposition 1.1 (c), under the assumptions of

the theorem 3.1, and for b0 ∈ S(µ0, g0) (or b0 ∈
∧∧

S (µ0, g0)), one has
Rt ∈ Ψ(µt, gt).

We have to define the spaces Lp([−T, T ];H(µ∗)) made of (classes) of
measurable functions u : t 7→ ut (the weak neasurability with values in
S ′ is sufficient) such that

‖u‖Lp(H(µ∗))
=

(∫ T

−T

‖ut‖p
H(µt)

dt

)1/p

<∞, (14)

with the usual convention for p = ∞. This definition is meaningful if
we define the norms of the spaces H(µt, gt) in a coherent way. This can
be specified thanks to the following proposition.

Proposition 4.1. Let µ0 be a g0-weight. There exist δ > 0 and for
each θ ∈ [−T, T ] a bθ ∈ S(µθ, gθ) such that, for |s| ≤ δ, the operators
(bθ ◦ F−1

s )w have an inverse belonging to S(µθ+s, gθ+s).

Choosing a finite number of points θ, each t can be written θ + s
and we can choose ‖u‖H(µt)

= ‖(bθ ◦ F−1
s )wu‖L2 in (14). Changing

the points θ and the bθ would replace the norm in Lp(H(µ∗)) by an
equivalent one.

We should verify, in the proof of [B-C, th. 6.4], that we can choose
bθ ∈ S(µθ, gθ) and cθ ∈ S(µ−1

θ , gθ) whose semi-norms are independant
of θ such that bθ#cθ = 1. We are thus reduced to prove the result for
θ = 0. With evident notations for cs and Cs, we get

d
ds
BsCs = i(BsCsA− ABsCs) +Rs
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where Rs belongs to Ψ(1, gs) (with uniform semi-norms). Setting es =
(bs#cs) ◦ Fs, we get an equation d

ds
es = r′s with a right hand side

bounded uniformly in S(1, g0). For s small, the semi-norms de (1− es)
in S(1, g0) and thus those of (1 − bs#cs) in S(1, gs) are small. As a
consequence, BsCs is invertible in L(L2), its inverse belongs to Ψ(1, gs)
(see n◦1.4), and Bs itself is invertible.

The functions of class C∞ are dense in L1(H(µ∗)) and the dual of this
space is L∞(H(µ−1

∗ )). The space C(H(µ∗)) (“continuous” functions
with values in a variable space!) is defined as the closure, in L∞(H(µ∗)),
of the set of continuous functions with value in S.

Proposition 4.2. Let µ0 a g0-weight.
(a) There exists C such that, for any u ∈ C1([−T, T ],S) solution of
the equation

d
dt
ut + iAut = ft (15)

one has

‖u‖L∞(H(µ∗))
≤ C

(
‖u0‖H(µ0) + ‖f‖L1(H(µ∗))

)
. (16)

(b) There exist µ0 > µ0 such that any solution u of (15) which belongs
to L∞(H(µ∗)) belongs to C(H(µ∗)) and satisfy the estimate (16).

It suffices to prove the result on an interval of size δ centered at 0.
Keeping the notations above, we have

d
dt

(Btut) = iBtAut−iABtut+Rtut−iBtAut+Btft

= −iA(Btut)+Rtut+Btft

and thus

d
dt
‖ut‖2

H(µt)
= d

dt
‖Btut‖2

L2 ≤ C
(
‖ut‖2

H(µt)
+ ‖ut‖H(µt)

‖ft‖H(µt)

)
which proves the part (a) of the theorem for δ small.

For proving the part (b), we need the following lemma, where µ0 and
µ0 will be g0-weights, and where HN is the classical weighted Sobolev
space

{
u
∣∣ xαDβu ∈ L2 ; |α+β| ≤ N

}
for N ≥ 0, and is the dual ofH−N

for N < 0.

Lemma 4.3.

∀µ0, ∃N, ∃C, ∀t ∈ [−T, T ], ‖u‖H(µt)
≤ C ‖u‖HN .

∀N, ∃µ0, ∃C, ∀t ∈ [−T, T ], ‖u‖HN ≤ C ‖u‖H(µt)
.

For a fixed t, the first estimate says that pseudodifferential operators
are bounded from S into L2, while the second one is a consequence of
the fact that any linear form on X belongs to a class of symbol for a
convenient weight. One has just to make uniform these arguments.

Let us go back to part (b) of the proposition 4.2. We know (propo-
sition (1.1) (a)) that there exist a weight m0 such that a ∈ S(m0, g0).
We have also a ∈ S(mt, gt) because a ◦ F−1

t = a. We can choose µ0
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sufficiently large, such that H(mtµt) ⊃ HN ⊃ H(µt/mt). We know
then that du/dt ∈ L∞(HN) and u is continuous with values in HN . It
is then possible to find a sequence uν ∈ C1(S) such that uν → u in
C0(HN). The estimate (16) is valid for uν , we have uν(0) → u(0) in
H(µ0) while uν → u and Auν → Au in L∞(H(µ∗)), which ends the
proof.

Theorem 4.4. Let µ0 be a g0-weight, let u0 and f belong to H(µ0, g0)
and L1([0, T ];H(µ∗)) respectively. Then there exists a unique solution
u ∈ C([0, T ];H(µ∗)) of the Cauchy problem

du(t)

dt
+ iAu(t) = f(t); u(0) = u0.

We use a classical duality argument. Let v ∈ S(Rn+1) vanishing near
t = T and let g = ∂v

∂t
+ iAv. From (16) (with the time going from T to

0), we know that one has

‖v‖L∞(H(µ−1
∗ )) ≤ C ‖g‖L1(H(µ−1

∗ ))

and thus that v is uniquely determined by g. The linear form g 7→
(u0 | v(0))+

∫ T

0
(f(t) | v(t)) dt is defined and continuous on the subspace

of L1(H(µ−1
∗ )) made of such g. From the Hahn-Banach theorem, we

get the existence of u ∈ L∞(H(µ∗)) such that

∀v ∈ S, (u0 | v(0)) +

∫ T

0

(f(t) | v(t)) dt = −
∫ T

0

(
u(t)

∣∣ ∂v
∂t

+ iAv
)
dt

(17)
Using functions v vanishing also near t = 0, this proves that u, in the
sense of distributions, is solution de ∂u

∂t
+ iAu = f in ]0, T [×Rn. Let

us choose a weight µ
0
� µ0 such that the part (b) of proposition 4.2

apply to this couple of weights. One has u ∈ C(H(µ∗))) and u(0) is

now well defined. Integrating by parts in (17) we get that u(0) = u0.
The estimate (16), with µ replaced by µ, shows the uniqueness of u.

It remains to prove that u ∈ C([0, T ];H(µ∗)). Let us introduce a
weight µ0 � µ0 such that the part (b) of proposition 4.2 apply. Let
us approximate u0 and f , in H(µ0, g0) and L1([0, T ];H(µ∗)) respec-
tively, by regular functions uν

0 and f ν . From the analysis above, one
gets solutions uν belonging to L∞(H(µ∗)) and thus to C([0, T ];H(µ∗)).
Using again (16), the sequence uν is a Cauchy sequence in L∞(H(µ∗)),
its limit u should belong to C([0, T ];H(µ∗)) which ends the proof of
theorem 4.4.

Proof of the theorem 3.1 (end). — Taking µ0 = 1, the last the-
orem shows that, for any u0 ∈ L2, there exists a unique solution
t 7→ ut = Ptu0, continuous from [−T, T ] into L2, of the equation
∂u
∂t

+ iawu = 0. The group law and the relation P ∗
t = P−1

t are valid in
the interval in view of the uniqueness. One can thus extend Pt to R
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and get a strongly continuous group of unitary operators. Its infinites-
imal generator will be denoted by −iA, where A with domain D(A),
is selfadjoint. Moreover, the Pt, for |t| ≤ T , are continuous from H(µ0)
into H(µt).

We know that 1
t
(u0− Ptu0) converges always towards −iawu0 in the

sense of distributions, and this limit belongs thus to L2 when u0 ∈
D(A). This proves that

D(A) ⊂
{
u0 ∈ L2

∣∣ awu0 ∈ L2
}
. (18)

Conversely, assume that u0 and awu0 belong to L2. For |t| ≤ T , one
has

d
dt
Ptu0 = −iawPtu0 = −iPt(a

wu0).

The right hand side is continuous from [−T, T ] into L2, and Ptu0 has
a derivative in L2. This proves that D(A) is exactly the right hand
side of (18). It is well known that aw, with that domain, is the adjoint
of the closure of aw defined on S. The selfadjointness of A shows
that the weak and strong extensions coincide, which ends the proof of
theorem 3.1.

5. Proof of the theorem 3.2

We assume now that a ∈
∧∧∧∧∧∧

S (λ2
t , gt) and we have to prove that the

iterated twisted commutators of Pt are bounded on L2.

Let b0 ∈
∧∧

S (λ0, g0), let bt = b0 ◦F
−1
t and, using capital letters for the

corresponding operators, set

Kt = P−t ãd(b)·Pt = P−tBtPt −B0.

One has

d

dt
Kt = P−t {iABt − iBtA+ {bt , a}w}Pt = P−tRtPt

The proposition 1.1 (c) shows that Rt belongs to Ψ(1, gt) (its semi-
norms being controlled) and is thus uniformly bounded on L2. We
get

ãd(b) · Pt =

∫ t

0

Pt−sRsPs ds ∈ L(L2).

By induction, it is possible to write the iterated twisted commutators
as sums of terms of the following type :∫

· · ·
∫

0≤s1≤...≤sN

Pt−sN
RsN

. . . Ps2−s1Rs1Ps1 ds1 . . . dsN ∈ L(L2),

which ends the proof.
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Séminaire Équations aux Dérivées Partielles, 1996–1997, Exp. No. XXIII,
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