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Introduction

Given a self-adjoint unbounded operator A on L2(Rn), we know from abstract
functional analysis that there exists a one parameter group of unitary operators
Pt = eitA. Is it possible to say more on the structure of Pt when A is a differential
or pseudo-differential operator with symbol a(x, ξ)?

The case of hyperbolic equations, i.e. when A is a (classical) first order pseudo-
differential operator, is well known : Pt is a (classical) Fourier integral operator,
associated to a quite natural canonical transformation : the flow at time t of the
Hamilton vector field of a. This category of operators has two important properties :
1. There is a good symbolic calculus ; 2. The conjugate of a (classical) pseudo-
differential operator by a Fourier integral operator is itself a pseudo-differential
operator.

The last property should be substantially modified if one wants to consider more
general operators A, for instance the harmonic oscillator H = 1

2 (−d2/dx2 + x2). It
is well known that eitH , for t = π/2, is the Fourier transformation (up to a scalar
factor). Then, if we consider a classical pseudo-differential operator B whose symbol
satisfy

∣∣∂α
ξ ∂

β
x b(x, ξ)

∣∣ ≤ Cαβ(1+ |ξ|)−α, its conjugate will have a symbol c(x, ξ) =
b(ξ,−x) satisfying

∣∣∂α
ξ ∂

β
x c(x, ξ)

∣∣ ≤ Cαβ(1+ |x|)−β . Such operators may still be
called pseudo-differential, but their calculus is highly non classical. Moreover, if
we consider eitH for different values of t, it turns out that one should introduce
different kinds of non classical calculus.

The good framework for this is the Weyl-Hörmander calculus (see [Hö1, section
18.6]) which we recall in section 3. To any (good) Riemannian metric g on the phase
space Rn × (Rn)∗ are associated classes of symbols and operators (let us call them
g-pseudo-differential), and a good symbolic calculus. Our program is the following :

• Given a metric g0 and a canonical transformation F , calling g1 the direct im-
age of g0 by F , we want to define a class of operators denoted by FIO(F, g0, g1) such
that the two following properties are satisfied : 1. There is a good symbolic calculus
for the composition of these operators ; 2. The conjugate of a g0-pseudo-differential
operator by an invertible element of FIO(F, g0, g1) is a g1-pseudo-differential oper-
ator.

• Given an operator A with symbol a and a metric g0, is it true that one
can find canonical transformations Ft and metrics gt such that eitA belongs to
FIO(Ft, g0, gt)?
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The present paper is devoted to the first part of this program. We shall see
that, under reasonable conditions on F , the class of Fourier integral operators
is well defined and has the expected properties. We shall say just a few words in
subsection 6.4 about the second part of the program which cannot be treated at the
same level of generality. It is easy to determine Ft, gt, a necessary expression of eitA,
and a list of conditions which should be satisfied for having eitA ∈ FIO(F, g0, gt).
However, these conditions are effective only if the assumptions on a give a good
control at infinity of the flow of the Hamilton vector field of a. Subsequent papers
will be devoted to such sufficient conditions on a.

Let us describe more precisely the content of the paper. In section 1, we recall
elementary facts on the Weyl quantization. In section 2 we give some details on
metaplectic operators. In particular, we describe precisely their symbols. Metaplec-
tic operators are actually typical examples of Fourier integral operator associated
to an affine canonical transformation. They will play the role of local model for
the general case.

In section 3, we recall some well known facts about the Weyl-Hörmander cal-
culus, including a characterization of pseudo-differential operators in terms of com-
mutators. This allows us to give in section 4 a simple definition of FIO(F, g0, g1)
founded on “commutators twisted by F”. This almost algebraic definition gives
easily properties on composition and adjoints of Fourier integral operators, but
cannot guarantee that these classes are non trivial, and in particular contain al-
most invertible operators.

In section 5, we enter more in the technique of pseudo-differential calculus,
with the notion of confined symbol of [B-L]. Such a symbol aY is concentrated in
a ball (for the metric) centered at Y , and its (modified) Fourier transform αY is
concentrated in a much smaller ball. This is a rather subtle point : the operator
αw

Y (x,D) cannot be considered as concentrated in such a small ball (this would be
a violation of the uncertainty principle) but the symbol is ; moreover, it is only in
these small balls that F can be identified (up to controllable errors) with its affine
tangent map. This allows to give in section 6 a constructive definition of operators
in FIO(F, g0, g1) : they can be written as integrals

∫
UY ◦ αw

Y (x,D) dY where UY

is a metaplectic operator associated to the affine tangent map of F at Y . The
definition of the principal symbol of a Fourier integral operator is now surprisingly
simple, it is a section of a very natural line bundle, and the multiplicative property
is valid. A sketch of the main proofs, founded on stationary phase arguments, is
given in section 7.

1. Weyl Quantization

The phase space X = Rn × (Rn)∗ will be equipped with its symplectic form σ
defined by

σ(X,Y ) = 〈ξ, y〉 − 〈η, x〉 ; X = (x, ξ), Y = (y, η).

We shall reserve the word operator for the elements A ∈ L(S(Rn),S ′(Rn)), the
space of linear continuous applications from the Schwartz space S(Rn) into its
dual.
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Given a temperate distribution a on X , its Weyl quantization is the operator
aw(x,D) (or aw for short) defined by

aw(x,D)u(x) =
∫∫

ei(x−y)·ξ a
(

x+y
2 , ξ

)
u(y) dydξ

(2π)n . (1)

The map a 7→ aw is an isomorphism of S ′(X ) onto L(S(Rn),S ′(Rn)). One says
that a is the symbol of the operator aw.

The operator aw belongs to L(S ′(Rn),S(Rn)) if and only if a ∈ S(X ). We shall
say that the operator aw is composable (or that a is a composable symbol) if aw

maps S(Rn) into itself and S ′(Rn) into itself. Given two symbols a and b in S ′(X ),
one of which is composable, their product a#b is defined by

(a#b)w = aw ◦ bw.

There is no simple characterization of composable symbols, but one has the follow-
ing sufficient conditions. We shall see later that pseudo-differential operators and
Fourier integral operators are composable.

Proposition 1.1. A symbol a ∈ S ′(X ) is composable when it satisfies one of
the following conditions :

(i) The support of a is compact.
(ii) The distribution a is a C∞ function and there exist constants M and Ck

such that
∣∣∂ka(X)

∣∣ ≤ Ck(1+ |X|)M for any partial derivative of order k.

Remark. The standard quantization ast(x,D) of a is less symmetric. It is
defined by a formula analogous to (1), where a

(
x+y

2 , ξ
)

is replaced by a(x, ξ). One
of the advantages of the Weyl quantization is that the symbol of the formal adjoint
of aw is the complex conjugate a. In particular aw is formally self-adjoint if and
only if a is real-valued. Another advantage is the symplectic invariance which will
play a crucial role below.

Phase symmetries. — Given a point Y = (y, η) and δY its Dirac measure, the
phase symmetry ΣY = (πnδY )w is given by

ΣY u(x) = e2i〈x−y,η〉u(2y−x) Σ̂Y u(ξ) = e−2i〈y,ξ−η〉û(2η−ξ)

This formula characterizes the Weyl quantization : from a(X) =
∫
a(Y )δY (X) dY ,

one deduces aw =
∫
a(Y )ΣY

dY
πn .

Phase translations. — For R = (r, ρ), the operator τ
R

whose symbol is e−iσ(·,R) is
given by

τ
R
u(x) = ei〈x−r/2,ρ〉u(x−r) τ̂

R
u(ξ) = e−i〈r,ξ−ρ/2〉û(ξ−ρ)

This formula characterizes also the Weyl quantization. For a linear form l(X) =
σ(X,R), the standard or Weyl quantization lw(x,D) are the same. The above
formula says that (eil)w is nothing but ei(lw) in the operator theoretical sense.
Using the Fourier transformation (see below), one can write any symbol as a(X) =∫
â(R)e−2iσ(X,R) dR

πn and thus

aw =
∫
â(R) τ

2R
dR
πn (2)

One has ΣY ΣZ = e−2iσ(Y,Z)τ2(Y−Z).
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Formula for the composition of symbols. — Given a, b and c in S(X ), one has the
following expressions

a#b(X) =
∫∫

e−2iσ(X−S,X−T )a(S)b(T )dS dT
π2n (3)

a#c#b(X) =
∫∫

e−2iσ(X−S,X−T )a(S)b(T )c(S+T−X)dS dT
π2n . (4)

The left hand side is well defined when all factors are tempered distributions and
when, except perhaps one, they are composable. Usually, the right hand side can
then be defined in a weak sense and one can prove by approximation that the
equalities are still valid.

The formula (3) could also be written, at least formally, as

a#b(X) = exp
(

1
2iσ(∂Y , ∂Z)

)
a(Y )b(Z)|Y =Z=X ,

where σ(∂Y , ∂Z) is the différential operator on X ×X whose expression, in any set
of symplectic coordinates, is

∑
∂2

∂ηj∂zj
−

∑
∂2

∂yj∂ζj
.

This will lead to an asymptotic formula below, but when a (or b) is a polynomial
of degree N , that is when aw is a differential operator with polynomial coefficients,
the formula is exact and finite. One has

a#b(X) =
N∑

k=0

1
k!

(
1
2iσ(∂Y , ∂Z)

)k
a(Y )b(Z)|Y =Z=X

, (5)

the first terms being

a#b(X) = a(X)b(X) + 1
2i {a , b} (X) + . . .

where {a , b} is the Poisson bracket :
∑

( ∂a
∂ξj

∂b
∂xj

− ∂a
∂xj

∂b
∂ξj

).
In particular, when l(X) = σ(X,T ) is a linear function, one has

l#a = la+ 1
2i {l , a} = la+ 1

2i∂Ta (6)

where ∂Ta or 〈T, ∂X〉 a(X) is the directional derivative

∂Ta(X) = 〈T, ∂X〉 a(X) = 〈da(X), T 〉 = lim ε−1(a(X+εT )− a(X)).

Fourier transformation. — The phase space can be canonically identified with
its dual by the symplectic form. This allows to define the Fourier transform on X
itself. For a ∈ S ′(X ) we set

Fa = â = (πnδ)#a

â(X) =
∫
e−2iσ(Y,X)a(Y )dY

πn

One has F â = a and (πnδ)#a#(πnδ) = ǎ, with ǎ(X) = a(−X).
Twisted convolution. — It is defined by

a ?� b(X) = a#(πnδ)#b(X) =
∫
e−2iσ(X,Y )a(Y )b(X−Y )dY

πn .

One has F(a#b) = (πnδ)#a#(πnδ)#(πnδ)#b = â ?� b̂.
Trace. — For a ∈ S(X ) the operator aw is of trace class and

tr(aw) = 2n

∫
a(X) dX

πn . (7)
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When a or b belongs to S(X ), the other one belonging to S ′(X ), one has

tr(aw ◦ bw) = 2n

∫
a#b(X) dX

πn = 2n

∫
a(S)b(S) dS

πn (8)

2. Metaplectic operators

The relations between the metaplectic group and the Weyl quantization, ex-
pressed by the theorem of Segal, are well known (see [Hö1]). This section contains
no new result, except perhaps the explicit form of the symbols of metaplectic op-
erators which will be useful later. One can find in [Hö2] an explicit description of
the distribution kernels of metaplectic operators.

The (linear) symplectic group Sp(n) is the group of linear maps M from X
onto itself which preserve the symplectic form : σ(MX,MY ) = σ(X,Y ). The
affine symplectic group ASp(n) is the set of applications X 7→ χ(X) = MX + R,
with M ∈ Sp(n) and R ∈ X .

Theorem 2.1 (Segal). Given any χ ∈ ASp(n), there exists an operator V =
kw, uniquely determined up to the multiplication by a complex factor, such that

l#k = k#(l ◦ χ)

for any affine function l on X .

Proving the uniqueness reduces to prove that k is necessarily a constant when
χ is the identity. In this case, one should have {l , k} = 0 for any linear form l,
which says that all derivatives of k should vanish.

We already know the phase translations τR and symmetries ΣY which satisfy
the property above when χ is the translation of vector R or the symmetry with
respect to Y . Let us now assume that both χ and l are linear.

We shall try distributions of the form k(X) = eiB(X)δW(X) where W is a linear
subspace of X , where δW is a “Lebesgue measure” on W, that is a positive measure
supported by W and invariant by its translations, and where B(X) = b(X,X) is a
real valued quadratic form on W.

Given l(X) = σ(X,T ) and l′(X) = σ(X,T ′), one sees, using (6), that the
equality l#k = k#l′ is equivalent to

σ(X,T )k(X) + 1
2i∂T k(X) = σ(X,T ′)k(X)− 1

2i∂T ′k(X),

which is in turn equivalent to the following two conditions

T + T ′ ∈ W
∀X ∈ W, σ(X,T+T ′)− b(X,T+T ′) = 2σ(X,T ).

If the bilinear form σ−b is non degenerate on W, given T ∈ X , the last formula
determines a unique T+T ′ ∈ W, and thus a unique T ′ ∈ X . It is not difficult to
check that the map T 7→ T ′ is symplectic. The theorem is then a direct consequence
of the following result of linear algebra whose proof is elementary.

Proposition 2.2 (generalized Cayley transformation). For M ∈ Sp(n) let

W = range(I +M)
and, for T1, T2 ∈ W,

b(T1, T2) = σ(T1, (I−M)Z2) where (I+M)Z2 = T2.
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(i) The above definition of b does not depend on the choice of Z2. The bilinear
form b is symmetric and the bilinear forms b± σ are non degenerate on W.

(ii) The map M 7→ (W, b) is bijective from Sp(n) onto the set of couples made
of a linear subspace W of X and of a symmetric bilinear form b on W such that
b± σ is non degenerate on W.

Remark. When −1 is not an eigenvalue of M , then b is defined on X itself by
b(T1, T2) = σ(T1, CT2), with C = (I+M)−1(I−M), which is the symplectic version
of the Cayley transform.

If we resume to the general case of an affine symplectic map written

χ(X) = Y ′ +M(X−Y ),

one sees that the V = kw associated to χ by the theorem of Segal are defined by

k(X) = Cste−2iσ(X−Y ′
2 ,X−Y

2 )eiB(X−Y +Y ′
2 )δW

(
X−Y +Y ′

2

)
where (W, b) is the generalized Cayley transform of M and B(X) = b(X,X). One
has just to compute δY ′/2#k̃#δY/2, with k̃ associated to the linear map, using
formula (4). When −1 is not an eigenvalue, k is a function given by the following
expression

k(X) = Cste−2iσ(X−Y ′
2 ,X−Y

2 )eiσ((X−Y +Y ′
2 ),C(X−Y +Y ′

2 ))

C = (I−M)(I+M)−1.
(9)

Theorem 2.3. Let V = kw associated to χ as above
(i) V is composable.
(ii) V is proportional to a unitary operator on L2 : one has k#k = Cst.
(iii) For any a ∈ S ′(X ), one has

a#k = k#(a ◦ χ). (10)

These operators V will be called generalized (affine) metaplectic operators, and
those V which are unitary are called (affine) metaplectic operators.

For proving (i), it is not difficult to see that, for u ∈ S(Rn), one has kwu ∈ L∞.
If l is a linear form, one has then l(x,D)kwu = kwl′(x,D)u ∈ L∞. By induction,
P (x,D)kwu ∈ L∞ for any differential operator P with polynomial coefficients and
thus kwu ∈ S(Rn).

It is clear that k
w

is a generalized metaplectic operator associated to χ−1 and
thus one has l#(k#k) = (k#k)#l for all l, which proves that k#k is a constant.

The formula (10), which is valid when a is a linear form l, is also valid for
a = eil. This follows from the fact that the phase translation aw is then eilw as an
operator. Using (2), this extends by linearity to any symbol a.
The affine metaplectic group. — AMp(n) is the set of affine metaplectic operators.
One has the following exact sequence of groups

1 −→ S1 −→ AMp(n) $−→ ASp(n) −→ 1

where the projection $ associates to V the corresponding χ. One has an analogous
exact sequence, replacing AMp(n) by the group of non-zero generalized metaplectic
operators and S1 by C∗.

The line bundle ÃMp(n) over ASp(n). — It is the set of couples (V, χ) where V is
any generalized metaplectic operator (including 0) associated to χ. The projection
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(V, χ) 7→ χ will be denoted by $̃. This line bundle will play an essential role for
defining the principal symbol of a Fourier integral operator.

The Lie algebra of AMp(n). — It can be identified with the space of real valued
second order polynomials on X , equipped with the Poisson bracket as Lie bracket,
in the following way. Let us consider C1 maps t 7→ Ut from a neighbourhood of 0
in R into AMp(n) such that U0 = I. For t small, −1 is not an eigenvalue of the
symplectic matrix associated to Ut and the symbol of Ut is thus eipt(X), where pt

is a polynomial of degree at most 2, whose coefficients of degree 1 and 2 are real.
One has d

dtUt|t=0 = iqw, with q = d
dtpt|t=0 . The coefficients of the polynomial q

are real, the operator qw being self-adjoint.
We shall use the following consequences.

Proposition 2.4. (i) If t 7→ Ut is a C1 map from an interval into AMp(n),
then one has d

dtUt = ipw
t Ut = iUtq

w
t , where pt and qt are continuous families of

real second order polynomials.
(ii) Conversely, given a continuous family pt of real second order polynomials, the
unique solution of d

dtUt = ipw
t Ut ; U0 = I satisfy Ut ∈ AMp(n).

The linear case. — There is no proper subgroup of AMp(n) such that its projection
is equal to ASp(n) : such a subgroup should contain elements whose projections
are translations, it should contain their commutators and thus any constant α with
|α| = 1.

We can consider Mp∞(n) = {V ∈ AMp(n)|$(V ) ∈ Sp(n)} and we have also
the exact sequence 1 −→ S1 −→ Mp∞(n) $−→ Sp(n) −→ 1, but Mp∞(n) has proper
subgroups whose projection is Sp(n). We denote by Mp2(n) the smallest of these
subgroups, usually called the (linear) metaplectic group, which is a connected 2-
sheets covering of Sp(n) : the sequence 1 −→ {±1} −→ Mp2(n) $−→ Sp(n) −→ 1 is
exact.

The Lie algebra of Mp∞(n) is (identified to) the set of real even polynomials of
degree 2 and the Lie algebra of Mp2(n) is the set of real homogeneous polynomials
of degree 2. The Proposition 2.4 is thus valid, replacing AMp(n) by Mp2(n) and
polynomials by homogeneous polynomials.

3. Pseudo-differential calculus

There are actually many different calculus. Each of which is associated to a
(convenient) Riemannian metric g on the phase space. Classes of symbols and
of operators will depend on g. This section contains a description of the Weyl-
Hörmander calculus, with two simplifying assumptions. We refer to [Hö1] and
to [B-L] for the proofs.

3.1. Admissible metrics. A Riemannian metric g on X will be identified
with a C∞ map Y 7→ gY from X into the set of positive definite quadratic forms
on X . The ball centered at Y of radius r is defined as

BY,r =
{
X

∣∣ gY (X−Y ) ≤ r2
}
.

It is possible to diagonalize simultaneously a positive definite quadratic form and
the symplectic form. Given Y , one can choose symplectic coordinates (still denoted
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by (x, ξ)), such that gY has the following form

gY (dx, dξ) =
n∑
1

dx2
j

a2
j

+
n∑
1

dξ2j
α2

j

. (11)

The aj and αj , which depend on Y are not themselves invariant, but the products
ajαj do not depend on the choice of the symplectic coordinates.

We shall say that g is admissible if it satisfies the conditions A1 to A5 below.

A1. Simplifying assumption. — The products ajαj above are equal, their common
value being denoted by λ2(Y ). Therefore, one can choose symplectic coordinates
such that gY = λ(Y )−1(dx2+dξ2). One sees easily that

|σ(S, T )| ≤ λ(Y )gY (S)1/2gY (T )1/2.

A2. Fundamental assumption. — ∀Y, λ(Y ) ≥ 1.
This means that the unit balls of the metric are sufficiently large. Otherwise, trying
to localize in such balls would violate the uncertainty principle.

A3. Slowness. — There exists a constant C > 0 such that

gY (Y−Z) ≤ C−1 =⇒
(
gY (T )/gZ(T )

)±1

≤ C

uniformly in Y, Z, T .
As a consequence, the ratio between gY (Y−Z)1/2 and the geodesic distance

between Y and Z is bounded from above and from below as far as Y and Z belong
to a ball BX,r (or to a geodesic ball) of radius sufficiently small. In such balls, the
triangle inequality is “valid up to a constant” for the quantities gY (Y−Z)1/2.

A4. Temperance. — There exist constants C and N such that

∀Y,∀Z,∀T,
(
gY (T )/gZ(T )

)±1

≤ C
(
1 + λ(Y )2gY (Y−Z)

)N

A5. Geodesic temperance. — Let us denote by D(Y, Z) the geodesic distance for
the Riemannian metric λ(Y )2gY (·). Then

∀Y,∀Z,∀T,
(
gY (T )/gZ(T )

)±1

≤ C
(
1 +D(Y, Z)

)N

Remark. Most part of the theory remains valid without the assumptions A1
and A5, but the definitions and the proofs are more complicated. For instance, one
should define λ(Y ) as the minimum of the products ajαj in (11), one should intro-
duce in A4 the metric gσ

Y which is equal to
∑
α2

jdx
2
j + a2

jdξ
2
j in these coordinates,

and the volume of the unit ball BY,1 should be taken into account in the integrals.
In our simplified case, one has gσ

Y = λ(Y )2gY and the volume of BY,1 is Cstλ(Y )n.
The pseudo-differential calculus can be developped in full generality without

the assumption A5. However, under this assumption, there exists a very useful
characterization of pseudo-differential operators in terms of commutators and the
definition of Fourier integral operators becomes much simpler. Moreover, this extra
assumption is not so strong : we know no example of a metric satisfying A1 to A4
and not A5.
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Example. Classical examples of metrics satisfying A1 to A5 are the following

gY (dx, dξ) =
dx2 + dξ2

〈Y 〉2ρ for 0 ≤ ρ ≤ 1

gY (dx, dξ) = 〈η〉2δ
dx2 +

dη2

〈η〉2ρ for δ ≤ ρ ≤ 1 and δ < 1,

where 〈Y 〉 = (1 + |Y |2)1/2 and 〈η〉 = (1 + |η|2)1/2. One has λ(Y ) = 〈Y 〉2ρ in the
first case, and λ(Y ) = 〈η〉ρ−δ in the second one.

3.2. Symbols and operators. In what follows, g will be an admissible met-
ric.

A positive function M on X will be called a weight (or a g-weight if necessary)
if it satisfies the following slowness and temperance assumptions, for convenient
constants C ′ and N ′

gY (Y−Z) ≤ C ′−1 =⇒
(
M(Y )/M(Z)

)±1

≤ C ′(
M(Y )/M(Z)

)±1

≤ C ′
(
1 + λ(Y )2gY (Y−Z)

)N ′

.

The set of g-weights is stable by sum, product, and by M 7→ Ms for s ∈ R. The
function λ is an important example of g-weight.

Definition 3.1. For any weight M , the class of symbols S(M, g) is the set of
C∞ functions on X such that, for k ≥ 0, one has

|∂T1 . . . ∂Tk
a(X)| ≤ CkM(X) for gX(Tj) ≤ 1.

Taking as semi-norms ‖a‖k ;S(M,g) the best constants Ck above, it is a Frechet space.

The properties below are classical (see [Hö1] or [B-L]), but they could not
be proved without (an equivalent of) the procedures of localization which will be
developped in section 5.

Theorem 3.2. (i) Symbols a belonging to S(M, g) are composable. The corre-
sponding operators aw will be called pseudo-differential operators of weight M . The
space of these operators, equipped with the semi-norms of S(M, g), will be denoted
by Ψ(M, g).

(ii) If a belongs to S(1, g), then aw is bounded on L2.
(iii) The map (a1, a2) 7→ a1#a2 is continuous from S(M1, g) × S(M2, g) into

S(M1M2, g).

Asymptotic development. — For aj ∈ S(Mj , g), j = 1, 2, the formula (5) becomes
an asymptotic one, the “gain” of the symbolic calculus being the function λ :

a1#a2(X) =
N−1∑
k=0

1
k!

(
1
2iσ(∂Y , ∂Z)

)k
a1(Y )a2(Z)|Y =Z=X

+RN (X) (12)

where the kth term in the sum belongs to S(M1M2λ
−k, g) and RN belongs to

S(M1M2λ
−N , g).

For A = aw ∈ Ψ(M, g), one says that b is a principal symbol of A at weight M
(the weight should be at least implicit) if a−b ∈ S(Mλ−1, g). The formula above
says in particular that a1a2 is a principal symbol (at weight M1M2) of aw

1 ◦ aw
2 and
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that i−1 {a1 , a2} is a principal symbol (at weight M1M2λ
−1) of the commutator

[aw
1 , a

w
2 ] = aw

1 a
w
2 − aw

2 a
w
1 .

The following result (see [B-C]) will be useful.

Theorem 3.3. For any weight M , there exists an invertible pseudo-differential
operator of weight M , that is A ∈ Ψ(M, g) and A′ ∈ Ψ(M−1, g) such that AA′ =
A′A = I.

3.3. Characterization.

Definition 3.4. We shall denote by S+(g) the space of C∞ functions b defined
on X such that one has

|∂T1 . . . ∂Tk
b(X)| ≤ Ckλ(X) for gX(Tj) ≤ 1 and k ≥ 1.

These symbols are composable. The space of operators bw will be denoted by Ψ+(g).

This space looks like S(λ, g) except that no estimation is required for the values
of b itself. The difference is quite apparent when λ = 1 : in this case, elements of
Ψ(λ, g) are bounded on L2 while elements of Ψ+(g) are not in general.

However, for computing a commutator [bw , aw], the formula (12) can still
be used, the products ab which are not controlled disappear, and the remaining
terms (including the remainder) depend only on the derivatives of b. It is thus not
surprising to get the same result as for b ∈ S(λ, g). The converse is an important
result.

Theorem 3.5. (i) For B ∈ Ψ+(g) and A ∈ Ψ(M, g), one has

adB ·A = [B , A] ∈ Ψ(M, g).

In particular, it is bounded on L2 for M = 1.
(ii) Conversely, let A be an operator which is bounded on L2 as well as its

iterated commutators

adB1 . . . adBk ·A for Bj ∈ Ψ+(g).

Then A ∈ Ψ(1, g).

We refer to [Bo1] for the proof. Assumption A5 is crucial for this character-
ization, which can be understood as follows. Functions b ∈ S+(g) are Lipschitz
continuous for the metric λ2g. Thus, their variation between Y and Z can reach
only the λ2g-geodesic distance D(Y, Z) between these two points. It turns out that
one can extract from the commutation relations decay estimates in (1+D(Y, Z))−N

but no more, which allows to control the ratio gY /gZ only under assumption A5.
There is another characterization (see [B-C]), in terms of localized commuta-

tors, which is not so easy to handle but which does not require A5. It should be
used for defining the Fourier integral operators in the general case.

4. Fourier integral operators

These operators will be associated to what we shall call an admissible triple
(F, g0, g1), which means that the five following conditions are satisfied.
B1 . — g0 is an admissible metric on X .
B2. — F is a symplectomorphism (or canonical transformation) from X onto itself,
that is a diffeomorphism of X which respects the symplectic 2-form : F∗σ = σ. It
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is equivalent to say that, for any Y , the differential F ′(Y ) belongs to Sp(n). We
shall denote by χ

Y
∈ ASp(n) the affine tangent map at Y , defined by

χ
Y

(X) = F (Y ) + F ′(Y ) · (X−Y ). (13)

B3. — g1 is equal to the direct image F∗g0. It is the Riemannian metric on X
defined by

g
1;F (Y )

(T ) = g
0;Y

(F ′(Y )−1 · T ).

B4. — The metric g1 is admissible.

B5. — The derivatives of the vector valued function F satisfy the following uniform
bounds :

g
1;F (X)

(
∂T1 . . . ∂Tk

F (X)
)
≤ Ck for g0;X(Tj) ≤ 1 (14)

Since F is an isometry from (X , g0) onto (X , g1), this condition is obviously satisfied
for k = 1. It is also valid for F−1 from which one deduces that the triple (F−1, g1, g0)
satisfies also the conditions above.

The fundamental functions λ respectively associated to g0 and g1 will be de-
noted by λ0 and λ1. The quadratic forms g0;Y and g1;F (Y ) being symplectically
equivalent, one has λ1(F (Y )) = λ0(Y ).

Remark 4.1. It will be sometimes useful to choose adapted symplectic coor-
dinates at Y0 and at F (Y0), which is equivalent to look at F̃ = Φ ◦ F ◦ Ψ where Φ
and Ψ belong to ASp(n). Let ρ2 = λ0(Y0) and let B̃ the euclidean ball of radius ρ
centered at 0. We can choose Ψ such it maps B̃ onto the g0-unit ball centered at
Y0, we can choose Φ such it maps the g1-unit ball centered at F (Y0) onto B̃ and
moreover such that F̃ ′(0) = I. The estimates (14) and the slowness imply that one
has, with constants independant of Y0 :

F̃ maps B̃ into CstB̃∣∣∣∂α
x ∂

β
ξ F̃ (X)

∣∣∣ ≤ Cαβ ρ
1−|α|−|β| for X ∈ B̃.

It is not difficult to see that the estimates B5 are precisely what is needed for
proving the following proposition.

Proposition 4.2. Under assumptions B1 to B5, one has
(i) M is a g1-weight if and only if M ◦ F is a g0-weight.
(ii) a ∈ S(M, g1) if and only if a ◦ F ∈ S(M ◦ F, g0).
(iii) b ∈ S+(g1) if and only if b ◦ F ∈ S+(g0).

Twisted commutators. — If we come back to the heuristic ideas alluded to in the
introduction, a Fourier integral operator P associated to F should be such that
bw ◦ P is approximately equal to P ◦ (b ◦F )w. We are thus led to introduce the
following Kb (denoted K [F ]

b if necessary)

Kb · P = bw ◦ P − P ◦ (b ◦F )w

which reduces to ad b when F is the identity.
The following definition is thus an extension, for general F , of the property

that characterizes pseudo-differential operators.
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Definition 4.3. An operator P is a Fourier integral operator associated to
the admissible triple (F, g0, g1) if it is bounded on L2 and if the iterated twisted
commutators

Kb1 . . .Kbp
· P for bj ∈ S+(g1)

are also bounded on L2. The space of these operators is denoted by FIO(F, g0, g1).

Remark. To be more precise, these operators should be called Fourier integral
operators of weight 1. We shall extend the definition (see remark 4.7 below) to more
general weights.

As noticed above, one has FIO(I, g, g) = Ψ(1, g).
This abstract definition allows to prove easily and almost algebraically the

expected formal properties on composition of Fourier integral operators. A more
concrete definition will be necessary for proving that these classes of operators are
sufficiently large.

Theorem 4.4. Let (F, g0, g1) and (G, g1, g2) be admissible triples. Then the
triples (F−1, g1, g0) and (G ◦F, g0, g2) are also admissible.

(i) If P ∈ FIO(F, g0, g1), its adjoint P ∗ belongs to FIO(F−1, g1, g0).
(ii) If P ∈ FIO(F, g0, g1) and Q ∈ FIO(G, g1, g2), then Q ◦P ∈ FIO(G◦F, g0, g2).

In the first case, let b1 ∈ S+(g1) and b0 = b1 ◦F ∈ S+(g0). Then, the adjoint
of b1

w
P −Pb0

w
which is equal to −(bw0 P

∗−P ∗bw1 ) is bounded on L2, which means
that the twisted commutators K [F−1]

b0
· P ∗ are bounded on L2 for any b0 ∈ S+(g0).

The extension to iterated twisted commutators is immediate.
In the second case, let b2 ∈ S+(g2), b1 = b2 ◦G and b0 = b2 ◦G ◦F . Then one

has
K

[G◦F ]
b2

· (Q ◦ P ) =
(
K

[G]
b2

·Q
)
P +Q

(
K

[F ]
b1

· P
)

which proves that the left hand side is bounded on L2. The case of iterated twisted
commutators follows by induction.

Proposition 4.5. Let M1 be a g1-weight and let M0 = M1 ◦ F . Let A =
aw ∈ Ψ(M0, g0) let B = bw ∈ Ψ(M−1

1 , g1) and let P ∈ FIO(F, g0, g1). Then
BPA ∈ FIO(F, g0, g1).

The proof in the general case requires arguments similar to those of [Bo1] and
we shall just give the proof when λ−N

1 ≤M1 ≤ λN
1 for some N . Let us first consider

the case 1 ≤ M1 ≤ λ1. Then a ∈ S+(g0) and ã = a ◦ F−1 ∈ S+(g1). We have
then PA = ÃP + R, with Ã = ãw ∈ S(M1, g1) and R = K

ã
P ∈ FIO(F, g0, g1).

Thus BPA = (BÃ)P + BR and, by Theorem 4.4, these two products belong to
FIO(F, g0, g1).

The case λ−1
1 ≤ M1 ≤ 1 is analogous, writing BP = PB̃ + R, with B̃ ∈

Ψ(M−1
0 , g0) and R ∈ FIO(F, g0, g1).

It is easy to see that any weight M such that λ−N
1 ≤ M ≤ λN

1 can be written
as a finite product of weights entering in one of the two cases above. It suffices now
to prove that if the proposition is valid for weights M ′

1 and M ′′
1 then it is valid for

M1 = M ′
1M

′′
1 .

With evident notations for M0, M ′
0 and M ′′

0 , let A ∈ Ψ(M0, g0). The Theo-
rem 3.3 allows to write A = A′A′′ with A′ ∈ Ψ(M ′

0, g) and A′′ ∈ Ψ(M ′′
0 , g). In the

same way, any B ∈ Ψ(M−1
1 , g1) can be written B = B′′B′ with B′ ∈ Ψ(M ′

1
−1, g1)
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and B′′ ∈ Ψ(M ′′
1
−1, g1). Then B′PA′ and B′′(B′PA′)A′′ belong to FIO(F, g0, g1).

The proof is complete.
The following corollary uses the “Sobolev spaces” H(M, g) defined in [B-C].

Their definition “à la Littlewood-Paley” is a little bit simplified thanks to the
assumption A5 :

u ∈ H(M, g) ⇐⇒
∫
M(Y )2 ‖Φw

Y u‖
2
L2 λ(Y )−n dY <∞

where (ΦY ) is the partition of unity defined in subsection 5.2 below.
These spaces can also be characterized as follows. According to Theorem 3.3,

there exists an invertible element A ∈ Ψ(M, g), and one has u ∈ H(M, g) if and
only if Au ∈ L2. Using the last proposition, one gets the following.

Corollary 4.6. Let M1 be a g1-weight and let M0 = M1 ◦ F . Then, any
element P ∈ FIO(F, g0, g1) maps H(M0, g0) into H(M1, g1).

Remark 4.7. Operators in FIO(F, g0, g1) are “of weight 1” and it is now easy
to define more general classes. The best is to define their weight as a function µ on
the graph of F whose value at point (Y, F (Y )) is the common value M1(F (Y )) =
M0(Y ). One can then define FIO(F, µ, g0, g1) as the set of products PA, or the
set of products BP , or the set of products B′PA′, with P ∈ FIO(F, g0, g1) and
A ∈ Ψ(M0, g0), or B ∈ Ψ(M1, g1), or A′ ∈ Ψ(M ′

0, g0) and B′ ∈ Ψ(M ′′
1 , g

′
1) with

M1 = M ′
1M

′′
1 . The fact that all these definitions are equivalent is an immediate

consequence of the proposition above.
The reader will state and prove easily properties on adjoint and composition of

such operators, and on their action in Sobolev spaces.

5. Localization

In this section g will be an admissible metric. In order to construct partitions
of unity related to g, the first idea is to consider the subspace of S(1, g) consisting
of symbols supported in the ball BY,r. However, this space is not stable by compo-
sition and the good substitute is the following space of confined symbols introduced
in [B-L]. We refer to [Bo1] for the equivalence of the semi-norms below.

5.1. Confinement.

Definition 5.1. The space Conf(g, Y, r) is the Schwartz space S(X ) equipped
with the following sequence of semi-norms

‖a‖′k ;Conf(g,Y,r) = sup
l,Tj

∥∥∥∂T1 . . .∂Tl
a(X)

(
1+λ(Y )2gY (X−UY,r)

)k/2
∥∥∥

L∞(dX)

for l ≤ k, gY (Tj) ≤ 1

or with the (uniformly) equivalent family

‖a‖k ;Conf(g,Y,r) =
∥∥∥a(X)

(
1+λ(Y )2gY (X−BY,r)

)k/2
∥∥∥

L∞(dX)

+
∥∥∥â(P )

(
1+λ(Y )2gY (P )

)k/2
∥∥∥

L1(dP )
. (15)

Here, gY (X−A) (resp. gY (A−B)) denotes the infimum of gY (X−X ′) (resp.
gY (X ′−X ′′)) for X ′ ∈ A (and X ′′ ∈ B).
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A family (aY )Y ∈X is uniformly confined in BY,r if ‖aY ‖k ;Conf(g,Y,r) is bounded
by a constant depending on k but not on Y . A typical example is a family (aY ) of
functions whose support is contained in BY,r and which is bounded in S(1, g).

In a uniformly confined family, the symbols aY are controlled in L∞ (their
L1 norm is bounded by Cstλ(Y )n), with a fast decay outside the ball BY,r. Their
Fourier transform are controlled in L1 (their L∞ norm is bounded by Cstλ(Y )n), but
are much more concentrated : they are small outside a gY -ball of radius Cstλ(Y )−1

centered at 0.
The most important result is the following theorem on composition of confined

symbols. It uses the function

∆r(Y, Z) = 1 + λ(Y )2gY (BY,r−BZ,r) + λ(Z)2gZ(BY,r−BZ,r) , (16)

measuring the “distance” between Y and Z.

Theorem 5.2. For r sufficiently small, if (aY ) and (bY ) are uniformly confined
in BY,r then, for any N , the family ∆r(Y, Z)N (aY #bZ) is uniformly confined in
BY,r and in BZ,r.

More precisely, given k and N , there exist C and l which do not depend on
a, b, Y, Z such that

‖a#b‖k ;Conf(g,Y,r) + ‖a#b‖k ;Conf(g,Z,r)

≤ C ‖a‖l ;Conf(g,Y,r) ‖b‖l ;Conf(g,Z,r) ∆r(Y,Z)−N . (17)

It is important to notice that one gains no decay (∆r = 1) when the balls
centered at Y and Z intersect. On the other hand, when gY (X−Y )1/2 ≥ Cstr, one
gains (any power of) both λ and gY (X−Y ).

5.2. Partitions of unity (first kind). It is easy to construct partitions of
unity made of (uniformly) confined symbols. Let f be a nonnegative even smooth
function on R vanishing outside [−1, 1] and set ΘY (X) = f

(
gY (X−Y )1/2/r

)
. Then

I(X) =
∫

ΘY (X)λ(Y )−n dY belongs to S(1, g) and is bounded from below. Thus
one has

1 =
∫

ΦY (X)λ(Y )−n dY with ΦY (X) = I(X)−1ΘY (X)

and the family (ΦY ) is uniformly confined (and actually supported) in BY,r.
Such a partition of unity can be used for regularizing the metric g itself and

the weights M , replacing them by

g̃Y (T ) =
∫
gZ(T )ΦZ(Y )λ(Z)−n dZ ; M̃(Y ) =

∫
M(Z)ΦZ(Y )λ(Z)−n dZ.

The ratios (g̃/g)±1 and (M̃/M)±1 being bounded, it is clear that nothing is changed
(except the constants) in the definitions above. So we shall assume in what follows
that g and the weights have been regularized, which imply that

|〈T1, ∂Y 〉 . . . 〈Tk, ∂Y 〉 gY (T0)| ≤ Ck for gY (Tj) ≤ 1

|〈T1, ∂Y 〉 . . . 〈Tk, ∂Y 〉 〈Tk+1, ∂X〉 . . . 〈Tk+l, ∂X〉ΦY (X)| ≤ Ck,l for gY (Tj) ≤ 1.

In the same way, a regularized weight M satisfies M ∈ S(M, g).
The main use of such partitions of unity is to prove the Theorem 3.2 above

(see [B-L]) where the two following arguments are crucial.
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1. Any symbol a ∈ S(M, g) can be written as a superposition of confined symbols :

a =
∫
M(Y ) aY λ(Y )−ndY with (aY ) uniformly confined.

One has just to set aY (X) = M(Y )−1a(X)ΦY (X).
2. The operators aw

Y are “almost orthogonal” : one has

‖aw
Y ◦ aw

Z‖L(L2) ≤ CN∆r(Y,Z)−N

as a consequence of (17).

5.3. Partitions of unity (second kind). We shall say that (aY ) is a g-
regularly confined family if the families 〈T1Y , ∂Y 〉 . . . 〈TkY , ∂Y 〉 aY are uniformly
confined for any choice of vectors TjY such that gY (TjY ) ≤ 1.

Let us consider αY = πnδY #aY . Up to translations which maintain the func-
tions centered at Y , it is just a Fourier transformation :

for α̃Y (Z) = αY (Y + Z), one has α̃Y (Z) =
∫
e−2iσ(T−Y,Z)aY (T ) dT

πn ,

which means that α̃Y is the Fourier transform of aY (Y −·). The following estimates
are then consequence of (15).

Proposition 5.3. Let (aY ) be a g-regularly confined family and let αY and α̃Y

defined as above. Then∥∥∥〈T1, ∂Y 〉 . . . 〈Tk, ∂Y 〉 α̃Y (Z)
(
1+λ(Y )2gY (Z)

)N
∥∥∥

L1(dZ)
≤ Ck,N , (18)

for gY (Tj) ≤ 1.

Let us consider again the g-regularly confined family ΘY constructed above,
adding the condition that f(t) = 1 near 0 and thus that ΘY (X) = 1 near Y . Let
(ψY ) be the family defined by

ψY (X) = ψ̃Y (X−Y ) = πnδY #ΘY (X). (19)

The estimates (18) are valid for the functions ψ̃Y and one has moreover∫
ψY (X) dX

πn = 1.

Remark. The functions αY (X) do not belong uniformly to S(1, g) : one has
just the following estimates

|αY (X)| ≤ CNλ(Y )n
(
1+λ(Y )2gY (X − Y )

)−N

and moreover, one looses a factor λ(Y ) for each derivative 〈T, ∂X〉 with gY (T ) ≤ 1.
The functions αY are much more concentrated than confined symbols. They

are small outside a gY -ball of radius Cstλ(Y )−1. This may look as a violation of the
uncertainty principle but, if the symbols are more concentrated, the corresponding
operators are not. The operator αw

Y is equal to ΣY ◦aw
Y , that is an operator confined

in BY,r followed by a phase symmetry with respect to Y . While the usual product
αY αZ is small as far as λ(Y )2gY (Y−Z) is large, one has only

‖αw
Y ◦ αw

Z‖L(L2) = ‖ΣY ◦ aw
Y ◦ aZ(2Z− ·)w ◦ ΣZ‖L(L2) ≤ CN∆(Y, Z)−N , (20)

which imply no smallness for gY (Y−Z) ≤ Cstr.
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Theorem 5.4. Let M be a (regularized) g-weight.
(i) Let (aY ) be a g-regularly confined family and αY = πnδY #aY . Then the

operator

B =
∫
M(Y )αw

Y
dY
πn (21)

belongs to Ψ(M, g) and X 7→M(X)a
X

(X) is a principal symbol of B.
(ii) In particular, for a ∈ S(M, g), the operator

∫
a(Y )ψw

Y dY/π
n is a pseudo-

differential operator of weight M , having a as principal symbol. Thus∫
ψY (X) dY

πn = 1 + r(X) with r ∈ S(λ−1, g).

(iii) Conversely, if A = aw ∈ Ψ(M, g) then

Y 7→ 2−n tr(A ◦ ψw
Y ) =

∫
a(S)ψY (S) dS

πn

is a principal symbol of A.

In order to simplify the notations, we give the proof for M = 1. The symbol
of B is b(X) =

∫
αY (X) dY/πn and one has

b(X) =
∫
α̃

X−Z
(Z) dZ

πn =
∫
α̃

X
(Z) dZ

πn +
∫ {

α̃
X−Z

(Z)− α̃
X

(Z)
}

dZ
πn

The first integral is equal to aX(X). In the second one, for gX(Z)1/2 ≥ Cr and thus
gX−Z(Z)1/2 ≥ C ′r, the integral of both terms are O(λ(Z)−N ) for all N . In the re-

maining integral, using (18) the curly bracket is bounded by
(

gX(Z)
1+λ(Z)2gX(Z)

)1/2

h(Z)

with h ∈ L1. We have proved that b(X) = aX(X) + c(X) with |c(X)| ≤ λ(X)−1.
For proving that c ∈ S(λ−1, g), one has to prove the same estimate for the

derivatives ; 〈T, ∂X〉 b is the integral of 〈T, ∂X〉 α̃X−Z(Z) which, for gX(T ) ≤ 1, is
again bounded by (18) and the proof goes along the same way.

The part (ii) is just a particular case, setting aY = a(Y )ΘY and αY = a(Y )ψY .

Remark. The family (ψY ) is only an approximate partition of unity. It would
be easy to transform it into an exact partition.

One should pay attention to the difference between the two kinds of partitions
of unity. The operators Φw

Y are almost orthogonal with respect to their element of
integration dY/λ(Y )n ; one has

∫
a(Y )ΦY λ(Y )−ndY ∈ S(1, g) when a belongs just

to L∞ ; one can use Cotlar lemma in integral form (see [B-L]) for proving that the
corresponding operator is bounded on L2. On the other hand, a is not a principal
symbol of this operator, even when it belongs to S(1, g), the variation of a in BY,r

being bounded by r but not by 1/λ(Y ).
The situation is quite different for B =

∫
a(Y )ψw

Y dY/π
n. The ψw

Y are not
almost orthogonal with respect to their element of integration. If a belongs just to
L∞, the symbol b of this operator is bounded but its derivatives are not and bw is
not bounded on L2. The assumption a ∈ S(1, g) is crucial for having b ∈ S(1, g).
This is perhaps more evident if, instead of the change of variable used in the proof
of Theorem 5.4, one uses

〈T, ∂X〉ψY (X) = −〈T, ∂Y 〉ψY (X) + βY (X) ; (βY ) g-regularly confined

and integrations by parts in Y for the derivatives of b(X) =
∫
a(Y )ψY (X)dY/πn.
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In some sense, (21) should be considered as an oscillatory integral which looks
like an absolutly convergent integral modulo Ψ(λ−1, g). The fact that a is a prin-
cipal symbol is due to the concentration of ψY (as a function, recall that ψw

Y is not
more concentrated than Φw

Y ).

6. The symbols of Fourier integral operators

6.1. The fiber bundle Γ̃ and its sections. Let us consider again an ad-
missible triple (F, g0, g1) as in section 4, the affine tangent map χ

Y
being defined

by (13).
There is a natural line bundle Γ̃ over the graph Γ of F which is the pull back

of ÃMp(n) by the application (Y, F (Y )) 7→ χ
Y

.

Γ̃ −−−−→ ÃMp(n)

?̃
$

?̃
$

Γ −−−−→ ASp(n)

Γ̃ is made of the triples (Y, F (Y ), V ) such that V is an extended metaplectic
operator (including 0) associated to χ

Y
. We still denote by $̃ the projection Γ̃ → Γ.

A section of Γ̃ is thus given by (Y, F (Y )) 7→ (Y, F (Y ), VY ) where either VY = 0 or
VY is invertible with $(VY ) = χ

Y
. We shall refer to “the section VY ” for short.

Given a unitary section VY of Γ̃, we know (Proposition 2.4) that we have
〈T, ∂Y 〉VY = VY #qw

Y,T , where q is a real second order polynomial. Changing the
section would change only the constant term of qY,T .

We know no way for choosing “better” sections of $ : AMp(n) → ASp(n), but
there are special sections of Γ̃ which will play an important role.

Theorem 6.1 (horizontal sections). Given an admissible triple, there exists a
unitary section UY , unique up to a constant factor, such that

〈T, ∂Y 〉UY = iUY #qw
Y,T with qY,T (Y ) = 0.

Moreover, the first derivatives of qY,T vanishes at Y . Such sections will be called
horizontal.

Set Y ′ = F (Y ) and MY = F ′(Y ). The affine tangent map χY is the compo-
sition of three maps : the symmetry of center Y/2, the linear map MY and the
symmetry of center Y ′/2. Let kw

0,Y ∈ Mp2(n) associated to MY and depending
smoothly on Y . This is possible because R2n is contractile, and k0,Y is uniquely
determined up to the sign. We know that 〈T, ∂Y 〉 k0,Y = ik0,Y #pw

Y,T , where pY,T is
a real polynomial, homogeneous of degree 2.

Let us consider the section kw
Y = ΣY ′/2 ◦ k

w
0,Y ◦ ΣY/2. It is not difficult to com-

pute the derivatives of kY = π2nδY ′/2#k0,Y #δY/2. One has 〈T, ∂Y 〉 δ(X−Y/2) =
− 1

2 〈T, ∂X〉 δ(X−Y/2) = −iσ(X−Y/2, T )#δ(X−Y/2) and

{〈T, ∂Y 〉 δ(X−Y ′/2)}#k0,Y = i δ(X−Y ′/2)#σ(X−Y ′/2,MY T )#k0,Y

= i δ(X−Y ′/2)#k0,Y #σ(MY X−Y ′/2,MY T ).
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Summing up, we get

〈T, ∂Y 〉 kY = iπ2n δY ′/2#k0,Y #rY,T #δY/2

rY,T (X) = pY,T (X)− σ(X−Y/2, T ) + σ(MY X−Y ′/2,MY T )with

= pY,T (X) + 1
2 {σ(Y, T )− σ(F (Y ), F ′(Y ) · T )} .

If we introduce the 1-form α = σ(Y, dY ) =
∑
ηjdyj − yjdηj , the curly bracket

is equal to 〈α−F ∗α, T 〉. One has d(α−F ∗α) = dα − F ∗(dα) = 0 for dα/2 is the
symplectic 2-form which is preserved by F. Thus, there exists a smooth function
H(Y ) globally defined on R2n such that dH = 1

2 (α−F ∗α). One has

〈T, ∂Y 〉
(
e−iH(Y )kY

)
=

(
e−iH(Y )kY

)
#pY,T (Y − ·).

Setting UY = e−iH(Y )kw
Y , the proof is complete.

Definition 6.2. Given an admissible triple, one says that a section VY of Γ̃
is of class S(1) (or belongs to S(1, Γ̃)) if one can write VY = f(Y )UY with UY

horizontal and f ∈ S(1, g0).
If (VY ) and (WZ) are sections of class S(1) for admissible triples (F, g0, g1)

and (G, g1, g2) respectively, then Y 7→ WF (Y ) ◦ VY is a S(1) section for the triple
(G ◦ F, g0, g2) and Z 7→ V ∗

F−1(Z) is a S(1) section for the triple (F−1, g1, g0).

It suffices to consider the case of horizontal sections. One has

〈T, ∂Y 〉UY = iUY ◦ qY,T
w = iq′Y,T

w
◦ UY

where q′Y,T = qY,T ◦ χ−1
Y is a second order polynomial vanishing at F (Y ). Thus

〈T, ∂Y 〉U∗
Y = −iU∗

Y #q′Y,T
w which express that F (Y ) 7→ U∗

Y is a horizontal section
for (F−1, g1, g0).

In the same way, if V and W are horizontal, one has with simplified notations

〈T, ∂Y 〉WF (Y ) ◦VY = iWF (Y ) ◦ q̃
w ◦VY + iWF (Y ) ◦VY ◦ q

= iWF (Y ) ◦VY ◦ (q + q̃ ◦χ−1
Y )w,

where q̃ vanishes at F (Y ) and where q (and thus q+q̃ ◦χ−1
Y ) vanish at Y .

Remark. Given a (regularized) weight µ defined on Γ (see remark (4.7)) the
space S(µ; Γ̃) of sections of weight µ is just the space of sections V such that µ−1V

belongs to S(1; Γ̃).

6.2. Main results. We state below the main results of the theory, the sketch
of their proofs will be given in the next section

Theorem 6.3 (Existence of many FIOs). Let (F, g0, g1) an admissible triple,
VY a S(1) section of Γ̃, aY a g0-regularly confined family and αY = πnδY #aY .
Then the operator

P =
∫
VY ◦ αw

Y
dY
πn (22)

belongs to FIO(F, g0, g1).

Theorem 6.4 (Principal symbol). Let P défined by (22) and set

b(Y ) =
∫
αY (X)dX

πn ; c(Y ) = 2−n tr (P ◦ ψw
Y ◦ V ∗

Y ) , (23)



EVOLUTION EQUATIONS AND MICROLOCAL ANALYSIS 19

where ψY is an approximate partition of unity defined by (19). Then c ∈ S(1, g0)
and b− c ∈ S(λ−1

0 , g0).

For the next theorem, we introduce another admissible triple (G, g1, g2) and
consider (H, g0, g2) with H = G ◦ F . We shall denote by ΓF , . . . , Γ̃H the corre-
sponding graphs and bundles.

Theorem 6.5 (Product law). Let VY [resp. WZ ] a S(1) section of Γ̃F [resp.
Γ̃G], let aY [resp. bZ ] a g0- [resp. g1-] regularly confined family, let αY = πnδY #aY

and βZ = πnδZ#aZ .
Let P defined by (22) and Q =

∫
WZβ

w
Z

dZ
πn . Then one has

Q ◦ P =
∫
WF (Y ) ◦ VY ◦ γw

Y
dY
πn

with Y 7→ δY #γY g0-regularly confined and( ∫
γY (X)dX

πn

)
≡

( ∫
αY (X)dX

πn

) ( ∫
βF (Y )(X)dX

πn

)
(mod S(λ−1

0 , g0))

6.3. Conséquences. We can now define the principal symbol of a Fourier
integral operator when it can be written as (22) : it is an element of S(1; Γ̃) given
by (Y, F (Y )) 7→ b(Y )VY (or c(Y )VY ) with the notations of (23). This definition is
quite natural : up to lower order terms, the principal symbol of P at Y is the best
approximation of P at this point by a generalized metaplectic operator.

This principal symbol is uniquely determined, up to an element of S(λ−1; Γ̃)
and depend neither on the decomposition (22) (c does not depend on it) nor on
the choice of the partition ψY (b does not depend on it). Moreover, any section in
S(1; Γ̃) is a principal symbol of an operator of the form (22).

When the triple is (I, g0, g0), we recover the theory of the principal symbol
of pseudo-differential operators, a function a on X being identified to the section
Y → a(Y )I.

It is now easy to find P ∈ FIO(F, g0, g1) and Q ∈ FIO(F−1, g1, g0) of the
form (22) whose principal symbol are inverse. We know by Theorem 6.5 that Q ◦P
is a pseudo-differential operator whose principal symbol is 1, that is Q ◦P = I +R
with R ∈ Ψ(λ−1, g0).

Let now T a general element of FIO(F, g0, g1). One has T = (TQ)P − TR
and TQ ∈ Ψ(1, g0) while TR ∈ FIO(F, λ−1, g0, g1). We know by Theorem 5.4 that
TQ = A+ S with A =

∫
αw

Y
dY
πn and S ∈ Ψ(λ−1, g0). Then T = AP + (SP − TR)

and we have proved the following.

Theorem 6.6. (i) Any T ∈ FIO(F, g0, g1) can be written T = T0 +T ′ where T0

admits a decomposition (22) and T ′ ∈ FIO(F, λ−1, g0, g1). The principal symbols of
T are defined as those of T0. One of them is given by

(Y, F (Y )) 7→ c(Y )VY with c(Y ) = 2n tr (T ◦ ψw
Y ◦ V ∗

Y ) .

(ii) In the geometric situation of Theorem 6.5, if (Y, F (Y )) 7→ VY is a principal
symbol of S ∈ FIO(F, g0, g1) and if (Z,G(Z)) 7→ WZ is a principal symbol of T ∈
FIO(G, g1, g2), then (Y,H(Y )) 7→WF (Y ) ◦ VY is a principal symbol of T ◦ S.

Remark. Actually, one can write T = T0 + T ′ with T ′ ∈ FIO(F, λ−∞, g0, g1)
(that is belonging to FIO(F, λ−N , g0, g1) for all N). It is just a matter of symbolic
calculus of pseudo-differential operators.



20 JEAN-MICHEL BONY

If there exists an exactly invertible Fourier integral operator in FIO(F, g0, g1)
of the form (22), one can take T ′ = 0 and any element of FIO(F, g0, g1) can be
decomposed as in (22). One has just to construct an exact partition of unity (ψY ).
This will be the situation if F is the flow at time t of the hamiltonian field Ha and
if we succeed in constructing eitaw

as indicated below.
The reader will have no difficulty for defining the principal symbols of elements

of FIO(F, µ, g0, g1), which are elements of S(µ; Γ̃) uniquely determined modulo ele-
ments of S(µλ−1; Γ̃).

6.4. Towards evolution equations. Let us come back to the situation al-
luded to in the introduction. Given a real-valued C∞ symbol a defined on X , we
would like to define the eitaw

as Fourier integral operators. We shall just show
how to proceed and what are the conditions which should be satisfied in order to
succeed. Most of these conditions are expressed in terms of the hamiltonian flow of
a, and cannot be simply expressed in terms of a itself.

Let us recall that the Hamilton vector field Ha is defined by 〈da, T 〉 = σ(Ha, T ),
and that Ha = (∂a/∂ξj ;−∂a/∂xj) in any set of symplectic coordinates. We shall
denote by Ft the flow of Ha, that is t 7→ X(t) = Ft(X0) is the unique solution of
d
dtX(t) = Ha(X(t)) ; X(0) = X0. We shall assume that the flow is global, and Ft

is for any t a symplectomorphism of X .
Given an admissible metric g0 on X , we define gt = Ft∗g0. One has to assume

that (Ft, g0, gt) is an admissible triple, which is not so easy to check. Of course, the
Riemannian and symplectic structures are preserved by Ft, but the affine structure
is not ; proving that gt is tempered, which express a relation between Riemannian
and affine structures, requires a good knowledge of the flow at infinity.

We want to write

eitaw

=
∫
kw

tY
αw

tY

dY
πn ,

where kw
tY

is a metaplectic operator associated to the affine symplectic map χ
tY

tangent to Ft at Y . We shall write as follows the second order Taylor expansion of
a at Ft(Y ) :

a(X) = b
tY

(X) + r
tY

(X), b
tY

polynomial of d◦2, r
tY

(X) = o(|X−Ft(Y )|2)

It is not difficult to check that one can take k
tY

solution of d
dtktY = ib

tY
#k

tY
.

The equation for the α
tY

is then

d

dt
α

tY
= ir̃

tY
#α

tY
with r̃

tY
= r

tY
◦ χ

tY

with a given partition of unity as initial condition :
∫
α

0Y
dY
πn = 1. Setting

a
tY

= δY #α
tY

, the equation for the a
tY

is analogous, r̃
tY

(X) being replaced by
r̃
tY

(2Y−X).
We choose the a

0Y
such that it is a regularly confined family, and our initial

problem is reduced to the proof that a
tY

is regularly confined, which is a matter of
uniform estimates (expressed in terms of the quadratic form g

0Y
) for the r̃

tY
.

The whole construction starts from aw defined on S and S ′, and not from a
realization of it as a self-adjoint operator on L2. Actually, when the construction
works, it proves also that aw defined on S is essentially self-adjoint and that its
weak and strong extensions cöıncide.
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7. Sketch of the proofs

Let us consider the operator

P =
∫
VY ◦ αw

Y
dY
πn , αY = πnδY #aY , (24)

where we can assume that VY = kw
Y is a horizontal section of Γ̃. We have to prove

that P is a Fourier integral operator as defined in section 4. We shall first prove
that Kb · P , for b ∈ S+(g1), can be also written as

∫
kw

Y β
w
Y dY , the βY having the

same properties as the αY . It will remain to prove that P is bounded on L2.
For both problems, the answer would be easy if we could gain powers of λ, that

is if λ(Y )NaY were uniformly confined for any N . On the other hand, as far as
the gY -distance between Y and Z is ≥ Cr, in the estimations of the semi-norms of
α

Y
◦α

Z
one gains not only any power of the distance, but also any power of λ(Y ).

As a rather easy consequence, we can assume when necessary that the problem is
localized in a ball BY0,Cr, that is aY = 0 for Y /∈ BY0,Cr, as far as the estimates
are independent on Y0. For the same reason, we can always assume that a symbol
confined in BY,r is actually supported in BY,Cr.

7.1. Twisted commutators. — One has

Kb · P = bw P − P (b◦F )w =
∫
kw

Y

(
(b◦χY )wδw

Y a
w
Y − δw

Y a
w
Y (b◦F )w

)
dY (25)

Up to a term which is written as (24), we can commute (b◦F )w and aY . However,
one has fwδw

Y = δw
Y f(2Y−·)w and (25) is equivalent (i.e. modulo integrals of the

form (24)) to ∫
kw

Y δ
w
Y c

w
Y a

w
Y dY

where cY is the difference between (b◦F ) and the symmetrized of (b◦χY ). We have
cY (Y ) = 0 and, up to equivalence, we can assume that cY is supported in BY,Cr.
One has then not only cY ∈ S+(g0) but cY ∈ S(λ, g0) (uniformly).

Using Taylor expansion, we can write cY (X) =
∑2n

1 σ(X−Y, TjY )#γjY (X) +
γ0Y with γjY ∈ S(1, g0) (and actually uniformly confined) and gY (TjY ) ≤ 1. Up
to equivalence, we can neglect γ0Y and, dropping the index, we are led to consider
terms like

kY #δY #σ(X−Y, T )#a′Y

where a′Y stands for γjY #aY . In view of δY #σ(X−Y, T ) = −1
2i 〈T, ∂X〉 δY =

1
2i 〈T, ∂Y 〉 δY , we have to study

θY = kY #(〈T, ∂Y 〉 δY )#a′Y .

It is time to use the fact that kw
Y is a horizontal section. One has 〈T, ∂Y 〉 kY =

ikY #q( · −Y )w where q is a homogeneous quadratic polynomial. Moreover (it is
perhaps easier to check it using the special coordinates of the remark 4.1) one
has |q(Z)| ≤ Cλ(Y )g0(Z). Introducing again a cut off in BY,Cr, one can write
q(X−Y ) '

∑
σ(X−Y, Tj)#ϕj(X) with cj ∈ S(1, g0) (and actually confined). The

uniform norm of cj is bounded by Cstr and we can choose r such that it is small.
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At that step, it is useful to assume that we are localized in some ball BY0,Cr

and that (Tj) is a basis in which gY0 is diagonal. Summing up, we have

〈Tj , ∂Y 〉 {kY #δY } = kY #
2n∑
1

〈Tl, ∂Y 〉 δY # (δjl + ϕjl) + error

where δjl is the Kronecker symbol and ϕjl ∈ S(1, g0) has small uniform norm. The
error coming from the cut off, after composition with a′Y will decay as any power
of λ−1 and can be neglected. Now, the symbolic calculus allows to invert the above
matrix of elements of S(1, g), up to elements of S(λ−∞, g), and we can write

kY # 〈Tj , ∂Y 〉 δY '
∑

(〈Tl, ∂Y 〉 {kY #δY }) #θjl

with θjl ∈ S(1, g0). Thus, our expression of Kb ·P can be written as a sum of terms
of the following type ∫

(〈T, ∂Y 〉 {kY #δY }) #θY #aY dY,

and an integration by parts will convert it into a term similar to the right hand
side of (24).

Localization in a euclidean ball. — For proving the boundedness in L2, we can
assume that P is localized in a ball BY0,Cr. Up to composition with fixed meta-
plectic operators (see remark 4.1) we can then assume that Y0 = F (Y0) = 0, that
F ′(Y0) = I and that the metrics g0 and g1 are equal to g = (dx2 + dξ2)/ρ2 with
ρ2 = λ0(Y0). In what follows, we shall call a 7→ ∂Ta a e-derivative if |T | ≤ 1 and a
g-derivative if |T | ≤ ρ, that is if g(T ) ≤ 1.

We are thus reduced to prove the boundedness of

Q =
∫
|Y |≤rρ

kw
Y α

w
Y

dY
πn ,

the symbols αY being 0 outside the ball.
We know by the proof of Theorem 6.1 that the horizontal section which is the

identity for Y = 0 has the following form

kY = e−iH(Y ) exp
{
−2iσ

(
X−F (Y )

2 , X−Y
2

)
+ iBY

(
X − Y +F (Y )

2

)}
. (26)

The e-derivatives of order p of F are O(ρ1−p). From BY (W ) = σ(W,CY W ) and
CY = (I+F ′(Y ))−1(I−F ′(Y )), where F ′(Y ) belongs to a small neighbourhood of
I, we deduce that the e-derivatives of order p of CY are O(ρ−p). Moreover, CY and
the first derivatives of F (Y )− Y vanishes for Y = 0.

The proof of Theorem 6.1 says also that

2 〈T, ∂Y 〉H(Y ) = σ(Y, T )− σ(F (Y ), F ′(Y ) · T )

= σ(Y, T )− σ
(
Y+O(|Y |2), T+O(|Y |)T

)
Thus, the partial derivatives of order p of H are O(ρ2−p). Moreover, H and its
derivatives up to order 2 vanish at Y = 0.

The operators kw
Y ◦αw

Y are uniformly bounded in L2, but they are not almost
orthogonal, and the volume of the ball is ∼ ρ2n. The gain of this power of ρ will
result from a stationary phase argument.
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7.2. Computation of Q∗Q. — We have

q#q =
∫∫

kZ#δF (Z)#ãZ#ãY #δF (Y )#kY
dY dZ
π2n

=
∫∫

kZ#LY Z#kY
dY dZ
π2n .

(27)

The function ãY = aY ◦ χ−1
Y is confined in a ball centered at F (Y ) and can be

considered as confined in a ball B0,C′r defined by |Z| ≤ C ′rρ. An easy computation
shows that

HY Z(X) = e−2iσ(X−F (Z),X−F (Y ))lY Z(X) (28)
where the functions lY Z , and their g-derivatives are uniformly confined in the ball
B0,C′r.

It is actually possible to modify slightly (27) and (28) as follows : the function
kY (X) is replaced by the (usual) product cY (X)kY (X) with cY uniformly confined
in B0,C′r, the function lY Z is modified but keeps the same properties. This comes
from two arguments. The first one, which is just a matter of symbolic calculus,
says that aY = a′Y #a′′Y + εY where a′Y , a′′Y and λ(Y )NεY for any N are uniformly
confined in slightly larger balls. Neglecting the term coming from εY , one can then
replace kY by a′′Y #kY in (27) and the function LY Z , constructed with a′Y instead
of aY , keeps the same properties.

The second argument says that, when kw is a metaplectic operator associated
to an affine transformation close to the identity, and when a′′ is confined in B0,r,
one has a′′#k = ck, the symbol c being confined, with a control of its semi norms,
in B0,Cr. When k(X) = eiσ(X,CX) (the case of phase translations is easy), the value
of c is given by

c(X) =
∫
e−2iσ(X−Y,H)e−2iσ(CX,H)eiσ(H,CH)a′′(Y )dY dH

π2n

which correspond to a Gauss transform followed by a change of variable. The main
argument is similar to that of [Hö1, Lemma 7.6.4].

Applying the formula (4) to the modification of (27) we get

kZ#LY Z#kY =
∫∫

e−2iσ(X−S,X−T )cZ(S)kZ(S)cY (T )kY (T )

LY Z(S+T−X) dS dT
π2n

q#q(X) =
∫∫∫∫

eiΦ(X,Y,Z,S,T )f(X,Y, Z, S, T ) dY dZ dS dT,

and

Φ(X,Y, Z, S, T ) = H(Z)−H(Y )− 2σ(X−S,X−T )

+BZ(S − Z+F (Z)
2 ) + σ

(
S−F (Z)

2 , S−Z
2

)
−BY (T − Y +F (Y )

2 )

− σ
(
S−F (Y )

2 , S−Y
2

)
− 2σ(S+T−X−F (Z), S+T−X−F (Y )).

The function f is uniformly bounded as well as its g-derivatives. Moreover, it has
the decay of a confined symbol with respect to the variables X,Y, Z, S, T and we
can as well assume that it is supported in a ball B0,Cr for all these variables.
7.3. Boundedness of Q in L2. — We shall prove that Q∗Q (which depend of
course on the initial Y0) belongs to Ψ(1, g) with uniform semi-norms. The change
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of variable (X,Y, Z, S, T ) = ρ(X ′, Y ′, Z ′, S′, T ′) in the formula above leads to an
integral

I(X ′) =
∫
eiρ2Φ′(X′,Y ′,Z′,S′,T ′)f ′(X ′, Y ′, Z ′, S′, T ′)ρ8n dY ′ dZ ′ dS′ dT ′

and we have to prove that I(X ′) is bounded together with all its e-derivatives.
The function f ′ has its support in a fixed ball of euclidean radius Cr and all its
e-derivatives are uniformly bounded.

The phase Φ′ has the same expression as Φ, except that F is replaced by
F̃ (Z ′) = ρ−1F (ρZ), and so on. The estimates given above on the derivatives of F
and H imply that the e-derivatives of Φ′ are uniformly bounded.

We use now the stationary phase method as expressed in [Hö1, th. 7.7.5]. If
the hessian of Φ′ with respect to (X ′, Y ′, S′, T ′) is (uniformly) non degenerate at
the origin, and if r had been choosen sufficiently small, then all the e-derivatives
of I are uniformly bounded. One should remark that H(Y ) and BY

(
Y +F (Y )

2

)
are actually cubic terms at 0 and that the same is true for σ

(
S−F (Y )

2 , S−Y
2

)
=

σ
(
S−F (Y )

2 , F (Y )−Y
2

)
.

For X = 0, one has actually

Φ′(0, Y ′, Z ′, S′, T ′) = −2σ(S′, T ′)− 2σ(S′+T ′−Z ′, S′+T ′−Y ′)

+ o(|Y ′|2 + |Z ′|2 + |S′|2 + |T ′|2)

and the quadratic form in R8n (which would be exactly the phase if Q were a
pseudo-differential operator) is non degenerate. This proves that I is bounded with
all its e-derivatives and thus that q#q is bounded with all its g-derivatives. The
operator Q∗Q ∈ Ψ(1, g) is bounded on L2, which ends the proof.

We do not give here the proofs of theorems 6.4 and 6.5 which are simpler and
introduce no new idea.
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