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CHAPTER 1

Introduction

This are the notes of graduate lectures given in the fall semester 2010 at Prince-
ton University, and then as the Eilenberg lectures at Columbia in the spring 2011. The
first part of the symplectic part of the course (chapter 2 to 4) corresponds to a course
given at Beijing Unversity on 2007 and 2009, with notes by Hao Yin (Shanghai Jiao-
tong University). The aim of this course is to present the recent work connecting
sheaf theory and symplectic topology, due to several authors, Nadler ([Nad, Nad-Z],
[Tam], Guillermou-Kashiwara-Schapira [G-K-S]. This is completed by the approach
of [F-S-S], and the paper [F-S-S2] really helped us to understand the content of these
works.

Even though the goal of the paper is to present the proof of the classical Arnold con-
jecture on intersection of Lagrangians, and the more recent work of [F-S-S] and [Nad]
on the topology of exact Lagrangians in T ∗X , we tried to explore new connections be-
tween objects. We also tried to keep to the minium the requirements in category theory
and sheaf theory necessary for proving our result. Even though the appendices contain
some material that will be useful for those interested in pursuing the sheaf theoretical
approach, much more has been omitted, or restricted to the setting we actually use1

The experts will certainly find that our approach is “not the right one”, as we take ad-
vantage of many special features of the category of sheafs, and base our approach of
derived categories on the Cartan-Eilenberg resolution. We can only refer to the papers
and books in the bibliography for a much more complete account of the theory.

The starting point is the idea of Kontsevich, about the homological interpreta-
tion of Mirror symmetry. This should be an equivalence between the derived cate-
gory of the Db(Fuk(M,ω)), the derived cateogory of the category having objects the
(exact) Lagrangians in (M ,ω) and morphisms the elements in the Floer cohomology
(i.e. Mor(L1,L2) = F H∗(L1,L2)) the derived category of coherent sheafs on the Mirror,
Db(Coh(M̌,J)). Our situation is a toy model, in which (M ,ω) = (T ∗X ,d(pd q)), and
Db(Coh(M̌,J)) is then replaced by Db(Sheafcstr(X×R)) the category of constructible
sheafs (with possibly more restrictions) on X ×R.

There is a functor

SS : Db(Sheafcstr(X×R)) −→ Db(Fuk(T∗X,ω))

1For example since the spaces on which our sheafs are defined are manifolds, we only rarely discuss
assumptions of finite cohomological dimension.
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6 1. INTRODUCTION

determined by the singular support functor. The image does not really fall in
Db(Fuk(T∗X,ω)), since we must add the singular Lagrangians, but this a more a fea-
ture than a bug. Moreover we show that there is an inverse map, called “ Quantiza-
tion” obtained by associating to a smooth Lagrangian L, a sheaf over X , FL with fiber
(FL)x = (C F∗(L,Vx),∂x) where Vx is the Lagrangian fiber over x and C F∗(L,Vx),∂x) is
the Floer complex of the intersection of L and Vx . This is the Floer quantization of
L. This proves in particular that the functor SS is essentially an equivalence of cat-
egories. We are also able to explain the condition for the Floer quantization of L
to be an actual quantization (i.e. to be well defined and provide an inverse to SS).
Due to this equivalence, for complexes of sheafs F •,G • on X , we are able to define
H∗(F •,G •) = H∗(F •⊗ (G •)∗) as well as F H∗(SS(F ),SS(G )) and these two objects co-
incide. We may also define F H∗(L,G ) as H∗(FL ,G ).

I thank Hao Yin for allowing me to use his lecture notes from Beijing. I am very
grateful to the authors of [Tam], [Nad], [F-S-S] and [F-S-S2] and [G-K-S] from where
theses notes drew much inspiration, and in particular to Stéphane Guillermou for a
talk he gave at Symplect’X seminar, which led me to presomptuously believe I could
understand this beautiful theory, and to Pierre Schapira for patiently explaining me
many ideas of his theory and dispelling some naive preconceptions, to Paul Seidel
and Mohammed Abouzaid for discussions relevant to the General quantization the-
orem. Finally I thank the University of Princeton, the Institute for Advanced Study
and Columbia University for hospitality during the preparation of this course. A warm
thanks to Helmut Hofer for many discussions and for encouraging me to turn these
notes into book form.

New-York, Spring 2011

This material is based upon work supported by the National Science Foundation
under agreement DMS-0635607 and DMS-0603957. Any opinion, findings and con-
clusions or recommendation expressed in this material are those of the author and do
not necessariy reflect the views of the National Foundation. The author hereby certifies
that this material has not been tested on animals.



Part 1

Elementary symplectic geometry





CHAPTER 2

Symplectic linear algebra

1. Basic facts

Let V be a finite dimensional real vector space.

DEFINITION 2.1. A symplectic form on V is a skew-symmetric bilinear nondegen-
erate form, i.e. a two-form satisfying:

(1)
∀x, y ∈V ω(x, y) =−ω(y, x)

(=⇒ ∀x ∈V ω(x, x) = 0);
(2) ∀x,∃y such that ω(x, y) 6= 0.

For a general 2-form ω on a vector space, V , we denote by Ker(ω) the subspace
given by

Ker(ω) = {v ∈ V | ∀w ∈ Vω(v,w) = 0}

The second condition implies that Ker(ω) reduces to zero, so whenω is symplectic,
there are no “preferred directions” in V .

There are special types of subspaces in symplectic manifolds. For a vector subspace
F , we denote by

Fω = {v ∈V | ∀w ∈ F , ω(v, w) = 0}

the symplectic orthogonal From Grassmann’s formula applied to the surjective map
ϕF : V → F∗ given byϕF (v) =ω(v,•), it follows that dim(Fω) = dim(Ker(ϕF)) = codim(F) =
dim(V)−dim(F). Moreover the proof of the following is left to the reader

PROPOSITION 2.2.
(Fω)ω = F

(F1 +F2)ω = Fω
1 ∩Fω

2

DEFINITION 2.3. A map ϕ : (V1,ω1) → (V2,ω2) is a symplectic map if ϕ∗(ω2) = ω1)
that is ∀x, y ∈ V1,ω2(ϕ(x),ϕ(y)) =ω1(x, y). It is a symplectomorphism if and only if it
is invertible- its inverse is then necessarily symplectic. A subspace F of (V ,ω) is

• isotropic if F ⊂ Fω (⇐⇒ω|F = 0);
• coisotropic if Fω ⊂ F
• Lagrangian if Fω = F .

PROPOSITION 2.4. (1) Any symplectic vector space has even dimension.

9



10 2. SYMPLECTIC LINEAR ALGEBRA

(2) Any isotropic subspace is contained in a Lagrangian subspace and Lagrangians
have dimension equal to half the dimension of the total space.

(3) If (V1,ω1), (V2,ω2) are symplectic vector spaces with L1,L2 Lagrangian sub-
spaces, and if dim(V1) = dim(V2), then there is a linear isomorphismϕ : V1 →V2

such thatϕ∗ω2 =ω1 andϕ(L1) = L2. As a consequence, any two symplectic vec-
tor spaces of the same dimension are symplectomorphic.

PROOF. We first prove that if I is an isotropic subspace it is contained in a La-
grangian subspace. Indeed, I is contained in a maximal isotropic subspace. We denote
it again by I and we just have to prove 2dim(I ) = dim(V ).

Since I ⊂ Iω we have dim(I ) ≤ dim(Iω) = dim(V )−dim(I ) so that 2dim(I ) ≤ dim(V ).
Now assume the inequality is strict. Then there exist a non zero vector, e, in Iω \ I , and
I ⊕Re is isotropic and contains I . Therefore I was not maximal, a contradiction.

We thus proved that a maximal isotropic subspace I satisfies I = Iω hence 2dim(I ) =
dim(V ), and dim(V ) is even.

Since {0} is an isotropic subspace, maximal isotropic subspaces exist1, and we
conclude that we may always find a Lagrangian subspace, hence V is always even-
dimensional.

This proves (1) and (2).
Let us now prove (3).
We shall consider a standard symplectic vector space (R2,σ) with canonical base

ex ,ey and the symplectic form given by

σ(x1ex + y1ey , x2ex + y2ey ) = x1 y2 − y1x2.

Similarly by orthogonal direct sum, we get the symplectic space (R2n ,σn)

σ((x1, ..., xn , y1, ..., yn), (x ′
1, ..., x ′

n , y ′
1, ..., y ′

n) =
n∑

j=1
x j y ′

j −x ′
j y j

It contains an obvious Lagrangian subspace,

Zn =Rn ⊕0 = {(x1, ..., xn , y1, ..., yn) | ∀ j , 1 ≤ j ≤ n, y j = 0}

Let (V ,ω) be a symplectic vector space and L a Lagrangian. We are going to prove
by induction on n = dim(L) = 1

2 dim(V ) that there exists a symplectic map ϕn sending
Zn to L.

Assume this has been proved in dimension less or equal than n−1, and let us prove
it in dimension n.

Pick any e1 ∈ L. Sinceω is nondegenerate, there exists an f1 ∈V such thatω(e1, f1) =
1. Then f1 ∉ L. Define

V ′ =V ect (e1, f1)ω = {x ∈V |ω(x,e1) =ω(x, f1) = 0}.

1no need to invoke Zorn’s lemma, a dimension argument is sufficient.
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It is easy to see that (V ′,ω|V ′) is symplectic since only non-degeneracy is an issue, which
follows from the fact that

Ker(ω|V′) = V′∩ (V′)ω = {0}

We now claim that L′ = L∩V ′ is a Lagrangian in V ′ and L = L′⊕Re1. First, sinceω|L′ is the
restriction of ω|L , we see that L′ is isotropic. It is maximal isotropic, since otherwise,
there would be an isotropic W such that V ′ ⊃ W ) L′, and then W ⊕Re1 would be a
strictly larger isotropic subspace than L, which is impossible. Since L ⊂ L′⊕Re1 our
second claim follows by comparing dimensions.

Now the induction assumption implies that there is a symplectic map, ϕn−1 from
(R2n−2,σ) to (V2,ω) sending Zn−1 to L′. Then the map

ϕn :(R2,σ2)⊕ (R2n−2,σ) −→(V ,ω)

(x1, y1; z) −→x1e1 + y1 f1 +ϕn−1(z)

is symplectic and sends Zn to L.
Now the last statement of our theorem easily follows from the above: given two

symplectic manifolds, (V1,ω1), (V2,ω2) of dimension 2n, and two lagrangians L1,L2, we
get two symplectic maps

ψ j : (R2n ,σn) −→ (V j ,ω j )

sending Zn to L j . Then the map ψ2 ◦ψ−1
1 is a symplectic map from (V1,ω1) to (V2,ω2)

sending L1 to L2.
�

REMARK 2.5. As we shall see, the map ϕ is not unique.

Since any symplectic vector space is isomorphic to (R2n ,σ), the group of symplectic
automorphisms of (V ,ω) denoted by Sp(V ,ω) = {ϕ ∈GL(V )|ϕ∗ω=ω} is isomorphic to
Sp(n) = Sp(R2n ,ω).

We now give a better description of the set of lagrangian subspaces of (V ,ω).

PROPOSITION 2.6. (1) There is a homeomorphism between the set

{Λ |Λ is Lagrangian and Λ∩L = {0}}

and the set of quadratic forms on L∗. As a result, Λ(n) is a smooth manifold of
dimension n(n+1)

2 .
(2) The action of Sp(n) = {ϕ ∈ GL(V )|ϕ∗ω = ω} on the set of pairs of transverse

Lagrangians is transitive.

PROOF. For (1), we notice that W = L⊕L∗ with the symplectic form

σ((e, f ), (e ′, f ′)) = 〈e ′, f 〉−〈e, f ′〉
is a symplectic vector space and that L⊕0 is a Lagrangian subspace.

According to the previous proposition there is a symplectic map ψ : V −→ W such
that ψ(L) = L⊕0, so we can work in W .
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Let Λ be a Lagrangian in W with Λ∩L = {0}. Then Λ is the graph of a linear map
A : L∗ → L, more precisely

Λ= {(Ay∗, y∗)|y∗ ∈ L∗}.

The subspace Λ is Lagrangian if and only if

σ((Ay∗
1 , y∗

1 ), (Ay∗
2 , y2)) = 0, for all y1, y2

i.e. if and only if

〈y∗
1 , Ay∗

2 〉 = 〈y∗
2 , Ay∗

1 〉
that is if 〈·, A·〉 is a bilinear symmetric form on L∗. But such bilinear form are in 1-
1 correspondence with quadratic forms. The second statement immediately follows
from the fact that the set of quadratic forms on an n-dimensional vector space is a vec-
tor space of dimension n(n+1)

2 , and the fact that to any Lagrangian L0 we may associate
a transverse Lagrangian L′

0, and L0 is contained in the open set of Lagrangians trans-
verse to L′

0 (Well we still have to check the change of charts maps are smooth, this is
left as an exercise).

To prove (2) let (L1,L2) and L′
1,L′

2) be two pairs of transverse Lagrangians. By the
previous proposition, we may assume V = (L ⊕ L∗,σ) and L1 = L′

1 = L. It is enough
to find ϕ ∈ Sp(V ,ω) such that ϕ(L) = L,ϕ(L∗) = Λ. The map (x, y) −→ (x + Ay∗, y∗) is
symplectic provided A is symmetric and sends L ⊕0 to L ⊕0 and L∗ to Λ= {(Ay∗, y∗) |
y∗ ∈ L∗}. �

EXERCICES 1. (1) Prove that if K is a coisotropic subspace, K /Kω is symplec-
tic.

(2) Compute the dimension of the space of Lagrangians containing a given isotropic
subspace I . Hint: show that it is the space of Lagrangians in Iω/I .

(3) (Witt’s Theorem) Let V1 and V2 be two symplectic vector spaces with the same
dimension and Fi ⊂ (Vi ,ωi ), i = 1,2. Assume that there exists a linear isomor-
phism ϕ : F1

∼= F2, i.e. ϕ∗(ω2)|F2 = (ω1)|F1 . Then ϕ extends to a symplectic map
ϕ̃ : (V1,ω1) → (V2,ω2). Hint: show that symplectic maps are the same thing as
Lagrangians in (V1⊕V2,ω1−ω2) which are transverse to V1 and V2, and the map
we are looking for, correspond to Lagrangians transverse to V1,V2 containing
I = {(x,ϕ(x)) | x ∈ F1}. Compute the dimension of the non transverse ones.

(4) The action of Sp(n) is not transitive on the triples of pairwise transverse La-
grangian spaces. Using the notion of index of a quadratic form prove that this
has at least (in fact exactly) n +1 connected components. This is responsible
for the existence of the Maslov index.

(5) Prove that the above results are valid over any field of any characteristic, except
in characteristic 2 because quadratic forms and bilinear symmetric forms are
not equivalent.
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2. Complex structure

Let h be a hermitian form on a complex vector space V in the sense:
1) h(z, z ′) = h(z ′, z);
2) h(λz, z ′) =λh(z, z ′) for λ ∈C;
3) h(z,λz ′) = λ̄h(z, z ′) for λ ∈C;
4) h(z, z) > 0 for all z 6= 0.
Then

h(z, z ′) = g (z, z ′)+ iω(z, z ′),

where g is a scalar product and ω is symplectic, since ω(i z, z) > 0 for z 6= 0.
Example: On Cn , define

h((z1, · · · , zn), (z ′
1, · · · , z ′

n)) =
n∑

j=1
z j z̄ ′

j ∈C.

Then the symmetric part is the usual scalar product on R2n while ω is the standard
symplectic form.

Denote by J the multiplication by i =p−1.

PROPOSITION 2.7. {
g (J z, z ′) =−ω(z, z ′)
ω(z, J z ′) =−g (z, z ′)

REMARK 2.8. ω is nondegenerate because ω(z, J z) =−g (z, z) < 0 for all z 6= 0.

Conclusion: Any hermitian space V has a canonical symplectic form.
We will now answer the following question: can a symplectic vector space be made

into a hermitian space? In how many ways?

PROPOSITION 2.9. Let (V ,ω) be a symplectic vector space. Then there is a complex
structure on V such that ω(Jξ,η) is a scalar product. Moreover, the set J (ω) of such J is
contractible.

PROOF. Let (·, ·) be any fixed scalar product on V . Then there exists A such that

ω(x, y) = (Ax, y).

Since ω is skew-symmetric, A∗ = −A where A∗ is the adjoint of A with respect to (·, ·).
Since any other scalar product can be given by a positive definite symmetric matrix M ,
we look for J such that J 2 =−I and M such that M∗ = M and setting (x, y)M = (M x, y)
we have ω(J x, y) = (x, y)M . The last equality can be rewritten as

(AJ x, y) = (M x, y) for all x, y.

This is equivalent to finding a symmetric M such that M = AJ . It’s easy to check that
there is a unique solution given by M = (A A∗)1/2 and J = A−1M solves AJ = M , J 2 =−I
and M∗ = M .
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In summary, for any fixed scalar product (·, ·), we can find a pair (J0, M0) such that
ω(J0x, y) is the scalar product (M0·, ·). If we know (J0, M0) is such a pair and we start
from the scalar product (M0·, ·), then we get the pair (J0, i d).

Define J (ω) to be the set of all J ’s such that ω(J ·, ·) is a scalar product. Define S to
be the set of all scalar products on V . By previous discussion, there is continuous map

Ψ : S →J (ω).

Moreover, if J is in J (ω),Ψmapsω(J ·, ·) to J . On the other hand, we have a continuous
embedding i from J (ω) to S which maps J to ω(J ·, ·). Clearly, Ψ◦ i = idS .

Let now Mp ∈ S be in the image. Since we know S is contractible, there is a con-
tinuous family

Ft : S →S

such that F0 = i d and F1(S ) = Mp . Consider

F̃t : J (ω) →J (ω)

given by
F̃t =Ψ◦Ft ◦ i .

By the definition of Ψ, we know F̃0 = i d and F̃1 = Jp . This shows that J (ω) is con-
tractible. �

EXERCICE 2. Let L be a Lagrangian subspace, show that JL is also a Lagrangian and
L∩ JL = {0}.

We finally study the structure of the symplectic group,

PROPOSITION 2.10. The group Sp(n) of linear symplectic maps of (V ,ω) is connected,
has fundamental group isomorphic to Z and the homotopy type of U (n).

PROOF. Let 〈J x, y〉 =σ(x, y) with J 2 =−Id and J∗ =−J Let R ∈ Sp(n), thenσ(Rx,R y) =
σ(x, y) i.e.

〈JRx,R y〉 = 〈x, y〉
Thus R ∈ Sp(n) is equivalent to R∗ JR = J .

Thus, if R is symplectic, so is R∗, since (R∗)JR J = J 2 = −Id we may conclude that
(R∗)−1[(R∗)JR J ]R∗ =−Id, that is JR JR∗ =−Id, so that R JR∗ = J .

Now decompose R as R = PQ with P symmetric and Q orthogonal, by setting P =
(RR∗)1/2 and Q = P−1R. Since R,R∗ are symplectic so is P and hence Q. Now

Q−1 JQ = R−1P JP−1R = R−1(P JP−1)R =
Ê−R−1 JP−2R = R−1 J (RR∗)−1R = R−1 JR∗ = J

Thus Q is symplectic and complex, that is unitary. Then since P is also positive
definite, the map t −→ P t is well defined (as exp(t log(P )) and log(P ) is well defined for
a positive symmetric matrix) for t ∈R and the path PQ −→ P tQ yields a retraction form
Sp(n) to U (n). �
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EXERCICE 3. Prove that Sp(n) acts transitively on the set of isotropic subspaces
(resp. coisotropic subspaces) of given dimension (use Witt’s theorem).

EXERCICE 4. Prove that the set J̃ (ω) made of complex structures J such thatω(Jξ,ξ) >
0 for all ξ 6= 0 is also contractible (of course it contains J (ω). Elements of J (ω) are
called compatible almost complex structures while those in J̃ (ω) are called tame al-
most complex structures.





CHAPTER 3

Symplectic differential geometry

1. Moser’s lemma and local triviality of symplectic differential geometry

DEFINITION 3.1. A two form ω on a manifold M is symplectic if and only if
1) ∀x ∈ M , ω(x) is symplectic on Tx M ;
2) dω= 0 (ω is closed).

Examples:
1) (R2n ,σ) is symplectic manifold.
2) If N is a manifold, then

T ∗N = {(q, p)|p linear form on Tq M }

is a symplectic manifold. Let q1, · · · , qn be local coordinates on N and let p1, · · · , pn be
the dual coordinates. Then the symplectic form is defined by

ω=
n∑

i=1
d p i ∧d qi .

One can check thatω does not depend on the choice of coordinates and is a symplectic
form. We can also define a one form, called the Liouville form

λ= pd q =
n∑

i=1
p i d qi .

It is well defined and dλ=ω.
3) Projective algebraic manifolds (See also Kähler manifolds)
CP n has a canonical symplectic structure σ and is also a complex manifold. The

restriction to the tangent space at any point of the complex structure J and the sym-
plectic form σ are compatible. The manifold CP n has a hermitian metric h, called the
Fubini-Study metric. For any z ∈ CP n , h(z) is a hermitian inner product on TzCP n .
h = g + iσ, where g is a Riemannian metric and σ(Jξ,ξ) = g (ξ,ξ).

Claim: A complex submanifold M of CP n carries a natural symplectic structure.
Indeed, consider σ|M . It’s obviously skew-symmetric and closed. We must prove

that σ|M is non-degenerate. This is true because if ξ ∈ Tx M{0} and Jξ ∈ Tx M , then
ω(x)(ξ, Jξ) 6= 0

DEFINITION 3.2. A submanifold in symplectic manifold (M ,ω) is Lagrangian if and
only if ω|Tx L = 0 for all x ∈ M and dimL = 1

2 dim M . In other words TxL is a Lagrangian
subspace of (Tx M ,ω(x)).

17
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We are going to prove that locally symplectic manifolds “have no geometry”. A cru-
cial lemma is

LEMMA 3.3 (Moser). Let N be a compact submanifold in M. Let ωt be a family of
symplectic forms such thatωt |TN M is constant. Then there is a diffeomorphismϕ defined
near N such that ϕ∗ω1 =ω0 and ϕ|N = i d |N .

PROOF. We will construct a vector field X (t , x) = X t (x) whose flow ϕt satisfies ϕ0 =
i d and (ϕt )∗ωt =ω0. Differentiate the last equality

(
d

d t
(ϕt )∗)ωt + (ϕt )∗(

d

d t
ωt ) = 0.

Then

(ϕt )∗LX tωt + (ϕt )∗(
d

d t
ωt ) = 0.

Since ϕt is diffeomorphism, this is equivalent to

LX tωt + d

d t
ωt = 0.

Using Cartan’s formula
LX = d ◦ iX + iX ◦d ,

we get

d(iX tωt )+ d

d t
ωt = 0.

Since ωt is nondegenerate, the map Tx M → (Tx M)∗ which maps X to ω(X , ·) is
an isomorphism. Therefore, for any one form β, the equation iXω = β has a unique
solution Xβ. It suffices to solve for βt ,

dβt =− d

d t
ωt .

with the requirement that βt = 0 on TN M for all t , because we want ϕ|N = Id|N , that is
X t 0 on N . On the other hand, the assumption that ωt =ω0 on TN M implies ( d

d tωt ) ≡ 0
on TN M . Denote the right hand side of the above equation by α, then α is defined in a
neighborhood U of N . The solution of βt is given by Poincaré’s Lemma on the tubular
neighborhood of N . Here by a tubular neighborhood we mean a neighborhood of N in
M diffeomorphic to the unit disc bundle DνN M of νM N the normal bundle of N in M
(i.e. νM N = {(x,ξ) ∈ TN M | ξ⊥ T N }).

LEMMA 3.4. (Poincaré) If α is a p-form on U , closed and vanishing on N , then there
exists β such that α= dβ and β vanishes on TN M.

PROOF. 1

1The proof is easier if one is willing to admit that the set of exact forms is closed for the C∞ topology,
i.e. ifα= dβε+γε and limε→0γε = 0 thenα is exact. This follows for example from the fact that exactness
of a closed form can be checked by verifying that its integral over a finite number of cycles vanishes.
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This means that for a tubular neighborhood H∗(U , N ) = 0.
Indeed, let rt be the map on νN M defined by rt (x,ξ) = (x, tξ) and V the vector field

Vt (x,ξ) = −ξ
t , well defined for t 6= 0. This vector field satisfies d

d t rt (x,ξ) = Vt (rt (x,ξ)).
Since r0 sends νN M to its zero section, N , we have r ∗

0 α= 0 and r1 = Id.
Then

d

d t
(rt )∗(α) = r ∗

t (LVtα) = d
(
r ∗

t (iVtα)
)

Note that r ∗
t (iVtα) is well defined, continuous and bounded as t goes to zero, since

writing (locally) (u,η) for a tangent vector to T(x,ξ)νN M

(r ∗
t (iVtα))(x,ξ)((u2,η2)....(up ,ηp )) =α(x, tξ)((0,ξ), (u2, tη2)...(up , tηp ))

remains C 1 bounded as t goes to zero. Let us denote by βt the above form. We can
write for ε positive

r ∗
1 (α)− r ∗

ε (α) =
∫ 1

ε

d

d t
[(rt )∗(α)]d t = d

(∫ 1

ε
(rt )∗(iVtα)d t

)
Since as t goes to zero, d(r ∗

t (iVtα)) remains bounded, thus limε→0
∫ ε

0 d(r ∗
t (iVtα)) = 0

and we have that

α= r ∗
1 (α)− r ∗

0 (α) = lim
ε→0

[r ∗
1 (α)− r ∗

ε (α)] =

lim
ε→0

d

(∫ 1

ε
(rt )∗(iVtα)d t

)
= d

(
lim
ε→0

∫ 1

0
(rt )∗(iVtα)d t

)
= dβ

where

β=
∫ 1

0
(rt )∗(iVtα)d t =

∫ 1

0
βt d t

but βt vanishes on N , since

βt (x,0)((u2,η2)...(up ,ηp ) =α(x,0)((0,0), (u2, tη2)...(up , tηp ) = 0

This proves our lemma. �

�

EXERCICE 1. Prove using the above lemma that if N is a submanifold of M , H∗(M , N )
can either be defined as the set of closed forms vanishing on T N modulo the differen-
tial forms vanishing on T N or as the set of closed form vanishing in a neighborhood of
N modulo the differential of forms vanishing near N .

As an application, we have

PROPOSITION 3.5 (Darboux). Let (M ,ω) be a symplectic manifold. Then for each
z ∈ M, there is a local diffeomorphism ϕ from a neighborhood of z to a neighborhood of
o in R2n such that ϕ∗σ=ω.
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PROOF. According to Lecture 1, there exists a linear map L : Tz M → R2n such that
L∗σ = ω(z). Hence, using a local diffeomorphism ϕ0 : U → W such that dϕ0(z) = L,
where U and W are neighborhoods of z ∈ M and o ∈ R2n respectively, we are reduced
to considering the case whereϕ∗

0σ is a symplectic form defined in U andω(z) = (ϕ∗
0 )σ.

Define ωt = (1− t )ϕ∗
0σ+ tω in U . It’s easy to check ωt satisfies the assumptions of

Moser’s Lemma, therefore, there exists ψ such that ψ∗ω1 =ω0, i.e.

ψ∗ω=ϕ∗
0σ.

Then ϕ=ϕ0 ◦ψ−1 is the required diffeomorphism. �

EXERCICES 2. (1) Show the analogue of Moser’s Lemma for volume forms.
(2) Letω1, ω2 be symplectic forms on a compact surface without boundary. Then

there exists a diffeomorphismϕ such thatϕ∗ω1 =ω2 if and only if
∫
ω1 =

∫
ω2.

PROPOSITION 3.6. (Weinstein) Let L be a closed Lagrangian submanifold in (M ,ω).
Then L has a neighborhood symplectomorphic to a neighborhood of OL ⊂ T ∗L. (Here,
OL = {(q,0)|q ∈ L} is the zero section.)

PROOF. The idea of the proof is the same as that of Darboux Lemma.
First, for any x ∈ L, find a subspace V (x) in Tx M such that
1) V (x) ⊂ Tx M is Lagrangian subspace;
2) V (x)∩TxL = {0};
3) x →V (x) is smooth.
According to our discussion in linear symplectic space, we can find such V (x) at

least pointwise. To see 3), note that at each point x ∈ L the set of all Lagrangian sub-
spaces in Tx M transverse to TxL may be identified with quadratic forms on (TxL)∗. It’s
then possible to find a smooth section of such an “affine bundle”.

Abusing notations a little, we write L for the zero section in T ∗L. Denote by TL(T ∗L)
the restriction of the tangent bundle T ∗L to L. Denote by TL M the restriction of the
bundle T M to L. Both bundles are over L. For x ∈ L, their fibers are

Tx(T ∗L) = TxL⊕Tx(T ∗
x L)

and

Tx M = TxL⊕V (x).

Construct a bundle map L0 : TL(T ∗L) → TL M which restricts to identity on factor TxL
and sends Tx(T ∗

x L) to V (x). Moreover, we require

ω(L0u,L0v) =σ(u, v),

where u ∈ Tx(T ∗
x L) = T ∗

x L and v ∈ TxL. This defines L0 uniquely. Again, we can find ϕ0

from a neighborhood of L in T ∗L to a neighborhood of L in M such that dϕ0|TL(T ∗L) =
L0. By the construction of L0, one may check that

ϕ∗
0ω=σ on TL(T ∗L).
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Define
ωt = (1− t )ϕ∗

0ω+ tσ, t ∈ [0,1].

ωt is a family of symplectic forms in a neighborhood of OL . Moreover, ωt ≡ ω0 on
TL(T ∗L). By Moser’s Lemma, there exists Ψ defined near OL such that Ψ∗ω1 =ω0, i.e.
Ψ∗σ=ϕ∗

0ω. Then ϕ0 ◦Ψ−1 is the diffeomorphism we need. �

EXERCICE 3. Let I1, I2 be two diffeomorphic isotropic submanifold in (M1,ω1),
(M2,ω2). Let E1 = (T I1)ω1 /(T I1) and E2 = (T I2)ω2 /(T I2). E1,E2 are symplectic vector
bundles over I1 and I2. Show that I1 and I2 have symplectomorphic neighborhoods if
and only if E1

∼= E2 as symplectic vector bundles.

EXERCICE 4. Same exercise in the coisotropic situation.

2. The groups H am and Di f fω

Since Klein’s Erlangen’s program, geometry has meant the study of symmetry groups.
The group playing the first role here is Di f fω(M). Let (M ,ω) be a symplectic manifold.
Define

Di f fω(M) = {ϕ ∈ Di f f (M)|ϕ∗ω=ω}.

This is a very large group since it contains H am(M ,ω), which we will now define.
Let H(t , x) be any smooth function and XH the unique vector field such that

ω(XH (t , x),ξ) = dx H(t , x)ξ, ∀ξ ∈ Tx M .

Here dx means exterior derivative with respect to x only.
Claim: The flow of XH is in Di f fω(M).
To see this,

d

d t
(ϕt )∗ω = (ϕt )∗(LXHω)

= (ϕt )∗(d ◦ iXHω+ iXH ◦dω)

= (ϕt )∗(d(d H)) = 0.

DEFINITION 3.7. The set of all diffeomorphism ϕ that can be obtained as the flow
of some H is a subgroup Di f f (M ,ω)) called H am(M ,ω).

To prove that H am(M ,ω) is a subgroup, we proceed as follows: first notice that the
Hamiltonian isotopy can be reparametrized, and still yields a Hamiltonian isotopyϕs(t )

satisfying

(
d

d t
ϕs(t ))t=t0 = s′(t )(

d

d s
ϕs)s=s(t0) = s′(t )XH (s(t0),ϕs(t0 )

which is the Hamiltonian flow of

s′(t )H(s(t ), z)

Therefore we may use a function s(t ) on [0,1] such that s(0) = 0, s(1/2) = 1, s′(t ) = 0 for
t close to 1/2 and we find a Hamiltonian flow ending at ϕ1 in time 1/2 and such that
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H vanishes near t = 1/2. Similarly if ψt is the flow associated to K (t , z) we may modify
it in a similar way using r (t ) so that K ≡ 0 for t in a neighborhood of [0,1/2]. We can
then consider the flow associated to H(t , z)+K (t , z) = L(t , z) it will be ϕs(t ) ◦ψr (t ) and
for t = 1 we get ϕ1 ◦ψ1.

That ϕ−1
1 is also Hamiltonian follows from the fact that −H(t ,ϕt (z)) has flow ϕ−1

t .

EXERCICE 5. Show that (ϕt )−1ψt is the Hamiltonian flow of

L(t , z) = K (t ,ϕt (z))−H(t ,ϕt (z))

This immediately proves that H am(M ,ω) is a group.

REMARK 3.8. Denote by Di f fω,0 the component of Di f fω(M) in which the identity
lies. It’s obvious that H am(M ,ω) ⊂ (Di f fω,0(M).

REMARK 3.9. If H(t , x) = H(x), then H ◦ϕt = H . This is what physicists call con-
servation of energy. Indeed H is the energy of the system, and for time-independent
conservative systems, energy is preserved. This is not the case in time-dependent sit-
uations.

REMARK 3.10. If we choose local coordinates q1, ..., qn and their dual p1, ..., pn in
the cotangent space, pi , qi , the flow is given by the ODE{

q̇i = ∂H
∂pi

(t , q, p)

ṗi =− ∂H
∂qi

(t , q, p)

Question: How big is the quotient Di f fω0 /H am(M ,ω)?
Given ϕ ∈ Di f fω0 , there is an obvious obstruction for ϕ to belong to H am(M ,ω).

Assume ω= dλ. Then ϕ∗λ−λ is closed for all ϕ ∈ Di f fω, since

d(ϕ∗λ−λ) =ϕ∗ω−ω= 0.

If ϕt is the flow of XH ,

d

d t
((ϕt )∗λ) = (ϕt )∗(LHXλ)

= (ϕt )∗(d(iXHλ)+ iXH dλ)

= (ϕt )∗d(iXHλ+H)

= d((ϕt )∗(iXHλ+H)).

This implies that ϕ∗λ−λ is exact.
In summary, we can define map

Flux : (Di f fω)0(M) → H 1(M ,R)
ϕ 7→ [ϕ∗λ−λ]

We know
H amω(M) = ker(F lux).

Examples:
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(1) On T ∗T 1 the translationϕ : (x, p) −→ (x, p+p0) is symplectic, but Flux(ϕ) = p0.
(2) Similarly if M = T 2 and σ = d x ∧ d y , the map (x, y) −→ (x, y + y0) is not in

H am(T 2,σ) for y0 6≡ 0 mod 1.
Indeed, since the projection π : T ∗T 1 −→ T 2 is a symplectic covering, any

Hamiltonian isotopy on T 2 ending in ϕ would lift to a Hamiltonian isotopy
on T ∗T 1 (if H(t , z) is the Hamiltonian on T 2, H(t ,π(z)) is the Hamiltonian
on T ∗T 1) ending to some lift of ϕ. But the lifts of ϕ are given by (x, y) −→
(x +m, y + y0 +n) for (m,n) ∈Z2, with Flux given by y0 +n 6= 0.

EXERCICES 6. (1) Prove the Darboux-Weinstein-Givental theorem: Let S1,S2

be two submanifolds in (M1,ω1), (M2,ω2). Assume there is a map ϕ : S1 −→ S2

which lifts to bundle map

Φ : TS1 M1 −→ TS2 M2

coinciding with dϕ on the subbundle T S1, and preserving the symplectic
structures, i.e. Φ∗(ω2) =ω1.

Then there is a symplectic diffeomorphism between a neighborhood U1 of
S1 and a neighborhood U2 of S2.

(2) Use the Darboux-Weinstein-Givental theorem to prove that all closed curves
have symplectomorphic neighborhoods. Hint: Show that all symplectic vector
bundle on the circle are trivial.

(3) (a) Prove that the Flux homomorphism can be defined on (M ,ω) as follows.
Letϕt be a symplectic isotopy. Then d

d tϕt (z) = X (t ,ϕt (z)) andω(X (t , z)) =
αt is a closed form. Then

�Flux(ϕ) =
∫ 1

0
αt d t ∈ H 1(M ,R)

depends only on the homotopy class of the path ϕt . If Γ is the image by
Flux of the set of closed loops, we get a well defined map

Flux : Di f f (M ,ω)0 −→ H 1(M ,R)/Γ

(b) Prove that when ω is exact, Γ vanishes and the new definition coincides
with the old one.





CHAPTER 4

More Symplectic differential Geometry:
Reduction and Generating functions

Philosophical Principle: Everything important is a Lagrangian submanifold.
Examples:

(1) If (Mi ,ωi ), i = 1,2 are symplectic manifolds and ϕ a symplectomorphism be-
tween them, that is a map from M1 to M2 such that ϕ∗ω2 = ω1. Consider the
graph of ϕ,

Γ(ϕ) = {(x,ϕ(x))} ⊂ M1 ×M2.

This is a Lagrangian submanifold of M1 ×M2 if we define M2 as the manifold
M2 with the symplectic form −ω2 and the symplectic form on M1×M2 is given
by

(ω1 ªω2)((ξ1,ξ2), (η1,η2)) =ω1(ξ1,η1)−ω2(ξ2,η2).

In fact, it’s easy to see Γ(ϕ) is a Lagrangian submanifold if and only if ϕ∗ω2 =
ω1. Note that if M1 = M2, then Γ(ϕ)∩4M = Fix(ϕ).

(2) Let (M , J ,ω) be a smooth projective manifold, i.e. a smooth manifold given by

M = {P1(z0, · · · , zN ) = ·· · = Pi (z0, · · · , zN ) = 0}

where P j are homogeneous polynomials. We shall assume the map from Cn \
{0} to Cr

(z0, ..., zn) 7→ (P1(z0, ..., zn), ...,Pr (z0, ..., zn))

has zero as a regular value, so that M is a smooth manifold.
If P j ’s have real coefficients, then real algebraic geometry is concerned

with

MR = {[x0, · · · , xN ] ∈RP N |P j (x0, · · · , xN ) = 0}

= M ∩RP N .

The problem is to “determine the relation” between M and MR". It is easy
to see that MR is a Lagrangian of (M ,ω) (of course, possibly empty).

1. Symplectic Reduction

Let (M ,ω) be a symplectic manifold and K a submanifold. K is said to be coisotropic
if ∀x ∈ K , we have TxK ⊃ (TxK )ω. As x varies in K , (TxK )ω gives a distribution in TxK .

LEMMA 4.1. This distribution is integrable.

25
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PROOF. According to Frobenius theorem, it suffices to check that for all vector field
X ,Y ∈ (TxK )ω, η in TxK ,

ω([X ,Y ],η) = 0

where X and Y are vector fields in (TxK )ω.
dω(X ,Y ,η) vanishes, but on the other hand is a sum of terms of the form:
X ·ω(Y ,η) but sinceω(Y ,η) is identically zero these terms vanishes. The same holds

if we exchange X and Y .
η ·ω(X ,Y ) vanishes for the same reason.
ω(X , [Y ,η]) and ω(Y , [X ,η]) vanish since [X ,η], [Y ,η] are tangent to K .
ω([X ,Y ],η) is the only remaining term. But since the sum of all terms must vanish,

this must also vanish, hence [X ,Y ] ∈ (TxK )ω �

This integrable distribution gives a foliation of K , denoted by CK . We can check
that ω induces a symplectic form (we only need to check it is nondegenerate) on the
quotient space (TxK )/(TxK )ω. One might expect K /CK to be a a “symplectic some-
thing”.

Unfortunately, due to global topological difficulties, there is no nice manifold struc-
ture on the quotient. However, in certain special cases, as will be illustrated by exam-
ples in the end of this section, K /CK is a manifold, and therefore a symplectic mani-
fold.

Let us now see the effect of the above operation on symplectic manifolds.

LEMMA 4.2. (Automatic Transversality) If L is a Lagrangian in M and L intersects
K transversally, i.e. TxL +TxK = Tx M for x ∈ K ∩L, then L intersects the leaves of CK

transversally, TxL∩TxCK = {0}, for x ∈ K ∩L.

PROOF. Recall from symplectic linear algebra that if Fi are subspaces of a symplec-
tic vector space, then

(F1 +F2)ω = Fω
1 ∩Fω

2 .

We know (TxL)ω = TxL and (Tx M)ω = {0}, then the lemma follows from TxL +TxK =
Tx M . �

Now, let’s pretend K /CK is a manifold and denote the projection by π : K → K /CK .
1) K and L intersect transversally, so in particular L∩K is a manifold.
2) The projection π : (L∩K ) → K /CK is an immersion.

kerdπ(x) = TxCK = (TxK )ω.

kerdπ(x)|Tx (L∩K ) ⊂ kerdπ(x)∩TxL

⊂ (TxK )ω∩T xL = {0}.

Therefore dπ(x)|L∩K is injective and π|L∩K is immersion.
To summarize our findings, given a symplectic manifold (M ,ω) and a coisotropic

submanifold K , let L be a Lagrangian of M intersecting K transversally. Define LK to
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be the image of the above immersion. Then it is a Lagrangian in K /CK . This operation
is called symplectic reduction.

The only thing left to check is that LK is Lagrangian. Let ω̃ be the induced sym-
plectic form on K /CK and ṽ is a tangent vector of LK . Assume the preimage of ṽ is v ,
a tangent vector of L. Since L is Lagrangian and ω̃ is induced from ω, we know LK is
isotropic. It’s Lagrangian by a dimension count. The same argument shows that the re-
duction of an isotropic submanifold (resp. coisotropic submanifold) is isotropic (resp.
coisotropic).

Example 1: Let N be a symplectic manifold, and V be any smooth submanifold.
Define

K = T ∗
V N = {(x, p)|x ∈V , p ∈ T ∗

x N }.

This is a coisotropic submanifold, and its coisotropic foliation CK is given by specifying
the leaf through (x, p) ∈ K to be

CK (x, p) = {(x, p̃) ∈ K | p̃ −p vanishes on TxV }.

It is natural to identify K /CK with T ∗V .
Symplectic reduction in this case, sends Lagrangian in T ∗N to Lagrangian in T ∗V .
Example 2: Let N1, N2 are smooth manifolds and N = N1×N2. Suppose we choose

local coordinates near a point in T ∗N is written as

(x1, p1, x2, p2).

where (x1, p1) ∈ T ∗N1, (x2, p2) ∈ T ∗N2. Define K = {(x1, p1, x2, p2)|p2 = 0}. The tangent
space of K at a point z = (x1, p1, x2, p2) is given by

(v1, w1, v2,0),

(TzK )ω = {(0,0,0, w2)}.

Then we can identify K /CK with T ∗N1.
Symplectic reduction sends a Lagrangian in T ∗N to a Lagrangian in T ∗N1.

1.1. Lagrangian correspondences. Let Λ be a Lagrangian submanifold in T ∗X ×
T ∗Y . Then it induces a correspondence from T ∗X to T ∗Y as follows: consider a set
C ⊂ T ∗X , and C ×Λ⊂ T ∗X ×T ∗X ×T ∗Y . Now, denote by ∆T ∗X the diagonal in T ∗X ×
T ∗X . The submanifold K =∆T ∗X ×T ∗Y is coisotropic, and we define Λ◦C as C ×Λ∩
K /K ⊂ K /K = T ∗Y . When C is a submanifold, then Λ◦C is a submanifold provided
C ×T ∗Y is transverse to Λ.

If C is isotropic or coisotropic, it is easy to check that the same will hold for Λ◦C .
In particular if L is a Lagrangian submanifold, the correspondence maps L (T ∗X ) to
L (T ∗Y ) (well, not everywhere defined) can alternatively be defined as follows : take
the symplectic reduction ofΛ by L×T ∗Y . This is well defined at least when L is generic.
We denote it by Λ◦L.

Note thatΛa (sometimes denoted asΛ−1) is defined asΛa = {(x,ξ, y,η) | (y,η, x,ξ)Ê ∈
Λ}. This is a Lagrangian correspondence from T ∗Y to T ∗X . The composition Λ◦Λa ⊂
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T ∗X ×T ∗X is, in general, not equal to the identity (i.e. ∆T ∗X , the diagonal in T ∗X ),
even though this is the case if Λ is the graph of a symplectomorphism.

EXERCICE 1. Compute Λ◦Λa for Λ= Vx ×Vy , where Vx is the cotangent fiber over
x.

2. Generating functions

Our goal is to describe Lagrangian submanifolds in T ∗N . Let λ= pd x be the Liou-
ville form of T ∗N . Given any 1-form α on N , we can define a smooth manifold

Lα = {(x,α(x))|x ∈ N ,α(x) ∈ T ∗
x N } ⊂ T ∗N .

LEMMA 4.3. Lα is Lagrangian if and only if α is closed.

PROOF. Let i : N → T N be the embedding map i (x) = (x,α(x)). Notice that

λ|Lα =α
i.e.

i∗(λ) =α.

Lagrangian condition is (dλ)|Lα = 0, i.e. dα= 0. �

DEFINITION 4.4. If λ|L is exact, we say L is exact Lagrangian.

In particular, Lα is exact if and only ifα= d f for some function f on N . In this case,

Lα∩ON = {x|α(x) = d f (x) = 0} =Cr i t ( f ),

where ON is the zero section of T N .

REMARK 4.5. 1) If L is C 1 close to ON , then L = Lα for some α. To see this, Lα is
’graph’ of α in T N and a C 1 perturbation of a graph is a graph.

2) If L is exact, C 1 close to ON , then L = Ld f . Therefore, #(L ∩ON ) ≥ 2, if we as-
sume N is compact. ( f has at least two critical points, corresponding to maximum and
minimum, and we may find more with more sophisticated tools.)

Arnold Conjecture: If ϕ ∈ H amω(T ∗N ) and L =ϕ(ON ), then #(L ∩ON ) ≥ catLS(N ),
where catLS(N ) is the minimal number of critical points for a function on N .

DEFINITION 4.6. A generating function for L is a smooth function S : N ×Rk → R

such that
1) The map

(x,ξ) 7→ ∂S
∂ξ

(x,ξ)

has zero as a regular value. As a result ΣS = {(x,ξ)|∂S
∂ξ (x,ξ) = 0} is a submanifold. (Note

that ∂S/∂ξ is a vector of dimension k, so ΣS is a manifold with the same dimension as
N , but may have a different topology.)
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2)
iS : ΣS → T ∗N

(x,ξ) 7→ (x, ∂S
∂x (x,ξ))

has image L = LS .

LEMMA 4.7. If for some given S satisfying 1) of the definition and LS is given by 2),
then LS is an immersed Lagrangian in T ∗N .

PROOF. Since S is a function from N ×Rk to R, the graph of dS in T ∗(N ×Rk ) is a
Lagrangian in T ∗(N ×Rk ). We will use the symplectic reduction as in the Example 2 in
the last section. Define K as a submanifold in T ∗(N ×Rk ),

K = T ∗N ×Rk × {0}.

K is coisotropic as shown in Example 2. Locally, the graph of dS is given by

g r (dS) = {(x,ξ,
∂S

∂x
(x,ξ),

∂S

∂ξ
(x,ξ))}.

Then

ΣS = g r (dS)∩K .

The regular value condition in 1) ensures that g r (dS) intersects K transversally. By
symplectic reduction, we know iS is an immersion and LS is a Lagrangian in T ∗N be-
cause g r (dS) is Lagrangian in T ∗(N ×Rk ). �

REMARK 4.8. If LS is embedded, we have

LS ∩ON 'Cr i t (S).

Question: Which L have a generating function?
Answer: (Giroux) It is given by conditions on the tangent bundle T L.

DEFINITION 4.9. Let S be a generating function on N×Rk . We say that S is quadratic
at infinity if there exists a nondegenerate quadratic form Q on Rk such that

S(x,ξ) =Q(ξ) for |ξ| >> 0.

For simplicity, we will use GFQI to mean generating function quadratic at infinity.

PROPOSITION 4.10. Let S be a generating function of LS such that
(1) ‖∇(S −Q)‖C 0 ≤C ,
(2) ‖S −Q‖C 0(B(0,r )) ≤Cr ,
then there exists S̃ GFQI for LS .

PROOF. (sketch) Let ρ : R+ → R+ be a nonincreasing function such that ρ ≡ 1 on
[0, A], ρ ≡ 0 on [B ,+∞) and −ε≤ ρ′ ≤ 0. Define

S1(x,ξ) = ρ(|ξ|)S(x,ξ)+ (1−ρ(|ξ|))Q(ξ)
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We are going to prove that

∂

∂ξ
S1(x,ξ) = 0 ⇐⇒ ∂

∂ξ
S0(x,ξ) = 0

Indeed,

∂

∂ξ
S1(x,ξ) = ∂

∂ξ

(
ρ(|ξ|) (S(x,ξ)−Q(ξ))+Q(ξ)

)
= ρ′(|ξ|) ξ|ξ| (S(x,ξ)−Q(ξ))+ρ(|ξ|) ∂

∂ξ
(S −Q)(x,ξ)+ AQξ= 0

For this one must have, if |Aξ| ≥ k|ξ|

c|ξ| ≤ ε‖S −Q‖C 0 +‖∇(S −Q)‖C 0 ≤ εC |ξ|+C

therefore for ε small enough, this implies

|ξ| ≤ C

c −εC
and this remains bounded for ε small enough. If we choose A large enough so that it
is larger than C

c−εC , then S1 = S0 and therefore ΣS1 and ΣS0 coincide, and also iS1 and
iS0 . �

THEOREM 4.11. (Sikorav) N is compact. Let L = ϕ(ON ) and ϕ ∈ H am(T ∗N ). Then
L has a GFQI.

PROOF. (Brunella) Consider a “special” case N =RN and ϕ ∈ H am0(RN ). By super-
script 0, we mean compactly supported.

There is a ‘ ‘correspondence” between function h : N×N →R and mapsϕh : T ∗N →
T ∗N given by

ϕh(x1, p1) = (x2, p2) ⇐⇒
{

p1 = ∂
∂x1

h(x1, x2)

p2 =− ∂
∂x2

h(x1, x2)

The graph ofϕh is a submanifold in T ∗Rn×T ∗Rn with symplectic form given byω=
d p1∧d x1−d p2∧d x2. It’s a Lagrangian if and only ifϕh is a symplectic diffeomorphism.

The graph of dh is a submanifold in T ∗(Rn ×Rn) with the natural symplectic struc-
ture and it’s Lagrangian.

Note that the first is a graph of a map T ∗N to T ∗N while the second is the graph of
a map N×N toRl ×Rl (in particular the first is transverse to {0}(T ∗N ), while the second
is transverse to {0}×Rl ).

There is a symplectic isomorphism between T ∗Rn ×T ∗Rn and T ∗(Rn ×Rn), given
by

(x1, p1, x2, p2) 7→ (x1, x2, p1,−p2).

and this maps the graph of dh to the graph of ϕh .
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Set h0(x1, x2) = 1
2 |x1 −x2|2, then

ϕh0 (x1, p1) = (x1 −p1, p1).

If h is C 2 close to h0, then g r (dh) is C 1 close to g r (dh0), under isomorphism,
Γ(ϕh0 ), since C 1 perturbation of a graph is a graph, we know (up to isomorphism)
g r (dh) = Γ(ϕh). Since g r (dh) is always Lagrangian, ϕh is symplectic isomorphism.

REMARK 4.12. We can do the same with −h0.

ϕ−h0 = (ϕh0 )−1.

REMARK 4.13. We can do the inverse. Any ϕC 1 close to ϕh0 is of the form ϕh .

PROPOSITION 4.14 (Chekanov’s composition formula). Let L be a Lagrangian in
T ∗Rn . L coincides with ON outside a compact set and has a GFQI S(x,ξ). If h = h0

near infinity, then ϕh(L) has GFQI

S̃(x,ξ, y) = h(x, y)+S(y,ξ).

REMARK 4.15. S̃ is only approximately quadratic at infinity. We use the last propo-
sition to make it real GFQI.

For the proof of the claim, check that LS̃ is ϕh(L).

∂S̃

∂ξ
(x,ξ, y) = 0 ⇐⇒ ∂S

∂ξ
(y,ξ) = 0.

∂S̃

∂y
(x,ξ, y) = 0 ⇐⇒ ∂h

∂y
(x, y)+ ∂S

∂y
(y,ξ) = 0.

A point in LS̃ is

(x,
∂S̃

∂x
(x,ξ, y)) = (x,

∂h

∂x
(x, y))

= ϕh(y,−∂h

∂y
(x, y))

= ϕh(y,
∂S

∂y
(y,ξ)).

(y, ∂S
∂y (y,ξ)) is a point in LS .

If k is close to −h0, ϕk ◦ϕh(L) has GFQI. If k =−h0, then (ϕ−1
h0

◦ϕh)(L) has GFQI.

Any C 1 small symplectic map ψ can be given as

ϕh =ϕh0 ◦ψ.

So the conclusion is for any ψ C 1 close to the identity, if L has GFQI, then ψ(L) has
GFQI.
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Now take ϕt ∈ H am(T ∗N ).

ϕ1 =ϕ1
N−1

N
◦ϕ

N−1
N

N−2
N

· · ·ϕ
1
N
0 .

Each factor is C 1 small. Then If L has GFQI, then ϕ1(L) has GFQI.
�

3. The Maslov class

The Maslov or Arnold-Maslov class is a topological invariant of a Lagrangian sub-
manifold, measuring how much its tangent space “turns” with respect to a given La-
grangian distribution.

4. Contact and homogeneous symplectic geometry

4.1. Contact geometry, symplectization and contactization. Let (N ,ξ) be a pair
constituted of a manifold N , and a hyperplane field ξ on N . This means that locally,
there is a non-vanishing 1-form α such that ξ= Ker(α).

DEFINITION 4.16. The pair (N ,ξ) is a contact manifold if integral submanifolds of
ξ (i.e. submanifolds everywhere tangent to ξ) have the minimal possible dimension,
i.e. dim(N )−1

2 . Such an integral manifold is called a Legendrian submanifold.

It is easy to check that if locally ξ= Ker(α), the contact type condition is equivalent
to requiring that α∧ (dα)n−1 is nowhere vanishing. Note also that the global existence
if α is equivalent to the co-orientability of ξ. Sometimes we assume the existence of α.
This is always possible, at the cost of going to a double cover.

Examples:

(1) the standard example is R2n+1, with coordinates q1, ..., qn , p1, ..., pn , z and ξ =
ker(α) with α= d z −p1d q1 − ...−pnd qn .

(2) A slightly more general case is J 1(N ) for any manifold N . This is the set of
(q, p, z) where z ∈ N , p ∈ T ∗

q N and z ∈ R, the contact form being d z − pd q .

Note that for any smooth function f on N , the set j 1 f = {(q,d f (q), f (q)0 | q ∈
N } is Legendrian. Moreover any Legendrian graph is of this form.

(3) The manifold ST ∗N = {(q, p) ∈ T ∗N | |p| = 1}, where | • | is induced by any
riemannian metric on N , endowed with the restriction of the Liouville form.
The same holds for PT ∗N = ST ∗N / ' where (q, p1) ' (q, p2) if and only if p1 =
±p2.

EXERCICE 2. Prove that PT ∗Rn is contactomorphic to J 1Sn−1. There is a natural
contactomorphism called Euler coordinates: a point (q, p) ∈ PT ∗(Rn) corresponds in a
unique way to a to a point in Rn and a linear hyperplane (i.e. the pair (q,ker(p))), that
may be replaced by the parallel linear hyperplane through this point. In other words
we identify PT ∗Rn to the set of pairs constituted of an affine hyperplanes and a point
on the hyperplane. The hyperplane may be associated to its normal vector, q , in Sn−1,
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the distance from the origin to the hyperplane, a real number z, and a vector in the
hyperplane, connecting the orthogonal projection of the origin on the hyperplane and
the point, p. Now (q, p, z) are in J 1(Sn−1) because p is orthogonal to q , provided we
use the canonical metric in Rn to identify vectors and covectors.

There are two constructions relating symplectic and contact manifolds.

DEFINITION 4.17 (Symplectization of a contact manifold). Let (N ,ξ) be a contact
manifold, with contact form α. Then (N ×R∗+,d(tα)) is a symplectic manifold called
the symplectization of (N ,ξ).

PROPOSITION 4.18 (Uniqueness of the Symplectization). If Ker(α) = Ker(β) = ξ we
have a symplectomorphism between (N ×R∗+,d(tα)) and (N ×R∗+,d(tβ)). Indeed, we
have β = f α where f is a non-vanishing function on N . Then the map F : (z, t ) 7→
(z, f (z) · t ) satisfies F∗(tα) = t f (z)α = tβ, so realizes a symplectomorphism F : (N ×
R∗+,d(tβ)) → (N ×R∗+,d(tα))

Let (M ,ω) be a symplectic manifold. Assumeω= dλ. Then (M ×R,d z−λ) is a con-
tact manifold. If we only know thatω is an integral class, and P is the circle bundle over
M with first Chern class ω, then the canonical U (1)-connection, θ on P with curvature
ω makes (P,θ) into a contact manifold1.

EXERCICE 3. State and prove the analogue of Darboux and Weinstein’s theorem in
the contact setting.

PROPOSITION 4.19 (Symplectization of a Legendrian submanifold). Let L be a Leg-
endrian submanifold in (N ,ξ). Then L ×R is a Lagrangian in the symplectization of
(N ,ξ). Let L be a Lagrangian in (M ,ω) with ω exact. Assume L is exact, that is λL is an
exact form (it is automatically closed, since ω vanishes on L). Then L has a lift to a Leg-
endrian Λ in (M ×R,d z −λ), unique up to a translation in z. Similarly if ω is integral,
and the holonomy of θ along L is integral, we have a Legendrian lift Λ of L, unique up
to a rotation in U (1).

The proof is left as an exercise.

4.2. Homogeneous symplectic geometry. We now show that contact structures
are equivalent to homogeneous symplectic structures. Indeed,

DEFINITION 4.20. A homogeneous symplectic manifold is a symplectic manifold
(M ,ω) endowed with a smooth proper and free action of R∗+, such that denoting by ∂

∂λ
the vector field associated to the action, we have L 1

λ
∂
∂λ
ω=ω.

Clearly the symplectization of a contact manifold is a homogeneous symplectic
manifold. We now prove the converse.

1The 1-form θ is the unique S1 invariant form such that dθ = π∗(ω). In both cases, we call the
manifold the contactization or the prequantization of (M ,ω).
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Example: Let M be a smooth manifold. We denote by T̊ ∗M the manifold T ∗M \0M

endowed with the obvious action λ · (q, p) = (q,λ, p). This is the symplectization of
ST ∗M .

PROPOSITION 4.21 (Homogeneous symplectic geometry is contact geometry). Let
(M ,ω) be a homogeneous symplectic manifold. Then (M ,ω) is symplectomorphic (by a
homogeneous map) to the symplectization of (M/R∗+, iXω)

PROOF. Let X = 1
λ
∂
∂λ

, and consider the form α(ξ) = ω(X ,ξ) which is well defined
on the quotient C = M/R∗+. this is a contact form on C , since iXω∧ (d(iXω)n−1 = iXω∧
(LXω)n = iXω∧ωn−1 = 1

n iX (ωn), and since tangent vectors to C are identified to tangent
vectors to M transverse to C , this does not vanish. Let t be a coordinate on M such that
d t (X ) = 1, and ω̃= d(tπ∗(α)), then (M ,ω) is equal to (M ,d(tα)). Indeed, let us consider
two vectors, first of all in the case where one is X and the other is in d t (Y ) = 0. Then
ω̃(X ,Y ) = (d t ∧α+ tdα)(X ,Y ) = d t (X )α(Y ) = (iXω)(Y ) = ω(X ,Y ). Now assume Y , Z
are bot in ker(d t ). Then ω̃(Y , Z ) = d t ∧ tα(Y , Z )+ tdα(Y , Z ) but dα= diXω=ω so that
ω̃(Y , Z ) =ω(Y , Z ). �

EXERCICE 4. Prove that T̊ ∗(M ×R) is symplectomorphic to T ∗M ×R×R∗+, the sym-
plectization of J 1(M). Hint: prove that the contact manifold J 1(M) is contactomorphic
to an open set of ST ∗(M ×R).

PROPOSITION 4.22 (Symplectization of a contact map). Let Φ : (N ,ξ) → (P,η) be a
contact transformation, that is a diffeomorphism such that dΦ sends ξ to η. Then there
exists a homogeneous lift of Φ

Φ̃ : (Ñ ,ωξ) → (P̃ ,ωη).

Conversely any homogeneous symplectomorphism from (Ñ ,ωξ) → (P̃ ,ωη) is obtained in
this way.

PROOF. Assume that Φ∗(β) = α where Ker(α) = ξ,Ker(β) = η. Then this induces a
symplectic map Φ̃ between (N ×R∗+,d(tα)) and (P ×R∗+,d(tβ)) and by uniqueness of
the symplectization (or rather the fact that it does not depend on the choice of the
contact form) we are done. Conversely if Ψ∗ωη = ωξ that is Ψ∗d(tβ) = d tα, in other
words, d

(
Ψ∗(tβ)− tα

)= 0. If the map is exact, this means, Ψ∗β=α+d f
�

EXERCICES 5. (1) Prove that the above lift is functorial, that is the lift of Φ◦Ψ
is Φ̃◦ Ψ̃

(2) Let ϕ : T ∗M → T ∗M be an exact symplectic map, that is a map such that
ϕ∗(λ)−λ is exact. Prove that there is a lift ofϕ to a contact map ϕ̃ : J 1M → J 1M .
Prove that if (N ,α) is a contact manifold and ψ a diffeomorphism of N such
thatψ∗(α) =α (note that this is stronger than requiring thatψ is a contact dif-
feomorphism, that is ψ∗(α) = f ·α for some nonzero function f ) then ψ lifts
in turn to a homogeneous symplectic map (N ×R∗+,d(tα)) to itself.
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(3) Prove that the symplectization of J 1(M) is T ∗(M)×R×R∗+ and explicit the sym-
plectomorphism obtained from the above ϕ̃ by symplectization. Thus to any
symplectomorphismϕ : T ∗M → T ∗M we may associate a homogeneous sym-
plectomorphism

Φ : T ∗(M)×R×R∗
+ → T ∗(M)×R×R∗

+
Prove that the lift is functorial. That is the lift of ϕ◦ψ is Φ◦Ψ.

As a result of Proposition 4.21 we have

COROLLARY 4.23. An exact Lagrangian submanifold L in (M ,ω= dλ) has a unique
lift L̂ to the (homogeneous) symplectization of its contactization, (M̂ ,Ω) = (M ×R+∗ ×
R,d t ∧dτ−d t ∧λ).

PROOF. Indeed, let f (z) be a primitive of λ on L. Set L̂ = {(z, t ,τ) | z ∈ L,τ = f (z)}.
Then, d(tdτ− tλ) restricted to L̂ equals zero. �

PROPOSITION 4.24. Let L be an exact Lagrangian. Then L is a conical (or homoge-
neous) Lagrangian in T ∗X if and only if λL = 0.

PROOF. Let X be the homogeneous vector field, that is the vector filed such that
iXω= λ. Then since for every vector Y ∈ T L we have λ(Y ) =ω(X ,Y ) = 0 since both X
and Y are tangent to L, we have λL = 0. �

Locally, L is given by a homogeneous generating function, that is a generating func-
tion S(q,ξ) such that S(q,λ ·ξ) =λ ·S(q,ξ).

PROPOSITION 4.25 (See [Duis], page 83.). Let L be a germ of homogeneous La-
grangian. Then L is locally defined by a homogeneous generating function.

EXERCICE 6. Let S(q,ξ) be a (local) generating function for L. What is the generating
function for L̂ ?

PROPOSITION 4.26. Let Σ be a germ of hypersurface near z in a homogeneous sym-
plectic manifold. Then after a homogenous symplectic diffeomorphism we may assume
Σ is either in {q1 = 0} or {p1 = 0}.

PROOF. Let us consider a transverse germ, V , to X .Then V is transverse to Σ, and
denote Σ0 = V ∩Σ. By a linear change of variable, we may assume the tangent space
TzΣ �





CHAPTER 5

Generating functions for general Hamiltonians.

In the previous lecture, we proved that if L0 = ORn outside a compact set and has
GFQI, andϕ is compactly supported Hamiltonian map of T ∗Rn , thenϕ(L) has a GFQI.

Let us return to the general case: let N be a compact manifold. For l large enough,
there exists an embedding i : N ,→Rl . It gives rise to an embedding ĩ of T ∗N into T ∗Rl ,
obtained by choosing a metric on Rl . This can be defined as

T ∗N ,→ T ∗Rl

(x, p) 7→ (x̃(x, p), p̃(x, p))

where (̃x)(x, p) = i (x) and p̃(x, p) = p ◦π(x). π(x) is the orthogonal projection TRl →
Tx N .

It’s easy to check that ĩ∗p̃d x̃ = pd x, i.e. ĩ is a symplectic map(embedding). More-
over, if we denote by N × (Rl )∗ the restriction of T ∗Rl to N , then it’s coisotropic as in
Example 1 of symplectic reduction. To any Lagrangian in T ∗Rl (transversal to N×(Rl )∗),
we may associate the reduction, that is a Lagrangian of T ∗N .

Let L̃ ⊂ T ∗Rl be a Lagrangian. Assume L̃ coincides with ORl outside a compact set
and L̃ is transverse to N × (Rl )∗. Denote its symplectic reduction by L̃N = L̃N×(Rl )∗ =
L̃∩ (N × (Rl )∗)/ ∼.

Claim: For ϕ ∈ H am(T ∗N ), if L̃ has GFQI, then ϕ(L̃N ) has GFQI.

REMARK 5.1. If L̃ has S̃ :Rl ×Rk →R as GFQI, then L̃N has S̃|N×Rk as GFQI.

For the proof of the claim, we will construct ϕ̃ with compact support such that

(ϕ̃(L̃))N =ϕ(L̃N ).

Then, the claim follows from the last remark and first part of the proof. Assume ϕ is
the time one map of ϕt associated to H(t , x, p), where (x, p) is coordinates for T ∗N .
Locally, we can write (x,u, p, v) for points in Rl so that N = {u = 0}. We define

H̃(t , x,u, p, v) =χ(u)H(t , x, p),

where χ is some bump function which is 1 on N and 0 outside a neighborhood of N .
By the construction, X H̃ = XH on N × (Rl )∗. ϕ̃= ϕ̃1, the time one flow of H̃ , is the map
we need.

The theorem follows by noticing that if we take L̃ = ORl , which is the same as zero
section outside compact set and has GFQI, then L̃N =ON . �

Exercice: Show that if L has a GFQI, then ϕ(L) has GFQI for ϕ ∈ H am(T ∗N ).

37
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Hint. If S : N ×Rk →R is a GFQI for L, then L is the reduction of g r (dS).

REMARK 5.2. 1) ON is generated by

S : N ×R → R

(x,ξ) 7→ ξ2

2) There is no general upper bound on k (the minimal number of parameter of a
generating functions needed to produce all Lagrangian.)

Reason: Consider a curve in T ∗S1

1. Applications

We first need to show that GFQI has critical points. Let us consider a smooth func-
tion f on noncompact manifold M satisfying (PS) condition.

(PS): If a sequence (xn) satisfying d f (xn) → 0 and f (xn) → c, then (xn) has a con-
verging subsequence.

REMARK 5.3. Clearly, the limit of the subsequence is a critical point at level c.

REMARK 5.4. A GFQI satisfies (PS). It suffices to check this for a nondegenerate qua-
dratic form Q. Let Q(x) = 1

2 (AQ x, x), then dQ(x) = AQ (x). Since Q is nondegenerate,
we know AQ is invertible and

dQ(xn) → 0 =⇒ AQ xn → 0 =⇒ xn → 0.

PROPOSITION 5.5. If f satisfies (PS) and H∗( f b , f a) 6= 0, then f has a critical point
in f −1([a,b]), where f λ = {x ∈ M | f (x) ≤λ}.

PROPOSITION 5.6. For b >> 0 and a << 0 we have

H∗(Sb ,Sa) ∼= H∗−i (N ).

PROOF. One can replace S by Q since S =Q at infinity. Define

Qλ = {ξ|Q(ξ) ≤λ}.

H∗(Sb ,Sa) = H∗(N ×Qb , N ×Qa)

= H∗(N )×H∗(Qb ,Qa).

Since Q is a quadratic form, it’s easy to see H∗(Qb ,Qa) is the same as H∗(D−,∂D−)
where D− is the disk in the negative eigenspace of Q (hence has dimension i ndex(Q),
the number of negative eigenvalues). �

Conjecture:(Arnold) Let L ⊂ T ∗N be an exact Lagrangian. Is there ϕ ∈ H am(T ∗N )
such that L =ϕ(ON )?



1. APPLICATIONS 39

REMARK 5.7. LS is always exact since λ|LS = dS|ΣS .

LS = {(x,
∂S

∂x
(x,ξ))|∂S

∂ξ
(x,ξ) = 0}.

λ|LS = pd x = ∂S

∂x
(x,ξ)d x = dS,

since for points on LS , ∂S
∂ξ

= 0.

A recent result by Fukaya, Seidel and Smith ([F-S-S]) grants that under quite general
assumptions, the degree of the projection deg(π : L → N ) =±1 and H∗(L) = H∗(N ).

Ex: Prove that if L has GFQI S, then deg(π : L → N ) =±1.
Indication: Choose a generic point x0 ∈ N . The degree is the multiplicity with sign

of the intersection of L and the fiber over x0. That is counting the number of ξ with
∂S
∂ξ

(x0,ξ) = 0, i.e. the number of critical points of function ξ 7→ S(x0,ξ) with sign

(−1)
i ndex( d2S

dξ2 (x0,ξ))
.

Therefore

deg(π : L → N ) =∑
ξ j

(−1)
i ndex( d2S

dξ2 (x0,x j ))

where the summation is over all ξ j with ∂S
∂ξ

(x0,ξ j ) = 0. The summation is finite since

S has quadratic infinity and the sum is the euler number of the pair (Sb ,Sa) for large b
and small a. Finally, check that for all quadratic form Q, the euler number of (Qb ,Qa)
is ±1.

By the previous claim, for large b and small a

H∗(Sb ,Sa) ∼= H∗−i (N ).

Since N is compact, we know H∗(N ) 6= 0. This implies that S has at least one critical
point and (LS ∩ON ) 6= ;.

THEOREM 5.8 (Hofer). Let N be a compact manifold and L = ϕ(ON ) for some ϕ ∈
H am(T ∗N ), then

#(L∩ON ) ≥ cl (N ).

If all intersection points are transverse, then

#(L∩ON ) ≥∑
b j (N ).

Here

cl (N ) = max{k|∃α1, · · · ,αk−1 ∈ H∗(N ) \ H 0(N ) such that α1 ∪·· ·∪αk−1 6= 0}

and
b j (N ) = dim H j (N ).

COROLLARY 5.9.
#(L∩ON ) ≥ 1.
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We shall postpone the proof of the theorem. However we may prove the corollary:
since by Theorem of Sikorav, L has GFQI, and by proposition 1.4 and 1.3 it must have
a critical point. Some calculus of critical levels as in the next lectures will allow us to
recover the full strength of Hofer’s theorem.

THEOREM 5.10. (Conley-Zehnder) Let ϕ ∈ H am(T 2n), then

#F i x(ϕ) ≥ 2n +1.

If all fixed points are nondegenerate, then

#F i x(ϕ) ≥ 22n .

REMARK 5.11. 2n + 1 is the cup product length of T 2n and 22n is the sum of Betti
numbers of T 2n .

PROOF. Let (xi , yi ) be coordinates of T 2n . We will write (x, y) for simplicity. The

symplectic form is given byω= d y∧d x. Consider T 2n×T 2n with coordinates (x, y, X ,Y ),
whose symplectic form is given by

ω= d y ∧d x −dY ∧d X .

With thisω, the graph ofϕ,Γ(ϕ) is a Lagrangian. Consider another symplectic manifold
T ∗T 2n , denote the coordinates by (a,b, A,B). Note that x, y, X ,Y , a,b take value in T n =
Rn/Zn and A,B takes value in Rn .

It has the natural symplectic form as a cotangent bundle

ω= d A∧d a +dB ∧db.

Define a map F : T ∗T 2n → T 2n ×T 2n

F (a,b, A,B) = (
2a −B

2
,

2b + A

2
,

2a +B

2
,

2b − A

2
) mod Zn .

It’s straightforward to check that F is a symplectic covering.

Let 4T 2n be the diagonal in T 2n ×T 2n . It lifts to OT 2n ⊂ T ∗T 2n and the projection π
induces a bijection between OT 2n and 4T 2n . Of course OT 2n is only one component in
the preimage of 4T 2n corresponding to A = B = 0 (other components are given by A =
A0,B = B0 where A0,B0 ∈Zn . Now assume ϕ is the time one map of ϕt ∈ H am(T 2n).

Γ(ϕt ) = (i d ×ϕt )(4T 2n ).

This Hamiltonian isotopy lifts to a Hamiltonian isotopy Φt of T ∗T 2n such that

π◦Φt =φt ◦π.

Then the restriction of the projection to Φt (OT 2n ) remains injective, since

π(Φt (u)) =π(Φt (v))

implies
φt (π(u)) =φt (π(v))

but since π is injective on OT 2n and φt is injective, this implies u = v .
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Therefore to distinct points inΦt (OT 2n )∩OT 2n correspond distinct points in Γ(ϕ)∩
4T 2n = F i x(ϕ).

According to Hofer’s theorem, the first set has at least 2n + 1 points, so the same
holds for the latter. �

REMARK 5.12. The theorem doesn’t include all fixed point ϕ. Indeed, we could
have done the same with any other component of π−1(4T 2n ) (remember, they are
parametrized by pairs of vectors (A0,B0) ∈Zn ×Zn), and possibly obtained other fixed
points. What is so special about those we obtained ? It is not hard to check that they
correspond to periodic contractible trajectories on the torus. Indeed, a closed curve
on the torus is contractible if and only if it lifts to a closed curve on R2n . Now, our curve
is Φt (a,b,0,0) and projects on (i d ×ϕt )(x, y, x, y) = (x, y,φt (x, y)). Since Φ1(a,b,0,0) ∈
OT 2n , we may denote Φ1(a,b,0,0) = (a′,b′,0,0), and since φ1(x, y)) = (x, y), we have
a′ = x = a,b′ = y = b. ThusΦt (a,b,0,0) is a closed loop projecting on (i d×ϕt )(x, y, x, y),
this last loop is therefore contractible, hence the loop ϕt (x, y) is also contractible.

Historical comment: Conley-Zehnder proof of the Arnold conjecture for the torus
came before Hofer’s theorem. It was the first result in higher dimensional symplectic
topology, followed shortly after by Gromov’s non-squeezing.

THEOREM 5.13. (Poincaré and Birkhoff) Let ϕ be an area preserving map of the an-
nulus, shifting each circle (boundary) in opposite direction, then #F i x(ϕ) ≥ 2.

PROOF. Assume ϕ is the time one map of a Hamiltonian flow ϕt associated to
H = H(t ,r,θ), where (r,θ) is the polar coordinates of the annulus(1 ≤ r ≤ 2). Assume
without loss of generality

∂H

∂r
> 0 for r = 2

and
∂H

∂r
< 0 for r = 1.

One can extend H to [ 1
2 , 5

2 ]×S1 such that

H(t ,r,θ) =−r on [
1

2
,

2

3
]

and

H(t ,r,θ) = r on [
7

3
,

5

2
].

Take two copies of this enlarged annulus and glue them together to make a torus. Then
#F i x(ϕ) ≥ 3. At least one copy has two fixed points. �

2. The calculus of critical values and first proof of the Arnold Conjecture

Let N be a compact manifold and ϕ ∈ H am(T ∗N ), then L =ϕ(ON ) is a Lagrangian.
We have proved the following
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THEOREM 5.14. L has a GFQI.

There are several consequences

• Hofer’s theorem: #(ϕ(ON )∩ON ) ≥ 1; (In fact Hofer’s theorem says more.)
• Conley-Zehnder theorem: #F i x(ϕ) ≥ 2n +1 for ϕ ∈ H am(T 2n);
• Poincaré-Birkhoff Theorem.

Today, we are going to talk about 1) Uniqueness of GFQI of L and 2) Calculus of
critical levels.

REMARK 5.15. Theorem 5.14 extends to continuous family, i.e. ifϕλ is a continuous
family of Hamiltonian diffeomorphisms and Lλ =ϕλ(ON ), then there exists a continu-
ous family of GFQI Sλ.

REMARK 5.16. The Theorem 1.1 (you mean 5.14? Yes (Claude) holds also for Legen-
drian isotopies(Chekanov). Let J 1(N ,R) ≡ T ∗N ×R and define

α= d z −pd q.

DEFINITION 5.17. Λ is called a Legendrian if and only if α|Λ = 0.

Example: Given a smooth function f ∈C∞(N ,R), the submanifold defined by

z = f (x), p = d f , q = x

is a Legendrian. One similarly associates to a generating function, S : N ×Rk −→ R a
legendrian submanifold (under the same transversality assumptions as for the Legen-
drian case)

ΛS = {(x,
∂S

∂x
(x,ξ),S(x,ξ)) | ∂S

∂ξ
= 0}

Denote the projection from T ∗N ×R to T ∗N by π. Then any Legendrian submanifold
projects down to an (exact) Lagrangian. Moreover, any exact Lagrangian can be lifted
to a Legendrian. Note however that there are legendrian isotopies that do not project
to Lagrangian ones. So Chekanov’s theorem is in fact stronger than Sikorav’s theorem,
even though the proof is the same.

2.1. Uniqueness of GFQI. Letϕ ∈ H am(T ∗N ) and L =ϕ(ON ). Denote a GFQI for L
by S. We will show that we can obtain different GFQI by the following three operations.

Operation 1:(Conjugation) If smooth map ξ : N ×Rk → Rk satisfies that for each
x ∈ N , ξ(x, ·) :Rk →Rk is a diffeomorphism, then we claim:

S̃(x,η) = S(x,ξ(x,η))

is again GFQI for L.
Recall from the definition of generating function

LS̃ = {(x,
∂S̃

∂x
(x,η))|∂S̃

∂η
(x,η) = 0}
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and

LS = {(x,
∂S

∂x
(x,ξ))|∂S

∂ξ
(x,ξ) = 0}.

Since ∂ξ
∂η is invertible, the chain rule says ∂S̃

∂η (x,η) and ∂S
∂ξ (x,ξ(x,η)) simultaneously. On

such points,
∂S̃

∂x
(x,η) = ∂S

∂x
(x,ξ(x,η))+ ∂S

∂ξ
· ∂ξ
∂x

= ∂S

∂x
(x,ξ(x,η)).

Operation 2: (Stabilization) If q is a nondegenerate quadratic form, then

S̃(x,ξ,η) = S(x,ξ)+q(η)

is a GFQI for L.
The reason is

∂S̃

∂x
(x,ξ,η) = ∂S

∂x
(x,ξ)

and

∂S̃
∂ξ

= ∂S̃
∂η

= 0 ⇐⇒
{

Aqη= 0 =⇒ η= 0
∂S
∂ξ

(x,ξ) = 0

where Aq is given by (Aqη,η) = q(η) for all η and is invertible since q is nondegenerate.
Operation 3: (Shift) By adding constant,

S̃(x,ξ) = S(x,ξ)+ c.

The GFQI is unique up to the above operations in the sense that

THEOREM 5.18 (Uniqueness theorem for GFQI). If S1, S2 are GFQI for L = ϕ(ON ),
then there exists S̃1, S̃2 obtained from S1 and S2 by a sequence of operations 1,2,3 such
that S̃1 = S̃2.

For the proof, see [Theret].
The main consequence of this theorem is that given L =ϕ(ON ), for different choices

of GFQI, we know the relation between H∗(Sb ,Sa). It suffices to trace how H∗(Sb ,Sa)
changes by operation 1,2,3.

It’s easy to see that H∗(Sb ,Sa) is left invariant by operation 1, because the pair
(Sb ,Sa) is diffeomorphic to (S̃b , S̃a).

For operation 3,

H∗(S̃b , S̃a) = H∗(Sb−c ,Sa−c ).

For operation 2, we claim without proof for b > a

H∗(S̃b , S̃a) = H∗−i (Sb ,Sa)

where i is the index of q .

REMARK 5.19. The theorem holds for L =ϕ(ON ) only, no result is known for general
L). Moreover, the theorem holds for families.
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2.2. Calculus of critical levels. In this section, we assume M is a manifold and
f ∈ C∞(M ,R) is a smooth function satisfying (PS) condition. Given a < b < c, there is
natural embedding map

( f b , f a) ,→ ( f c , f a).

It induces

H∗( f c , f a) → H∗( f b , f a).

DEFINITION 5.20. Let α ∈ H∗( f c , f a). Define

c(α, f ) = inf{b| image of α in H∗( f b , f a) is not zero}.

Since the embedding also induces

H∗( f b , f a) ,→ H∗( f c , f a),

the same can be done for ω ∈ H∗( f c , f a) \ {0}.

DEFINITION 5.21. For ω ∈ H∗( f c , f a) \ {0}, define

c(ω, f ) = inf{b|ω is in the image of H∗( f b , f a)}.

PROPOSITION 5.22. c(α, f ) and c(ω, f ) are critical values of f .

PROOF. Prove the first one only. Proof for the other is similar. Let γ = c(α, f ), as-
sume γ is not a critical value. Since f satisfies (PS) condition, we have

H∗( f γ+ε, f γ−ε) = 0.

Study the long exact sequence for the triple ( f γ+ε, f γ−ε, f a),

H∗( f γ+ε, f γ−ε) → H∗( f γ−ε, f a) → H ( f γ+ε, f a) → H∗+1( f γ+ε, f γ−ε)

Since the first and the last space are {0}, we know

H∗( f γ−ε, f a) ∼= H∗( f γ+ε, f a).

By the definition of γ, the image of α in H∗( f γ−ε, f a) is zero, but the image of α in
H∗( f γ+ε, f a) is not zero. This is a contradiction. �

Recall Alexander duality:

AD : H∗( f c , f a) → Hn−∗(X − f a , X − f c ) = Hn−∗((− f )−a , (− f )−c ).

PROPOSITION 5.23. Assume that M is a compact, connected and oriented manifold,
then for α ∈ H∗( f c , f a) \ {0},

1) c(α, f ) =−c(AD(α),− f );
2) c(1, f ) = −c(µ,− f ) where 1 ∈ H 0(M) and µ ∈ H n(M) are generators. (In fact, any

nonzero element will do since they are all proportional. Here we assumed a = −∞ and
c =+∞.)
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PROOF. 1) Diagram chasing on the following diagram, using the fact that X \ f a =
(− f )−a .

H∗( f c , f a)

��

AD // H n−∗(X \ f a , X \ f c )

��

H∗( f b , f a)

��

AD // H n−∗(X \ f a , X \ f b)

��

H∗( f b , f c )
AD // H n−∗(X \ f c , X \ f b)

2) It suffices to show

c(1, f ) = min( f ) and c(µ, f ) = max( f ).

�

THEOREM 5.24. (Lusternik-Schnirelmann) Assumeα ∈ H∗( f c , f a)\{0} andβ ∈ H∗(M)\
H 0(M), then

(5.1) c(α∩β, f ) ≥ c(α, f )

If equality holds in equation 5.1 with common value γ, then for any neighborhood U of
Kγ = {x| f (x) = γ,d f (x) = 0}, we have β 6= 0 in H∗(U ).

REMARK 5.25. Ifβ ∉ H 0(M) and equality in (5.1) holds, then H p (U ) 6= 0 for all U and
some p 6= 0. This implies Kγ is infinite. Otherwise, take U to be disjoint union of balls
then H p (U ) = 0 for all p 6= 0, which is a contradiction. One can even show that Kγ is
uncountable by the same argument.

COROLLARY 5.26. Let f ∈C∞(M ,R) with compact M, then

#Cr i t ( f ) ≥ cl (M).

PROOF. Inequality 5.1 is obvious because α = 0 in H∗( f b , f a) implies α∩β = 0 in
H∗( f b , f a).

If equality in (5.1) holds, for any given U , take ε sufficiently small so that
1) There exists a saturated neighborhood V ⊂U of Kγ for the negative gradient flow

of f between γ+ε and γ−ε, in the sense that any flow line coming into V will either go
to Kγ for all later time or go into f γ−ε.(Never come out of V between γ+ε and γ−ε).
Moreover by (PS) we may assume V contains all critical points in f γ+ε \ f γ−ε.

2) (PS) condition ensures a lower bound for
∣∣∇ f

∣∣ for all x ∈ f γ+ε \ (V ∪ f γ−ε).
Let X =−∇ f and consider its flow ϕt .

d

d t
f (ϕt (x)) =− ∣∣∇ f

∣∣2 (ϕt (x)).

Therefore, we have

• If x ∈ f γ−ε, then ϕt (x) ∈ f γ−ε.
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• (V is saturated) x ∈V implies ϕt (x) ∈V ∪ f γ−ε.
• For x ∉V and x ∈ f γ+ε. By 1),ϕt (x) ∉V and as long as f (ϕt (x)) ≥ γ−ε, we have

(due to 2)) ∣∣∇ f
∣∣ (ϕt (x)) ≥ δ0.

This implies that there exists T > 0 such that for x ∈ f γ+ε \V ,

f (ϕT (x)) < γ−ε.

In conclusion, we get an isotopy ϕT : f γ+ε→ f γ−ε∪V ⊂ f γ−ε∪U .
Assume β = 0 in H∗(U ). By definition α = 0 in H∗( f γ−ε, f a), then α∪β = 0 in

H∗( f γ−ε∪U , f a). But ϕT is an isotopy, we know

α∪β= 0 in H∗( f γ+ε, f a).

This is a contradiction to c(α∪β, f ) = γ. �

2.3. The case of GFQI. If S is a GFQI for L, we know

H∗(S∞,S−∞) ∼= H∗−i (N )

where i is the index of the nondegenerate quadratic form associated with S.
Due to this isomorphism, to eachα ∈ H∗(N ), we associate α̃ ∈ H∗(S∞,S−∞). Define

c(α,S) = c(α̃,S).

We claim the next result but omit the proof.

PROPOSITION 5.27. For α1,α2 ∈ H∗(N ),

c(α1 ∪α2,S1 ⊕S2) ≥ c(α1,S1)+ c(α2,S2),

where
(S1 ⊕S2)(x,ξ1,ξ2) = S1(x,ξ1)+S2(x,ξ2).

REMARK 5.28. The isomorphism mentioned above is precisely

H∗(N )⊗H∗(D−,∂D−) = H∗(S∞,S−∞)
α⊗T 7→ T̃ ∪p∗α

where p : N ×Rk → N is the projection.

H∗((S1 ⊕S2)∞, (S1 ⊕S2)−∞) ∼= H∗(N ) ⊗ H∗(D−
1 ,∂D−

1 ) ⊗ H∗(D−
2 ,∂D−

2 )
T̃ ∪p∗α α T1 T2

T̃ ∪p∗α = T̃1 ∪ T̃2 ∪p∗(α1 ∪α2)

= (T̃1 ∪p∗α1)∪ (T̃2 ∪p∗α2)



Part 2

Sheaf theory and derived categories





CHAPTER 6

Categories and Sheaves

1. The language of categories

DEFINITION 6.1. A category C is a pair (Ob(C ),MorC ) where

• Ob(C ) is a class of Objects 1

• Mor is a map from C ×C to a class, together with a composition map

Mor(A,B)×Mor(B ,C ) −→ Mor(A,C )

( f , g ) 7→ g ◦ f

The composition is :
(1) associative
(2) has an identity element, idA ∈ Mor(A, A) such that idB ◦ f = f ◦ idA = f for

all f ∈ Mor(A,B).

The category is said to be small if Ob(C ) and MorC are actually sets. It is locally small
if MorC (A,B) is a set for any A,B in Ob(C ).

Examples:

(1) The category Sets of sets, where objects are sets and morphisms are maps.
The subcategory Top where objects are topological spaces and morphisms are
continuous maps.

(2) The category Group of groups, where objects are groups and morphisms are
group morphisms. It has a subcategory, Ab with objects the abelian groups
and morphisms the group morphisms. This is a full subcategory, which means
that MorGroup(A,B) = MorAb(A,B) for any pair A,B of abelian groups; the set
of morphisms between two abelian groups does not depend on whether you
consider them as abelian groups or just groups. An example of a subcategory
which is not a full subcategory is given by the subcategory Top of Sets.

(3) The category R-mod of R-modules, where objects are left R-modules and
morphisms are R-modules morphisms.

(4) The category k-vect of k-vector spaces, where objects are k-vector spaces and
morphisms are k-linear maps.

(5) The category Man of smooth manifolds, where objects are smooth manifolds
and morphisms are smooth maps.

1The class of Objects can be and often is a “set of sets”. There is clean set-theoretic approach to this,
using “Grothendieck Universe”, but we will not worry about these questions here (nor elsewhere...).

49
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(6) Given a manifold M , the category Vect(M) of smooth vector bundles over M
and morphisms are smooth linear fiber maps.

(7) If P is a partially ordered set (a poset), Ord(P) is a category with objects
the element of P , and morphisms Mor(x, y) = ; unless x ≤ y in which case
Mor(x, y) = {∗}.

(8) The category Pos of partially ordered sets (i.e. posets), where morphisms are
monotone maps.

(9) If G is a group, the category Group (G) has objets the one element set {∗} and
MorC (∗,∗) =G , where composition corresponds to multiplication.

(10) The simplicial category Simplicial whose objects are sets [i ] = {0,1, ..., i } for
i ≥−1 ([−1] =;) and morphisms are the monotone maps.

(11) if X is a topological space, Open(X) is the category where objects are open sets,
and morphisms are such that Mor(U ,V ) = {∗} if U ⊂ V , and Mor(U ,V ) = ;
otherwise. (since the set of open sets in X is a set ordered by inclusion, this is
related to Pos).

(12) Given a category C , the opposite category is the category denoted C op having
the same objects as C , but such that MorC op (A,B) = MorC op (B , A) with the
obvious composition map: if we denote by f ∗ ∈ MorC op (A,B) the image of
f ∈ MorC (B , A), we have f ∗ ◦ g∗ = (g ◦ f )∗. In some cases there is a simple
identification of C op with a natural category (example: the opposite category
of k-vect is the category with objects the space of linear forms on a vector
space).

(13) Given a category C , we can consider the quotient category by isomorphism.
The standard construction, at least if the category is not too large, is to choose
for each isomorphism class of objects a given object (using the axiom of choice),
and consider the subcategory C ′ of C generated by these objects.

An initial object in a category is an element I such that Mor(I , A) ha exactly one ele-
ment. A terminal object T is an object such that Mor(A,T ) is a singleton for each A.
Equivalently T is an initial object in the opposite category.

Examples: ; in Sets, {e} in Group, {0} in R-mod or K-Vect, the smallest object in P
if it exists, [−1] in Simplicial.

DEFINITION 6.2. A functor between the categories C and D is a “pair of maps”, one
from Ob(C ) to Ob(D) the second one sending MorC (A,B) to MorD(F (A),F (B)) such
that F (idA) = idF (A) and F ( f ◦ g ) = F ( f )◦F (g ).

Examples: A functor from Group(G) to Group(H) is a morphism from G to H .
There are lots of forgetful functors, like Group to Sets. There is also a functor from
Top to Ord sending X to the set of its open subsets ordered by inclusion.

DEFINITION 6.3. A functor is fully faithful if for any pair X ,Y the map FX ,Y : Mor (X ,Y ) →
Mor(F (X ),F (Y )) is bijective. We say that F is an equivalence of categories if it is fully
faithful, and moreover for any X ′ ∈D there is X such that F (X ) is isomorphic to X ′.
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Note that for an equivalence of categories, we only require that F is a bijection be-
tween equivalence classes of isomorphic objects.

There is also a notion of transformation of functors. If F : A → B,G : A → B are
functors, a transformation of functors is a family of maps parametrized by X , TX ∈
Mor(F (X ),G(X )) making the following diagram commutative for every f in Mor(X ,Y )

F (X )

TX
��

F ( f )
// F (Y )

TY
��

G(X )
G( f )

// G(Y )

Notice that some categories are categories of categories, the morphisms being the
functors. This is the case for Group with objects the set of categories of the type
Group(G), or of Pos whose objects are the Ord(P). We may also, given two categories, A,
B define the category with objects the functors from A to B, and morphisms the trans-
formations of these functors. We shall see for example that presheaves over X (see the
next section) are nothing but functors defined on the category Open(X). And so on,
and so forth....

Finally as in maps, we have the notion of monomorphism and epimorphisms

DEFINITION 6.4. An element f ∈ Mor(B ,C ) is a monomorphism if for any g1, g2 ∈
Mor(A,B) we have f ◦ g1 = f ◦ g2 implies g1 = g2. An element f ∈ Mor(A,B) is an epi-
morphism if for any g1, g2 ∈ Mor(B ,C ) we have g1 ◦ f = g2 ◦ f implies g1 = g2. An iso-
morphism is a morphism f ∈ Mor(A,B) such that there exists g such that f ◦ g = IdB

and g ◦ f = idA.

EXERCICES 1. (1) Is being an isomorphism equivalent to being both a monomor-
phism and an epimorphism ?

(2) Prove that in the category Sets monomorphisms and epimorphisms are just
injective and surjective maps. What are monomorphisms and epimorphisms
in the other categories. In which of the above categories the following state-
ment holds: “a morphism is an isomorphism if and only if it is both an epi-
morphism and a monomorphism” (such a category is said to be “balanced”)
?

(3) In the category Groups: prove that the cokernel of f is G/N (Im( f )), where
N (H) is the normalizer2 of H in G , but epimorphisms are surjective mor-
phisms, In particular, to have cokernel 0 is not equivalent to being an epi-
morphism. Prove that the category
CatGroups is balanced.

Hint to prove that an epimorphism is onto: prove that for any proper sub-
group H of G (not necessarily normal), there is a group K and two different
morphisms g1, g2 in Mor(G ,K ) such that g1 = g2 on H . For this use the action

2i.e. the largest subgroup such that H is a normal subgroup of N (H).
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of G on the classes of H/G to reduce the problem to Sq−1 ⊂Sq and prove that
there are two different morphisms Sq →Sq+1 equal to the inclusion on Sq−1.

(4) Prove that the injectionZ→Q is an epimorphism in the category Rng of com-
mutative rings with unit. Hint: use the fact that if a map g :Q→ R is non-zero
then R has characteristic zero3.

(5) Prove that in the category Top an epimorphism is surjective. Is the category
balanced ? Give an example of a balanced subcategory. Find also a subcat-
egory of Top such that any continuous map with dense image is an epimor-
phism.

2. Additive and Abelian categories

DEFINITION 6.5. An additive category is a category such that

(1) It has a 0 object which is both initial and terminal. The zero map is defined as
the unique composition A → 0 → B .

(2) Mor(A,B) is an abelian group, 0 is the zero map, composition is bilinear.
(3) It has finite biproducts (see below for the definition).

A category has finite products if for any A1, A2 there exists an object denoted A1×A2

and maps pk : A1 × A2 −→ Ak such that

Mor(Y , A1)×Mor(Y , A2) = Mor(Y , A)

by the map f → (p1 ◦ f , p2 ◦ f ) and which are universal in the following sense4. For any
maps f1 : Y → A1 and f2 : Y → A2 there is a unique map f : Y → A1 × A2 making the
following diagram commutative

Y

f1

����������������

f

���
�
�
�
�
�

f2

��88888888888888

A1 A1 × A2p1
oo

p2 // A2

It has finite coproducts if given any A1, A2 there exists an object denoted A1 + A2

and maps ik : Ak −→ A1 + A2 such that

Mor(A1,Y )×Mor(A2,Y ) = Mor (A1 + A2,Y )

and this is given by g → (g ◦i1, g ◦i2). In other words for any g1 : A1 → Y and g2 : A2 → Y
there exists a unique map g : A1 + A2 → Y making the following diagram commutative

3There are in fact two possible definitions for a ring morphism: either it is just a map such that
f (x + y) = f (x)+ f (y), f (x y) = f (x) f (y) or we also impose f (1) = 1. In the latter case Mor(Q,R) = ;
unless R has zero characteristic.

4The maps (p1, p2) correspond to IdA under the identification of Mor(A, A) and Mor(A, A1) ×
Mor(A, A2). The maps i1, i2 mentioned later are obtained similarly.
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A1

g1

��88888888888888

i1 // A1 + A2

f

���
�
�
�
�
�

A2i2

oo

g2

����������������

Y

the category has biproducts if it has both products and coproducts, these are equal
and moreover

(1) p j ◦ ik is idA j if j = k and 0 for j 6= k,
(2) i1 ◦p1 + i2 ◦p2 = idA1⊕A2 .

We then denote the biproduct of A1 and A2 by A1 ⊕ A2. According to exercice 5 on the
following page, if biproducts exist, they are unique up to a unique isomorphism.

DEFINITION 6.6. A kernel for a morphism f ∈ Mor(A,B) is a pair (K ,k)

where K
k→ A

f−→ B such that f ◦k = 0 and if g ∈ Mor(P, A) and f ◦ g = 0 there
is a unique map h ∈ Mor(P,K ) such that g = k ◦h.

K
k // A

f
// B

P
h

__@
@

@
@

g

OO

A cokernel is a pair (C ,c) such that c ◦ f = 0 and if g ∈ Mor(B ,Q) is such
that g ◦ f = 0 there is a unique d ∈ Mor(C ,Q) such that d ◦ c = g .

A
f
// B

g

��???????
c // C

d
���
�
�

Q

A Coimage is the kernel of the cokernel. An Image is the cokernel of the kernel.

DEFINITION 6.7 (Abelian category). An abelian category is an additive category
such that

(1) It has both kernels and cokernels
(2) The natural map from the coimage to the image (see the map σ in Exercice

2, (7)) is an isomorphism. To prove our statement, use the fact that the direct
limit is exact.
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The second statement can be replaced by the more intuitive one: every morphism
f : A → B has a factorization

(2’) K
i // A

f

$$u // Im( f )
v // B // Coker( f )

where u and v are the natural maps (see Exercice 2, (7)).

EXERCICES 2. (1) Identify Kernel and Cokernel in the category of R-modules
and in the category of groups.

(2) Which one of the categories from the list of examples starting on page 49 are
abelian ?

(3) Prove that a kernel is a monomorphism, that is if (K ,k) is the kernel of A
f→ B ,

then k : K → A is a monomorphism. Prove that a cokernel is an epimorphism
(use the uniqueness of the maps), and that in (2’), u is an epimorphism and v
a monomorphism.

(4) Prove that the composition of two monomorphisms (resp. epimorphism) is a
monomorphism (resp. epimorphism)

(5) It is a general fact that solutions to universal problems, if they exists, are
unique up to isomorphisms. Prove this for products, coproducts, Kernels and
Cokernels.

(6) Prove that the kernel of f is zero if and only if f is mono. Prove that Coker( f ) =
0 if and only if Im( f ) is isomorphic to B and this in turn means f is an epi-
morphism. If a map (in a non-abelian category) is both mono and epi, is it
an isomorphism ( f is an isomorphism if and only if there exists g such that
f ◦ g = g ◦ f = id) ? Consider the case of a group morphism for example.

(7) Assuming property (1) holds prove the factorization of morphisms (2’) is equiv-
alent to property (2). Use the following diagram, justifying the existence of the
dotted arrows

(6.1) Ker(f)
i // A

f
//

u
��

B
p

// Coker( f )

Coim( f ) = Coker(i )

ψ

55kkkkkkkkk
Ker(p) = Im(f)

v

OO

Then p ◦ψ= 0, since u is an epimorphism according to Exercise 2 (3), and
p ◦ψ◦u = p ◦ f = 0, and this implies p ◦ψ= 0 hence ψ factors through Ker(p)
and we now have the diagram with the unique map σ
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(6.2) Ker(f)
i // A

f
//

u
��

B
p

// Coker( f )

Coim( f ) = Coker(i )

ψ

55kkkkkkkkkkkkkkkkkk
σ //___ Ker(p) = Im(f)

v

OO

by assumption we are in an abelian category if and only if the map σ is an
isomorphism.

PROPOSITION 6.8. Let C be an abelian category. Then a morphism which
is both a monomorphism and an epimorphism is an isomorphism.

PROOF. Notice first that 0 → A has cokernel equal to (A, Id). Similarly
the kernel of B → 0 is (B , Id). Assuming f is both an epimorphism and a
monomorphism, we get the commutative diagram

(6.3) 0 // A
f

//

Id
��

B // 0

Coim( f ) = Coker(i ) = A
σ //___ Ker(p) = Im(f) = B

Id

OO

and the result follows from the invertibility of σ. �

DEFINITION 6.9. In an abelian category, the notion of exact sequence is defined as

follows. A sequence of maps A
f→ B

g→ C is exact if and only if g ◦ f = 0 and the map
from Im( f ) to Ker(g) is an isomorphism. The exact sequence is said to be split if there
is a map h : C → B such that g ◦h = IdC .

The map from Im( f ) to Ker(g) is obtained from the following diagram

Im( f ) = Ker(p)

v

((QQQQQQQQQQQQQQ
w //__________ Ker(g)

i

xxrrrrrrrrrrr

A

u

OO

f
// B

p
��

g
// C

Coker( f )

(6.4)

Here u, v come from the canonical factorization of f . We claim that g ◦ v = 0 since
g ◦ v ◦u = g ◦ f = 0 and u is an epimorphism according to Exercice 2, (3). As a result v
factors through a map w : Im( f ) → Ker(g).

EXERCICE 3. Prove that if an exact sequence 0 → A
f→ B

g→ C → 0 is split, that is
there is a map h : C → B such that g ◦h = IdC , then B ' A ⊕C . Prove that the same
conclusion holds if there exists k such that k ◦ f = IdA.
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Hint: prove that there exists a map k : B → A such that IdB = f ◦k +h ◦ g . Indeed,
g ◦h ◦ g = g and since g is an epimorphism, and g ◦ (IdB −h ◦ g ) = 0, we get that since
f : A → B is the kernel of g , that (IdB −h ◦ g ) = f ◦k for some map k : B → A.

Now f ⊕h : A⊕C → B is an isomorphism, with inverse k ⊕ g : B → A⊕C .

Note that Property 2’ can be replaced by either of the following conditions:

(2”) any monomorphism is a kernel, and any epimorphism is a cokernel. In other

words, monomorphism 0 → A
f→ B can be completed to an exact sequence

0 → A
f→ B

g→ C , and any B
g→ C → 0 can be completed to an exact sequence

A
f→ B

g→C → 0

(2”’) If A
f→ B

g→C is an exact sequence, then we have a factorization

A
f→ B

g1→ Coker(g )
g2→C

where the last map is monomorphism.

Note that 0 → A
f→ B is exact if and only if f is a monomorphism, and A

f→ B → 0 is
exact if and only if f is an epimorphism. Moreover

PROPOSITION 6.10. If

0 → A
f→ B

g→C → 0

is an exact sequence, then (A, f ) = Ker(g) and (C , g ) = Coker( f ).

PROOF. Consider 0 → A
f→ B . We claim the map A

u→ Im( f ) is an isomorphism. It
is a monomorphism, because the factorization (2’) of f is written 0 → A

u→ Im( f )
v→ B .

Moreover it is an epimorphism according to Exercice 2, (3).
Since the map w from (*) is an isomorphism (due to the exactness of the sequence),

we have the commutative diagram

Im( f ) = Ker(p)

v

&&MMMMMMMMMMM w
' //_______ Ker(g)

i

||yyyyyyyyy

0 // A

u'
OO

f
// B

g
// C

and thus (A, f ) is isomorphic to (Ker(g), i). We leave the proof of the dual statement to
the reader. �

DEFINITION 6.11. Let F be a functor between additive categories. We say that F is
additive if the associated map from Hom(A,B) to Hom(F (A),F (B)) is a morphism of
abelian groups. Let F be a functor between abelian categories. We say that the functor
F is exact if it transforms an exact sequence in an exact sequence. It is left-exact if it

transforms an exact sequence 0 → A
f→ B

g→C to an exact sequence 0 → F (A)
F ( f )→ B

F (g )→
F (C ). It is right-exact, if it transforms an exact sequence A

f→ B
g→ C → 0 to an exact

sequence A
F ( f )→ B

F (g )→ C → 0.



3. THE CATEGORY OF CHAIN COMPLEXES 57

Example:

(1) The functor X → Mor(X , A) (from C to Ab) is left-exact. Indeed, consider

an exact sequence 0 → A
f→ B

g→ C , and the corresponding sequence 0 →
Mor(X , A)

f∗→ Mor(X ,B)
g∗→ Mor(X ,C ) is exact, since the fact that f is a monomor-

phism is equivalent to the fact that f∗ is injective, while the fact that Im( f∗) =
Ker(g∗) follows from the fact that A

f→ B is the kernel of g (according to Prop.
6.10), so that for any X and u ∈ Mor(X ,B) such that g ◦u = 0, there exists a
unique v making the following diagram commutative:

A
f
// B

g
// C

X
v

__@
@

@
@

u

OO

(2) The contravariant functor M → Mor(M , X ) is right-exact. This means that it

transforms A
f→ B

g→C → 0 to Mor(C , X )
g∗
→ Mor(B , X )

f ∗
→ Mor(A, X ) → 0.

(3) In the category R-mod, the functor M → M ⊗R N is right-exact.
(4) If a functor has a right-adjoint it is right-exact, if it has a left-adjoint, it is left-

exact (see Lemma 7.15, for the meaning and proof).

EXERCICES 4. (1) Let C be a small category and A an abelian category. Prove
that the category C A of functors from C to A is an abelian category.

3. The category of Chain complexes

To any abelian category C we may associate the category Chain(C ) of chain com-
plexes. Its objects are sequences

...
dm−1→ Im

dm→ Im+1
dm+1→ Im+2

dm+2→ Im+3....

where the boundary maps dm satisfy the condition dm ◦dm−1 = 0. Its morphisms are
commutative diagrams

... dm−1 // Im
dm //

um

��

Im+1
dm+1 //

um+1

��

Im+2
dm+2 //

um+2

��

Im+3
dm+3 //

um+3

��

...

... // Jm
∂m // Jm+1

∂m+1 // Jm+2
∂m+2 // Im+3

∂m+3 // ...

.

It has several natural subcategories, in particular the subcategory of bounded com-
plexes Chainb(C ), complexes bounded from below Chain+(C ), complexes bounded
from above Chain−(C ). The cohomology H m(A•) of the chain complex A• is given by
ker(dm)/Im(dm−1). We may consider H m(A•) as a chain complex with boundary maps
equal to zero.
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PROPOSITION 6.12. Let C be an abelian category. Then Chainb(C ), Chain+(C ),
Chain−(C ) are abelian categories.

The map from Chain (C ) to Chain (C ) induced by taking homology is a functor. In
particular any morphism u = (um)m∈N from the complex A• to the complex B• induces
a map u∗ : H (A•) → H (B•). If moreover u, v are chain homotopic, that is there exists
a map s = (sm)m∈N such that sm : Im → Jm−1 and u − v = ∂m−1 ◦ sm + sm+1 ◦dm then
H (u) =H (v).

PROOF. The proof is left to the reader or referred for example to [Weib]. �

EXERCICES 5. (1) Show that the definition of H (A•) indeed makes sense in
an abstract category: one must prove that there is a mapping Im(dm−1) →
Ker(dm) (see the map w after definition 6.9) and H m(C •) is the cokernel of
this map.

(2) Determine the kernel and cokernel in the category Chain(C ).

The abelian category C is a subcategory of Chain(C ) by identifying A to 0 → A → 0
and it is then a full subcategory.

DEFINITION 6.13. A map u : A• → B• is a quasi-isomorphism if the induced map
H (u) is an isomorphism from H (A•) to H (B•).

Note that a chain map u : A• → B• is a chain homotopy equivalence if and only if
there exists a chain map v : B• → A• such that u ◦ v and v ◦u are chain homotopic to
the Identity. A chain homotopy equivalence is a quasi-isomorphism, but the converse
is not true. A fundamental result in homological algebra is the existence of long exact
sequences associated to a short exact sequence.

PROPOSITION 6.14. To a short exact sequence of chain complexes,

0 → A• → B• →C • → 0

corresponds a long exact sequence

.. →H m(A•) →H m(B•) →H m(C •)
δ→H m+1(A•) → ...

PROOF. See any book on Algebraic topology or [Weib] page 10. �

REMARK 6.15. If the exact sequence is split (i.e. there exists h : C • → B• such that
g ◦h = IdC , then we can construct a sequence of chain maps,

... → A• f→ B• g→C • δ→ A•[1]
f [1]→ B• g [1]→ ...

where we set (A•[k])n = An+k and ∂A•[k] = (−1)k∂, and such that the long exact se-
quence is obtained by taking the cohomology of the above sequence.

This does not hold in general, but these distinguished triangles play an important
role in triangulated categories (of which the Derived category is the main example),
where exact sequences do not make much sense.
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Finally, the Freyd-Mitchell theorem tells us that if C is a small abelian category5,
then there exists a ring R and a fully faithful and exact6 functor F : C → R−mod for
some R. The functor F identifies A with a subcategory of R-Mod : F yields an equiv-
alence between C and a subcategory of R-Mod in such a way that kernels and cok-
ernels computed in C correspond to the ordinary kernels and cokernels computed in
R-Mod. We can thus, whenever this simplifies the proofs, assume that an abelian cat-
egory is a subcategory of the category of R-modules. As a result, all diagram theorems
in an abelian categories, can be proved by assuming the objects are R-modules, and
the maps are R-modules morphisms, and in particular maps between sets7.

We refer to [Weib] for the sketch of a proof, but it let us mention here Yoneda’s
lemma, that is a crucial ingredient in the proof of Freyd-Mitchell theorem.

LEMMA 6.16. Given two objects A, A′ in C , and assume for all C there is a bijection
iC : Mor(A,C ) → Mor(A′,C ), commuting with the maps f ∗ : Mor(C , A) → Mor(B , A) in-
duced by f : B →C . Then A and A′ are isomorphic.

As a consequence of the Freyd-Mitchell theorem, we see that all results of homolog-
ical algebra obtained by diagram chasing are valid in any abelian category. For example
we have :

LEMMA 6.17 (Snake Lemma). In an abelian category, consider a commutative dia-
gram:

A
f
//

a
��

B
g
//

b
��

C //

c
��

0

0 // A′ f ′
// B ′ g ′

// C ′

where the rows are exact sequences and 0 is the zero object. Then there is an exact se-
quence relating the kernels and cokernels of a, b, and c:

Ker(a) // Ker(b) // Ker(c)
d // Coker(a) // Coker(b) // Coker(c)

Furthermore, if the morphism f is a monomorphism, then so is the morphism Ker(a) −→
Ker(b), and if g ′ is an epimorphism, then so is Coker(b) −→ Coker(c).

PROOF. First we may work in the abelian category generated by the objects and
maps of the diagram. This will be a small abelian category. According to the Freyd-
Mitchell theorem, we may assume the objects are R-modules and the morphisms are
R-modules morphisms. Note that apart from the map d , whose existence we need to
prove, the other maps are induced by f , g , f ′, g ′. Note also that the existence of d in
the general abelian category follows from the R-module case and the Freyd-Mitchell

5Remember that this means that objects and morphism are in fact sets.
6A functor F is fully faithful if FX ,Y : Mor(X ,Y ) → Mor(F (X ),F (Y )) is bijective.
7see http://unapologetic.wordpress.com/2007/09/28/diagram-chases-done-right/ for an alterna-

tive approach to this specific problem.
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theorem, since the functor provided by the theorem is fully-faithful. Let us construct
d . Let z ∈ Ker(c), then z = g (y) because g is onto, and g ′b(y) = 0, hence b(y) = f ′(x ′)
and we set x ′ = d(z). We must prove that x ′ is well defined in Coker( f ′) = A′/a(A).
For this it is enough to see that if z = 0, y ∈ Ker(g) = Im(f) that is y = f (x), and so if
b f (x) = b(y) = f ′(x ′), we have f ′(x ′) = f ′(a(x)) and since f ′ is monomorphism, we get
x ′ = a(x).

Let us now prove the maps are exact at Ker(b). Let v ∈ Ker(b) (i.e. b(v) = 0) such
that g (v) = 0. Then by exactness of the top sequence, v = f (u) with u ∈ A. We have
f ′a(u) = b( f (u)) = b(v) = 0, and since f ′ is injective, a(u) = 0 that is u ∈ Ker(a). �

4. Presheaves and sheaves

Let X be a topological space, C a category.

DEFINITION 6.18. A C -presheaf on X is a functor from the category Open(X)op to
an other category.

DEFINITION 6.19. A presheaf F of R-modules on X is defined by associating to
each open set U in X an R-module, F (U ), such that If V ⊂U there is a unique module
morphism rV ,U : F (U ) −→ F (V ) such that rW,V ◦ rV ,U = rW,U and rU ,U = id. Equiva-
lently, a presheaf is a functor from the category Open(X)op to the category R-mod.

Notation: if s ∈F (U ) we often denote by s|V the element rV ,U (s) ∈F (V ). From now
on we shall, unless otherwise mentioned, only deal with presheaves in the category
R-mod. Our results extend to sheaves in any abelian category. The reader can either
check this for himself (most proofs translate verbatim to a general abelian category),
or use the Freyd-Mitchell theorem (see page 59).

DEFINITION 6.20. A presheaf F on X is a sheaf if whenever (U j ) j∈I are open sets in
X covering U (i.e.

⋃
j∈I U j =U , the map

F (U ) −→ {(s j ) j∈I |
∏
j∈I

F (U j ), rU j ,U j∩Uk (s j ) = rUk ,U j∩Uk (sk )}

is bijective.

This means that elements of F (U ) are defined by local properties, and that we
may check whether they are equal to zero by local considerations. We denote by R-
Presheaf(X) and R-Sheaf(X) the category of R-modules presheaves or sheafs.

EXERCICE 6. Does the above definition imply that for a sheaf, F (;) is the terminal
object in the category ? One usually adds this condition to the definition of a sheaf, and
we stick to these tradition.

Examples:

(1) The skyscraper R-sheaf over x, denoted Rx is given by Rx(U ) = 0 if x ∉U and
Rx(U ) = R for x ∈U .
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(2) Let f : E → X be a continuous map, and F (U ) be the sheaf of continuous
sections of f defined over U , that is the set of maps s : U → E such that f ◦ s =
idU .

(3) Let E → X be a map between manifolds, and Π be a subbundle of TzE . Con-
sider F (U ) to be the set of sections s : X → E such that d s(x) ⊂Π(s(x)).

(4) If f : Y → X is a map, then we define a sheaf as F f (U ) = f −1(U ). This is a sheaf
of Open(Y) on X but can also be considered as a sheaf of sets, or a sheaf of
topological spaces.

(5) Set F (U ) to be the set of constant functions on U . This is a presheaf. It is
not a sheaf, because local considerations can only tell whether a function is
locally constant. On the other hand the sheaf of locally constant functions is
indeed a sheaf. It is called the constant sheaf, and denoted RX . It can also be
defined by setting F (U ) to be the set of locally constant functions from U to
the discrete set R.

(6) Let F be a sheaf. We say that F is locally constant if and only if F every
point is contained in an open set U such that the sheaf FU defined on U by
FU (V ) = F (V ) for V ⊂U is a constant sheaf. There are non-constant locally
constant sheafs, for example the set of locally constant sections of the Z/2
Möbius band, defined by M = [0,1]× {±1}/{(0,1) = (1,−1)}.

(7) If A is a closed subset of X , then kA, the constant sheaf over A is the sheaf
such that kA(U ) is the set of locally constant functions from A∩U to k.

(8) If U is an open set in X , then kU , the constant sheaf over U is defined by
kU (V ) is the subset of k(U ∩V ) made of sections of the constant sheaf with
support closed in V . This means that k(U ∩V ) = kπ0(U∩V ), where π0(U ∩V ) is
the number of connected component of U ∩V such that U ∩V ⊂U .

(9) The sheaf C 0(U ) of continuous functions on U is a sheaf. The same holds for
C p (U ) on a C p manifold, or Ωp (U ) the space of smooth p-forms on a smooth
manifold, or D(U ) the space of distributions on U , or T p (U ) the set of p-
currents on U .

(10) If X is a complex manifold, the sheaf of holomorphic functions OX is a sheaf.
Similarly if E is a holomorphic vector bundle over X , then OX (E) the set of
holomorphic sections of the bundle E .

(11) The functor Top → Chains associating to a topological space M its singular
cochain complex (C∗(M ,R),∂) yields a sheaf of R-modules by associating to U ,
the R-module of singular cochains on U , C∗(U ,R). It is obviously a presheaf,
and one proves it is a sheaf by using the exact sequence

0 →C∗(U ∪V ) →C∗(U )⊕C∗(V ) →C∗(U ∩V ) → 0

On the other hand using the functor Top −→ R−mod given by U → H∗(U ),
we get a presheaf of R-modules by H (U ) = H∗(U ). This is not a sheaf, because
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Mayer-Vietoris is a long exact sequence

... → H∗−1(U ∪V ) → H∗(U ∪V ) → H∗(U )⊕H∗(V ) → H∗(U ∩V ) → H∗+1(U ∪V ) → ...

not a short exact sequence, so two elements in H∗(U ) and H∗(V ) with same
image in H∗(U ∩V ) do come from an element in H∗(U ∪V ), but this element
is not unique: the indeterminacy is given by the image of the coboundary map
δ : H∗−1(U ∩V ) → H∗(U ∪V ). The stalk of this presheaf is limU3x H∗(U ), the
local cohomology of X at x. If X is a manifold, the Poincaré lemma tells us
that this is R in degree zero and 0 otherwise.

EXERCICE 7. Prove that a locally constant sheaf is the same as local coefficients. In
particular prove that on a simply connected manifold, all locally constant sheaf are of
the form kX ⊗V for some vector space V .

Because a sheaf is defined by local considerations, it makes sense to define the germ
of F at x. The following definition makes sense if the category has direct limits. This
means that given a family (Aα)α∈J of objects indexed by a totally ordered set, J , and
morphisms fα,β : Aα→ Aβ defined for α≤β, we define the direct limit of the sequence
as an object A and maps fα : Aα → A with the universal property: for each family of
maps gα : Aα→ B such that fα,β ◦gβ = gα, we have a map ϕ : B → A making the follow-
ing diagram commutative :

A
ϕ
// B

Aα

fα

OO

fα,β

//
fβ

==||||||||
Aβ

gα

aaBBBBBBBB
gβ

OO

Note that if we restrict ourselves to metric spaces, for example manifolds, we only need
this concept for J =N.

DEFINITION 6.21. Let F be a presheaf on X and assume that direct limits exists in
the category where the sheaf takes its values. The stalk of F at x, denoted Fx is defined
as the direct limit

lim−→
U3x

F (U )

An element in Fx is just an element s ∈ FU for some U 3 x , but two such objects
are identified if they coincide in a neighborhood of x: they are “germs of sections”. For
example if CX is the constant sheaf, (CX )x = C. If F is the skyscraper sheaf at x, we
have Fy = 0 for y 6= x and Fx = R.

REMARK 6.22. (1) Be careful, the data of Fx for each x, does not in general,
define an element in F (X ). On the other hand if it does, the element is then
unique.
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(2) For any closed F , we denote by F (F ) = limU⊃F F (U ). Be careful, for V open,
it is not true that F (V ) = limU)V F (U ), since some sections on V may not
extend to any neighborhood (e.g. continuous functions on V going to infinity
near ∂V do not extend). But of course, replacing ) by ⊃ we do have equality.

(3) Using the stalk, we see that any sheaf can be identified with the sheaf of con-
tinuous sections of the map

⋃
x∈X Fx → X sending Fx to x. The main point is

to endow
⋃

x∈X Fx with a suitable topology, and this topology is rather strange,
for example the fibers are always totally disconnected. Indeed, the topology is
given as follows: open sets in

⋃
x∈X Fx are generated by Us = {s(x) | x ∈U , s ∈

F (U )}.
(4) For a section s ∈ F (X ) define the support supp(s) of s as the set of x such

that s(x) ∈ Fx is nonzero. Note that this set is closed, or equivalently the set
of x such that s(x) = 0 is open, contrary to what one would expect, before a
moment’s reflexion shows that the stalk is a set of germs, and if a germ of a
function is zero, the germ at nearby points are also zero.

First we set

DEFINITION 6.23. Let F ,G be presheaves. A morphism f from F to G is a family
of maps fU : F (U ) →G (U ) such that rV ,U ◦ fU = fV ◦ rV ,U . Such a morphism induces a
map fx : Fx →Gx .

4.1. Sheafification. The notion of stalk will allow us to associate to each presheaf
a sheaf. Let F be a presheaf.

DEFINITION 6.24. The sheaf F̃ is defined as follows. Define F̃ (U )to be the subset of∏
x∈U Fx made of families (sx)x∈U such that for each x ∈U , there is W 3 x and t ∈F (W )

such that for all y in W sy = ty in Fy .

Clearly we made the property of belonging to F̃ local, so this is a sheaf (Check !).
Contrary to what one may think, even if we are only interested in sheafs, we cannot
avoid presheaves or sheafification.

PROPOSITION 6.25. Let F be a presheaf, F̃ the associated sheaf. Then F̃ is char-
acterized by the following universal property: there is a natural morphism i : F → F̃

inducing an isomorphism ix : Fx → F̃x , and such that for any f : F → G morphisms
of presheaves such that G is a sheaf, there is a unique f̃ : F̃ → G making the following
diagram commutative

F
i //

f

  @@@@@@@@ F̃

f̃
��

G

PROPOSITION 6.26. Let f : F →G be a morphism of sheaves. Then

(1) If for all x we have fx = 0, then f = 0
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(2) If for all x we have fx is injective, then fU is injective
(3) If for all x, the map fx is an isomorphism, then so is fU

PROOF. Let s ∈F (U ). Then fx = 0 implies that for all x ∈U there is a neighborhood
Ux such that fU (s)x = 0. This implies that fU (s) = 0, hence f = 0 Let us now assume
that fU (s) = 0, and let us prove s = 0. Indeed, since fx sx = 0 we have sx = 0 for all
x ∈U . But this implies s = 0 in F (U ) by the locality property of sheafs. Finally, if fx is
bijective, it is injective and so is fU . We have to prove that if moreover fx is surjective,
so is fU . Indeed, let t ∈ G (U ). By assumption, for each x, there exists sx defined on
a neighborhood Vx of x, such that fVx (sx) = tx on Wx ⊂ Vx containing x. We may of
course replace Vx by Wx . By injectivity, such a sx is unique. If sx is defined over Wx ,
and sy over Wy then on Wx ∩Wy we have fVx (sx) = fWx (sy ) = tWx∩Wy , hence sx = sy on
Wx ∩Wy . As a result, according to the definition of a sheaf, there exists s equal to sx on
each Wx and f (s) = t . As a result the map fU has a unique inverse, gU for each open et
U and we may check that gU is a sheaf morphism, and g ◦ f = IdF , f ◦ g = IdG . �

Of course we do not have a surjectivity analogue of the above, because it does not
hold in general.

In terms of categories, R-Presheaf(X) being the category of presheaves, and R-
Sheaf(X) the category of sheaves of R-modules, these are abelian categories. The 0
object is the sheaf associating the R-module 0 to any open set. This is equivalent to
Fx = 0 for all x. The biproduct of F1, ...,F2 is the sheaf associating to U the R-module
F1(U )⊕F2(U ). Clearly Mor(F ,G ) is abelian and makes R-Sheaf(X) into an additive
category. We also have that Ker(f)(U) = Ker(fU). Indeed, this defines a sheaf on X , since
if s j satisfies fU j (s j ) = 0 and sU j = sUk on U j ∩Uk , then fU (s) = 0. On the other hand
Im( f )(U ) is not defined as Im( fU ), since this is not a sheaf. Indeed, tU j = fU j (s j ) and
t j = tk on U j ∩Uk does not imply that t j = tk on U j ∩Uk , so here is no way to guar-
antee that there exists s such that t = f (s). However Im( fU ) defines a presheaf. Then
the Image in the category of Sheaves, denoted by Im( f ) is the sheafification of Im( fU ).
The same holds for Coker( f ). Indeed, the universal property of sheafification means

that if f : F → G is a morphism, and F
f→ G

p→ H is the cokernel in the category of
presheaves, so that for any sheaf L such that

F
f
// G

g
// L

satisfies g ◦ f = 0, we have a pair (C , q) such that there exits a unique h making this
diagram commutative

F
f
// G

g
//

q

  @@@@@@@@ L

H
iH //

h

OO�
�
�

H̃
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But if L is a sheaf, the map H
h→ L lifts to a map H̃

h̃→ L . Now set q̃ = iH ◦ q ,
it is easy to check that (H̃ , q̃) has the universal property we are looking for, hence this
is the cokernel of f in the category R-Sheaf (X). Because (iH )x is an isomorphism, we
see that Coker( f )x = Coker( fx).

To conclude, we have an inclusion functor from R-Presheaf(X) to R-Sheaf(X), and
the sheafification functor: Sh : R-Presheaf(X) → R-Sheaf(X).

B CAUTION: It follows from the above that the Image in the category of pre-
sehaves does not coincide with the Image in the category of sheaves. Since we
mostly work with sheaves, Im( f ) will designate the Image in the category of
sheaves, unless otherwise mentioned.

Now the definition of an exact sequence in the abelian category of sheaves trans-
lates as follows.

DEFINITION 6.27. A sequence of sheaves over X , F
f→G

g→H is exact, if and only

if for all x ∈ X , Fx
fx→Gx

gx→Hx is exact.

Example:

(1) Let U = X \ A where A is a closed subset of X . Then we have an exact sequence

0 → kX \A → kX → kA → 0

obtained from the obvious maps.
(2) Given a sheaf F and a closed subset A of X , we have as above an exact se-

quence
0 →FX \A →FX →FA → 0

were FA(U ) =F (U ∩ A) while FX \A(U ) is the set of sections of F (U ∩ (X \ A))
with closed support in X \ A.

Now consider the functor ΓU from R−Sheaf(X) −→ R−mod given by ΓU (F ) = F (U ).

We have that a short exact sequence, i.e. a sequence 0 → A
f→ B

g→ C → 0 such that

for each x 0 →Ax
fx→Bx

gx→Cx → 0 is exact, then

0 →A (U )
fU→B(U )

gU→C (U )

is exact, and fU is injective by proposition 6.25, but the map gU is not necessarily
surjective. Indeed, we wish to prove that Im( fU ) = Ker(gU). Because gx ◦ fx = 0 we
have gU ◦ fU = 0, so that Im( fU ) ⊂ Ker(gU). Let us prove the reverse inclusion. Let
t ∈ Ker(gU). Then for each x ∈U , there exists sx such that on some neighborhood Ux

we have tx = fx(sx), and by injectivity of fx , sx is unique. This implies that on Ux ∩Uy ,
sx = sy . But this implies that the sx are restrictions of an element in A (U ).

We just proved
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PROPOSITION 6.28. For any open set, U , the functor ΓU : Sheaf(X) → R −mod is left
exact.

5. Appendix: Freyd-Mitchell without Freyd-Mitchell

If the only application of the Freyd-Mitchell theorem was to allow us to prove theo-
rems on abelian categories as if the objects were modules and the maps module mor-
phisms, there would be the following simpler approach. Let us first prove that pull-
back exist in any abelian category.

Consider the diagram:

(6.5) X

f
��

Y
g
// Z

The above diagram has a pull-back (P, i , j ) where i ∈ Mor(P, X ), j ∈ Mor(P,Y ) if for
any Q and maps u ∈ Mor(Q, X ), v ∈ Mor(Q,Y ) such that f ◦u = g ◦ v there is a unique
map ρ ∈ Mor(Q,P ) such that i ◦ρ = u, j ◦ρ = v .

(6.6) Q
ρ

��?
?

?
? u

  
v

��

P
i //

j
��

X

f
��

Y
g
// Z

We can construct a pull-back in any abelian category by taking for (P, i , j ) the kernel of
the map f − g : X ⊕Y → Z . Then ( f − g )◦ (u, v) = 0 and the existence and uniqueness
of ρ follows form existence and uniqueness of the dotted map in the definition fo the
kernel.

Let us define the relation x ∈m A to mean x ∈ Mor(B , A) for some B , and identify x
and y if and only if there are epimorphisms u, v such that x◦u = y◦v . This is obviously a
reflexive and symmetric relation. We need to prove it is transitive through the following
diagram

(6.7) • u′
//

v ′
��

• t //

u
��

•
x
��• v //

w
��

• y
//

y
��

A

• z // A
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The existence of u′, v ′ follows from pull-back from the other diagrams. Moreover
u′, v ′ are epimorphisms, so x ≡ z since x ◦ (t ◦u′) = z ◦ (w ◦ v ′). Let us denote by A the
set of x ∈m A modulo the equivalence relation. A is an abelian group:

(1) 0 is represented by the zero map, and any zero map in Mor(B , A) is equivalent
to it.

(2) if x ∈m A, then −x ∈m A.
(3) If f ∈ Mor(A, A′) and x ∈m A then f ◦x ∈m A′. We denote this by f (x).

Now

(1) if f is a monomorphism, if and only if f ◦ x = 0 implies x = 0. This is also
equivalent to f (x) = f (x ′) implies x = x ′.

(2) the sequence A
f→ B

g→C is exact if and only if g ◦ f = 0 and for any y such that
g (y) = 0 we have y = f (x)

Indeed, f (x) = 0 means there is an epimorphism u such that f ◦ x ◦u = 0. Since f
is a monomorphism this implies x ◦u = 0 that is x ≡ 0. The second statement follows
from the fact that f (x) = f (x ′) is equivalent to f (x −x ′) = 0.

We thus constructed a functor from C to Sets. Its image is an abelian subcategory
of the category of sets, and Freyd-Mitchell tells us that this is a category of R-modules,
for some R, but the first embedding is enough for “diagram chasing with elements”.





CHAPTER 7

More on categories and sheaves.

1. Injective objects and resolutions

Let I be an object in a category.

DEFINITION 7.1. The object I is said to be injective, if for any maps h, f such that f
is a monomorphism, there exists g making the following diagram commutative

A
f
//

h

��???????? B

g
���
�
�

I

.

This is equivalent to saying that A → Mor(A, I ) sends monomorphisms to epimor-
phisms. Note that g is by no means unique ! An injective sheaf is an injective object in
R-Sheaf (X).

PROPOSITION 7.2. If I is injective in an abelian category C , the functor A → Mor(A, I )
from C to Ab is exact.

DEFINITION 7.3. A category has enough injectives, if any object A has a monomor-
phism into an injective object.

EXERCICE 1. Prove that in the category Ab of abelian groups, the group Q/Z is in-
jective. Prove that Ab has enough injectives (prove that a sum of injectives is injective).

In a category with enough injectives, we have the notion of injective resolution.

PROPOSITION 7.4 ([Iv], p.15). Assume C has enough injectives, and let B be an object
in C . Then there is an exact sequence

0 → B
iB→ J0

d0→ J1
d1→ J2 → ....

where the Jk are injectives.This is called an injective resolution of B. Moreover given an
object A in C and a map f : A → B and a resolution of A (not necessarily injective), that
is an exact sequence

0 → A
i A→ L0

d0→ L1
d1→ L2....

and an injective resolution of B as above, then there is a morphism (i.e. a family of maps
uk : Lk → Jk ) such that the following diagram is commutative

69
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0 // A
i A //

f
��

L0
d0 //

u0

��

L1
d1 //

u1

��

L2
d2 //

u2

��

...

0 // B
iB // J0

∂0 // J1
∂1 // I2

∂2 // ...

.

Moreover any two such maps are homotopic (i.e. uk − vk = ∂k−1sk + sk+1δk , where
sk : Ik → Jk−1).

PROOF. The existence of a resolution is proved as follows: existence of J0 is by defi-

nition of having enough injectives. Then let M1 = Coker(iB ) so that 0 → B
d0→ J0

f0→ M1 →
0 is exact. A map 0 → M1 → J1 induces a map 0 → B

iB→ J0
d0→ J1, exact at J0. Continuing

this procedure we get the injective resolution of B . Now let f : A → B and consider the
commutative diagram

0

��

// A

f
��

i A // L0

0 // B
iB // J0

Since J0 is injective, iB is monomorphism and i A ◦ f lifts to a map u0 : L0 → J0. Let
us now assume inductively that the map uk is defined, and let us define uk+1. We
decompose using property (2) of Definition 6.7:

Lk−1

uk−1
��

dk−1 // Lk
dk //

uk
��

Lk+1

Jk−1
∂k−1 // Jk

∂k // Jk+1

as

Lk−1

uk−1

��

dk−1 // Lk
dk //

uk

��

Coker(dk−1)

vk+1
���
�
�

ik // Lk+1

Jk−1
∂k−1 // Jk

∂k // Coker(∂k−1)
jk // Jk+1

Since (∂k◦uk )◦dk−1 = 0, there exists by definition of the cokernel a map vk+1 : Coker(dk−1) →
Coker(∂k−1), making the above diagram commutative. Then since ik is monomor-
phism (due to exactness at Lk ) and Jk+1 is injective, the map jk ◦ vk+1 factors through
ik so that there exists uk+1 : Lk+1 → Jk+1 making the above diagram commutative. The
construction of the homotopy is left to the reader. �

PROPOSITION 7.5. The category R−Sheaf(X) has enough injectives.

PROOF. The proposition is proved as follows.
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Step 1: One proves that for each x there is an injective D(x) such that Fx injects
into D(x). In other words we need to show that R-mod has enough injectives. We omit
this step since it is trivial for C-sheaves (any vector space is injective).

Step 2: Construction of D. The category R-mod has enough injectives, so choose
for each x a map ̃x : Fx →D(x) where D(x) is injective, and consider the sheaf D(U ) =∏

x∈U D(x). Thus a section is the choice for each x of an element D(x) (without any
“continuity condition”). One should be careful. The sheaf D does not have D(x) as
its stalk: the stalk of D is the set of germs of functions (without continuity condition)
x 7→D(x) for x in a neighborhood of x0. Obviously, Dx0 surjects on D(x0). However, for
each F we have Mor(F ,D) =∏

x∈X Hom(Fx ,D(x)): indeed, an element ( fx)x∈X in the
right hand side will define a morphism f by s → fx(sx), and vice-versa, an element f
in the left hand side, defines a family ( fx)x∈X by taking the value fx(sx) = f (s)x . So j̃x

defines an element j in Mor(F ,D). Clearly D is injective since for each x, there exists
a lifting gx

0 // Fx
f
//

h

""EEEEEEEE
Gx

gx

���
�
�

D(x)

.

and the family (gx) defines a morphism g : G →D (one may need the axiom of choice
to choose gx for each x).

Step 3: Let F an object in R-Sheaf(X) and D be the above associated sheaf. Then
the obvious map i : F → D induces an injection ix : Fx → D(x) hence is a monomor-
phism.

�

When R is a field, there is a unique injective sheaf with D(x) = Rq . It is called the
canonical injective Rq -sheaf. Let us now define

DEFINITION 7.6. Let F be a sheaf, and consider an injective resolution of F

0 →F
d0→J0

d1→J1
d2→J2....

Then the cohomology H ∗(X ,F ) (also denoted RΓ(X ,F )) is the (co)homology of the
sequence

0→J0(X )
d0,X→ J2(X )

d1,X→ J2(X )....

In other words H m(X ,F ) = Ker(dm,X)/Im(dm−1,X)

Check that H 0(X ,F ) = F (X ). Note that the second sequence is not an exact se-
quence of R-modules, because exactness of a sequence of sheafs means exactness of
the sequence of R-modules obtained by taking the stalk at x (for each x). In other
words, the functor from Sheaf(X) to R-mod defined by Γx : F → Fx is exact, but the
functor ΓU : F →F (U ) is not.
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This is a general construction that can be applied to any left-exact functor: take
an injective resolution of an object, apply the functor to the resolution after having
removed the object, and compute the cohomology. According to Proposition 7.4, this
does not depend on the choice of the resolution, since two resolutions are chain homo-
topy equivalent, and F sends chain homotopic maps to chain homotopic maps, hence
preserves chain homotopy equivalences . This is the idea of derived functors, that we
are going to explain in full generality (i.e. applied to chain complexes). It is here ap-
plied to the functor ΓX . It is a way of measuring how this left exact functor fails to be
exact: if the functor is exact, then H 0(X ,F ) =F (X ) and H m(X ,F ) = 0 for m ≥ 1.

For the moment we set

DEFINITION 7.7. Let C be a category with enough injectives, and F be a left-exact
functor. Then R j F (A) is obtained as follows: take an injective resolution of A,

0 → A
i A→ I0

d0→ I1
d1→ I2 → ....

then R j F (A) is the j -th cohomology of the complex

0 → F (I0)
d0→ F (I1)

d1→ F (I2) → ....

We say that A is F -acyclic, if R j F (A) = 0 for j ≥ 1.

Note that the left-exactness of F implies that we always have R0F (A) = A. Since
according to Proposition 7.4, the R j F (A) = 0 do not depend on the choice of the reso-
lution, an injective object is acyclic: take 0 → I → I → 0 as an injective resolution, and
notice that the cohomology of 0 → I → 0 vanishes in degree greater than 0.

However, as we saw in the case of sheafs, injective objects do not appear naturally.
So we would like to be able to use resolutions with a wider class of objects

DEFINITION 7.8. A flabby sheaf is a sheaf such that the map F (U ) →F (V ) is onto
for any V ⊂U .

Notice that by composing the restriction maps, F is flabby if and only if F (X ) →
F (V ) is onto for any V ⊂ X . This clearly implies that the restriction of a flabby sheaf is
flabby.

PROPOSITION 7.9. An injective sheaf is flabby. A flabby sheaf is ΓX -acyclic.

PROOF. First note that the sheaf we constructed to prove that Sheaf(X) has enough
injectives is clearly flabby. Therefore any injective sheaf I injects into a flabby sheaf,
D. Moreover there is a map p : D →I such that p ◦ i = id, since the following diagram
yields the arrow p

0 // I
i //

id   AAAAAAA D

p
���
�
�

I
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As a result, we have diagrams

D(U )
pU //

sV ,U

��

I (U )

rV ,U

��
D(V )

pV // I (V )

Since pU ◦ iU = id, we have that pU is onto, hence rV ,U is onto.

We now want to prove the following: let 0 → E
u→F

v→G → 0 be an exact sequence,
where E ,F are flabby. Then G is flabby.

Let us first consider an exact sequence 0 → E
u→ F

v→ G → 0 with E flabby. We
want to prove that the map v(X ) : F (X ) → G (X ) is onto. Indeed, let s ∈ Γ(X ,G ), and
a maximal set for inclusion, U , such that there exists a section t ∈ Γ(U ,F ) such that
v(t ) = s on U . We claim U = X otherwise there exists x ∈ X \U , a section tx defined in
a neighborhood V of x such that v(tx) = s on V . Then t − tx is defined in Γ(U ∩V ,F ),
but since v(t − tx) = 0, we have, by left-exactness of Γ(U ∩V ,−), t − tx = u(z) for z ∈
Γ(U ∩V ,E ). Since E is flabby, we may extend z to X , and then t = tx +u(z) on U ∩V .
We may the find a section t̃ ∈ Γ(U ∪V ,F ) such that t̃ = t on U and t̃ = tx +u(z) on V .
Clearly v(t̃ )U = s|U and v(t̃ )V = v(tx)+vu(z) = v(tx) = s|V , hence v(t̃ ) = s on U∪V . This
contradicts the maximality of U .

As a result, we have the following diagram

0 // E (X )
u(X ) //

ρX ,U

��

F (X )

σX ,U

��

v(X ) // G (X )

τX ,U

��

// 0

0 // E (U )
u(U ) // F (U )

v(U ) // G (U ) // 0

and ρU ,X ,σU ,X are onto. This immediately implies that τX ,U is onto. Finally, let us
prove that a flabby sheaf F is acyclic. We consider the exact map 0 →F →I where I

is injective. Using the existence of the cokernel, this yields an exact sequence 0 →F →
I →K → 0. By the above remark, K is flabby. Consider then the long exact sequence
associated to the short exact sequence of sheaves:

0 → H 0(X ,F ) → H 0(X ,I ) → H 0(X ,K ) → H 1(X ,F ) → H 1(X ,I ) → H 1(X ,K ) → ...

We prove by induction on n that for any n ≥ 1 and any flabby sheaf, H n(X ,F ) = 0. In-
deed, we just proved that H 0(X ,I ) → H 0(X ,K ) is onto, and we know that H 1(X ,I ) =
0. this implies H 1(X ,F ) = 0. Assume now, that for any flabby sheaf and j ≤ n, H j

vanishes. Then the long exact sequence yields

.. → H n(X ,K ) → H n+1(X ,F ) → H n+1(X ,I ) → ...

Since I is injective, H n+1(X ,I ) = 0 and since K is flabby H n(X ,K ) = 0 hence H n+1(X ,F )
vanishes. �
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Example: Flabby sheafs are much more natural than injective ones, and we shall
see they are just as useful. The sheaf of distributions, that is DX (U ) is the dual of C∞

0 (U ),
the sheaf of differential forms with distribution coefficients, the set of singular cochain
defined on X (see Exemple ??)... are all flabby.

A related notion is the notion of soft sheaves. A soft sheaf is a sheaf such that the
map F (X ) → F (K ) is surjective for any closed set K . Of course, we define F (K ) =
limK⊂U F (U ). In other words, an element defined in a neighborhood of K has an ex-
tension (maybe after reducing the neighborhood) to all of X . The sheafs of smooth
functions, smooth forms, continuous functions... are all soft.

We refer to subsection 3.1 for applications of these notions.

EXERCICE 2. (1) Prove that for a locally contractible space, the sheaf of singu-
lar cochains is flabby. Prove that the singular cohomology of a locally con-
tractible space X is isomorphic to the sheaf cohomology H∗(X ,kX ).

(2) Prove that soft sheaves are acyclic.

2. Operations on sheaves. Sheaves in mathematics.

First of all, if F is sheaf over X , and U an open subset of X , we denote by F|U the
sheaf on U defined by F|U (V ) =F (V ) for all V ⊂U . For clarity, we define Γ(U ,•) as the
functor F → Γ(U ,F ) =F (U ).

DEFINITION 7.10. Let F ,G be sheafs over X . We define H om(F ,G ) as the sheaf
associated to the presheaf Mor(F|U ,G|U ). We define F ⊗G to be the sheafification of
the presheaf U 7→ F (U )⊗G (U ). The same constructions hold for sheafs of modules
over a sheaf of rings R, and we then write H omR(F ,G ) and F ⊗R G .

REMARK 7.11. (1) Note that Mor(F|U ,G|U ) 6= Hom(F (U ),G (U )) in general, since
an element f in the left hand side defines compatible fV ∈H om(F (V ),G (V ))
for all open sets V in U , while the right-hand side does not. There is however
a connection between the two definitions: Mor(F ,G ) = Γ(X ,H om(F ,G ).

(2) Note that tensor products commute with direct limits, so (F ⊗G )x =Fx ⊗Gx .
On the other hand Mor does not commute with direct limits, so H om(F ,G )x

is generally different from H om(Fx ,Gx).

Let f : X → Y be a continuous map. We define a number of functors associated to
f as follows.

DEFINITION 7.12. Let f : X → Y be a continuous map, F ∈ Sheaf(X),G ∈ Sheaf(Y)
The sheaf f∗F is defined by

f∗(F )(U ) =F ( f −1(U ))
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The sheaf f −1(G )(U ) is the sheaf associated to the presheaf P f −1(F ) : U 7→ limV ⊃ f (U ) G (V ).
We also define F � G as follows. If pX , pY are the projections of X × Y on the re-
spective factors, we have F �G = p−1

X F ⊗ p−1
Y (G ). When X = Y and d is the diago-

nal map, we define d−1(F �G) = F ⊗G . This is the sheaf associated to the presheaf
U →F (U )⊗G (U ).

It is also useful to have the definition of

PROPOSITION 7.13. The functors f∗, f −1 are respectively left-exact and exact. More-
over , let f , g be continuous maps, then ( f ◦ g )∗ = f∗ ◦ g∗ and ( f ◦ g )−1 = g−1 ◦ f −1.

PROOF. For the first statement, let us prove that f −1 is exact. We use the fact that
f −1(G )x =G f (x). Thus an exact sequence 0 →F

u→G
v→H → 0 is transformed into the

sequence 0 → f −1(F )
u◦ f→ f −1(G )

v◦ f→ f −1(H ) → 0 which has germs

0 → ( f −1(F ))x
u( f (x))→ ( f −1(G ))x

v( f (x))→ ( f −1(H ))x → 0

equal to

0 →F f (x))
u( f (x))→ G f (x)

v( f (x))→ H f (x) → 0

which is exact. Now we prove that f∗ is left-exact. Indeed, consider an exact sequence
0 → E

u→F
v→G . By left-exactness of ΓU , the sequence

0 → E (U )
u(U )→ F (U )

v(U )→ G(U )

is exact, hence for any V ⊂ Y , the sequence

0 → E ( f −1(V ))
v( f −1(V ))→ F ( f −1(V ))

v( f −1(V ))→ G( f −1(V ))

is exact, which by taking limits on V 3 x implies the exactness of

0 → ( f∗E )x
( f∗u)x→ ( f∗F )x

( f∗v)x→ ( f∗G )x .

�

PROPOSITION 7.14. We have Mor(G , f∗F ) = Mor( f −1(G ),F ). We say that f∗ is
right-adjoint to f −1 or that f −1 is left adjoint to f∗.

PROOF. We claim that an element in either space, is defined by the following data,
called a f -homomorphism: consider for each x a morphism kx : G f (x) → Fx such
that for any section s of G (U ), kx ◦ s( f (x)) is a (continuous) section of F (U ) . No-
tice that there are in general many x such that f (x) = y is given, and also that a f -
homomorphism is the way one defines morphisms in the category Sheaves of sheaves
over all manifold (so that we must be able to define a morphism between a sheaf over
X and a sheaf over Y ). Now, we claim that an element in Mor( f −1(G ),F ) defines kx ,
since ( f −1(G ))x =G f (x), so a map sending elements of f −1(G )(U ) to elements of F (U )
localizes to a map kx having the above property. Conversely, given a map kx as above,
let s ∈ f −1(G )(U ). By definition, for each point x ∈U there exists a section t f (x) defined
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near f (x) such that s = t f (x) near x. Now define s′x = kx t f (x). We have that s′x ∈ Fx ,
and by varying x in U , this defines a section of F (U ). So kx defines a morphism from
f −1(G ) to F .

Now an element in Mor(G , f∗F ) sends for each U , G (U ) to F ( f −1(U )), hence an
element in G f (y) to an element in some F ( f −1(V f (y)), where V f (y) is a neighborhood of
f (y), which induces by restriction an element in Fy , hence defines kx . Vice-versa, let
s ∈G (V ) then for y ∈V and x ∈ f −1(y), we define s′x = kx sy . The section s′x is defined on
Vx a neighborhood of x, and by assumption kx s f (x) is continuous, so s′ is continuous.

We thus identified the set of f -homomorphism both with Mor(G , f∗F ) and with
Mor( f −1(G ),F ), which are thus isomorphic.

EXERCICE 3. Prove that f∗H om( f −1(G ),F ) =H om(G , f∗F ).

�

The notion of adjointness is important in view of the following.

PROPOSITION 7.15. Any right-adjoint functor is left exact. Any left-adjoint functor is
right-exact.

PROOF. Let F be right-adjoint to G , that is Mor(A,F (B)) = Mor(G(A),B). We wish to

prove that F is left-exact. The exactness of the sequence 0 → A
f→ B

g→C is equivalent
to

(7.1) 0 → Mor(X , A)
f ∗
→ Mor(X ,B)

g∗
→ Mor(X , A)

Indeed, exactness of the sequence is equivalent to the fact that A
f→ B is the kernel of g ,

or else that for any X , and u : X → A such that g ◦u = 0, there exists a unique v : X → B
such that the following diagram commutes

A
f
// B

g
// C

X
v

__@
@

@
@

u

OO

The existence of v implies exactness of 7.1 at Mor(X ,B) , while uniqueness yields ex-
actness at Mor(X , A).

As a result, left-exactness of F is equivalent to the fact that for each X , and each

exact sequence 0 → A
f→ B

g→C → 0, the induced sequence

0 → Mor(X ,F (A))
F ( f )∗→ Mor(X ,F (B))

F (g )∗→ Mor(X ,F (A))

is exact. But this sequence coincides with

0 → Mor(G(X ), A)
f ∗
→ Mor(G(X ),B)

g∗
→ Mor(G(X ),C )

its exactness follows from the left-exactness of M → Mor(X , M).
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�

Note that in the literature, f −1 is sometimes denoted f ∗. Note also that if f is the
constant map, then f∗F = Γ(X ,F ), so that R f∗ = RΓ(X ,•).

EXERCICE 4. Show that Sheafification is the right adjoint functor to the inclusion of
sheaves onto presheaves. Conclude that Sheafification is a left-exact functor.

COROLLARY 7.16. The functor f∗ maps injective sheafs to injective sheafs. The same
holds for ΓX .

PROOF. Indeed, we have to check that F → H om(F , f∗(I )) is an exact functor.
But this is the same as checking that F →H om( f −1F ,I ) is exact. Now F → f −1(F ) is
exact, and since I is injective, G → H om(G ,I ) is exact. Thus F → H om(F , f∗(I ))
is the composition of two exact functors, hence is exact. The second statement is a
special case of the first by taking f to be the constant map.

�

There is at least another simple functor: f ! given by

DEFINITION 7.17. f !(F )(U ) = {s ∈F ( f −1(U )) | f : supp(s) →U is a proper map }.

If f is proper, then f ! and f∗ coincide. Even though f ! has a right-adjoint f !, we
shall not construct this as it requires a slightly complicated construction, extending
Poincaré duality, the so-called Poincaré-Verdier duality (see [Iv] chapter V).

Example:

(1) Let A be a closed subset of X , and kA be the constant sheaf on A, and i : A → X
be the inclusion of A in X . Then i ! = i∗ and i∗(kA) = kA and i−1(kA) = kX . Thus
if i : A → X is the inclusion of the closed set A in X , and F a sheaf on X , then
FA = i∗i−1(F ). This does not hold for A open, as we shall see in a moment.

(2) Let U be an open set in X and j the inclusion. Then FU = j! j−1(F ). This
formula in fact holds for U locally closed (i.e. the intersection of a closed set
and an open set).

(3) We have, with the above notations,

j−1 ◦ j∗ = j−1 ◦ j! = i ! ◦ i∗ = i−1 ◦ i∗ = id

Note that the above operations extend to complexes of sheaves:

DEFINITION 7.18. Let A•,B• be two bounded complexes. Then we define (A• ⊗
B•)m =∑

j A j ⊗B m− j with boundary map dm(u j ⊗vm− j ) = ∂ j u j ⊗vm− j +u j ⊗∂m− j vm− j .
and H om(A•,B•)m = ∑

j Hom(A j ⊗B m+ j ), with boundary map dm f = ∑
p ∂m+p f p +

(−1)m+1 f p+1∂p .

Finally we define the functor ΓZ : Sheaf(X) → Sheaf(X) defined by

DEFINITION 7.19. Let Z be a locally closed set. Let F ∈ Sheaf(X). Then the sheaf
ΓZ F is defined by ΓZ F (U ) = ker(F (U ) →F (U \ Z )).
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EXERCICE 5. Here Z is a closed subset of X . Check the following statements:

(1) Show that the support of ΓZ is contained in Z .
(2) Show that ΓZ is a left exact functor from Sheaf(X) to Sheaf(X).
(3) Show that ΓZ maps injectives to injectives.
(4) Show that FZ = kZ ⊗F and ΓZ (F ) =H om(kZ ,F ).

PROPOSITION 7.20. The functorΓZ is left-exact. It sends flabby sheafs to flabby sheafs
(an in particular injective sheafs to acyclic sheafs).

PROOF. One checks that ΓZ is left-exact from the left-exactness of the functor F →
F|X \Z . Applying the Snake lemma (Lemma 6.17) to the following diagram

0 // F
f

//

a
��

G
g

//

b
��

H //

c
��

0

0 // FX \Z
f ′
// GX \Z

g ′
// HX \Z

yields exactness of the sequence 0 → Ker(a) → Ker(b) → Ker(c) that is exactness of 0 →
ΓZ (F ) → ΓZ (G ) → ΓZ (H ).

We must now prove that if F is flabby, ΓZ (X ,F ) → ΓZ (U ,F ) is onto. Let s ∈
ΓZ (U ,F ), that is an element in F (U ) vanishing on U \ Z . We may thus first extend
s by 0 on X \Z to the open set (X \Z )∪U . By flabbiness of F we then extend s to X . �

2.1. Sheaves and D-modules. Note that the rings we shall consider in this sub-
section are non-commutative, a situation we had not explicitly considered above. A
D-module is a module over the ring DX of algebraic differentials operators over an al-
gebraic manifold X . Let OX be the ring of holomorphic functions,ΘX the ring of linear
operators on OX (i.e. holomorphic vector fields), and DX the noncommutative ring
generated by OX and ΘX , that is the sheaf of holomorphic differential operators on X .
A D-module is a module over the ring DX . More generally, given a sheaf of rings R,
we can consider R-modules, that is for each open U , F (U ) is an R(U )-module and
the restriction morphism is compatible with the R-module structure. What we did for
R-modules also hold for R-modules.

Let us show how D-modules appear naturally. Let P be a general differential oper-
ator, that is, locally, Pu = (

∑m
j=1 P1, j u j , ...,

∑m
j=1 Pq, j u j ) or else

∑m
j=1 Pi , j ui = v j , and let

us start with u = 0. The operator P yields a linear map Dp
X → Dq

X and we may consider
the map

Φ(u) :Dp
X −→ OX

(Q j )1≤ j≤p −→
p∑

j=1
Q j u j
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so that if (u1, ...,up ) is a solution of our equation, then Φ(u) vanishes on DX ·P1 +
...+DX Pq where

P j =

P1, j
...

Pq, j


Conversely, a map Φ : Dp

X −→ OX vanishing on DX ·P1 + ...+DX Pq yields a solution of
our equation, setting u j =Φ(0, ..,1,0...0).

Then, let M be the D-module DX /(DX · P ), the set of solutions of the equation
corresponds to Mor(M ,OX ).

3. Injective and acyclic resolutions

One of the goals of this section, is to show why the injective complexes can be used
to define the derived category. One of the main reasons, is that on those complexes,
quasi-isomorphism coincides with chain homotopy equivalence. We also explain why
acyclic resolutions are enough to compute the derived functors, and finally work out
the examples of the deRham and Čech complexes, proving that they both compute the
cohomology of X with coefficients in the constant sheaf.

We start with the following

PROPOSITION 7.21. Let f : C • → I • be a quasi-isomorphism where the I p are injec-
tive. Then there exists g : I • →C • such that g ◦ f is homotopic to id.

PROOF. We first construct the mapping cone of a map. Let f • : A• → B• be mor-
phism of chain complexes, and C ( f )• = A•[1]⊕B• with boundary map

d =
(−∂A 0
− f ∂B

)
Then there is a short exact sequence of chain complexes

0 // B•
u=

(
0
1

)
// C ( f )•

v=
(

1
0

)
// A•[1] // 0

The above exact sequence (or distinguished triangle) yields a long exact sequence in
homology:

// H n(A•,∂A)
H n ( f∗)

// H n(B•,∂B )
H n (u)// H n(C ( f )•,d)

δ∗f // H n+1(A•,∂A) // ...

where the connecting map can be identified with H•( f ) and δ∗f = H∗( f ) coincides
with the connecting map defined in the long exact sequence of Proposition 6.14. Note
that H n(A•[1],∂A) = H n+1(A•,∂A). Now we see that if H n( f ) is an isomorphism then
H n(C ( f )•,d) = 0 for all n, we have an acyclic complex (C ( f )•,d), and a map C ( f )• →
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A•[1]. We claim that it is sufficient to prove that this map is homotopic to zero. In-
deed, let s be such a homotopy. It induces a map s• : C ( f )• → A• such that −∂A s(a,b)+
sd(a,b) = a or else

−∂A s(a,b)+ s(−∂A(a),− f (a)+∂B (b)) = a

so setting g (b) = s(0,b) and t (a) = s(−a,0) we get (apply successively to (0,−b) and
(a,0)),

∂A g (b)− g (∂B b) = 0

so g is a chain map, and
∂A t (a)+ g f (a)+ t∂(a) = a

so g f is homotopic to IdA.
The proposition thus follows from the following lemma.

LEMMA 7.22. Any morphism from an acyclic complex C • to an injective complex I •
is homotopic to 0.

Let f be the morphism. We will construct the map s such that f = ∂s + sd by in-
duction using the injectivity. Assume we have constructed the solid maps and we wish
to construct the dotted one in the following (non commutative !) diagram, such that
fm−1 = ∂m−2sm−1 + smdm−1.

.... // C m−2
dm−2 //

fm−2

��

sm−2

�����������������
C m−1

dm−1 //

sm−1

�����������������

fm−1

��

C m dm //

���
�

�
�

�
�

�

fm

��

...

.... ∂m−3// I m−2
∂m−2 // I m−1

∂m−1 // I m
∂m // ...

The horizontal maps are not injective, but we may replace them by the following
commutative diagram

dm−2
��

C m−1

fm−1−∂m−2sm−1

$$

��

dm−1

**TTTTTTTTTTTTTTTTTTTT

0 // Im(dm−1) = Ker(dm)
d ′

m //

w

���
�
�
�
�
� C m

sm

yyr
r

r
r

r
r

r
r

r
r

r

I m−1

.
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where we first prove the existence of w and then the existence of sm . The existence
of w follows from the fact that Ker(dm−1) → ker(fm−1 − ∂m−2sm−1) since Ker(dm−1) =
Im(dm−2) and we just have to check that ( fm−1−∂m−2sm−1)◦dm−2 = 0 which is obvious
from the diagram and the induction assumption, since

fm−1 ◦dm−2 = ∂m−2 ◦ fm−2 =
∂m−2 ◦ (∂m−3sm−2 + sm−1dm−2) = ∂m−2sm−1dm−2

The injectivity of d ′
m follows from the exactness of the sequence, and the existence of

sm follows from the injectivity of I m−1. �

Notice that proposition 7.21 implies

COROLLARY 7.23. Let I • be an acyclic chain complex of injective elements, and F is
any left-exact functor, then F (I •) is also acyclic.

PROOF OF THE COROLLARY. Indeed, since the 0 map from I • to itself is a quasi-
isomorphism, we get a homotopy between idI • and 0. In other words idI • = d s + sd .
As a result F (idI •) = F (d)F (s)+F (s)F (d) = dF (s)+F (s)d and this implies that F (idI •) :
F (I •) → F (I •) is homotopic to zero, which is equivalent to the acyclicity of F (I •). �

Note that this implies that to compute the right-derived functor, we may replace
the injective resolution by any F -acyclic resolution, that is resolution by objects Lm

such that H j (Lm) = 0 for all j 6= 0:

COROLLARY 7.24. Let 0 → A → L0 → L1 → ... be a resolution of A such that the L j

are F -acyclic, that is RmF (L j ) = 0 for any m ≥ 1. Then RF (A) is quasi-isomorphic to the
chain complex 0 → F (L0) → F (L1) → ..... In particular RmF (A) can be computed as the
cohomology of this last chain complex.

PROOF. Let I • be an injective resolution of A. There is according to 7.4 a morphism
f : L• → I • extending the identity map. Because the map f is a quasi-isomorphism
(there is no homology except in degree zero, and then by assumption f∗ induces the
identity), according to the previous result there exists g : I • → L• such that g ◦ f is
homotopic to the identity. But then F (g )◦F ( f ) is homotopic to the identity, and F ( f )
is an isomorphism between the cohomology of F (I •), that is RF∗(A) and that of F (L•).

�

Note that the above corollary will be proved again using spectral sequences in
Proposition 8.13 on page 93.

Note that if I is injective, 0 → I → I → 0 is an injective resolution, and then
clearly H 0(X ,I ) = Γ(X ,I ) and H j (X ,I ) = 0 for j ≥ 1. A sheaf such that H j (X ,F ) = 0
for j ≥ 1 is said to be ΓX -acyclic (or acyclic for short).
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3.1. Complements: DeRham, singular and Čech cohomology. We shall prove here
that DeRham or Čech cohomology compute the usual cohomology.

Let RX be the constant sheaf on X . Let Ω j be the sheaf of differential forms on X ,
that is Ω j (U ) is the set of differential forms defined on U . This is clearly a soft sheaf,
and we claim that we have a resolution

0 →RX
i→Ω0 d→Ω1 d→Ω2 d→Ω3 d→ ....

d→Ωn → 0

where d is the exterior differential. The fact that it is a resolution is checked by the
exactness of

0 →RX
i→Ω0

x
d→Ω1

x
d→Ω2

x
d→Ω3

x
d→ ....

d→Ωn
x → 0

which in turn follows from the Poincaré lemma, since for U contractible, we already
have the exactness of

0 →RX
i→Ω0(U )

d→Ω1(U )
d→Ω2(U )

d→Ω3(U )
d→ ....

d→Ωn(U ) → 0

and x has a fundamental basis of contractible neighborhoods. Since soft sheafs are
acyclic, we may compute H∗(X ,RX ) by applying Γ(X ,•) to the above resolution. That
is the cohomology of

0 →Ω0(X )
d→Ω1(X )

d→Ω2(X )
d→Ω3(X )

d→ ....
d→Ωn(X ) → 0

or else the DeRham cohomology.

3.2. Singular cohomology. Let f : X → Y be a continuous map between topo-
logical spaces, and C ∗

f be the complex of singular cochains over f , that is C
q
f (U )

is the set of singular q-cochains over f −1(U ). There is of course a boundary map
δ : C

q
f (U ) → C

q+1
f (U ). For X = Y and f = Id this is just the sheaf of singular cochains

on X . If moreover the space X is locally contractible, the sequence

0 → kX →C 0 δ→C 1 δ→C 2 → ....

yields a resolution of the constant sheaf, the exactness of the sequence at the stalk
level follows from its exactness on any contractible open set U . Thus, since the C q are
flabby, the cohomology H∗(X ,kX ) is computed as the cohomology of the complex

0 →C 0(X )
δ→C 1(X )

δ→C 2(X ) →
3.3. Čech cohomology. Let F be a sheaf of R-modules on X .

DEFINITION 7.25. Given a covering U of X by open sets U j , an element of C q (U,F )
consists in defining for each (q +1)-uple (Ui0 , ....,Uiq ) an element s(i0, ..., iq ) ∈F (Ui0 ∩
...∩Uiq ) such that s(iσ(0), iσ(1), ..., iσ(q)) = ε(σ)s(i0, ..., iq ).

If s ∈ Č q (U,F ) we define (δs)(i0, i1, ..., iq+1) = ∑
j (−1) j s(i0, i1, ., î j .., iq+1). This con-

struction defines a sheaf on X as follows: to an open set V we associate the covering of
V by the U j ∩V , and there is a natural map induced by restriction of the sections of F ,
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Č q (U,F ) → Č q (U∩V ,F ) obtained by replacing U j by U j ∪V . Thus the Čech complex
associated to a covering is a sheaf over X . We may consider the sheaf of complexes

0 →F
i→ Č 0(U,F )

δ→ ...
δ→ Č q (U,F )

δ→ Č q+1(U,F )
δ→ ...

However when the H j (Ui0 ∩...∩Uiq ,F ) are zero for j ≥ 1, we say we have an acyclic

cover, and the cohomology of Č q (U,F ) computes the cohomology of the sheaf F . This
will follow from a spectral sequence argument.

3.4. Exercices.

(1) Let A be a sheaf over N, N being endowed with the topology for which the
open sets are {1,2, ...,n}, N and ;. Prove that a sheaf over N is equivalent to a
sequence of R-modules, An and maps

... → An → An−1 → .... → A0

and that H 0(N,A ) = limn An . Describe lim1(An)n≥1
de f= H 1(N,A )

(2) Show that the above sheaf is flabby if and only if the maps An → An−1 are onto,
and that the sheaf is acyclic if and only if the sequence satisfies the Mittag-
Leffler condition: the image of Ak in A j is stationary as k goes to infinity.

4. Appendix: More on injective objects

Let us first show that the functor A → Mor(A,L) is left exact, regardless of whether L

is injective or not. Let 0 → A
f→ B

g→C → 0 be an exact sequence. Since f is a monomor-
phism Mor( f ) : Mor(B ,L) → Mor(A,L) is the map u → u◦ f . By definition of monomor-
phisms, this is injective, and we only have to prove Im(Mor(g )) = Ker(Mor(f)). Assume
u ∈ Ker(Mor(f)) so that u ◦ f = 0. According to proposition 6.10, (C , g ) = Coker( f ), so by
definition of the cokernel we get the factorization u = v ◦ g .

LEMMA 7.26. Let 0 → A
f→ B

g→ C → 0 be an exact sequence such that A is injective.
Then there exists w : B → A such that w ◦ f = idA. As a result there exists of u : C → B and
v : B → A such that idB = f ◦ v +u ◦ g , and the sequence splits.

PROOF. The existence of w follows from the definition of injectivity applied to h =
idA. The map w is then given as the dotted map. Now since f = f ◦w◦ f we get (idA− f ◦
w)◦ f = 0, hence by definition of the Cokernel, and the fact that C = Coker(g ), there is
a map u : C → B such that (idA− f ◦w) = u◦g . This proves the formula idB = f ◦v+u◦g
with v = w . As a result, g = g ◦ IdB = g ◦ f ◦ v + g ◦u ◦ g , and g ◦ f = 0, and since g is an
epimorphism and g = g ◦u ◦ g we have IdC = g ◦u and the sequence is split according
to Definition 6.9 and Exercice 3. �

LEMMA 7.27. Let 0 → A
f→ B

g→C → 0 be an exact sequence with A,B injective. Then
C is injective.
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PROOF. Indeed, the above lemma implies that the sequence splits, B ' A ⊕C , but
the sum of two objects is injective if and only if they are both injectives: as injectivity is
a lifting property, to lift a map to a direct sum, we must be able to lift to each factor. �

As a consequence any additive functor F will send a short exact sequences of injec-
tives to a short exact sequences of injectives, since the image by F will be split, and a
split sequence is exact. The same holds for a general exact sequence since it decom-
poses as 0 → I0 → I1 → Ker(d2) = Im(d1) → 0. Since I0, I1 are injectives, so is Ker(d2) =
Im(d1). Now we use the exact sequence 0 → Im(d1) → I2 → Ker(d3) = Im(d2) → 0 to
show that Ker(d3) = Im(d2) is injective. Finally all the Ker(dj) and Im(d j ) are injective.
But this implies that the sequences 0 → Im(dm−1) → Im → Ker(dm+1) = Im(dm) → 0 are
split, hence 0 → F (Im(dm−1)) → F (Im) → F (Ker(dm+1)) = F(Im(dm)) → 0 is split hence
exact. This implies (Check !) that the sequence 0 → F (I0) → F (I1) → F (I2) → F (I3) → is
exact.

LEMMA 7.28 (Horseshoe lemma). Let 0 → A → B → C → 0 be an exact sequence,
and, I •A, I •C be injective resolutions of A and C . Then there exists an injective resolution
of B, I •B , such that 0 → I •A → I •B → I •C → 0 is an exact sequence of complexes. Moreover,
we can take I •B = I •A ⊕ I •C .

PROOF. See [Weib] page 37. One can also use the Freyd-Mitchell theorem. �

PROPOSITION 7.29. Let C be an abelian category with enough injectives. Let f : A →
B be a morphism. Assume for any injective object I , the induced map f ∗ : Mor(B , I ) →
Mor(A, I ) is an isomorphism, then f is an isomorphism.

PROOF. Assume f is not a monomorphism. Then there exists a non-zero u : K → A
such that f ◦u = 0. We first assume u is a monomorphism. Letπ : K → I be a monomor-
phism into an injective I . Then there exists v : A → I such that v◦u =π. Let h : B → I be
such that v = h◦ f . We have h◦ f ◦u = v◦u =π but also f ◦u = 0 hence h◦ f ◦u = 0 which
implies π= 0 a contradiction. Now we still have to prove that u may be supposed to be
injective. But the map u can be factored as t ◦ s where s : K → Im(u) and t : Im(u) → A
and t is mono and s is epi. Thus since f ◦u = 0, we have f ◦ t ◦ s = 0, but since s is
epimorphisms, we have f ◦ t = 0 with t mono. Assume now f is not an epimorphism;
Then there exists a nonzero map v : B → C such that v ◦ f = 0. We now send C to an
injective I by a monomorphism π. Then (π◦ v)◦ f = 0, and π◦ v is nonzero, since π is
a monomorphism. We thus get a non zero map π◦ v ∈ Mor(B , I ) such that its image by
f ∗ in Mor(A, I ) is zero. �

As an example we consider the case of sheaves. Let F ,G be sheaves over X , and f :
F → G a morphism of sheaves. We consider an injective sheaf, I , then Mor(F ,I ) =⋃

x Mor(Fx ,I (x)), so that the map f ∗ on each component will give fx : Fx →Gx . If this
map is an isomorphism, then f is an isomorphism.

One should be careful: the map f must be given, and the fact that Fx and Gx are
isomorphic for all x does not imply the isomorphism of F and G .
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4.1. Appendix: Poincaré-Verdier Duality. Let f : X → Y be a continuous map be-
tween manifolds. We want to define the map f !, and then of course R f !, adjoint of f !

and R f !. This is the sheaf theoretic version of Poincaré duality.

EXERCICES 6. (1) Prove that the inverse limit functor lim← is left-exact, while
the direct limit functor lim→ is exact. Prove that

H∗(lim→ Cα) = lim→ H∗(Cα)

(2) Use the above to prove that for F • a complex of sheaves over X , we have
H (F •

x ) = limU H∗(U ,F •). In other words the presheaf U 7→ H∗(U ,F •) has
stalk H (F •

x ), and of course the same holds for the associated sheaf. So the
stalk of the sheaf associated to the presheaf U 7→ H∗(U ,F •) is the homology
of the stalk complex F •

x .





CHAPTER 8

Derived categories of Sheaves, and spectral sequences

One of the main reasons to introduce derived categories is to do without spectral
sequences. It may then seem ironic to base our presentation of derived categories
on spectral sequences, via Cartan-Eilenberg resolutions. We coudl then rephrase our
point of view: the goal of spectral sequences is to actually do computations. The de-
rived category allows us to make this computation simpler hence more efficient by
applying the spectral sequence only once at the end of our categorical reasoning. This
is a common method in mathematics: we keep all information in an algebraic object,
and only make explicit computations after performing all the algebraic operations.

1. The categories of chain complexes

As we mentioned in the prevous lecture, one can consider the different categories
of chain complexes, Chb(C ), Ch+(C ), Ch−(C ) respectively of chain complexes bounded,
bounded from below, and bounded from above. We denote by A• an object in Ch+(C ),
we write it as

... dm−1 // Am
dm // Am+1

dm+1 // Am+2
dm+2 // ...

The functor H (A•) denotes the cohomology of this chain complex, that is H m(A•) =
Ker(dm)/Im(dm−1). We can see this is a complex with zero differential, so that H is a
functor from Ch(C ) to itself. When F • is a complex of sheaves, one should be care-
ful not to confuse this with H∗(X ,F m) obtained by looking at the sheaf cohomology
of each term, nor is it equal to something we have not defined yet, H∗(X ,F •) that is
computed from a spectral sequence involving both H and H∗ as we shall se later.

Because we are interested in cohomologies, we will identify two chain homotopic
chain complexes, but replacing chain complexes by their cohomology loses too much
information. There are two notions which are relevant. The first is chain homotopy.
The second is quasi-isomorphism.

DEFINITION 8.1. A chain map f • is a quasi-isomorphism, if the induced map
H ( f •) : H (A•) →H (B•) is an isomorphism.

It is easy to construct two chain complexes with the same cohomology, but not
chain homotopic.

The following definition shall not be used in these notes, but we give it for the sake
of completeness

87



88 8. DERIVED CATEGORIES AND SPECTRAL SEQUENCES

DEFINITION 8.2. Two chain complexes A•,B• are quasi-isomorphic if and only if
there exists C • and chain maps f • : C • → A• and g • : C • → B• such that f •, g • are quasi-
isomorphisms (i.e. induce an isomorphism in cohomology).

We shall restrict ourselves to derived categories of bounded complexes. The de-
rived category is philosophically the category of chain complexes quotiented by the
relation of quasi-isomorphisms. This is usually acheived in two steps. We first quotient
out by chain-homotopies, because it is easy to prove that homotopy between maps is
a transitive relation, and only afterwords by quasi-isomorphism, for which transitivity
is more complicated.

Note that if

0 → A → B 1 → B 2 → B 3 → ...

is a resolution of A, then 0 → A → 0 is quasi-isomorphic to 0 → B 1 → B 2 → B 3 → ....
Indeed the map i : A → B 1 induces obviously a chain map and a quasi-isomorphism

0

��

// A

i0
��

// 0

��

// 0 //

��

....

0 // B 1
∂1 // B 2

∂2 // B 3
∂3 // ...

The idea of the derived category, is that it is a universal category such that any func-
tor sending quasi-isomorphisms to isomorphisms, factors through the derived cate-
gory. Because we do not use this property, we shall give here a particular construction,
in a case sufficiently general for our purposes: the case when the category C is a cate-
gory having enough injectives. We refer to the bibliography for the general construc-
tion.

DEFINITION 8.3. Let C be an abelian category. The homotopy category, Kb(C ) is
the category having the same objects as Chainb(C ) and morphisms are equivalence
classes of chain maps for the cahin homotopy equivalence relation : MorKb(C )(A,B) =
MorC (A,B)/ ' where f ' g means that f is chain homotopic to g .

Note that Kb(C ) is not an abelian category: by moding out by the chain homo-
topies, we lost the notion of kernels and cokernels. As a result there is no good notion
of exact sequence. However Kb(C ) is a triangulated category. We shall not go into the
details of this notion here, but to remark that this is related to the property that short
exact sequences of complexes only yield long exact sequences in homology. Before
taking homology, a long exact sequence is a sequence of complexes

.. → A• → B• →C • → A•[1] → ..

usually only homotopy exact. Let Inj(C ) be the category of injective objects. This is
a full subcategory of C . Let Kb(Inj(C )) be the same category constructed on injective
objects. To each chain complex, we can associate a chain complex of injective objects
as follows:
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Let

... dm−1 // Am
dm // Am+1

dm+1 // Am+2
dm+2 // ...

be the chain complex, and for each Am an injective resolution

0 // Am
im // I m

0

d m
0 // I m

1

d m
1 // I m

2

d m
2 // ...

By slightly refining this construction, we get the notion of Cartan-Eilenberg resolu-
tion:

DEFINITION 8.4. A Cartan-Eilenberg resolution of A• is a commutative diagram,
where the lines are injective resolutions:

∂m−2

��
∂m−2

0��
∂m−2

1��
∂m−2

2��

0 // Am−1

∂m−1

��

im−1 // I m−1
0

∂m−1
0
��

δm−1
0 // I m−1

1

δm−1
1 //

∂m−1
1
��

I m−1
2

∂m−1
2
��

δm−1
2 // ..

0 // Am

∂m

��

im // I m
0

∂m
0
��

δm
0 // I m

1

δm
1 //

∂m
1
��

I m
2

∂m
2
��

δm
2 // ...

0 // Am+1

∂m+1

��

im+1 // I m+1
0

∂m+1
0

��

δm+1
0 // I m+1

1

δm+1
1 //

∂m+1
1

��

I m+1
2

∂m+1
2

��

δm+1
2 // ...

Moreover

(1) If Am = 0, then for all j , the I m
j are zero.

(2) The lines yield injective resolutions of Ker(∂m), Im(∂m) and H m(A∗). In other
words, the Im(∂m

j ) are an injective resolution of Im(∂m), the Ker(∂m
j )/Im(∂m−1

j )

are an injective resolution of Ker(∂m)/Im(∂m−1) =H m(A•,∂). This implies that
the Ker(∂m

j ) are an injective resolution of Ker(∂m).

REMARK 8.5. We decided to work in categories of finite complexes. This raises a
question: are Cartan-Eilenberg resolutions of such complexes themselves finite. Clearly
this is equivalent to asking whether an object has a finite resolution. The answer is
positive over manifolds: they have cohomological dimension n, so we can always find
resolutions of length at most n ( see [Br] chap 2, thm 16.4 and 16.28). If we want to
work with bounded from below complexes, we do not need this result, but then we
shall need to be slightly more careful about convergence results for spectral sequences,
even though there is no real difficulty. The case of complexes unbounded from above
and below is more complicated- because of spectral sequence convergence issues- and
we shall not deal with it.
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Now we claim

PROPOSITION 8.6. (1) Every chain complex has a Cartan-Eilenberg resolution.
(2) Let A•,B• be two complexes, I •,• and J•,• be Cartan-Eilenberg resolutions of

A•,B•, and f : A• → B• be a chain map. Then f lifts to a chain map f̃ : I •,• →
J•,•. Moreover two such lifts are chain homotopic.

PROOF. (see [Weib]) Set B m(A•) = Im(∂m), Z m(A•) = Ker(∂m) and H m(A•), and con-
sider the exact sequence 0 → B m(A•) → Z m(A•) → H m(A•) → 0. Starting from injective
resolutions I •B m of B m(A) and I •H m of H m(A•), the Horseshoe lemma (lemma 7.28 on
page 84) yields an exact sequence of injective resolutions 0 → I •B m → I •Z m → I •H m → 0.
Applying the Horseshoe lemma again to 0 → Z m(A•) → Am → B m+1(A•) → 0 we get an
injective resolution I •Am of Am and exact sequence 0 → I •Z m → I •Am → I •

B m+1 → 0. Then

I •Am

∂•m→ I •
Am+1 is the composition of I •Am → I •

B m+1 → I •
Z m+1 → I •

Am+1 . This proves (1). Prop-
erty (2) is left to the reader. �

Note: a chain homotopy between f , g : I •,• → J•,• is a pair of maps sh
p,q : I p,q →

J p+1,q and sv
p,q : I p,q → J p,q+1 such that g − f = (δsh + shδ)+ (∂sv + sv∂). This is equiva-

lent to requiring that sh + sv is a chain homotopy between Tot (I •,•) and Tot (J•,•).

PROPOSITION 8.7. Let I m
j be the double complex as above, and Tot (I •,•) be the

chain complex given by T q = ⊕ j+m=q I m
j and d = ∂+ (−1)mδ, in other words d|I m

j
=

d m
j + (−1)mδm

j . Then A• is quasi-isomorphic to T •.

LEMMA 8.8 (Tic-Tac-Toe). Consider the following bi-complex

∂m−2

��
∂m−2

0��
∂m−2

1��
∂m−2

2��

0 // Am−1

∂m−1

��

im−1 // I m−1
0

∂m−1
0
��

δm−1
0 // I m−1

1

δm−1
1 //

∂m−1
1
��

I m−1
2

∂m−1
2
��

δm−1
2 // ..

0 // Am

∂m

��

im // I m
0

∂m
0
��

δm
0 // I m

1

δm
1 //

∂m
1
��

I m
2

∂m
2
��

δm
2 // ...

0 // Am+1

∂m+1

��

im+1 // I m+1
0

∂m+1
0

��

δm+1
0 // I m+1

1

δm+1
1 //

∂m+1
1

��

I m+1
2

∂m+1
2

��

δm+1
2 // ...

Assume the lines are exact (i.e. im is injective and Im(im) = ker(δm
0 ) and Im(δm

j ) =
Ker(δm

j+1)). Then the maps im induce a quasi-isomorphism between the total complex

T q =⊕ j+m=q I m
j endowed with d = ∂+ (−1)mδ and the chain complex A•.
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PROOF. The proof is the same as the proof of the spectral sequence computing
the cohomology of a bicomplex, except that here we get an exact result. Let us write
for convenience δ = (−1)mδ. Then notice that the maps im yield a chain map be-

tween A• and T •. Indeed, if um ∈ Am , (∂+ δ)(im(um)) = ∂m
0 im(um) since δ

m
0 ◦ im =

0. But ∂m
0 im(um) = im+1∂m(um) = 0 since um is ∂m-closed. Similarly if um is exact,

im(um) is exact, so that im induces a map in cohomology. We must now prove that
this induces an isomorphism in cohomology. Injectivity is easy: suppose im(um) =
(∂+ δ)(y). Because there is no element left of I m

0 , we must have y = ym−1
0 hence

im(um) = ∂m−1
0 (ym−1

0 ) and δ
m−1
0 (ym−1

0 ) = 0. This implies by exactness of the lines that
ym−1

0 = im−1(um−1), and

im(um) = ∂m−1
0 (ym−1

0 ) = ∂m−1
0 (im−1(um−1) = im∂m−1(um−1)

injectivity of im implies that um = ∂mum−1, so um was zero in the cohomology of A• .
We finally prove surjectivity of the map induced by im in cohomology.

Indeed, let x = ∑
j+m=q xm

j such that (∂+δ)(x) = 0. Looking at the component of

(∂+δ)(x) in I m
j we see that this is equivalent to ∂xm−1

j−1 +δxm−1
j = 0. Since the complexes

are bounded, there is a smallest j = j0 such that xm
j 6= 0. Then we have δxm0−1

j0
= 0

(since xm0
j0−1 = 0), and by exactness of δ, we have xm0−1

j0
= δym0

j0
. Then x − (∂+δ)(ym0

j0
)

has for all components in I m
j vanishing for j ≥ j0 −1. By induction, we see that we can

replace x by a (∂+δ) cohomologous element with a single component w m
0 in I m

0 and

since (∂+δ)(w m
0 ) = 0, we have w m

0 = im(um) and we easily check ∂(um) = 0. �

If we are talking about an element in C identified with the chain complex 0 → A → 0
the total complex above is quasi-isomorphic to an injective resolution of A. Then if F
is a left-exact functor, we denote RF (A) to be the element

0 → F (I 0) → F (I1) → ....

in Kb(Inj(C )). And R j F (A) is the j -th homology of the above. sequence1. But if we
want to work in the category of chain complexes, we must give a a meaning to RF (A•)
for a complex A•.

REMARK 8.9. The idea of the total complex of a double complex has an important
consequence: we will never have to consider triple, quadruple or more complicated
complexes, since these can all eventually be reduced to usual complexes.

DEFINITION 8.10. Assume C is a category with enough injectives. The derived cat-
egory of C , denoted Db(C ) is defined as Kb(Inj(C )). The functor D : Chainb(C ) →
Db(C ) is the map associating to F • the total complex of a Cartan-Eilenberg resolution
of F •.

1The notation does not convey the idea that information is lost from RF (A) to R j F (A), as always
when taking homology.
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REMARKS 8.11. (1) The category Db(C ) has the following fundamental prop-
erty. Let F be a functor from Chainb(C ) to a category D, which sends quasi-
isomorphisms to isomorphisms, then F can be factored through Db(C ): there
is a functor G : Db(C ) →D such that F =G ◦D .

(2) We need to choose for each complex, a Cartan-Eilenberg resolution of it, and
the functor D : Chainb(C ) → Db(C ) depends on this choice. However, chosing
for each complex a resolution yields a functor, and any two functors obtained
in such a way are isomorphic (I would hope...).

DEFINITION 8.12. Assume C is a category with enough injectives, and Db(C ) =
Kb(Inj(C )) its derived category. Let F be a left-exact functor. Then the right-derived
functor of F , RF : Db(C ) → Db(D) is obtained by associating to F • the image by F of
the total complex of a Cartan-Eilenberg resolution of F •.

Note that Proposition 8.6 (2) shows that RF (A•) does not depend on the choice
of the Cartan-Eilenberg resolution Most of the time, we only compute RF (A) for an
element A in C . For this take an injective resolution of A

Examples:

(1) Let F • be a complex of sheaves. Then, H m(X ,F •) is defined as follows: apply
ΓX to a Cartan-Eilenberg resolution of F •, and take the cohomology. In other
words, H m(X ,F •) = (RmΓX )(F •). As we pointed out before, this is different
from H m(X ,F q ). But we shall see that there is a spectral sequence with E2 =
H p (X ,F q ) (resp. E p,q

2 = H p (X ,H p (F •))) converging to H p+q (X ,F •).
(2) Computing Tor . Let M be an R-module, and 0 → M → I1 → I2 → .... be an

injective resolution. Let F be the ⊗R N functor, then R j F (M) = Tor j (M , N ) is
the j -th cohomology of RF (M) given by 0 → F (I1) → F (I2) → F (I3) → .... For
example the Z-module Z/2Z has the resolution

0 →Z/2Z
f→Q/Z

g→Q/Z→ 0

where the map f sends 1 to 1
2 and g (x) = 2x. Then Tor (Z/2Z,Z/2Z) is the

complex 0 →Q/Z⊗Z/2Z
ḡ→Q/Z⊗Z/2Z→ 0. This is isomorphic to 0 →Z/2Z

2→
Z/2Z→ 0, so that Tor 0(Z/2Z,Z/2Z) = Z/2Z and Tor 1(Z/2Z,Z/2Z) = Z/2Z,
while Tor k (Z/2Z,Z/2Z) = 0 for k ≥ 2. However this is usually done using pro-
jective resolutions, which cannot be done for sheaves, since they do not have
enough projectives:

we start from
0 →Z

2·→Z→Z/2Z→ 0

which yields

0 →Z/2Z
2·→Z/2Z→ 0.

Finally the notion of spectral sequence allows us to replace injective resolutions by
acyclic ones, as we already proved in corollary 7.23:
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PROPOSITION 8.13. Let 0 → A → B 1 → B 2 → B 3 → ... be a resolution by F -acyclic
objects, that is R j F (B m) = 0 for all j ≥ 1 and all m. Then RF (A) is quasi-isomorphic to
0 → F (B 1) → F (B 2) → F (B 3) → ...

PROOF. The proposition tells us that injective resolutions are not necessary to com-
pute derived functors: F -acyclic ones are sufficient. Indeed we saw that 0 → A → 0 is
quasi-isomorphic to

0 // B 1
∂1 // B 2

∂2 // B 3
∂3 // ...

To compute the image by RF of this last complex, we use again the Cartan-Eilenberg
resolution of the above exact sequence.

0

��

0

��

0

��

0

��

0 // B 1

∂1

��

i1 // I 0
1

∂0
1
��

δ1
0 // I 1

1

δ1
1 //

∂1
1
��

I 1
2

∂2
1
��

δ1
2 // ...

0 // B 2

∂2

��

i2 // I 2
0

∂0
2

��

δ2
0 // I 2

1

δ2
1 //

∂1
2

��

I 2
2

∂2
2

��

δ2
2 // ...

We must then apply F to the above diagram, and we must compute the cohomol-
ogy of the total complex obtained by removing the column containing the B j . But by
assumptions the horizontal lines remain exact, since the B j are F -acyclic, while

0

��

0

��

0

��

0

��

0 // F (B 1)

∂1

��

i1 // F (I 0
1 )

∂0
1
��

δ1
0 // F (I 1

1 )
δ1

1 //

∂1
1
��

F (I 1
2 )

∂2
1
��

δ1
2 // ...

0 // F (B 2)

∂2

��

i2 // F (I 2
0 )

∂0
2

��

δ2
0 // F (I 2

1 )
δ2

1 //

∂1
2

��

F (I 2
2 )

∂2
2

��

δ2
2 // ...

Since the horizontal lines remain exact by assumption, using Tic-Tac-Toe, we can
represent any cohomology class of the total complex F (Tot (I p,q )) by a closed element
in F (B p+q ). �
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2. Spectral sequences of a bicomplex. Grothendieck and Leray-Serre spectral
sequences

Apart from simple situations, we cannot apply the Tic-Tac-Toe lemma to a general
bicomplex. However one should hope to recover at least SOME information on total
cohomology, from the homology of lines and columns.

Let us start with algebraic study. Let (K p,q ,∂,δ) be a double (or bigraded)complex.
In other words, δp

q : K p,q → K p,q+1 and ∂
p
q : K q,p → K p+1,q each define a complex. We

moreover assume that ∂ and δ commute. This yields a third chain complex, called the
total complex, given by Tot (K •,•)m =⊕p+q=mK q,p and dm =∑

p+q=m ∂
p
q + (−1)pδ

p
q .

DEFINITION 8.14. A spectral sequence is a sequence of bigraded complexes (E p,q
r ,d p,q

r ),
such that d 2

r = 0, d p,q
r : E p,q

r → E p−r+1,q+r
r , such that E p,q

r+1 = H(E p,q
r ,d p,q

r ). The spectral
sequence is said to converge to a graded complex F p endowed with a homogeneous
increasing filtration Fm , if for r large enough, F p

m/F p
m−1 = E p,m−p

r .

This is not the most general definition, since convergence could be reached in infi-
nite time. This will not happen in our situation, as long as we stick with bounded com-
plexes (and bounded resolutions). Note that the map ∂ obviously induces a boundary
map on H p,q

δ
(K •,•) = H p,q (K •,•,δ) → H p+1,q

δ
(K •,•).

THEOREM 8.15 (Spectral sequence of a total complex). There is a spectral sequence
from H∂Hδ(K •,•) converging to H p+q (Tot (K •,•)).

PROOF. For simplicity we assume K p,q = 0 for p or q nonpositive.
Then a cohomology class in H m(Tot (K •,•),d = ∂+δ) is just a sequence x = (x0, ..., xm)

of elements in K p,m−p such that ∂x0 = 0 and δx j + ∂x j+1 = 0 for j ≥ 1 and finally

δxm = 0. This is represented by the zig-zag

0

x0

∂

OO

δ // 0

x1

∂

OO

δ // 0

. . .

∂

OO

δ // 0

xm

∂

OO

δ // 0
FIGURE 1. x = x0 + ...+xm a cocycle in Tot (K •,•)m
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where the zeros indicate that the sum of the images of the arrows abutting there
is zero. This is well defined modulo addition of coboundaries, that correspond to se-
quences (y0, ..., ym−1), such that x0 = ∂y0, x j = δy j +∂y j+1,δym−1 = xm , that is repre-
sented as follows

x0

y0

∂

OO

δ // x1

y1

∂

OO

δ // x2

. . .

∂

OO

δ // xm

ym−1

∂

OO

δ // xm

FIGURE 2. y = y0 + ...+ ym−1 and x = x0 + ...+xm is the coboundary of y

The idea of the spectral sequence, is that a zig-zag as in Figure 1 can be approxi-
mated by zig-zags of length at most r . Replace the K p,q by E p,q

r as follows:
the space E p,q

r is a quotient of Z p,q
r , the set of sequences x = x0+ ...+xr−2 such that

(1) x j ∈ K p− j ,q+ j

(2) ∂x0 = 0 and δx j +∂x j+1 = 0 for j ≥ 1

(3) there exists xr−1 satisfying −δxr−2 = ∂xr−1

It will be convenient to use the notation x = x0 + ...+ xr−2 + (xr−1), where only the
existence of xr−1 matters and not its value, which explains why we put parenthesis
around xr−1. Another possible notation would be to replace xr−1 by xr−1 + ker(∂)∩
K p−r+1,q+r−1 (so that (xr−1) designates an element in K p−r+1,q+r−1/Ker(∂)). An ele-
ment of Z p,q

r is thus represented by the zig-zag
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0

x0

∂

OO

δ // 0

x1

∂

OO

δ // 0

. . .

∂

OO

δ // 0

(xr−1)

∂

OO

FIGURE 3. An element x = x0 + ...+xr−2 + (xr−1) in Z p,q
r

Note that one or more of the x j could be taken equal to 0 (and that all unwritten
elements are assumed to be zeros).

Then E p,q
r is defined as the quotient of Z p,q

r by the subgroup B p,q
r of Z p,q

r of ele-
ments of the type D(y0 + ...+ yr−1) represented as

0

y0
δ //

∂

OO

x0

y1

∂

OO

δ // x1

y2

∂

OO

δ // x2

. . .

∂

OO

δ // xr−2

yr−1

∂

OO

δ // (xr−1)

FIGURE 4. The element x = x0 + ... + xr−2 is in B p,q
r as it is the dr−1-

boundary of y.
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Again we do not worry about the value of δyr−1. We denote by E p,q
r the set of such

equivalence classes of objects obtained with x0 ∈ K p,q .
Clearly a cohomology class of the total complex, yields by truncation, a class in

E p,q
r , and it is clear that for r large enough (namely r ≥ min{p, q}), an element of E p,q

r
is nothing else than a cohomology class.

Our claim is that there is a differential dr : E p,q
r → E p−r+1,q+r

r such that E p,q
r+1 is the

cohomology of (E p,q
r ,dr ). Let us first study the space E p,q

r for small values of r . Clearly,
E p,q

0 = K p,q and for r = 1, E p,q
1 = H p,q (K •,•,∂). Then to x0 such that ∂x0 = 0 we associate

−δx0. This yields a map δ : H p,q (K •,•,∂) → H p,q+1(K •,•,∂), and for the class of x0 to be
in the kernel of this map, means thatδx1 ∈ Im(∂) so there exists x1 such that ∂x1 =−δx0,
and so we may associate to it the element

0

x0

∂

OO

δ // 0

(x1)

∂

OO

FIGURE 5. An element in Z p,q
2 .

the parenthesis around x1 means, as usual, that the choice of x1 is not part of the
data defining the element, only its existence matters.

Then for any choice of x1 as above, the element x = x0 + (x1) vanishes in E p,q
2 if

there exists y = y0 + y1 such that ∂y0 = 0, x0 = δy0 +∂y1, and δy1 = x1 (note that this
last equality can be taken as the choice of x1 which automatically satisfies ∂x1 =−δx0).
This is clearly the definition of an element in E p,q

2 , so we may indeed identify E2 with
the cohomology of (E1,d1), that is H q

δ
H p
∂

(K •,•). The map d2 is then defined as the class

of δx1.
In the general case, we define the map dr as follows. For the sequence (x0, ...., xr )

we define its image by dr to be the class of −δxr . Note that xr is only defined up to an
element z in the kernel of ∂, but δxr is well defined, since δz = D(z).

Clearly δxr ∈ K p−r,q+r . We have to prove on one hand that if δxr is zero (in the
quotient space E p,q

r ) we may associate to x an element in E p,q
r+1, and that this map is an

isomorphism. Clearly if δxr = 0 in the quotient space, this means we have the following
two diagrams
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0

x1

∂

OO

δ // 0

x2

∂

OO

δ // 0

. . .

∂

OO

δ // 0

(xr−1)

∂

OO

δ // u

FIGURE 6. The class u represents dr (x)

Now claiming that u vanishes in the quotient Er , means that we have a diagram of
the following type

0

y1

∂

OO

δ // 0

. . .

∂

OO

δ // 0

y j

∂

OO

δ // u

y j+1

∂

OO

δ // 0

. . .

∂

OO

δ // 0

yr

∂

OO

FIGURE 7. Representing the vanishing of dr x in E p,q
r
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In particular in the above case, u is not in the image of ∂, but of the form δy j +∂y j+1

with ∂y1 = 0. Then the fllowing sequence represents an element in Z p,q
r+1:

0

x1

∂

OO

δ // 0

x2

∂

OO

δ // 0

. . .

∂

OO

δ // 0

xr− j − y1

∂

OO

δ // 0

xr− j+1 − y2

∂

OO

δ // 0

. . .

∂

OO

δ // 0

−y j

∂

OO

δ // 0

FIGURE 8. How to make x into an element of E p,q
r+1 assuming dr x = 0 in E p,q

r .

However by substracting from x the above coboundary, we can make u to vanish,
and then we get an element of E p,q

r+1. Conversely, it is easy to see that an element in E p,q
r+1

corresponds by truncation to an element x in E p,q
r with dr (x) = 0. �

REMARK 8.16. Because ∂ and δ play symmetric roles, there is also a spectral se-
quence from HδH∂(K •,•) converging to H p+q (Tot (K •,•)). This is often very useful in
applications.

PROPOSITION 8.17 (The canonical spectral sequence of a derived functor). Let A• ∈
Chain(C ), and F a left-exact functor. Then there are two spectral sequences with respec-
tively E p,q

2 = H p (Rq F (A)) and E p,q
2 = Rp F (H q (A)), converging to Rp+q F (A).
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PROOF. Consider a Cartan-Eilenberg resolution of A•, and denote it by (I p,q ,∂,δ).
Then, consider the complex (F (I p,q ,F (∂),F (δ)). By definition RmF (A•) is the cohomol-
ogy of (Tot (F (I p,q ),F (d)). Now H q

δ
(F (I p,q )) = Rq F (A•), since the lines are injective res-

olutions of Ap , and so the cohomology of each line is Rq F (A•). Thus the first spectral
sequence has E p,q

2 = H p
∂

H q
δ

(F (I •,•)) = H p
∂

(Rq F (A•)). Now consider the other spectral
sequence. We must first compute H∂(F (I p,q )). But by our assumptions the columns are
injective, and have ∂ homology giving an injective resolution of H q (A•), so applying F
and taking the δ cohomology, we get Rp F (H q (A)). �

COROLLARY 8.18. There is a spectral sequence with E2 term H p (X ,H q (F •)) and
converging to H p+q (X ,F •). Similarly there is a spectral sequence from E p,q

2 = H p (X ,F q )
converging to H p+q (X ,F •).

PROOF. Apply the above to the left-exact functor on Sheaf (X), F (F ) = Γ(X ,•). �

The following result is often useful:

PROPOSITION 8.19 (Comparison theorem for spectral sequences). Let A•,B• be two
objects in Chain(C ), f • : A• → B• a chain morphism. Let F be a left-exact functor,
and assume that the induced map from H p (Rq F (A)) to H p (Rq F (B)) is an isomorphism.
Then the induced map RF (A) → RF (B) is also an isomorphism.

PROOF. �

Besides the above canonical spectral sequence, the simplest exampe of a spectral
sequence is the following topological theorem, constructing the cohomology of the
total space of a fibre bundle from the cohomology of the base and fiber. Indeed,

THEOREM 8.20 (Leray-Serre spectral sequence). Letπ : E → B be a smooth fibre bun-
dle. Then there exists a spectral sequence with E2 term H∗(B ,H q (Fx)) and converging
to H p+q (E).

For the proof see 102. Note that H q (Fx) is a locally constant sheaf, i.e. local coef-
ficients, with stalk H∗(F ), since H q (π−1(U )) ' H q (U ×F ) = H q (F ) for U small enough
and contractible. In particular when B is simply connected, and we take coefficients in
a field, H∗(B ,H q (Fx)) = H∗(B)⊗H∗(F ).

At the level of derived categories, this is even simpler. Let G be a left-exact functors,
from C to D and F a left-exact functor from D to E . We are interested in the derived
functor R(G ◦F )

THEOREM 8.21 (Grothendieck’s spectral sequence). Assume the category C has enough
injectives, and G transforms injectives into F -acyclic objects (i.e. such that R j F (A) = 0
for j ≥ 1). Then

R(F ◦G) = RF ◦RG

PROOF. Let I • be an injective resolution of A. Then G(I •) is a complex representing
RG(A). Since this is F -acyclic, it can be used to compute RF (RG(A)), and this is then
represented by FG(I •). But obviously this represents R(G ◦F )(A). �
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Note that this theorem could not be formulated if we only have the R j F without
derived categories, as was the case before Grothendieck and Verdier. Indeed, if we only
know the R j F there is no way of composing derived functors. This has the following
important application:

THEOREM 8.22 (Cohomological Fubini theorem). Let f : X → Y be a continuous
map between compact spaces. Then , we have RΓ(X ,F ) = RΓ(Y ,R f∗(F )) hence, taking
cohomology, H∗(X ,F ) = H∗(Y ,R f∗F ).

PROOF. Apply Grothendieck’s theorem to G = f∗ and F = Γ(Y ,•), use the fact that
Γ(X ,•) = Γ(Y ,•)◦ f∗, and remember that H j (X ,F ) = R jΓ(X ,F ). We still have to check
that f∗ sends injective sheafs to Γ(Y ,•) acyclic objects, but this is a consequence of
corollary 7.16. The second statement follows from the first by taking homology. �

REMARKS 8.23. (1) The Grothendieck spectral sequence looks like “three card
monty” trick: there is no apparent spectral sequence, and the proof is essen-
tially trivial. So what ? See the next theorem for an explanantion.

(2) Note that a priori we have not defined the cohomology of a an object in the
derived category of sheafs. This does not even fall in the framework of sheafs
with values in an abelian category, since the derived category is not abelian.
However, RΓ(X , ) : Db(Sheaf(X)) → Db(Ab). Now taking homology does not
lose anything, because any complex of abelian groups is quasi-isomorphic to
its homology, since the category of abelian groups has homological dimension
1 ([?]). This fails for general modules, so in general, RΓ(X ,R f∗(F )) is only de-
fined in Db(R−mod), which is not well understood, except that any element
has a well defined homology, so RpΓ(X , (R f∗)) is well defined.

(3) If c is the constant map, we get H∗(X ,F •) = H∗({pt }, (Rc)∗(F •)), but (Rc)∗(F •)
is a complex of sheaves over a point, that is just an ordinary complex. We thus
associate a complex in Db(R−mod) to the cohomology of X with coefficients
in F •.

Example: Let us consider the functorΓZ , then by Grothendieck’s theorem,ΓZ (X ,F ) =
Γ(X ,ΓZ (F )) so that RΓZ (X ,F ) = RΓ(X ,RΓZ (F )).

THEOREM 8.24 (Grothendieck’s spectral sequence-cohomological version). Under
the assumptions of theorem 8.21, there is a spectral sequence from E p,q

2 = Rp F ◦RqG to
Rp+q (F ◦G).

PROOF. Let I • be an injective resolution of A, and consider C • =G(I •).
Then one of the canonical spectral sequence of theorem 8.17 applied to RF and

C •, has E p,q
2 given by Rp F (H q (C •)) and converges to Rp+q F (C •). But since H q (C •) =

RqG(A) by definition, we get that this spectral sequence is Rp F (RqG(A)), and con-
verges to Rp+q F (G(I •)) that is the p+q cohomology of RF (G(I •)) = RF ◦RG(A). But we
saw that RF◦RG(A) = R(F◦G)(A), so the spectral sequence converges to Rp+q (F◦G)(A).

�
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Ideally, one should never have to construct a spectral sequence directly, any spec-
tral sequence should be obtained from the Grothendieck’s spectral sequence fro some
suitable pair fo functors F,G .

EXERCICE 1. Let F1,F2 be functors such that we have an isomorphism RF1 = RF2

on elements of C . Then RF1 = RF2 on the derived category.

PROOF OF LERAY-SERRE. Let us see how this implies the Leray spectral sequence:
take C =Sheaves(X), D =Sheaves(Y), E =Ab ad F = f∗, G = ΓY . Since ΓY ◦ f∗ = ΓX ,
we get RΓX = RΓY ◦R f∗, since f∗ sends injectives to injectives (because f∗ has an ad-
joint f −1). So we get a spectral sequence E p,q

2 = H p (Y ,Rq f∗(F )) to H p+q (X ,F ) is the
sheaf associated to the presheaf H q ( f −1(U )). If f is a fibration, this is a constant sheaf.
Moreover the sheaf Rq f∗(F ) has stalk limx∈U H q ( f −1(U )) which is equal to H q ( f −1(x))
if f is a fibration such that the f −1(U ) form a fundamental basis of neighbourhoods of
f −1(x). �

EXERCICE 2. Prove that if U is a covering of X such that for all q and all sequences
(i0, i1, ..., iq ), we have H j (Ui0 ∩ ....∩Uiq ) = 0 for j ≥ 1, then the cohomology of the Čech
complex, C (U ,F ) coincides with H∗(X ,F ). Hint: consider an injective resolution of
F , 0 →F →I 0 →I 1 → ... and the double complex having as rows the Čech resolution
of I p .

3. Complements on functors and useful properties on the Derived category

3.1. Derived functors of operations and some useful properties of Derived func-
tors. Consider the operations H om,⊗, f∗, f −1. The operations f −1 is exact, so it is its
own derived functor. The functor f∗ is left exact, hence has a right-derived functor, R f∗.
The operation H om is covariant in the second variable and contravariant in the first.
Considering it as a functor of the second variable it is left exact, so has a right-derived
functor, RH om. Finally the tensor product is right-exact,hence has a left derived func-
tor denoted⊗L . Note that in the case of H om and⊗, the symmetry of the functor is not
really reflected, since for the moment one of the two factors must be a sheaf and not
a chain complex of sheaves. For a satisfactory theory one would have to work with bi-
functors, which we shall avoid (see [K-S], page 56). In particular we have as a complex
of sheaves, (F •⊗G •)r =∑

p+q=r F p⊗G q and H om(F •,G •)r =∑
p+q=r H om(F p ,G q ).

Again acording to [K-S], under suitable assumptions, whether we consider H om
as a bifunctor, or we consider the functor F →H om(F ,G ) (resp. G →H om(F ,G )),
their derived functors coincide.

REMARK 8.25. (1) Let Γ({x},F ) =Fx . This is an exact functor, since by defini-
tion a sequence is exact, if and only if the induced sequence at the stalk level
is exact. So RΓ({x},F ) =Fx .

(2) Be careful: there is no equality Γ({x},ΓZ (F )) = Γ({x},F ), so we cannot use
Grothendieck’s theorem 8.21.
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(3) As long as we are working over fields, and finite dimensional vector spaces, the
tensor product and H om functors on the category k-vect are exact, so they
coincide with their derived functors. We shall make this assumption whenever
necessary.

3.2. More on Derived categories and functors and triangulated categories. There
is no good notion of exact sequence in a derived category. Of course, the exact se-
quence of sheaves has a corresponding exact sequence of complexes of their injective
resolution as the following extension of the Horseshoe lemma (Lemma 7.28) proves:

PROPOSITION 8.26. Let 0 → A• → B• → C • → 0 be an exact sequence of complexes.
There is an exact sequence of injective resolutions 0 → I •A → I •B → I •C → 0 and chain maps
which are quasi-isomorphisms

0 // A•

a
��

// B•

b
��

// C • //

c
��

0

0 // I •A // I •B // I •C // 0

PROOF. Indeed, if the complexes are reduced to single objects, this is just the Horse-
shoe lemma 7.28 applied to 0 → A → B → C → 0. The general case follows from the
theorem 8.6, (2), by replacing the double complexes by their total complex. �

However, since the derived category does not have kernels or cokernels, the no-
tion of exact sequence is not well defined. It is replaced by the notion of distinguished
triangle, defined as follows.

DEFINITION 8.27. A distinguished triangle is a triangle

A•
v

}} }=
}=

}=
}=

B• f
// C •

u

aaBBBBBBBB

isomorphic to a triangle of the form

C ( f )•
v

{{ {;
{;

{;
{;

{;

M• f
// N •

u

ccFFFFFFFF

associated to a map f : M → N .

We now claim that to an exact sequence in Chainb(C ), we may associate a distin-
guished triangle in the derived category

Indeed, an exact sequence of injective sheaves 0 → I •A → I •B → I •C → 0 is split, so
is isomorphic to 0 → I •A → I •A ⊕ IC → I •C → 0 and hence isomorphic to the above exact
sequence for M• = I •C [−1], N • = I A and f = 0.
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0 → I •A → I •A ⊕ IC → I •C → 0 and this is isomorphic to 0 → I •A → I •B → I •C → 0
The following property will be useful in the proof of Proposition 9.3.

PROPOSITION 8.28 ([Iv], p.58). Let F be a left exact functor from C to D, where C ,D
are categories having enough injectives. Then the functor RF : Db(C ) → Db(D) preserves
distinguished triangles.

PROOF. �

Let now F,G , H be left-exact functors, and λ,µ be transformations of functors from
F to G and G to H respectively.

PROPOSITION 8.29 ([K-S] prop. 1.8.8, page 52). Assume for each injective I we have

an exact sequence 0 → F (I )
λ→G(I )

λ→ H(I ) → 0. Then there is a transformation of func-
tors ν and a distinguished triangle

→ RF (A)
Rλ→ RG(A)

Rλ→ RH(A)
ν→ RF (A)[1]

Rλ[1]→ ...

PROOF. �

Example: We have an exact sequence 0 → ΓZ (F ) →F →FX−Z that extends for F

flabby to an exact sequence

0 → ΓZ (F ) →F →FX−Z → 0

therefore

COROLLARY 8.30. There is a distinguished triangle

RΓZ (F ) → RΓ(F ) → RΓ(FX−Z )
[+1]→ RΓZ (F )[1]...

yielding a cohomology long exact sequence

... → H jΓZ (F ) → H j (X ,F ) → H j (X \ Z ;F ) → H j+1
Z (F ) → ...

REMARK 8.31. For each open U , we may consider RΓ(U ,F •) that is an element in
Db(R−mod). We would like to put these toghether to make a sheaf. The only obstruc-
tion is that this would not be a sheaf in an abelian category, but only in a triangulated
category. However, consider an injective resolution of F •, I •. Then I •(U ) represents
R(Γ(U ,F •), so that RΓ is just the functor associating to F • the injective resolution,
which is the map so that we may define RΓ(F •) = I • in the derived category, i.e. this
is the functor D of Definiton 8.10. Then RΓ(U ,F •) = RΓ(F •)(U ).
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CHAPTER 9

Singular support in the Derived category of Sheaves.

1. Singular support

1.1. Definition and first properties. From now on, we shall denote by Db(X ) the
derived category of (bounded) sheaves over X , that is Db(Sheaf(X)).

Let U be an open set. The functor Γ(U ;•) sends sheaves on X to R-modules, and
has a derived functor RΓ(U ;•). Its cohomology R jΓ(U ;F ) = H j (U ,F ). Now if Z is
a closed set, we defined the functor ΓZ as the set of sections supported in Z , that
is ΓZ (U ,F ) is the kernel of F (U ) −→ F (U \ Z ). This is a sheaf, so ΓZ is a functor
from Sheaf(X) to Sheaf(X). One checks that this is left-exact, as follows from the left-
exactness of the functor F →F|X \Z , where F|X \Z (U ) =F (U \ (Z ∩U )). Hence we may
define RΓZ : Db(X ) −→ Db(X ). This is defined for example for a sheaf F as follows:
construct an injective resolution F , that is 0 →F →I0 →I1 →I2 →I3 → ....

Then the complex of sheaves

0 → ΓZ I0 → ΓZ I1 → ΓZ I2 → ΓZ I3 → ΓZ I4 → ...

represents RΓZ (F ). The cohomology space H j (RΓZ (F )) is an element in Db(X ), of-

ten denoted H j
Z (F ). Moreover we denote by H j

Z (X ,F ) = H j (RΓZ (X ,F )).

often denoted H j
Z (F ).

DEFINITION 9.1. Let F • be an element in Db(X ). The singular support of F •,
SS(F •) is the closure of the set of (x, p) such that there exists a real functionϕ : M →R

such that dϕ(x) = p, and we have

RΓ{x|ϕ(x)≥0}(F
•)x 6= 0

Note that this is equivalent to the existence of j such that R jΓ{x|ϕ(x)≥0}(F •)x =H j (RΓZ (F •))x =
H j

Z (F •)x 6= 0.

REMARK 9.2. (1) The set SS(F ) is a homogeneous subset in T ∗X . Note that
SS(F ) is in T ∗X not T̊ ∗X .

(2) It is easy to see that SS(F •)∩0X = supp(F •) where supp(F •) = {x ∈ X |H j (F •)x = 0}.
Take ϕ= 0, then RΓ{x|ϕ(x)≥0}(F ) = RΓ(F ), and R jΓ(F )x =H j (Fx).

(3) Clearly (x, p) ∈ SS(F •) only depends on F • near x. In other words if F • =G •
in a neighbourhood V of X , then

(x, p) ∈ SS(F •) ⇔ (x, p) ∈ SS(G •)

107
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(4) Assume for simplicity that we are dealing with a single sheaf F , rather than
with a complex. The above vanishing can be restated by asking that the natural
restriction morphism

lim
U3x

H j (U ;F ) −→ lim
U3x

H j (U ∩ {ϕ< 0};F )

is an isomorphism for any j ∈ Z . This implies in particular ( j = 0) that
“sections” of F defined on U ∩ {ϕ < 0} uniquely extend to a neighborhood of
x.

Indeed, let I • be a complex of injective sheafs quasi-isomorphic to F •.
Then we have an exact sequence

0 → ΓZ I • →I • →I •
X \Z → 0

where the surjectivity of the last map follows from the flabbiness of injective
sheafs. This yields the long exact sequence

→ H j
Z (U ,F •) → H j (U ,F •) → H j (U \ Z ,F •) → H j+1

Z (U ,F •) → ...

so that the vanishing of H j
Z (U ,F •) = RΓ j

Z (F •) for all j is equivalent to the
fact that H j (U ,F •) → H j (U \ Z ,F •) is an isomorphism.

(5) Using proposition 8.22, one can reformulate the condition of the definition as

RΓ{t≥0}(R,Rϕ∗(F •)){t=0} = 0.

The main properties of SS(F ) are given by the following proposition

PROPOSITION 9.3. The singular support has the following properties

(1) SS(F •) is a conical subset of T ∗X .

(2) If F •
1 →F •

2 →F •
3

+1→F •
1 [1] is a distinguished triangle in Db(X ), then SS(F •

i ) ⊂
SS(F •

j )∪SS(F •
k ) and (SS(F •

i )\SS(F •
j ))∪(SS(F •

j )\SS(F •
i )) ⊂ SS(F •

k )) for any
i , j ,k such that {i , j ,k} = {1,2,3}.

(3) SS(F •) ⊂⋃
j SS(H j (F •)).

PROOF. The first statement is obvious. For the second, we first notice that SS(F •) =
SS(F •[1]). Now according to Proposition 8.28, RΓZ maps a triangle as in (2) to a similar
triangle, so that we get the following distinguished triangle RΓZ (F •

1 ) → RΓZ (F •
2 ) →

RΓZ (F •
3 )

+1→ RΓZ (F •
1 )[1] → ...

which yields

... → RΓZ (F •
1 )x → RΓZ (F •

2 )x → RΓZ (F •
3 )x

+1→ RΓZ (F •
1 )x[1] → ...

and in particular, taking Z = {y |ψ(y) ≥ 0} where ψ(x) = 0 and dψ(x) = p, if two of
the above vanish, so does the third. This implies the first part of (2). Moreover if one
of the above cohomologies vanish, for example RΓZ (F •

1 )x ' 0, then the other two are
isomorphic, hence vanish simultaneously. Thus (x, p) ∉ SS(F •

1 ) implies that (x, p) ∉
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SS(F •
2 )∆SS(F •

3 ), where ∆ is the symmetric difference. This implies the second part of
(2).

Consider the canonical spectral sequence of Proposition 8.17 applied to F = ΓZ .
This yields a spectral sequence from RpΓZ (H q (F •)), converging to Rp+qΓZ (F •). So if(
RpΓZ (H q (F •))

)
x vanishes we also have that

(
Rp+qΓZ (F •)

)
x vanishes. �

Examples:

(1) An exact sequence of complexes of sheaves 0 → F •
1 → F •

2 → F •
3 → 0 is a spe-

cial case of a distinguished triangle (or rather its image in the derived category
is a distinguished triangle). So in this case, we have the inclusions SS(F •

i ) ⊂
SS(F •

j )∪SS(F •
k ) and (SS(F •

i )\SS(F •
j ))∪(SS(F •

j )\SS(F •
i )) ⊂ SS(F •

k )) for any
i , j ,k such that {i , j ,k} = {1,2,3}.

(2) If F is the 0-sheaf that is Fx = 0 for all x (hence F (U ) = 0 for all U ), we have
SS(F ) =;. Indeed, for all x and ψ, RΓ{ψ(x)≥0}(X ,F )x = 0, hence the result. It
is easy to check that this if SS(F ) = ;, then F is equivalent to the zero sheaf
(in Db(X )), that is F is a complex of sheaves with exact stalks.

(3) Let kX be the constant sheaf on X . Then SS(kX ) = 0X . Indeed, consider the
deRham resolution of kX ,

0 → kU →Ω0 d→Ω1 d→Ω2 d→Ω3 d→ ...

and apply ΓZ . We obtain

0 → ΓZΩ
0 d→ ΓZΩ

1 d→ ΓZΩ
2 d→ ΓZΩ

3 d→ ...

where ΓZΩ
j is the set of j -forms vanishing on Z , and the cohomology of the

above complex is obtained by considering closed forms, vanihing on Z , mod-
ulo differential of forms vanishing on Z .

But if Z is the set {yϕ(y) ≥ 0} where p = dϕ(y) 6= 0, a chart reduces this
to the case where Z is a half space. Then, Poincaré’s lemma tells us that any
closed form on a small ball, vanishing on the half ball is the differential of a
form vanishing on the half ball. Thus SS(kX ) does not intersect the comple-
ment of 0X , and since the support of kX is X , we get SS(kX ) = 0X .

Since SS is defined by a local property, SS(F ) = 0X for any locally constant
sheaf on X .

(4) We have
SS(F •⊕G •) = SS(F •)∪SS(G •)

since RΓZ (F •⊕G •) = RΓZ (F •)⊕RΓZ (G •).
(5) Let U be an open set with smooth boundary, ∂U and kU be the constant sheaf

over U . Then SS(kU ) = {(x, p) | x ∈U , p = 0, or x ∈ ∂U , p = λν(x),λ< 0} where
ν(x) is the exterior normal.

Indeed, in a point outside ∂U the sheaf is locally constant, and the state-
ment is obvious. If x is a point in U , then the singular support over T ∗

x X is
computed as in the case of the constant sheaf (since kU is locally isomorphic
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to the constant sheaf) and we get that SS(kU )∩T ∗
x X = 0x . For x in X \U , the

same argument, but comparing to the zero sheaf, shows that SS(kU )∩T ∗
x X =

;. We must then consider the case x ∈U \U .
Now letΩ j

U be the sheaf defined byΩ j
U (V ) is the set of j -forms inΩ j (U∩V )

supported in a closed subset of V . We then have an acyclic resolution

0 → kU →Ω0
U

d→Ω1
U

d→Ω2
U

d→Ω3
U

d→ ...

so that RΓZ (kU ) is defined by

0 → ΓZΩ
0
U

d→ ΓZΩ
1
U

d→ ΓZΩ
2
U

d→ ΓZΩ
3
U

d→ ...

where Z = {ϕ(x) ≥ 0} and ΓZΩ
j
U means the space of j -forms vanishing on the

complement of Z . Now assume U and Z are half-spaces (respectively open
and closed). Consider the closed forms in (ΓZΩ

k
U ) modulo differentials of

forms in (ΓZΩ
k−1
U ). But any closed form vanishing in a sector is the differential

of a form vanishing in the same sector (by the proof of Poincaré’s lemma 3.4).
There is an exception, of course, if the sector is empty and k = 0, in which case
the constant function is not exact. So at a point x of ∂U , (R jΓZΩU )x = 0 unless
Z ∩U =;, in which case (R0ΓZΩU )x = kx = k and dϕ(x) is a positive multiple
of the interior normal.

We may reduce to the above case by a chart of U , and using the locality of
singular support.

(6) For U as above and F =U , we have

SS(kF ) = {(x, p) | x ∈U , p = 0, or x ∈ ∂U , p =λν(x),λ> 0}

This follows from (2) of the above proposition applied to the exact sequence
(which is a special case of a distinguished triangle) 0 → kX \F → kX → kF → 0.

(7) Let kZ be the constant sheaf on the closed submanifold Z . Then SS(kZ ) =
νZ = {(x, p) | x ∈ Z , p|Tx Z = 0}. This is the conormal bundle to Z .

EXERCICE 1. Compute SS(F ) for F an injective sheaf defined by F (U ) = {(sx)x∈U |
sx ∈C}. What about the sheaf FW (U ) = {(sx)x∈U | sx ∈C for x ∈W, sx = 0 for x ∉W }

Let us now see how our operations on sheaves act on SS(F •).

PROPOSITION 9.4. Let f : X → Y be a proper map on supp(F •). Then

SS(R f∗(F •)) ⊂πY (T ∗ f )−1(SS(F •)) =Λ f ◦SS(F •)

and this is an equality if f is a closed embedding. We also have

SS(R f !(F
•)) ⊂πY (T ∗ f )−1(SS(F •)) =Λ f ◦SS(F •)

If f is any submersive map,

SS( f −1G •) = T ∗ f (π−1
Y (SS(G •)) =Λ−1

f ◦SS(G •)
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Note that the maps πY ad T ∗ f are defined as follows: πY : T ∗X ×T ∗Y → T ∗Y is the
projection, while T ∗ f : T ∗X → T ∗Y is the map (x,ξ) 7→ ( f (x),d f (x)ξ).

For L a Lagrangian, πY (T ∗ f )−1(L) is obtained as follows: consider T ∗X ×T ∗Y and
the Lagrangian Λ f = {(x,ξ, y,η) | y = f (x),ξ = η ◦d f (x)}. This is a conical Lagrangian

submanifold. Let KL = L ×T ∗Y . This is a coisotropic submanifold, K ω
L (x,ξ, y,η) =

L×{(y,η)}, so KL/K ω
L ' T ∗Y , and πY (T ∗ f )−1(L) = (Λ f ∩KL)/K ω

L . In other words, ifΛ f

is the Lagrangian relation associated to f , we have πY (T ∗ f )−1(L) =Λ f (L).

PROOF. Letψbe a smooth function on Y such thatψ( f (x)) = 0 and p = dψ( f (x))d f (x).
Assume we have (x, p) ∉ SS(F •) for all x ∈ f −1(y). Then we have

RΓ{ψ◦ f ≥0}(F
•)| f −1(y) = 0

But

RΓ{ψ≥0}(R f∗(F •))y = R f∗(RΓ{ψ◦ f ≥0}(F
•))y = RΓ( f −1(y),RΓ{ψ◦ f ≥0}(F

•)) = 0

Here the first equality follows from the fact that ΓZ ◦ f∗ = f∗ ◦Γ f −1(Z ) so the same holds
for the corresponding derived functors. The second equality follows from the fact that
if f is proper on supp(F •), we have ( f∗F •)y = Γ( f −1(y),F •

| f −1(y)
).

Indeed, let j : Z → X be the inclusion of a closed set. We define Γ(Z ,F •) as
Γ(Z , j−1(F •)). We also haveΓ(Z ,F •) = limZ⊂U Γ(U ,F •). Then ( f∗F •)(U ) =F •( f −1(U )),
so ( f∗F •)y = limU3y F •( f −1(U )) and since f is proper, f −1(U ) is a cofinal family of

neighbourhoods of f −1(y). This implies ( f∗F •)y
de f= Γ(y, f∗F •) = Γ( f −1(y),F •), hence

taking the derived functors (R f∗F •)y = RΓ(y,R f∗F •) = RΓ( f −1(y),F •). Clearly if for
all x ∈ f −1(y) we have RΓ(x,F •) = 0, whe will have (R f∗F •)y = 0. We thus proved
that (x, p ◦d f (x)) ∉ SS(F •) implies ( f (x), p) ∉ SS(R f∗(F •)). If f is a closed embed-
ding, f −1(y) is a discrete set of points, RΓ( f −1(y),F •) vanishes if and only if for all x in
f −1(y), the stalks RΓ(F •)x vanish. �

The following continuity result is sometiems useful. Let (F •
ν )ν≥1 be a directed sys-

tem of sheaves, i.e. there are maps fµ,ν : F •
µ →F •

ν satisfying the obvious compatibility
conditions, and let F • = limν→+∞F •

ν (we will assume the limit is a bounded complex,
so the F •

ν are uniformly bounded.
Now let Sν be a sequence of closed sets in a metric space M . Then limν→+∞ Sν = S

means that each point x in S is the accumulation point of some sequence of points xν)
in Sν. With these notions at hand, we may now state

LEMMA 9.5. Let (F •
ν )ν≥1 be a directed system of sheaves. Then we have

SS( lim
ν→+∞F •

ν ) ⊂ lim
ν→+∞SS(F •

ν )

PROOF. Indeed, we must compute RΓZ (limν→+∞F •
ν )x = limν→+∞ RΓZ (F •

ν )x the
equality follows from the fact that the direct limit is an exact functor, and thus com-
mutes with ΓZ (since it commutes with Γ(U ,•)). Set Z = {y | ψ(y) ≥ 0}, where ψ is a
function such that ψ(x) = 0,dψ(x) = p. As a result (x0, p0) ∉ SS(limν→+∞F •

ν ) if and
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only RΓZ (limν→+∞F •
ν )x = 0 for all (x, p) in a neighbourhood of (x0, p0), and this im-

plies our statement. �

1.2. The sheaf associated to a Generating function. Let S(x,ξ) be a GFQI for a La-
grangian L, that is
L = {(x, ∂

∂x S(x,ξ)) | ∂
∂ξ

S(x,ξ) = 0}. We set ΣS = {(x,ξ) | ∂
∂ξ

S(x,ξ) = 0}, Σ̂S = {(x,ξ,λ) |
∂S
∂ξ

(x,ξ) = 0,λ = S(x,ξ)}, and L̂ = {(x,τp,λ,τ) | p = ∂S
∂x (x,ξ), ∂S

∂ξ
(x,ξ) = 0,λ = S(x,ξ)}. We

moreover assume the sets π−1(x,λ)∩ Σ̂S are discrete sets.
Set US = {(x,ξ,λ) | S(x,ξ) ≤ λ} ⊂ M ×Rq ×R. Let FS = Rπ∗(kUS ), where π is the

projection π : M ×Rq ×R→ M ×R.
We claim that SS(FS) = L̂. It is easy to prove that SS(FS) ⊂ L̂, since Λπ ◦SS(kS) = L̂.

Indeed, the correspondence Λπ corresponds to symplectic reduction by pξ = 0, i.e.
sends A to Λπ ◦ A = A∩ {pξ = 0}/(ξ).

To prove equality, we use the formula from the proof of the above proposition

RΓ{ψ≥0}(Rπ∗(kUS ))(x,λ) = Rπ∗(RΓ{ψ◦π≥0}(kUS ))(x,λ) =
RΓ(π−1(x,λ),RΓ{ψ◦π≥0}(kUS )) = 0

But RΓ{ψ◦π≥0}(kUS )(x,ξ,λ) is non zero if and only if (x,ξ,λ,dψ(π(x,ξ,λ))dπ(x,ξ,λ)) ∈
SS(kUS ) that is (x,dψ(x,λ)) ∈ L̂. This is a discrete set by assumption (for (x,λ) fixed),
thus RΓ{ψ◦π≥0}(kUS )|π−1(x,λ) has vanishing stalk except over the discrete set of points of
Σ̂S ∩π−1(x,λ). Note that such a sheaf is zero if and only if each of the stalks is zero. So
we have that

RΓ(π−1(x,λ),RΓ{ψ◦π≥0}(kUS )) = 0

if and only if for all (x,ξ,λ) ∈ M ×Rq ×Rwe have (x,τp,λ,τ) ∈ L̂ =Λπ ◦SS(kUS ).

REMARKS 9.6. (1) With the notations of the previous remark, note that if limν→+∞ Sν =
S, where the limit is for the uniform C 0 convergence, we have limν→+∞USν =
US , and thus limν→+∞(kSν) = kS (where we wrote kS for kUS ). Thus SS(kS) ⊂
limν→+∞ SS(kSν).

1.3. Uniqueness of the quantization sheaf of the zero section. The following plays
the role of the uniqueness result for GFQI (see Theorem 5.18).

PROPOSITION 9.7. Let F • in Db(X ), be such that SS(F •) ⊂ 0X . Then F • is equiva-
lent in Db(X ) to a locally constant sheaf.

PROOF. We start by proving the proposition for the case X = R (see [K-S] page 118,
proposition 2.7.2 and lemma 2.7.3). First, since the support of ΓZ (F ) is contained in
Z , we have that Γ{t≥s}F (]−∞, s+ε[) = Γ{t≥s}F (]s−ε, s+ε[). Moreover this last space is
the kernel of the map

F (]−∞, s +ε[) →F (]−∞, s +ε[\{t ≥ s}) =F (]−∞, s[)
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so we have an exact sequence

0 → Γ{t≥s}F (]s −ε, s +ε[) →F (]−∞, s +ε[) →F (]−∞, s[)

which in the case of a flabby (and in particular for an injective) sheaf, I extends to

0 → Γ{t≥s}I (]s −ε, s +ε[) →I (]−∞, s +ε[) →I (]−∞, s[) → 0

since the last map is surjective by flabbiness.
Thus, given an injective resolution 0 →F →I 0 →I 1 →I 2 → ... we get a sequence

0 → Γ{t≥s}I
•(]s −ε, s +ε[) →I •(]−∞, s +ε[) →I •(]−∞, s[) → 0

By definition, the complex Γ{t≥s}I
•(]s−ε, s+ε[) represents RΓ{t≥s}F (]s−ε, s+ε[) which

converges as ε goes to zero to RΓ{t≥s}(F )s , which vanishes by assumption. Thus using
the exactness of the direct limit, and this exact sequence we get an isomorphism

(9.1) lim−−−→
ε→0

RΓ(]−∞, s +ε[,F ) → RΓ(]−∞, s[,F )

We claim that this implies that the map

RΓ(]−∞, s1[,F ) → RΓ(]−∞, s0[,F )

is an isomorphism for any s1 > s0. Indeed, the map 9.1 must be surjective for any ε
small enough, thus for s1 close enough to s0, the above map is onto. On the other hand
if the map was not injective, consider u ∈ RΓ(]−∞, s1[,F ), and s0 be the least upper
bound of the set of real numbers such that the map

RΓ(]−∞, s1[,F ) → RΓ(]−∞, s[,F )

sends u to 0. Consider now the fact that the map

lim−−−→
ε→0

RΓ(]−∞, s0 +ε[,F ) → RΓ(]−∞, s0[,F )

is injective. If the image of u vanishes in RΓ(]−∞, s0[,F ), this implies that u already
vanishes1 RΓ(]−∞, s0 +ε[,F ), but this contradicts the defintion of s0. We thus proved
that there is an element u 6= 0 in RΓ(]−∞, s1[,F ) vanishing in all RΓ(]−∞, s1 −ε[,F )
for ε> 0.

To complete the proof, it is sufficient to prove that such a u vanishes in RΓ(] −
∞, s1[,F ) which would follow from the definition of s0 and the equality

RΓ(]−∞, s1[,F ) = lim←−−−
ε→0

RΓ(]−∞, s1 −ε[,F ).

which holds for any complex of sheaves2.
We thus proved that RΓ(]−∞, s[,F ) is constant. Now in the general case, we have

to prove that if F • is in Db(X ), it is locally constant. Let B(x0,R) be a small ball in

1Since an element (an)n≥1 in the direct limit limn An is zero if and only if an is zero for n large
enough.

2Because
⋃

V̄ ⊂U V =U implies limV̄ ⊂U F (V ) =F (U ).
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X , that is of radius smaller than the injectivity radius of the manifold. Consider the
function r (x) = d(x, x0). Then SS(r∗F ) ⊂Λr ◦SS(F •), but since SS(F ) ⊂ 0X , and r has
no positive critical value, we get Λr ◦0X ⊂ 0R, so that RΓ(]−∞,R[,R f∗(F •)) −→ RΓ(]−
∞,ε[,R f∗(F •)) is an isomorphism. In other words, RΓ(B(x0,R),F •) −→ RΓ(B(x0,ε),F •)
is an isomorphism, and by going to the limit as ε goes to zero, we get RΓ(B(x0,R),F •) '
RΓ(F •)x0 , hence RΓ(F •) is locally constant, i.e. F • is locally constant in Db(X ).

�

REMARK 9.8. One should not imagine that sheafs on contractible spaces have van-
ishing cohomology.

EXERCICE 2. Compute the cohomology of the skyscraper sheaf at 0 inR. Then com-
pute its singular support.

2. The sheaf theoretic Morse lemma and applications

The last paragraph in the proof of Proposition 9.7 can be generalized as follows.

PROPOSITION 9.9. Let us consider a function f : M → R proper on supp(F ). As-
sume that {(x,d f (x)) | x ∈ f −1([a,b])}∩SS(F ) is empty. Then for t ∈ [a,b] the natural
maps RΓ({x | f (x) ≤ t },F ) −→ RΓ({x | f (x) ≤ a},F ) are isomorphisms. In particular
H∗( f −1(a),F ) ' H∗( f −1(b),F ).

PROOF. The proposition is equivalent to proving that the RΓ(]−∞, t ],R f∗(F )) are
all canonically isomorphic for t ∈ [a,b]. But this follows from Proposition 9.7, since
SS(R f∗F )∩T ∗([a,b]) ⊂Λ f ◦SS(F ) = {(x,τd f (x)) | x ∈ f −1([a,b]),τ ∈ R+}∩SS(F ) and
this is contained in the zero section by our assumption. �

Note that the standard Morse lemma corresponds to the case F = kM .

LEMMA 9.10. Let ϕ be a smooth function on X such that 0 is a regular level. Let
x ∈ϕ−1(0) and assume there is a neighbourhood U of x such that

RΓ(U ∩ {ϕ(z) ≤ t },F •) −→ RΓ(U ∩ {ϕ(z) ≤ 0},F •)

is an isomorphism for all positive t small enough. Then RΓ{ϕ≥0}(F •)x = 0.

PROOF. Again, we have RΓ(]−∞, t [,Rϕ∗(F •)) → RΓ(]−∞,0[,Rϕ∗(F •)) is an iso-
morphism. So if G • is a sheaf over R, the fact that RΓ(]−∞, t [,G •) → RΓ(]−∞,0[,G •)
is an isomorphism implies RΓ{t≥0}(G •)t=0 = 0 since for I • an injective resolution of G •
we have

0 → Γ{t≥s}I
•(]s −ε, s +ε[) →I •(]−∞, s +ε[) →I •(]−∞, s[) → 0

�

Let C ,D be two conic subsets in T ∗M .



2. THE SHEAF THEORETIC MORSE LEMMA AND APPLICATIONS 115

DEFINITION 9.11. Let C ,D be two closed cones. Then C +̂D is defined as follows:
(z,ζ) ∈ C +̂D if and only if there are sequences (xn ,ξn), (yn ,ηn) such that limn xn =
limn yn = z, limn(ξn +ηn) = ζ and limn |xn − yn ||ξn | = 0. We write C +̂D = (C +D)+C +̂∞D

PROPOSITION 9.12. We have

SS(F �L G ) ⊂ SS(F )×SS(G )

SS(F ⊗L G ) ⊂ SS(F )+̂SS(G )

PROOF. Again, we limit ourselves to the situation of complexes ofC-modules sheaves,
so that �L ,⊗L ,RHom coincide with �,⊗,H om, since vector spaces are always pro-
jective and injective. Note that the second equality follows from the first, since if
d : X → X ×X is the diagonal map, we have F ⊗G = d−1(F �G ), and

SS(d−1F ) = (Λ−1
d )#(SS(F )×SS(G ))

but

Λ−1
d = {(x1,ξ1, x2,ξ2, x3,ξ3) | x1 = x2 = x3,ξ3 = ξ1 +ξ2}

therefore (Λ−1
d )#(SS(F )×SS(G )) is equal to SS(F )+̂SS(G ).

Assume now (x0,ξ0) ∉ SS(F ). This implies that if U ⊂ X is an smooth codimen-
sion zero submanifold, and Ut = ϕ−1(] −∞, t ]), with x0 ∈ U0 and dϕ(x0) = ξ0, then
RΓ(Ut ,F •) −→ RΓ(U0,F •) is an isomorphism, and also RΓ(Ut ×V ,F •) −→ RΓ(U0 ×
V ,F •). Now let Ht = {(x, y) |ψ(x, y) ≥ t } where dψ(x0, y0) = (ξ0,η0),

RΓ(H0,F •) // RΓ(U0 ×V ,F •�G •) RΓ(Uε×V ,F •�G •)'
oo

��
RΓ(Uη/2 ×V ,F •�G •)

iiSSSSSSSSSSSSSS
'
OO

RΓ(Hε,F •�G •)oo

Here Uη is determined so that Uη×V ⊂ Hε and Uε×V ⊂ Hε. This clearly implies
that RΓ(Hε,F •)x −→ RΓ(H0,F •)x is an isomorphism for ε small enough, for x close to
x0.

LEMMA 9.13 ([K-S], 2.6.6, p. 112, [Iv], p.320). Let f : X → Y be a continuous map,
and F ∈ Db(X ),G ∈ Db(Y ). Then

R f !(F
•⊗L f −1G •) = R f !(F

•)⊗L G •

PROOF. Again, we do not consider the derived tensor products, since we are dealing
with C-vector spaces. Then, there is a natural isomorphism from

f !(F )⊗G ' f !(F ⊗ f −1(G))

�

�
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LEMMA 9.14 (Base change theorem ([Iv], p. 322). Let us consider the following carte-
sian square of maps,

A
f
//

u
��

B

g
��

C
v // D

that is the square is commutative, and A is isomorphic to the fiber product B ×D C . Then
Ru! ◦ f −1 = v−1 ◦Rg !

2.1. Resolutions of constant sheafs, the DeRham and Morse complexes. Let W ( f ) =
{(x,λ) | f (x) ≤ λ}. We consider k f the constant sheaf over W ( f ), and we saw we have
a quasi-isomorphism 3.1, between k f and Ω•

f the set of differential forms on W ( f ).
Moreover according to LePeutrec-Nier-Viterbo ([LePeutrec-Nier-V], there is a quasi-
isomorphism from Ω•

f to B M•
f the Barannikov-Morse complex of f .

3. Quantization of symplectic maps

We assume in this section that X ,Y , Z are manifolds. Now we want to quantize
symplectic maps in T ∗X , that is to a homogeneous Hamiltonian symplectomorphism
Φ : T ∗X → T ∗Y we want to associate a map Φ̂ : Db(X ) → Db(Y ). There are (at least)
two posibilites to do that, and one should not be surprised. In microlocal analysis,
there are several possible quantizations from symbols to operators: pseudodifferential,
Weyl, coherent state, etc...

Define qX : X ×Y → X (resp. qY : X ×Y → Y ) and qX Y : X ×Y × Z → X ×Y (resp.
qX Z : X ×Y ×Z → X ×Z , qX Y : X ×Y ×Z → Y ×Z ) be the projections.

DEFINITION 9.15. Let K ∈ Db(X ×Y ). We then define the following operators: for
F ∈ Db(X ) and G ∈ Db(Y ) define

ΨK (F ) = (RqY ∗)(RHom(K , q !
X (F ))

ΦK (G ) = (RqX !)(K ⊗L q−1
Y (G ))

Then ΨK ,ΦK are operators from Db(X ) to Db(Y ) and Db(Y ) to Db(X ) respectively.

REMARK 9.16. (1) The method is reminiscent of the definition of operators on
the space of C k functions using kernels.

(2) For the sake of completeness, we have used the derived functor language in all
cases. However, for sheafs in the category of finite dimensional vector spaces,
RH om =H om and ⊗L =⊗. Also, if the projections are proper, i.e. if X ,Y are
compact, R(qX !) = R(qX ∗)

(3) In the category of coherent sheaves over a projective algebraic manifold, the
above definition extends to the Fourier-Mukai transform. Indeed if K ∈ Db

Coh(X×
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Y ) is an element in the derived category of the coherent sheafs on the prod-
uct of two algebraic varieties, we define the Fourier-Mukai transform from
Db

Coh(X ) to Db
Coh(Y ) as

ΦK (G ) = (RqX ∗)(K ⊗L q−1
Y (G ))

Consider Mirror symmetry as an equivalence of categories M : Fuk(T ∗X ) −→
Db(X ) sending Mor(L1,L2) = F H∗(L1,L2) to MorDb (M (L1),M (L1)). Moreover,

let us consider the functor SS : Db(X ) −→ Fuk(T ∗X ). This should send the el-
ement ΦK ∈ Mor(Db(X ),Db(Y )) to the Lagrangian correspondence, ΛSS(K ) :
T ∗X −→ T ∗Y . Vice-versa any such Lagrangian correspondence can be quan-
tized, for example for each exact embedded Lagrangian L we can find F such
that SS(F ) = L. We shall see this can be done using Floer homology. Can one
use other methods, for example the theory of Fourier integral operators: ?

(4) According to [K-S] proposition 7.1.8, the two functors ΦK ,ΨK are adoint
functors.

The sheaf K is called the kernel of the transform (or functor).We say that K ∈
Db(X ×Y ) is a good kernel if the map

SS(K ) −→ T ∗X

is proper. We denote by N (X ,Y ) the set of good kernels. Note that any sheaf F ∈ Db(X )
can be considered as a kernel in Db(X ) = Db(X × {pt }), and it automatically belongs to
N (X , {pt }), because SS(F ) → T ∗X is trivially proper. We shall see that transforms de-
fined by kernels can be composed, and, in the case of good kernels, act on the singu-
lar support in the way we expect. Let X ,Y , Z three manifolds, and qX (resp. qY , qZ )
be the projection of X × Y × Z on X (resp. Y , Z ) and qX Y (resp. qY Z , qX Z ) be the
projections on X × Y (resp. Y × Z , X × Z ). Similarly πX Y etc... are the projections
T ∗X ×T ∗Y ×T ∗Z → T ∗X ×T ∗Y .

We may now state

PROPOSITION 9.17. Let K1 ∈ Db(X ×Y ) and K2 ∈ Db(Y ×Z ). Set

K = (RqX Z )!(q−1
X Y (K1)⊗L q−1

Y Z (K2))

Then K ∈ Db(X × Z ), and ΨK =ΨK1 ◦ΨK2 and ΦK =ΦK1 ◦ΦK2 . We will denote
K =K1 ◦K2.

PROOF. Consider the following diagram
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X ×Y ×Z
qX Y

xxqqqqqqqqqq
qX Z

��

qY Z

&&MMMMMMMMMM

X ×Y

q X Y
X

��

q X Y
Y

��???????????????? X ×Z

q X Z
X

������������������

q X Z
Z

��???????????????? Y ×Z

qY Z
Z

��

qY Z
Y

������������������

X Y Z

Let G ∈ Db(Z ). We first claim that

(Rq X Y
X )!(K1 ⊗ (q X Y

Y )−1((RqY Z
Y )!(K2 ⊗ (qY Z

Z )−1(G )))) =(?)

(RqX )!(q−1
X Y (K1)⊗q−1

Y Z (K2)⊗q−1
Z (G ))

The cartesian square with vertices X ×Y ×Z , X ×Y ,Y ×Z ,Y and lemma 9.14 yields
an isomorphism between the image of K2 ⊗ (qY Z

Z )−1(G ) by (RqX Y )!q−1
Y Z and its image

by (q X Y
Y )−1(RqY Z

Y )!. The first image is

(RqX Y )!q
−1
Y Z (K2 ⊗ (qY Z

Z )−1(G )) = (RqX Y )!(q−1
Y Z (K2)⊗q−1

Y Z ◦ (qY Z
Z )−1(G )) =

(RqX Y )!(q−1
Y Z (K2)⊗q−1

Z (G ))

using for the last equality that qY Z
Z ◦qY Z = qZ .

This is thus equal to

(q X Y
Y )−1(RqY Z

Y )!(K2 ⊗ (qY Z
Z )−1(G )))

Apply now ⊗K2 and then (Rq X Y
X )!, we get

(Rq X Y
X )!(K1 ⊗ (q X Y

Y )−1(RqY Z
Y )!(K2 ⊗ (qY Z

Z )−1(G )))

for the first term and

(Rq X Y
X )!(K1 ⊗ (RqX Y )!(q−1

Y Z (K2)⊗q−1
Z (G ))))

for the second term.
Using lemma 9.13 applied to f = qX Y , we get

F ⊗ (RqX Y )!G = (RqX Y )!(q−1
X Y (F )⊗G )

hence applying (Rq X Y
X )! and using the composition formula (Rq X Y

X )!◦(RqX Y )! = (RqX )!,
we get

(Rq X Y
X )!(K1 ⊗ (RqX Y )!(q−1

Y Z (K2)⊗q−1
Z (G )) = (RqX )!(q−1

X Y (K1)⊗q−1
Y Z (K2)⊗q−1

Z (G )))

This proves our equality.
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We must prove the right hand side above is equal to

(Rq X Z
X )!((RqX Z )!(q−1

X Y (K1)⊗L q−1
Y Z (K2))⊗ (q X Z

Z )−1(G ))

But

(RqX Z )!(F ⊗ (qX Z )−1(G )) = (RqX Z )!(F )⊗G

and (Rq X Z
X )! ◦ (RqX Z )! = (RqX )!, so

(Rq X Z
X )!((RqX Z )!(q−1

X Y (K1)⊗L q−1
Y Z (K2))⊗ (q X Z

Z )−1(G )) =
(Rq X Z

X )!(RqX Z )!(q−1
X Y (K1)⊗L q−1

Y Z (K2)⊗q−1
X Z (q X Z

Z )−1(G )) =
(RqX )!(q−1

X Y (K1)⊗L q−1
Y Z (K2))⊗q−1

Z (G ))

�

The next proposition tells us that ΦK ,ΨK act as expected on SS(F ).

PROPOSITION 9.18 ([K-S], Proposition 7.12). We assume K ∈ Db(X ×Y ) and L ∈
Db(Y ×Z ) are good kernels. Then K ◦L is a good kernel and

SS(K ◦L ) = SS(K )◦SS(L )

In particular,

SS(ΨK (F )) ⊂πa
Y (SS(K )∩π−1

X (SS(F )) = SS(K )◦SS(F )

SS(ΦK (G )) ⊂πX Z (SS(K )×T ∗Y SS(G )) = SS(K )−1 ◦SS(G )

PROOF. We first notice that the properness assumption for good kernels implies
that

(∗) π−1
X Y (SS(K ))+̂∞π

−1
Y Z (SS(L )) =;

Indeed, a sequence (xn , yn ,ξn ,ηn) and (y ′
n , zn ,η′n ,ζn) respectively in SS(K ) and SS(L )

such that

(9.2) lim
n

xn = x∞, lim
n

yn = lim
n

y ′
n = y∞, lim

n
zn = z∞, lim

n
ξn = ξ∞, lim

n
(ηn +η′n) = η∞

By properness of the projection SS(K ) −→ T ∗X , we have that the sequence ηn is
bounded, hence η′n is also bounded, and this proves (∗). Now we have

SS(q−1
X Y (K )⊗L q−1

Y Z (L )) ⊂π−1
X Y (SS(K ))+π−1

X Y (SS(L ))

Then

SS(RqX Z !(q−1
X Y (K )⊗L q−1

Y Z (L ))) ⊂ΛqX Z (SS((q−1
X Y (K )⊗L q−1

Y Z (L ))) =
ΛqX Z (π−1

X Y (SS(K ))+π−1
Y Z (SS(L ))) = SS(K )◦SS(L )

�
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REMARK 9.19. Assume X = Y and SS(K ) be the graph of a symplectomorphism,
then set K a ∈ Db(Y × X ) to be the direct image by σ(x, y) = (y, x) of K (i.e. K a =
σ∗K ). Then set for a Lagrangian in T ∗X × T ∗X , La = {(y,η, x,ξ) | (x,ξ, y,η) ∈ L}.
Then SS(K a) = SS(K )a ⊂ T ∗X ×T ∗X , and ΨK ◦ΨK a =ΨL where SS(L ) = SS(K )◦
SS(K a) = SS(K )◦SS(K )a = SS(Id) =∆T ∗X .

From this we can prove the following result. Even though we technically do not
use it in concrete questions (our singular support will be Lagrangian by construction),
the following is an essential result, due to Kashiwara-Schapira ([K-S], theorem 6.5.4),
Gabber [Ga] (for the general algebraic case)

PROPOSITION 9.20 (Involutivity theorem). Let F • be an element in Db(X ). Then
SS(F •) is a coisotropic submanifold.

Some remarks are however in order. Proving that C = SS(F •) is coisotropic is equiv-
alent to proving that given any hypersurfaceΣ such that C ⊂Σ, the characteristic vector
field XΣ of Σ is tangent to C . Besides, this is a local property, so we may asume we are
in a neighbourhood of 0 ∈ Rn . Now consider the example C ⊂ Σ = {(q, p) | 〈ν, q〉 = 0}.
Then XΣ = R(0,ν). Now remember that C ∩0Rn = supp(F ). Thus if F is nonzero near
0, since our assumption implies that supp(F ) ⊂ {q | 〈ν, q〉}, whenever we move in the ν
direction, we certainly change ΓFx , hence R(0,ν) ⊂C .

Let us start with the case M =Rn . We wish to prove that for a sheaf F , SS(F ) cannot
be contained in {q1 = p1 = 0}. Indeed, let f : Rn → R be the projection on q1. Then
Λ f ◦SS(F ) ⊂ {0} ⊂ T ∗R. Thus R f∗F is a sheaf on Rwith singular support contained in
{0}.

Here we should rather consider the embedding j :R→Rn given by j (x) = (x,0, ...0),
and j−1(SS(F )) has singular support Λ−1

j (SS(F )) ⊂ {(0,0)} and now use the fact that

SS( f −1(F )) = Λ−1
f (SS(F )). Assume we could find such a sheaf. Then SS(F ) being

conic, locally, it either contains vertical lines, or is contained in a singleton. We may
thus assume SS(F ) = {0} and find a contradiction. But locally SS(F ) ⊂ {0} implies
supp(F ) ⊂ {0} hence F =Fx is a sky-scraper sheaf at points of f −1(y), and SS(F ) = T ∗

0 R

a contradiction. A way to rephrase this is that the singular support can not be too small.
In fact the proof can be reduced to the above.

LEMMA 9.21. Let C0 be a homogeneous submanifold of T ∗X and (x0, p0) ∈C0. There
is a homogeneous Lagrangian correspondence Λ, such that C = Λ ◦C0 sends T(x0,p0)C0

to T(x,p)C . If we moreover assume C0 is not coisotropic, we may find local homogeneous
coordinates T(x,p)C ⊂ {(x, p) | x1 = p1 = 0}

PROOF. A space is coisotropic if andf ony if it is contained in no proper symplectic
subspace. Let H be a hyperplane, ξ a vector transverse to H , C a subspace containing
ξ. Assume �
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PROOF OF THE INVOLUTIVITY THEOREM. Let us coinsider C0 = SS(F ) and assume
we are at a smooth point (x0, p0) which is not coisotropic. Because the result is lo-
cal, we may always assume we are working on T ∗Rn . Then there exists a local sym-
plectic diffeomorphism, sending (x0, p0) to (0, p0) sending C0 to C , such that T(0,p0)C ⊂
{x1 = p1 = 0}. By applying a further C 1 small symplectic ap, we may assume Now let Λ
be the correspondence in T ∗Rn ×T ∗R2 given by {x1 = t1, ..., xn = tn , xn+1 = tn+1, p1 =
tn+1, p2 = t2, ..., pn+1 = tn+1}, and K the corresponding kernel. Then Λ ◦C is ob-
tained by projecting on T ∗R the intersection Λ∩ (C ×T ∗R). We have near (x, p) that
Λ∩C ×T ∗R⊂ {x1 = xn+1 = p1 = pn+1 = 0} so that the projection on T ∗R2 is contained
in {0,0}. But we proved that this is impossible, since this would mean that K ◦F satis-
fies locally SS(K ◦F ) ⊂ {0}. �

PROOF OF THE LEMMA. Clearly if V is a proper symplectic subspace and C ⊂ V be
isotropic, we have V ω ⊂Cω, but Cω is isotropic, a contradiction.

�

DEFINITION 9.22. A sheaf is constructible if and only if there is a stratification of
X , such that F • is locally constant on each strata.

PROPOSITION 9.23. If F • is constructible, then it is Lagrangian.

PROOF. We refer to the existing literature, since we will not really use this proposi-
tion: our singular suports will be Lagrangian by construction. We can actually take this
as the definition of constructible.

�

However the following turns out to be useful.

DEFINITION 9.24. We shall say that a sheaf on a metric space is locally stable if for
any x there is a positive δ such that H∗(B(x,δ),F •) → H∗(F •

x ) is an isomorphism.

PROPOSITION 9.25. Constructible sheafs are locally stable

4. Appendix: More on sheafs and singular support

4.1. The Mittag-Leffler property. The question we are dealing with here, is to
whether RΓ(U ,F ) = lim←−−−

V ⊂U

RΓ(U ,F ). Notice that by defintion of sheaves, we have

Γ(U ,F ) = lim←−−−
V ⊂U

Γ(U ,F )

so our question deals with the commutation of inverse limit and cohomology.

4.2. Appendix: More on singular supports of f −1(F •).

DEFINITION 9.26. We shall say that the map f : X −→ Y is non-characteristic for
A ⊂ T ∗Y if

η◦d f (x) = 0 and ( f (x),η) ∈ A =⇒ η= 0

We say that f is non-characterisitic for F if it is non-characterisitic for SS(F ).
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REMARK 9.27. Let d : X → X × X be the diagonal map. Then A1 × A2 ⊂ T ∗X ×T ∗X
is non characteristic for d if and only if

(x,η1) ∈ A1, (x,η2) ∈ A2,η1 +η2 = 0 =⇒ η1 = η2 = 0

Or in other words A1 ∩ Aa
2 ⊂ 0X

PROPOSITION 9.28. Assume f is an embedding. Then if f is non-characteristic for
SS(F ), and we have

SS( f −1(F )) ⊂Λ−1
f ◦SS(F )

PROOF. Saying that f : X → Y is non-characteristic, means
�

PROPOSITION 9.29. Let f be non-characteristic for SS(F ). Then

SS( f −1(F )) ⊂Λ−1
f ◦SS(F )

PROOF. This follows from the fact that f can be written as the composition of a
non-characteristic embedding X → X ×Y and a submersion X ×Y → Y �

PROPOSITION 9.30 ([K-S] page 235, Corollary 5.4.11 and Prop. 5.4.13). Let us con-
sider an embedding of V in X . Then

SS(FV ) ⊂ SS(F )+ν∗V
Let f be a smooth map such that f −1

π (A)∩ν∗V ⊂ Y ×X 0X . Then

SS( f −1(F )) ⊂Λ−1
f ◦SS(F )

EXERCICE 3. Prove that if F is a sheaf over X and Z a smooth submanifold,

SS(F|Z ) = (SS(F )∩ν∗Z )/ ∼⊂ (ν∗Z / ∼) = T ∗Z

This is the symplectic reduction of SS(F ).

A VERIFIER
Let f be an open map, that is such that the image of an open set is an open set.

Examples f such maps are embeddings, or submersions. We want to prove

LEMMA 9.31. For f an open map, we have

Γ f −1(Z ) f −1(F ) = f −1ΓZ (F )

therefore
RΓ f −1(Z ) f −1(F ) = f −1RΓZ (F )

PROOF. Consider the functor P f −1 defined on presheaves by P f −1(F )(V ) = limU⊃ f (V ) F (U )
which for f open is given by P f −1(F )(V ) = F ( f (V )). We claim that the functor ΓZ ,
which is also well-defined and left-exact on presehaves, given by ΓZ (F )(V ) = {s ∈
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F (V ) | s(y) = 0∀y ∈ Y \ Z } (one should be careful for presheaves, there maybe nonzero
sections over V which are pointwise zero). This satisfies Γ f −1(Z ) ◦P f −1 = P f −1ΓZ since

Γ f −1(Z ) ◦P f −1(F )(V ) = {t ∈ P f −1(F )(V ) | t (x) = 0, ∀x ∈ X \ f −1(Z )} =
{t ∈F ( f (V )) | t (x) = 0, ∀x ∈ X \ f −1(Z )} =

{t ∈F ( f (V )) | t (x) = 0 ∀x such that f (x) ∈ Y \ Z } = P f −1ΓZ (F )

Moreover if Sh is the sheafification functor, we have Sh ◦ΓZ = ΓZ ◦Sh. As a result,

f −1ΓZ = Sh ◦P f −1 ◦ΓZ = Sh ◦Γ f −1(Z ) ◦P f −1 = Γ f −1(Z ) ◦Sh ◦P f −1 = Γ f −1(Z ) ◦ f −1

This implies f −1RΓZ = RΓ f −1(Z ) ◦ f −1 in the derived category. �

As a result, if for someϕ such thatϕ(y) = 0,dϕ(y) = η, we have
(
RΓ{ϕ(v)≥0}(F )

)
y 6= 0

that is
(

f −1RΓ{ϕ(u)≥0}(F )
)

x 6= 0 for all x ∈ f −1(y), then we have
(
RΓ{ϕ◦ f (u)≥0}( f −1F )

)
x 6=

0 for all x in f 1(y). Note that d(ϕ◦ f )(x) = dϕ(y)◦d f (x) = η◦d f (x).
As a result, there exists (x, p) and ψ such that ψ(x) = 0,dψ(x) = η ◦ d f (x) and(

RΓ{ϕ◦ f (u)≥0}( f −1F )
)

x 6= 0.
Now SS( f −1(F )) is in the closure of this set. So we proved

LEMMA 9.32. We have the inclusion

SS( f −1(F )) ⊂Λ−1
f (SS(F ))

de f= (Λ−1
f )b(SS(F ))

Note that (x,ξ) ∈ (Λ−1
f )b(SS(F )) is defined as the existence of a sequence (xn , yn ,ηn)

such that (yn ,ηn) ∈ SS(F ), and

f (xn) = yn , xn → x,ηn ◦d f (xn) → ξ

There are a priori two kind of points (x, p) ∈ (Λ−1
f )b(SS(F )). Those obtained by using

a bounded sequence ηn , but then taking a subsequence, we get ηn → η, and thus η ◦
d f (x) = ξ that is (x, p) ∈ Λ−1

f (SS(F )), and the set obtained by taking an unbounded

sequence, denoted Λ−1
f ,∞(SS(F )).

Note that if the map f is non-characteristic, the set Λ−1
f ,∞(SS(F )) is empty. Indeed,

considering the sequence ηn
|ηn | which has a subsequence converging to some η∞ of

norm one, we get η∞ ◦d f (x) = 0, i.e. f is characteristic.

4.3. Convolution of sheaves. Let s(u, v) = u+v . thenΛs ∈ T ∗(R×R×R) is given by

Λs = {(u,ξ, v,η, w,ζ) | w = u + v,ζ= η= ξ}

DEFINITION 9.33 (Convolution). Let E be a real vector space, and s : E × E → E
be the map s(u, v) = u + v . We similarly denote by s the map s : (X ×E)× (Y ×E) →
(X ×Y )×E given by s(x,u, y, v) = (x, y,u + v). Let F ,G be sheafs on X ×E and Y ×E .
We set

F ∗G = Rs!(q−1
X F �L q−1

Y G )



124 9. SINGULAR SUPPORT IN Db (Sheaf(X))

This is a sheaf on Db(X ×Y ×E). where qX : X ×Y ×E → X ×E and qY X ×Y ×E → Y ×E
are the projections.

EXERCICE 4 ([K-S] page 135-exercice II.20)). (1) Prove that the operation ∗ is
commutative and associative.

(2) Prove that kX×{0} ∗G =G .
(3) Let U ( f ) = {(x,u) ∈ X ×R | f (x) ≤ u}, V (g ) = {(y, v) ∈ Y ×R | g (y) ≤ v}, and

W (h) = {(x, y, w) ∈ X ×R | h(x, y) ≤ w}. Then kU ( f ) ∗ kV (g ) = kW ( f ⊕g ) where
( f ⊕ g )(x, y) = f (x)+ g (y).

(4)

SS(F ∗G ) =Λs ◦ (SS(F )×SS(G )) =
{(x, px , y, py , w,η) | ∃(x, px ,u,η) ∈ SS(F ),∃(x, px , v,η) ∈ SS(G ), w = u + v}

As a consequence

SS(kU ( f ) ∗kV (g )) = SS(kW ( f ⊕g ))

(5) Let us consider a function g (u, v) on E×E and assume (u, ∂g
∂u (u, v)) → (v,−∂g

∂v (u, v))
define a (necessarily Hamiltonian) map ϕg . Then, let Φg be the operator
F → kW (g ) ∗F . Prove that SS(Φg (F )) ⊂ϕg (SS(F )).

Note that one can define the adjoint functor of the convolution, RHom∗ satisfying
Mor(F ∗G ,H ) = Mor(F,RHom∗(G ,H )).

DEFINITION 9.34. We set

RH om∗(F ,G ) = (RqX )∗RH om(q−1
Y F , s !G )

PROPOSITION 9.35. We have

SS(F ∗G ) ⊂ SS(F )∗̂SS(G )

where A∗̂B = s# j #(A×B)



CHAPTER 10

The proof of Arnold’s conjecture using sheafs.

1. Statement of the Main theorem

Here is the theorem we wish to prove

THEOREM 10.1 (Guillermou-Kashiwara-Schapira). Let M be a (non-compact man-
ifold) and N be a compact submanifold. Let Φt be a homogenous Hamiltonian flow on
T ∗M \ 0M and ψ be a function without critical point in M. Then for all t we have

Φt (ν∗N )∩ {(x,dψ(x)) | x ∈ M } 6= ;
Of course, Φt can be identified with a contact flow Φ̂t on ST ∗M , ν∗N ∩ ST ∗M =

Sν∗(N ) is Legendrian, the set Lψ = {(x, dψ(x)
|dψ(x)| | x ∈ M } is co-Legendrian, and we get

COROLLARY 10.2. Under the assumptions of the theorem, we have

Φ̂t (Sν∗(N ))∩Lψ 6= ;
Let us prove how this implies the Arnold conjecture, first proved on T ∗T n by Chap-

eron ([Cha]), using the methods of Conley and Zehnder ([Co-Z]), then in general cotan-
gent bundles of compact manifolds by Hofer ([Hofer]) and simplified by Laudenbach
and Sikorav ([Lau-Sik]), who established the estimate of the number of fixed points in
the non-degenerate case (this was done in the general case in terms of cup-length in
[Hofer]).

THEOREM 10.3. Let ϕt be a Hamiltonian isotopy of T ∗N , the cotangent bundle of a
compact manifold.Then ϕ1(0N )∩0N 6= ;. If moroever the intersection points are trans-
verse, there are at least

∑
j dim(H j (N )) of them.

PROOF OF THEOREM 10.3 ASSUMING THEOREM 10.1. Consider M = N×R andψ(z, t ) =
t . Thenϕs : T ∗N → T ∗N can be assumed to be supported in a compact region contain-
ing

⋃
s∈[0,1]ϕ

s(L), so we may set Φs(q, p, t ,τ) = (xs(x,τ−1p),τps(x,τ−1p), fs(t , x, p,τ),τ)
where ϕs(x, p) = (xs(x, p), ps(x, p)), and this is now a homogeneous flow on T ∗M .
We identify N to N × {0}, and apply the main theorem: ν∗N = 0N × {0}×R and Lψ =
{(x,0, t ,1) | (x, t ) ∈ N × R}, so that Φs(ν∗N ) = {(xs(x,0),τps(x,0), fs(0, x,0,τ),τ) | x ∈
N ,τ ∈ R} so that Φs(ν∗N )∩Lψ = {(xs(x,0), ps(x,0), fs(0, x,0,τ),τ) | ps(x,0) = 0,τ = 1} =
ϕs(0N )∩0N . According to the main theorem this is not empty, and this concludes the
proof. �

125
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2. The proof

PROOF OF THE MAIN THEOREM. We start with the sheafCN , which satisfies SS(CN ) =
ν∗N . We first consider a lift of Φt to Φ̃ : T ∗(M × I ) → T ∗(M × I ) given by the formula

Φ̃ : (q, p, t ,τ) −→ (Φt (q, p), t ,τ+F (t , q, p))

where Φt (q, p) = (Qt (q, p),Pt (q, p)) and F (t , q, p) = −Pt (q, p) ∂
∂t Qt (q, p) because de-

noting Φt (q, p) = (Qt (q, p),Pt (q, p)) the homogeneity of Φt and Proposition 4.24 im-
ply that Pt dQt = pd q and F (t , q, p) is homogeneous in p. Let K be a kernel in
Db(M × I × M × I ) such that SS(K ) = g r aph(Φ̃). The existence of such a kernel will
be proved in Proposition 10.4. Then consider the sheaf K (CN×I ) ∈ Db(M × I ). It has
singular support given by

SS(K (CN×I )) ⊂ Φ̃(SS(CN×I )) ⊂ Φ̃(ν∗N ×0I )

Now consider the function f (q, t ) = t on M × I . It satisfies L f = {(q, t ,0,1) | q ∈ M , t ∈
I } ∉ SS(K (CN×I )) since this last set is contained in

Φ̃(ν∗N ×0I ) = {(Qt (q, p),Pt (q, p), t ,F (t , q, p)) | (q, t ) ∈ N × I , p = 0 on Tq N }

If we had a point in L f ∩SS(K (CN×I )) it should then satisfy Pt (q, p) = 0, but then we

would have F (t , q, p) =−Pt (q, p) ∂
∂t Qt (q, p) = 0 which contradicts τ= 1. We now denote

by Kt ∈ Db(M) the sheaf obtained by restricting K to M × {t }×M × {t }.
The Morse lemma (cf. lemma 9.9) then implies that H∗(M × [0, t ],K (CN×I )) −→

H∗(M × [0, s],K (CN×I )) is an isomorphism for all s < t , and also that

H∗(M × {0},K (CN×I )) ' H∗(M × {t },K (CN×I ))

for all t . But on one hand

H∗(M × {0},K (CN×I )) ' H∗(M ,K0(CN )) = H∗(M ,CN ) ' H∗(N ,R)

on the other hand,

H∗(M ,K1(CN×I )) = H∗(R,ψ∗(K1(CN×I )) = 0

the last equality follows from the fact that

SS(ψ∗(K1(CN×I )) ⊂Λψ∩SS((K1(CN×I )) =Λψ∩Φ(ν∗N ) =;,

ψ∗(K1(CN×I ) is compact supported and Proposition 9.7. This is a contradiction and
concludes the proof modulo the next Proposition. �

PROPOSITION 10.4. Let Φ : T ∗X → T ∗X be a compact supported symplectic diffeo-
morphism C 1-close to the identity, and Φ̃ its homogeneous lift to T̊ ∗(X ×R) → T̊ ∗(X ×R),
given by Φ̃(q, p, t ,τ) = (Q(q,τ−1p),τP (q,τ−1p),F (q, p, t ,τ),τ). Then there is a kernel
K ∈ Db(X ×R×X ×R) such that SS(K ) = ΓΦ̃.
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PROOF (“TRANSLATED” FROM [Bru]). Because any Hamiltonian symplectomorphism
is the product of C 1-small symplectomorphisms, thanks to the decomposition formula

Φ1
0 =

n∏
j=1

Φ
j

N
j−1
N

we can restrict ourselves to the case where Φ is C∞-small. Note also that Φ̃ is well
defined by the compact support assumption: for τ close to zero,

(Q(q,τ−1p),τP (q,τ−1p)) = (q,ττ−1p) = (q, p)

Let us start with the case X = Rn . Let f (q,Q) be a generating function for Φ so that

p = ∂ f
∂q (q,Q),P = − ∂ f

∂Q (q,Q) defines the map Φ. Let W = {(q, t ,Q,T ) | f (q,Q) ≤ t −T }

and F f = kW ∈ Db(X ×R). Then SS(F f ) = ΓΦ̃. Let us start with X = Y = Rn , and
f0(q,Q) = |q −Q|2. Then we get K0 with SS(K0) = ΓΦ̃0

. Now if f is C 2 close to f0, we

will get any possible Φ̃ f , C 1-close to the map (q, p) → (q +p, p). Then Φ̃ f1 ◦ Φ̃ f2 where
f1 is close to f0 and f2 close to − f0 will be C 1-close to the identity. Now since any
time one of a Hamiltonian isotopy can be written as the decomposition of C 1-small
symplectomorphisms, we get the general case.

Now let i : N → Rn be an embedding. Then the standard Riemannian metric on
Rl induces a symplectic embedding ĩ : T ∗N → T ∗Rn given by (x, p) 7→ (i (x), p̃(i (x)))
where p̃(i (x)) is the linear form on Rl that equals p on Tx N and zero on (Tx N )⊥. Now
let Φt be a Hamiltonian isotopy of T ∗N . We claim that it can be extended to Φ̃t such
that

(1) Φ̃t preserves ν∗N = N × (Rl )∗, and thus the leaves of this coisotropic subman-
ifold. This implies that Φ̃t induces a map from the reduction of N × (Rl )∗ to
itself, that is T ∗N .

(2) we require that this map equals Φt .

The existence of Φ̃t follows from the following construction:
Assume Φ is the time one map of Φt associated to H(t , x, p), where (x, p) is coordi-

nates for T ∗N . Locally, we can write (x,u, p, v) for points in Rl so that N = {u = 0}. We
define

H̃(t , x,u, p, v) =χ(u)H(t , x, p),

where χ is some bump function whichequals is 1 on N (i.e. {u = 0}) and 0 outside a
neighborhood of N . By the construction, X H̃ = XH on N ×(Rl )∗. Then Φ̃= Φ̃1, the time
one flow of H̃ , is the map we need.

The theorem follows by noticing that if we take L̃ = ORl , coinciding with the zero
section outside compact set and has GFQI, then L̃N =ON . �

Exercice: Show that if L has a GFQI, thenϕ(L) has a GFQI forϕ ∈ H am(T ∗N ). Hint.
If S : N ×Rk →R is a GFQI for L, then L is the reduction of g r (dS).

REMARK 10.5. (1) We could have used directly that the graph ofΦ has a GFQI.



128 10. THE PROOF OF ARNOLD’S CONJECTURE USING SHEAFS.

(2) 0N is generated by the zero function over the zero bundle over N , or less for-
mally

S : N ×R → R

(x,ξ) 7→ ξ2

(3) There is no general upper bound on k (the minimal number of parameter of a
generating functions needed to produce all Lagrangian.)

Reason: Consider a curve in T ∗S1
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