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Introduction

X compact Kahler manifold, L ample bundle.
Holomorphic sections of L*, k> 0

= projective embedding X — CP" (Kodaira).
= smooth hypersurfaces (Bertini).

X complex surface, 3 generic sections of L
= f: X — CP? branched covering,

singularities = cusps + nodes.

(X?" w) compact symplectic manifold :
dJ compatible almost-complex structure.

J is not integrable
= no holomorphic coordinates
= no holomorphic sections

Donaldson’s i1dea :

Approximately holomorphic sections
= symplectic analogues of classical results.



Asymptotically holomorphic sections

(X", w) symplectic, compact
e —|w] € H*(X,Z) (not restrictive)
J compatible with w ; ¢(.,.) =w(., J.)

L line bundle such that ¢1(L) = 5=[w]

L VL, curvature —iw

=kg.

Definition. (s;)rso € T'(Ey) are asymptotically holo-
morphic (“A.H.”) if

Vp €N, |st|cr,, = O(1) and |0si|cvy = O(™?).

Definition. (s;)iso € ['(Ey) are uniformly transverse
to 0 if An > 0 /sy is n-transverse to 0 Yk, i.e.

Ve € X, |sp(x)| < n = Vsi(z) surjective and > 1.

Proposition. Let (sg)rso € T'(Er), A-H. and uni-
formly transverse to 0 : then for k > 0, W, = s *(0)
i1s a symplectic submanifold of X (appmxzmately J -
holomorphic).



Symplectic submanifolds and beyond

Theorem 1 (Donaldson) For k > 0, the bundles
L* admit sections which are A.H. and uniformly trans-
verse to .

= construction of symplectic submanifolds.

Theorem 2 (Donaldson) For k > 0, the bundles
L¥ admit pairs of A.H. sections which endow X with
a structure of symplectic Lefschetz pencil.

Structure of the proof

1. existence of very localized A.H. sections of L*

2. effective Sard theorem for A.H. functions :
= get uniform transversality over a small ball.

3. globalization principle
(transversality is an open property).



Branched coverings

dim X = 4 : nowhere vanishing section of C* @ L*
= f=(s":5":5%): X = CP~

Definition. A map f : X — CP? is e-holomorphically
modelled at x on g : C* — C* if AU >z, V > f(x),
and local C*-diffeomorphisms ¢ : U — C* and v :
V — C?, e-holomorphic, (i.e. |¢J — Jo| < €) such

that fiiy = v~ logodg.

Definition. A map f : X — CP? is an e-holomorphic
covering branched along R C X iof Df 1is surjective
everywhere except along R, and if f s locally e-holo-
morphically modelled at any point of X on one of the
following maps :

— local diffeomorphism : (x,y) — (x,y). ? ?

— branched covering : (z,y) — (2%, 7). ; Y ;
R: =0 f(R): X=0

—cusp : (v,y) = (2° — 2y,9).
R: y=32> f(R): 27X? =4Y" ﬁ_/




Existence of branched coverings

Theorem 3. For k > 0, there exmist A.H. sections of
C?* @ L* which make X an €.-holomorphic branched
covering of CP?, with e, = O(k~1?).

Topological properties ~» analytic properties 7

Transversality conditions :
sp €N(CP @ LY AH., fr =P(sp), v > 0 fixed.

(T1) |sk(x)| > v Vo € X.
(T2) [0fela)ly > 7 VY € X.

Branching = (2, 0)-Jacobian Jac(f;) = det(0fx).
(T3) Jac(fy) is y-transverse to 0.

= R(s;) = Jac(f;)"1(0) symplectic and smooth.
Angle between T R(sy.) and Ker 9f, ~» T (sp).

(T4) T (sy) is y-transverse to 0.

= zeros of T (s;) — isolated, non-degenerate cusps

Holomorphic case : (T1-T4) = branched covering.
Vanishing of 0f;. at the branch points ?

5



J-compatibility conditions :

3 J,, compatible with w, integrable near the cusps and

satisfying |J, — J| = O(k~'/?), such that
(C1) fi is Jp-holomorphic near the cusps.
(C2) Vz € Rj (s), Ker 0fy(x) C Ker Ofr(x).

Proposition. (s;);s0 € N(C*@LF), A H. | satisfying
(T1-T4) and (C1-C2) = fork >0, fi. = P(sy) is an
er-holomorphic branched covering, € = O(k_l/Q).

= existence of sections satisfying (T1-T4) & (C1-C2) ?

— (T1-T4) : techniques ~ construction of submanifolds.
o local transversality result : very localized perturba-
tion of s, ~» property over a small ball.

o globalization principle : combine the local pertur-
bations ~» property at any point of X.

— (C1-C2) : small perturbations near R(sy) i
= add to s; a quantity which exactly cancels 0 f;.



Characterization of symplectic manifolds

Properties of constructed coverings w.r.t. the symplec-
tic structure 7

Proposition. The 2-forms & = t ffwy + (1 — t) kw
are symplectic ¥t € [0, 1], and (X, ) is then symplec-
tomorphic to (X, kw).

The property of being a branched covering of CP* char-
acterizes symplectic manifolds in dimension 4 :

Proposition. Let f : M* — CP? be a map which
identifies at any point with one of the three models for
branched coverings in local coordinates (A.H. chart on
CP?, but not on M ).

Then M admits a symplectic structure arbitrarily
close to f*wy in its cohomology class. This symplectic
structure 1s canonical up to symplectomorphism.



Coverings and symplectic invariants

Theorem 4. For k > 0, the branched coverings ob-
tained from A.H. sections of C*® L* are unique up to
1sotopy, independently of the chosen J.

= symplectic invariants of (X, w).

D = f(R) C CP* is a symplectic curve.

Generic singularities :

. >— Cusps.

-+ . o . . .
. >< nodes with positive transverse intersection.

. >_< nodes with negative transverse intersection.

Theorem 4 = up to cancellation of nodes, the topology
of D is a symplectic invariant.

TN
VD N N

= extension of Moishezon and Teicher’s braid group
techniques to the symplectic case.
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Monodromy and braid groups

After perturbation, the curve D can be realized as a
singular branched covering of CP!.

CP? — {oo} D

degD =n

CP! lﬂ:(a:vo:xlzxg)l—)(xo:xl)

Fiber ~ C = restricting to C* = 7 1(C),

monodromy with values in the braid group B, :
p:m(C —crit) — B,.

The topology of D is described by a braid group fac-

torization, A* =[] Q; X{li Q:t di€{-2,1,2,3} :

d

o ( di= >

4

e X =2 [T
/ /

“ A4

o > =3 [
o X di==2 [T
Z /

Up to conjugation, Hurwitz moves and node elimina-
tions, this factorization is a symplectic invariant.
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Reconstructing a symplectic 4-manifold

Algebraic data characterizing a branched covering :
1. Braid factorization A% = [ Q; Xfl" Q.
2. Geometric monodromy representation

0 : m(CP?* — D) — Sy.

7T1(CIP)2 — D) is generated by “geometric generators”
(vi)1<i<n ; relations given by the braid factorization.

6 maps geometric generators to transpositions.
cusp = (12)(23), node = (12)(34).

Theorem 5. The braid factorization A? determines D

up to smooth isotopy ; D and 6 determine (X,w) up
to symplectic 1sotopy.
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Branched coverings and
Lefschetz pencils

(X, w)

(Donaldson)/ \\

Symplectic Lefschetz Branched covering

pencil
d i X d
g Y d
CP! CD

monodromy — Dehn twist

|

Factorization in the
mapping class group

Id = Hit%

Factorization in the
braid group

A = Hz QinlQi_l

+ monodromy repn. 6.

I |
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Branched coverings and
Lefschetz pencils

1. By forgetting one of the components (i.e. projecting
to CIP’l), a branched covering becomes a symplectic
Lefschetz pencil.

= alternate proof of Donaldson’s result.

2.0 : m(CP* — D) — Sy determines a subgroup
BY(0) C B, and a group homomorphism

0. : B)(0) = Map,.
BY(0) contains the image of the braid monodromy.

e the factors of degree 2 or 3 lie in the kernel of 6,.

e O, maps the factors of degree 1 to Dehn twists.

= | 5D

half-twist Dehn twist along
a lift of

= A? and 0 allow the explicit computation of the
monodromy of the corresponding Lefschetz pencil.
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