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1. INTRODUCTION

It was shown in [1] that every compact symplectic 4-manifold (X,w)
can be realized as an approximately holomorphic branched covering of CP?
whose branch curve is a symplectic curve in CP? with cusps and nodes as
only singularities (however the nodes may have reversed orientation). Such
a covering is obtained by constructing a suitable triple of sections of the line
bundle L&, where L is a line bundle obtained from the symplectic form (its
Chern class is given by ¢; (L) = 3 [w] when this class is integral), and where
k is a large enough integer.

The second author was partially supported by a Sloan research fellowship and NSF
Grant DMS-9875383.
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Moreover, it was shown in [4] that the braid monodromy techniques intro-
duced by Moishezon and Teicher (see e.g. [8] and [9]) in algebraic geometry
can be used in this situation to derive, for each large enough value of the
degree k, monodromy invariants which completely describe the symplectic
4-manifold (X,w) up to symplectomorphism. These invariants are also re-
lated to those constructed by Donaldson and arising from the monodromy of
symplectic Lefschetz pencils [6], which also are defined only for large values
of k.

The monodromy invariants arising from branched coverings or symplec-
tic Lefschetz pencils are among the most powerful available invariants of
symplectic manifolds ; for example, it is expected that they can be used
to symplectically tell apart certain pairs of mutually homeomorphic alge-
braic surfaces of general type, such as the Horikawa manifolds, which no
other currently available symplectic invariant can distinguish. However,
their practical usefulness is immensely limited by the difficulties involved in
their calculation, even though the computations by Moishezon, Teicher and
Robb of the braid monodromies for certain simple types of algebraic sur-
faces (CP?, CP! x CP!, complete intersections) [13] give some reason to be
hopeful. Still, the main problem that one encounters is that the monodromy
only becomes a symplectic invariant when the degree is large enough, which
makes it necessary to handle whole sequences of braid factorizations.

The aim of this paper is to describe an explicit formula relating the braid
monodromy invariants obtained for a given degree k to those obtained for
the degree 2k. The interest of such a formula is obvious from the above
considerations, especially as direct computations of braid monodromy often
become intractable for large degrees. We also give a similar formula for the
monodromy of symplectic Lefschetz pencils ; this formula, which may have
even more applications than that for braid monodromies, answers a question
first considered by Donaldson and for which a partial (non-explicit) result
has been obtained by Smith [12].

The techniques introduced in this paper suggest a wide range of appli-
cations and generalizations, which will be the topics of forthcoming papers.
First of all, calculations similar to those in this paper appear in any situation
involving iterated branched coverings ; the range of potential applications
is very wide, and for example it can be expected that the invariants defined
by Moishezon and Teicher should become effectively computable for a much
larger class of algebraic surfaces. This idea also gives a procedure to relate
CP2- and CP! x CP'-valued generic covering maps to each other, which may
well be a crucial point in the strategy to distinguish Horikawa surfaces, fol-
lowing ideas of Donaldson about the removability of negative nodes from
branch curves in CP! x CP!.

Another possible application is to define algebraic operations on braid
factorizations which may lead to new examples of symplectic manifolds ; for
example, the question of whether the Bogomolov-Miyaoka-Yau inequality
holds for symplectic 4-manifolds translates into a purely algebraic question
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about the existence of certain words in braid groups, and subtle variations
on the braid group identities described below might lead to potential coun-
terexamples.

Yet another question to which our result may give an answer is that of
whether every branched covering over CP? (or every symplectic Lefschetz
pencil) is “of Donaldson type” (see the remark at the end of §1.2).

Finally, extensions to higher-dimensional settings of the stabilization pro-
cedure described here are theoretically possible, even though it remains un-
certain whether it is actually possible to carry out the calculations.

1.1. Braid monodromy invariants. We start by recalling the notations
and results (see [4] or [2] for details). Let f : X — CP? be an approximately
holomorphic branched covering map as in [1] and [4] : its topology is mostly
described by that of the branch curve D C CP?, which is symplectic and
approximately holomorphic. The only singularities of D are double points
(with either orientation) and cusps (with positive orientation only) ; the
branching is of order 2 at every smooth point of D. Fix a generic projection
7 : CP2—{pt} — CP! whose pole does not belong to D. We can assume that
D is transverse to the fibers of m everywhere except at a finite set of non-
degenerate tangency points, where a local model is 22 = y with projection to
the £ component ; moreover, we can also assume that all the special points
of D (tangencies and singular points) lie in distinct fibers of 7, and that
none of them lies in the fiber above the point at infinity in CP!.

The idea introduced by Moishezon in the case of a complex curve is that,
restricting oneself to the preimage of the affine subset C ¢ CP!, the mon-
odromy of mp around its critical levels can be used to define a map from
71(C — crit) with values in the braid group By on d = deg D strings, called
braid monodromy (see e.g. [8]) ; this monodromy is encoded by a factor-
ization of the central element Ai of the braid group By. Namely, the mon-
odromy around the point at infinity in CP!, which is given by the central
braid Ai, decomposes as the product of the monodromies around the criti-
cal levels of the projection to CP!, each of these being conjugate to a power
of a half-twist. The same techniques extend almost immediately to the
symplectic setting, and the resulting braid factorizations are of the form

AL =T]@Q;' X7 Qy),
J
where X is a positive half twist in By, @}; are arbitrary braids and r; €
{—2,1,2,3)}.

The case 7; = 1 corresponds to a tangency point, where the curve D
is smooth and tangent to the fiber of the projection 7 ; the case r; = 2
corresponds to a nodal point of D ; the case r; = —2 is the mirror image of
the previous one, and corresponds to a negative self-intersection of D (this
is the only type of point which does not occur in the algebraic case) ; and
finally the case r; = 3 corresponds to a cusp singularity of D.
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The above-described braid factorization completely determines the topol-
ogy of the curve D. However two algebraic operations can be performed
on braid factorizations without affecting the corresponding curve in CPZ.
A Hurwitz move amounts to replacing two consecutive factors A and B by
ABA™! and A respectively (we will say that the factor A has been “moved
to the right”; the opposite move, which amounts to replacing A and B by
B and B~!'AB respectively, will be referred to as “moving B to the left”).
Another possibility is global conjugation, i.e. conjugating all factors simul-
taneously by a given braid (this is legal since A? is in the center of By).
Roughly speaking, a Hurwitz move amounts to changing the way in which
the critical levels of | p are labelled and ordered, while a global conjugation
amounts to changing the way in which the d sheets of the branched covering
mp are labelled and ordered. For a given curve D any two factorizations
representing the braid monodromy of D are Hurwitz and conjugation equiv-
alent.

To recover a map X — CP? from the monodromy invariants we also need
a geometric monodromy representation. Let D C CP? be a curve of degree
d with cusps and nodes (possibly negative), and let C C CP? be a fiber of
the projection « : CP? — {pt} — CP! which intersects D in d distinct points
qi,---,qq- Then, the inclusion of C — {g1,...,q4} into CP? — D induces a
surjective homomorphism on the fundamental groups. Small loops 71, . .., 74
around qi,...,qq in C generate 7;(CP2 — D), with relations coming from
the cusps, nodes and tangency points of D. These d loops will be called
geometric generators of w1 (CP? — D).

Recall that there exists a natural right action of By on the free group

Fy=m(C—{q1,---,q94}) ; denote this action by %, and recall the following
definition [9] :
Definition 1. A geometric monodromy representation associated to a curve
D C CP? is a surjective group homomorphism 0 from the free group Fy =
m1(C = {q1,---,q4}) to the symmetric group S, of order n, such that the
0(vi) are transpositions (thus also the 6(vy; x Q) and

0(y1-..74) =1,

(1 * Q]) = 0('}'2 *Qy) if rj =1,

O(71 * Qj) and O(y2 x Q) are dzstmct and commute if rj = £2,
O(v1 * Q;) and O(y2 x Q;) do not commute if rj = 3.

In this definition, n corresponds to the number of sheets of the covering
X — CP? ; the various conditions imposed on (~y; * Q;) express the natural
requirements that the map 6 : Fy; — S, should factor through the group
71(CP? — D) and that the branching phenomena should occur in disjoint
sheets of the covering for a node and in adjacent sheets for a cusp. Note
that the surjectivity of 8 corresponds to the connectedness of the covering
4-manifold.

Operations such as Hurwitz moves and global conjugations should be
considered simultaneously on the level of braid factorizations and on that



THE DEGREE DOUBLING FORMULA 5

of the corresponding geometric monodromy representations : a Hurwitz
move does not affect the geometric monodromy representation, but when
performing a global conjugation by a braid @ it is necessary to compose 6
with the automorphism of F,; induced by Q.

In the symplectic case the curve D can have negative nodes, and as a con-
sequence the uniqueness result obtained in [1] only holds up to cancellation
of pairs of nodes. An additional possibility is therefore a pair cancellation
move in the braid factorization, where two consecutive factors which are the
exact inverse of each other are removed from the factorization. The converse
move (a pair creation) is also allowed, but only when it is compatible with
the geometric monodromy representation : adding (Q 1 X7 2Q).(Q 11X 2Q)
somewhere in the braid factorization is only legal if 6(y; * Q) and 0(vy2 x Q)
are commuting disjoint transpositions.

Definition 2. We will say that two braid factorizations (along with the cor-
responding geometric monodromy representations) are m-equivalent if there
exists a sequence of operations which turn one into the other, each operation
being either a global conjugation, a Hurwitz move, or a pair cancellation or
creation.

We now summarize the main results of [4] :

Theorem 1 ([4]). The compact symplectic J-manifold X is uniquely char-
acterized by the sequence of braid factorizations and geometric monodromy
representations corresponding to the approzimately holomorphic coverings
of CP? canonically obtained from sections of L®* for k > 0, up to m-
equivalence.

It was also shown in [4] that conversely, given a (cuspidal negative) braid
factorization and a geometric monodromy representation, one can recover
in a canonical way a symplectic 4-manifold (up to symplectomorphism).

1.2. The degree doubling process. We now turn to the topic at hand,
namely the phenomena that occur when the degree k is changed to 2k.

In all the following, we will assume that k is large enough for the unique-
ness properties of Theorem 1 to hold (if the considered coverings happen
to be algebraic this assumption is unnecessary). This makes it possible to
choose the most convenient process for constructing the branch curve for
degree 2k while ensuring that the resulting branch curve is indeed equiva-
lent to the canonical one. As observed in [4], one especially interesting way
to obtain the covering map for : X — CP? is to start with the covering map
fr : X — CP? and compose it with the Veronese covering V5, : CP? — CP?
given by three generic homogeneous polynomials of degree 2 (this is a 4:1
covering whose branch curve has degree 6, see below). The map V5 o fi is
clearly an approximately holomorphic covering given by sections of L%,
and its branch curve is the union of the image by V5 of the branch curve Dy,
of fr and n = deg fi, copies of the branch curve Dy of V5 (the branch curve
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D, is present with multiplicity n because branching occurs at every preim-
age by fi of a branch point of V2). However at every point where V(D)
intersects Do the map Vs o f; presents a non-generic singular behavior :
e.g., composing the branched coverings (z,y) — (z2,y) and (z,v) — (z,y?)
yields the singular map (z,y) — (22,%?%), which needs to be perturbed in
order to obtain a generic behavior. Further small perturbations are required
in order to separate the multiple copies of Dy ; nevertheless, for is obtained
as a small perturbation of V5 o fi, and its branch curve Dy is obtained as a
small perturbation of V,(Dy) Un Da.

For all large enough values of k£ the above-described procedure yields the
same covering for (up to isotopy) as the direct construction in [1] and [4],
because the approximate holomorphicity and transversality properties of the
above-described perturbation of V5 o fi make it subject to the uniqueness
results in [1] and [4] : for large enough degrees, the coverings constructed
directly and the ones obtained by composition with Vo and perturbation
become isotopic. So, for all large values of £ we can indeed hope to compute
the braid factorization of fo, by this method.

Another observation which is very helpful for calculations is that any
generic isotopy (1-parameter deformation family) of the curve Dy, will behave
“nicely” with respect to the chosen Veronese covering Vs, and will therefore
yield a generic isotopy of the curve V5(Dy). Since generic isotopies do not
modify braid factorizations (up to Hurwitz and conjugation equivalences in
the algebraic category, or up to m-equivalence in the symplectic category),
we are allowed to perform a generic isotopy on the curve Dy to place it in
the most convenient position with respect to the ramification curve of V5,
and this will not affect the end result.

An important consequence of this observation is that the & — 2k formula
we are looking for is universal in the sense that it does not depend on the
branch curve Dy, itself but only on its degree d and on the degree n of the
covering fr. Indeed, an isotopy can be used to make sure that all the special
points of Dj (cusps, nodes and tangencies) lie in a small ball B ¢ CP?
located far away from V, *(Ds), and that Dy looks like a union of d lines
outside of the ball B.

Namely, choosing coordinates on CP? such that the pole of 7is (0: 0 : 1),
the ball B is centered at (1 : 0 : 0), and the fiber at infinity is the set of
points whose first coordinate vanishes, and fixing a small nonzero constant
a, the linear transformation (z : y : z) — (x : ay : az) preserves the fibers
of m and sends all the special points of D (tangencies, nodes, cusps) to an
arbitrarily small neighborhood of the point (1: 0 : 0).

With this setup and for a suitable choice of the ball B, the branch curve
Dy, has the property that the contribution of Doy N Vo(B) to the braid
monodromy is the same as that of DN B, and the braid monodromy coming
from Doy, N (CP? — V5(B)) does not depend on the curve Dy but only on
its degree and on the geometric monodromy representation . The braid
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factorization corresponding to for is therefore of the form
2
Ad ' Ud,n,@a

where A2 is the braid factorization for fi (after a suitable embedding of By
into the larger braid group Bj corresponding to Dyy) and Ugyp g is a word
in Bj depending only on d, n and 6 (d = 2d + 6n = deg Dyy).

From the above considerations, the strategy for obtaining the formula
giving the braid factorization for Dy, in terms of the braid factorization for
Dy, is the following. First one needs to understand the braid factorizations
corresponding to the two curves V,(Dy) and Do taken separately ; next,
one has to study the phenomena that arise near the intersections of Dy with
Va(Dy,) ; and finally more calculations are required in order to combine these
ingredients into a formula for Doy.

These steps are carried out in Sections 2 and 3 of this paper : the strategy
of proof outlined above is carefully justified in §2 ; general properties of
the braid group and notations are introduced in §3.1 ; §3.2 describes the
folding formula which gives the braid factorization for V5(Dy) ; the braid
factorization of the branch curve Ds of V5 is computed in §3.3 ; the local
perturbation procedure to be performed near the intersections of Dy with
Va(Dy,) is described in §3.4 ; §3.5 deals with the assembling procedure that
yields the braid factorization for Doy, from the previous ingredients ; finally,
the calculation is completed and the main theorem stated in §3.6.

Remark. More generally, this procedure applies to any situation in-
volving iterated branched coverings : given two approximately holomorphic
branched covering maps f and g, the composed map h = g o f has a non-
generic behavior at each of the intersection points of the branch curves of f
and g ; however, the perturbation procedure described in §3.4 also applies
to this situation, and calculations similar to those of Section 3 can be used
to compute the braid monodromy of a “generic” perturbation h of h.

Also observe that, in the case of complex surfaces, the manner in which we
perturb iterated coverings, even though it is not holomorphic, is very similar
and in a sense equivalent to the corresponding construction in complex ge-
ometry. In particular, even though our computations are always performed
up to m-equivalence (allowing cancellations of pairs of nodes), in the case of
complex manifolds the formula ends up holding up to Hurwitz and conjuga-
tion equivalence (without node cancellations), provided that the assembling
process is carried out in a sufficiently careful manner (see §3.6).

Remark. The branched coverings constructed in [4] and the symplectic
Lefschetz pencils constructed by Donaldson enjoy transversality properties
which intuitively ought to make their topology very special among all pos-
sible coverings or pencils. It is therefore interesting to ask for criteria indi-
cating whether a given covering map (or Leschetz pencil) is “of Donaldson
type”; more precisely, the question is to decide whether, after stabilizing by
repeatedly applying the degree doubling formula, the monodromy data of
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the given covering map X — CP? eventually coincides with the invariants of
X given by Theorem 1. Although no definitive answer is available, there are
indications suggesting that every possible set of monodromy data actually is
of Donaldson type, i.e. becomes m-equivalent to the canonically constructed
object after sufficiently many degree doublings. This question can be refor-
mulated in two equivalent ways (similar statements about Lefschetz pencils
can also be considered) :

1. Given two sets of monodromy invariants representing branched cover-
ings of CP? with the same total space up to symplectomorphism, do they
always become m-equivalent to each other by repeatedly applying the degree
doubling formula ?

2. Is the set of all compact symplectic 4-manifolds with integral symplectic
class up to scaling of the symplectic form in bijection with the set of all
possible braid factorizations and geometric monodromy representations up
to m-equivalence and stabilization by degree doubling ?

1.3. Degree doubling for symplectic Lefschetz pencils. A direct ap-
plication of the degree doubling formula for braid monodromies is a similar
formula for the monodromy of the symplectic Lefschetz pencils constructed
by Donaldson [7]. Indeed, recall from [7] that every compact symplectic 4-
manifold admits a structure of Lefschetz pencil determined by two sections
of L®* for large enough k. The monodromy of such a Lefschetz pencil is
described by a word in the mapping class group of a Riemann surface. As
explained in [4], Lefschetz pencils and branched coverings are very closely
related to each other, and the monodromy of the Lefschetz pencil can be
computed explicitly from the braid factorization and the geometric mon-
odromy representation describing the covering.

More precisely, the geometric monodromy representation 6 determines a
group homomorphism 6, from a subgroup 32(0) of By to the mapping class
group M, of a Riemann surface of genus ¢ = 1 — n + (d/2) ; the braid
monodromy is contained in BY(#), and the monodromy of the Lefschetz
pencil is obtained by composing the braid monodromy with .. It was shown
in §5 of [4] that the nodes and cusps of the branch curve do not contribute
to the monodromy of the Lefschetz pencil (the corresponding braids lie in
the kernel of 6,), while the half-twists corresponding to the tangency points
of the branch curve yield Dehn twists in M.

Using this description, we derive in Section 4 of this paper a degree dou-
bling formula for Lefschetz pencils. The relation between braid groups and
mapping class groups of Riemann surfaces with boundary components is de-
scribed in more detail in §4.1, and the degree doubling formula is obtained
in §4.2.

Acknowledgements. We are very grateful to S. Donaldson and M. Gromov
for their constant attention to this work. The second author would also like
to thank THES for the extremely pleasant working conditions.
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2. STABLY QUASIHOLOMORPHIC COVERINGS

2.1. Quasiholomorphic coverings and braided curves. We now de-
scribe in more detail the geometric properties of the covering maps and
branch curves that we will be considering.

Definition 3. A real 2-dimensional singular submanifold D C CP? is a
braided curve if it satisfies the following properties : (1) the only singular
points of D are cusps (with positive orientation) and transverse double points
(with either orientation) ; (2) the point (0:0: 1) does not belong to D ; (3)
the fibers of the projection w: (x :y : z) — (z : y) are everywhere transverse
to D, except at a finite set of nondegenerate tangency points where a local
model for D in orientation-preserving coordinates is z2 = z; ; (4) the cusps,
nodes and tangency points are all distinct and lie in different fibers of m.

This notion is a topological analogue of the notion of quasiholomorphic
curve as described in [4]. In fact, a singular curve in CP? can be described
by a braid factorization with factors of degree 1, 2, and 3 if and only if it is
braided. As observed in [4], every braided curve is isotopic to a symplectic
curve, as follows immediately from applying the transformation (z : y : z) —
(z : y : €z), with € sufficiently small. However, the branch curves obtained
from asymptotically holomorphic families of branched coverings satisfy much
more restrictive geometric assumptions.

More precisely, recall that the notion of quasiholomorphicity only makes
sense for a sequence of branch curves obtained for increasing values of the de-
gree k, and that the resulting geometric estimates improve when k increases.
The geometric properties that follow immediately from the definitions and
arguments in [1] and [4] are the following. Recall that (X,w) is endowed
with a compatible almost-complex structure J and the corresponding metric
g, and that we rescale this metric to work with the metric gy = k g.

Definition 4. A sequence of sections sy of complex vector bundles Ej, over
X (endowed with Hermitian metrics and connections) is asymptotically
holomorphic if there exist constants C; independent of k such that |Vj3k|gk <
Cj and VI 0slg, < Cjk™/2 for all j.

The sections s are uniformly transverse to 0 if there exists a constant
v > 0 such that, at every point x € X where |sg(z)| < 7, the covariant
derivative Vsi(z) is surjective and has a right inverse of norm less than
v~V w.r.t. g, (we then say that sy is y-transverse to 0).

If the sections sy, are asymptotically holomorphic and uniformly transverse
to 0 then for large k their zero sets are smooth asymptotically holomorphic
symplectic submanifolds.

Definition 5. A sequence of branched covering maps fy, : X — CP? deter-
mined by asymptotically holomorphic sections sy = (32,5}6,5%) of C3 ® L%k
for k> 0 is quasiholomorphic if there exist constants C;, v, § independent
of k, almost-complez structures Ji on X, and finite subsets F, C X, such
that the following properties hold (using Ji, to define the & operator) :
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0) |VI(Jk — J)|g < Cjk Y2 for every j > 0 ; Jy = J outside of the
20-neighborhood of Fi, ; Jy is integrable over the 8-neighborhood of Fy, ;

(1) the norm of sy is everywhere bounded from below by vy ; as a conse-
quence, |V filg, < Cj and |VI20fk|g < Cik~Y2 for all j ;

(2) |V fi(z)|g, > at every point x € X ;

(3) the (2,0)-Jacobian Jac(fx) = det Ofy is y-transverse to 0 ; in partic-
ular it vanishes transversely along a smooth symplectic curve Ry C X (the
branch curve).

(3") the restriction of Ofy to Ker Ofy vanishes at every point of Ry, ;

(4) the quantity O(fy r,), which can be seen as a section of a line bundle
over Ry, is y-transverse to 0 and vanishes at a finite subset Cy, C Fy (the
cusp points of fr) ; in particular fr(Ry) = Dy is an immersed symplectic
curve away from the image of Cy, ;

(5) fx is Jx-holomorphic over the §-neighborhood of Fy, ;

(6) the section (s2,s}) of C?> ® L®* is y-transverse to 0 ; as a consequence
Dy, remains away from the point (0:0:1) ;

(7) letting ¢y, = wo fr, : Ry — CPL, the quantity O(k|r,) is y-transverse
to 0 over Ry, and it vanishes over the union of Cy with a finite set Ty, (the
tangency points of Dy) ; moreover, Ofy = 0 at every point of Ty ;

(8) the projection fi : Ry — Dy is injective outside the singular points of
Dy, and the branch curve Dy, is braided.

The main result of [4] is the existence, for large enough values of k,
of quasiholomorphic covering maps X — CP? determined by sections of
C?® ® L®*, canonical up to isotopy. The braid monodromy invariants corre-
sponding to these coverings are those mentioned in Theorem 1.

2.2. Stably quasiholomorphic coverings. We wish to construct and
study branched covering maps which, in addition to being quasiholomor-
phic, behave nicely when composed with a quadratic holomorphic map from
CP? to itself. For this purpose, we extend in the following way the notions
defined in the previous sections :

Definition 6. We say that the image D C CP? of a smooth curve R by
a map f is locally braided if there exists a finite number of open subsets
U; C R, whose union is R, such that for all j the image f(U;) C D is a
braided curve in CP2.

In other words, a locally braided curve is similar to a braided curve except
that it is merely immersed outside its cusps, without any self-transversality
property ; although the cusps and tangencies of a locally braided curve
are still nondegenerate and well-defined, phenomena such as self-tangencies
might occur. For example, if the definition of a quasiholomorphic covering
is relaxed by removing condition (8), the branch curve Dy is only locally
braided.

Although a locally braided branch curve does not have a well-defined braid
monodromy, an arbitrarily small perturbation ensures self-transversality and
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yields a braided curve ; it is easy to check that the braid monodromies of all
possible resulting curves are m-equivalent, as the only phenomenon which
can occur in a generic l-parameter family is the cancellation of pairs of
double points.

Definition 7. A sequence of branched covering maps fr : X — CP? deter-
mined by asymptotically holomorphic sections sy = (32, s,lc,s%) of C3 ® Lk
for k > 0 is stably quasiholomorphic if, with the same notations as in
Definition 5, the following properties hold :

(1) the covering maps fr are quasiholomorphic ;

(2) the sections 32, 3,1c and s% of L®* are -transverse to 0 ;

(3) the sections (s, s}), (s2,s2) and (si, s2) of C> ® L®* are y-transverse
to 0 ;

(4) let 7°, ' and ©* be the projections (z:y:2z) = (y:z), (z:y:2) —
(z :2z) and (:q ty:z) = (x:y) respectively, and define ¢, = " o fi ; the
quantity 6((¢;€)|(s§c)_1(0‘)) is y-transverse to 0 over (st) '(0) f?r i=0,1,2;

(5) the quantity |04y, is bounded from below by ~ over (st)~1(0) ;

(6) Fr = Cx U Ty U Iy, where Ty, is the set of tangency points and Iy, is
the set of points of Ry where one of the three sections s}, vanishes.

We have the following extension of the main results of [1] and [4], which
will be proved in §2.3 :

Proposition 1. For all large values of k, there exist asymptotically holo-
morphic sections sy, of C> @ L®¥ such that the corresponding projective maps
fr : X = CP? are stably quasiholomorphic coverings. Moreover, for large k
the topology of these covering maps is canonical up to isotopy and cancella-
tions of pairs of nodes in the branch curve.

More precisely, the uniqueness statement means that, given two sequences
of stably quasiholomorphic coverings, it is possible for large k to find an in-
terpolating 1-parameter family of covering maps, all of which are stably
quasiholomorphic, except for finitely many parameter values where a can-
cellation or creation of a pair of nodes occurs in the branch curve.

Because of the uniqueness properties of quasiholomorphic coverings, the
braid monodromy invariants described in the introduction (Theorem 1) co-
incide (up to m-equivalence) with those obtained from the covering maps of
Proposition 1.

Important note. In all the following arguments, it is implicit that
all the constants that appear are uniform estimates and do not depend
on k. Moreover, all open transversality properties appearing in the proofs
(transversality of branch curves, non-vanishing of certain quantities, etc.)
are implicitly stated to be uniform. Similarly, when it is said that two
quantities are close to each other, it is implied that a uniform bound on their
difference holds (depending on the other estimates but not on k). Putting
the correct constants in the right places and checking that they do not
depend on k is an easy task left to the reader.
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Lemma 1. Let V) : CP? — CP? be the covering defined by (x : vy : z) —
(2 : y? : 22), and let fi be a sequence of stably quasiholomorphic covering
maps. Then the images by V3 of their branch curves Dy C CP? are locally
braided curves in CP?. Moreover, this property remains true if V3 is replaced
by another holomorphic quadratic map from CP? to itself which differs from
V3 by less than ', for some constant ' independent of k ; perturbing V) in
this way does not affect the braid monodromy of V)(Dy) up to m-equivalence.

Proof. Observe that the branch curve of V) consists of the three lines Ly =
{0:y:2)} L1 ={(x:0:2)}and Ly = {(z : y : 0)}. First, property
(3) in Definition 7 implies that the branch curves Dy remain away from
the three mutual intersection points of Ly, L; and Ls. For example, at
a point where 32 and s}c are both much smaller than vy, the norm of 5%
is bounded from below, and the 7-transversality to 0 of (s%,s}) implies
that their covariant derivative is surjective, and hence that f; is a local
diffeomorphism. Therefore, the branch curve Dj remains away from the
point (0: 0 : 1) (the lower bound on the distance can be expressed explicitly
in terms of the estimates satisfied by the sections si). Similarly, the points
(0:1:0) and (1:0:0) are avoided as well (see the discussion of Proposition
1 in [4] for more details).

Moreover, property (2) in Definition 7 implies that wherever the curve
Dy, intersects Lo, Li or Lo, the angle between L; and the tangent space
to Dy (or for a double point, the tangent space to either of the branches
of Dy) is bounded from below by a uniform constant. In other words, Dy
intersects L; transversely, except if the intersection occurs at a node (then
both branches intersect L; transversely) or at a cusp (the limiting tangent
direction is then transverse to L;). Indeed, if a point z € X belongs to the
branch curve Ry C X of fi, then the image of the differential df; at z is the
tangent space to Dy, at fi(z) (in the case of a node, the tangent space to one
of the branches). However, if f;(z) belongs to Lo, then s%(z) = 0, and the
y-transversality to 0 of 32 implies that the image of dfy, at x is transverse
to Lo, with angle bounded from below by a uniform constant. The same
argument applies to L; and Ly as well.

A consequence of this observation is that the tangency points of Dy, cannot
be too close to the “vertical” lines Ly and L.

We now turn to property (4) : it follows from property (2) that the
submanifolds W} = (st)~'(0) C X are smooth and approximately holo-
morphic ; property (4) asserts that all critical points of the restriction of
fk\Wli : Wi — L; are non-degenerate (the vanishing of 3((¢2)|W,§) at a point
where 8((¢};)|Wé) vanishes follows automatically from property (3’) of Defi-
nition 5, since such a point always belongs to the branch curve). However,
the non-degeneracy of the critical points of fk\W;i implies that the cusps of
Dy, cannot lie on L; (this can be seen e.g. by arguing that the intersection
multiplicity of Ry with W,ﬁ at such a Morse critical point is necessarily 1,
or alternatively by a direct topological argument). Since the transversality
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estimate in property (4) of Definition 7 is uniform, we actually get that
the distance between the cusps of Dj and L; is bounded from below by a
uniform constant.

Next, observe that property (5) of Definition 7 means that no point of W}
is a critical point (or even a near-critical point) of qﬁ}c This implies that the
tangent space to Dy at a point where it intersects L; cannot be close to the
normal space to L; ; in particular, no tangency point of Dy, can be too close
to Lo. Since the normal space to L; is precisely the kernel of the differential
of Vi) at a point of L;, we also conclude that the restriction of V¥ to Dy, is
locally an immersion at any point close to L;.

We already conclude that V;)(Dy) is locally braided. Indeed, it follows
from the above observations that the only non-immersed singularities of
this curve are the images by V3 of the cusps of Dy. Moreover, the tangency
points of V0(Dy) are of two types : the images by V¥ of the tangency points
of Dy, and the images of the points where Dy, transversely intersects the
vertical lines Ly and L. We do not care about the nodes and other possibly
non-transverse self-intersections of V3 (Dy) (they are not relevant for the
property of being locally braided).

We now consider a holomorphic quadratic map Vj : CP? — CP?, obtained
by slightly perturbing V. If V; is close enough to V3, the transversality
properties of Dy with respect to the branch curve of VY still hold for the
branch curve of V3 (these are open conditions, and we have shown the ex-
istence of uniform transversality estimates) ; so we already know that the
only non-immersed singularities of V;(Dy,) are the images of the cusps of Dy.
To conclude as above that V(Dy) is locally braided, we only need to con-
sider its tangency points. A first problem is to show that the non-transverse
intersections of V4 (Dy) with the fibers of 7 are indeed genuine tangencies ;
then we need to show that they are non-degenerate.

Recall that by property (7) of Definition 5 the critical points of the map
¢x = (7o fx)g, from Ry to CP! are isolated and non-degenerate (¢, is
a complex Morse function) ; these critical points correspond to the cusps
and tangency points in Dy. Moreover, by property (5) of Definition 5 and
property (6) of Definition 7, the map fj is holomorphic (with respect to Jj,
or Ji) near these points. Now consider the map 99 = (7o V) o fr)|R, © its
critical points are the cusps and tangency points of V(D). Since 9 can be
obtained from ¢y by composing with the quadratic map (z : y) — (22 : y?),
its critical points are exactly the critical points of ¢y and the points of Ry
where 52 or s,lc vanishes. As shown above these critical points are isolated
and non-degenerate (more directly, this follows from the observation that
the critical points of ¢ are non-degenerate and that (0 : 1) and (1 : 0)
are not critical values of ¢y). Moreover, all critical points of ¢2 belong to
Ci U Tr UZ, and therefore fj, is holomorphic near them.

Define ¢, = (mo V3o fr)|r, * we want to show that its critical points,
which consist of the cusp points of V4 (Dy) and the points where V(D)
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is not transverse to the fibers of m, still enjoy the same properties. A first
observation is that, if VJ is sufficiently close to Vi (e.g. with respect to the
C' topology), then all critical points of 1y, lie close to those of ¢2. Indeed,
all critical points of 1}, are near-critical points of ¢2 (because these two
maps are C'-close to each other). At a near-critical point of zb,g, either J¢y,
is small, or one of the sections 32 and s}c is small ; in both cases, the uniform
transversality estimates satisfied by ¢ (by Definitions 5 and 7) imply that
one of O¢y, 32 or 3,1C vanishes at a nearby point of R;. In other words, any
near-critical point of ¢2 lies close to a true critical point.

This implies that every critical point of 1}, lies close to a point of C;, U7 U
T). In particular, if V; is sufficiently close to VQO, the critical points are moved
by a distance smaller than §/2, and therefore fi is still holomorphic near
the critical points of ;.. We conclude that the differential of 4} completely
vanishes at its critical points, i.e. the points where V(D) is not transverse
to the fibers of 7 are genuine tangencies. Moreover, if V4 is sufficiently close
to V20 the critical points of 4} remain non-degenerate, and therefore the
tangency points of V5 (Dy) are non-degenerate.

Therefore, when Vj is close enough to Vi) we conclude that the curve
V3 (Dy) remains locally braided. A careful accounting of the various uniform
estimates shows the existence of a fixed constant 4/ > 0, depending only on
the estimates on fi in Definitions 5 and 7 (but not on k), such that ensuring
that V4 differs from V) by at most 7/ in C! norm is sufficient to ensure that
V3 (Dy) has all the desired properties.

The argument also trivially implies that VJ (Dy) and V3 (Dy,) are mutually
isotopic among locally braided curves, and that their braid monodromies are
m-equivalent to each other. O

The properties of stably quasiholomorphic coverings are actually even
better : given a generic holomorphic quadratic map V; close to V0, the
composed maps Vi o fj already satisfy most of the properties expected of
quasiholomorphic coverings except at the points where the branch curve of
[ intersects that of V3.

Proposition 2. Let fi be a family of stably quasiholomorphic coverings,
and let V be a generic holomorphic quadratic map close to V20. Then, given
any fized constant dy > 0, there exist constants C;, v, 0 independent of k
(but depending on dy) such that the composed maps f5, = V; o fi satisfy
all the properties of Definition 5, except for properties (3') and (8), at every
point of X whose gi-distance to T, = Ry N f,;l(R’Q) is larger than dy (Rg
and R)y are the ramification curves of fr and Vy respectively).

Proof. The projective map fj, = V; o fi is defined by a section Q(s) of
C® @ L®% | each of its three components being a quadratic expression Q;(sy)
(0 < ¢ < 2) in the three sections defining fi. It is therefore easy to show
that the sections Q(sy) are asymptotically holomorphic.
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Because the projective map VJ induced by the polynomials Q; is well-
defined, the inequality |Q(s)| > c|s|? holds for some constant ¢ > 0. There-
fore, the existence of a uniform lower bound on |s;| at every point of X
implies that of a uniform lower bound on |Q(sg)|, and so property (1) of
Definition 5 is satisfied everywhere.

Before going further, we make an important observation. By property (2)
of Definition 7 the branch curve of f; is transverse to the branch curve of
V3 and hence to that of Vj. Therefore, if a point z € X lies close both to
Ry, and to f '(R}) then it always lies close to a point of ;.

Property (2) of quasiholomorphic coverings follows from the observation
that, since the differentials of f; and V, both have complex rank at least
1 everywhere, Vf}, (z) can only be small if the Jacobians of f; at z and
of Vj at fx(z) are both small. These quantities vanish transversely (fj is
quasiholomorphic and Vj is generic), so z must lie close to both branch
curves, and hence, by the above observation, close to Z'j (closer than dj if
|V f5r ()] is assumed small enough). In fact, |V f,| remains bounded away
from 0 even near 7, because, as observed in the proof of Lemma 1, property
(5) of Definition 7 implies that V¥ (and hence also V;) restricts to the branch
curve of fi as an immersion.

We now turn to the third property. The (2,0)-Jacobian of fj, is given
by Jac(fsk) = Jac(fy) - fiJac(Vy). It can only be small when one of the
two terms in the product is small, i.e. near one of the two branch curves.
Moreover, f;Jac(Vy) is bounded away from zero everywhere except near
fiH(Rb), so the transverse vanishing of Jac(f;) implies that of Jac(f};) at
these points. Similarly Jac(fx) is bounded from below everywhere except
near Ry, so the transverse vanishing of f;Jac(V3) implies the desired prop-
erty at these points. As a consequence the transversality to 0 of Jac(f},)
holds everywhere except near Z; (note that the obtained transversality es-
timate has to be decreased when dy becomes smaller).

We now look at property (4). Away from Z; the branch curve of f;, con-
sists of two separate components, Ry and f, l(R'Q), so we work separately
on each component. On Ry — I}, we know that O(fy g, ) is uniformly trans-
verse to 0, and because Z, has been removed the complex linear map VVj
is an isomorphism at every point of the image, with norm bounded from
below (the constant depends on dp). Composing 9(fyg,) with VV;, we ob-
tain that O( fék| Rr,) 18 also uniformly transverse to 0 at all points of Ry, at
distance more than dy from Z; (again, the constant depends on dy). The ar-
gument works similarly on f,~ Y(RY) — I, : Of is an isomorphism with norm
bounded from below (the constant depends on dp), and because V3 has been

!

chosen generic the quantity V(V2| R,2) vanishes transversely, so 9( f;k| SR, ))
k 2

is uniformly transverse to 0 at all points of f, '(Rj)) at distance more than
do from 7.

Observe by the way that all cusp points of fi and of Vj lie away from Z;.
Indeed, for the cusp points of f it follows from property (4) in Definition
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7 that they lie away from the branch curve of V) and hence from that of
V,, as observed in the proof of Lemma 1. On the other hand, is easy to see
that the cusp points of V; all lie close to one the three singular points of
V3, and, as observed in the proof of Lemma, 1, property (3) in Definition 7
implies that the branch curve of f; remains far away from these points.

Property (5) is very easy to check : since compatible almost-complex
structures on X are sections of a bundle with contractible fiber, it is sufficient
to work locally near a cusp point. The points we have to consider are either
cusp points of fi or the preimages by fi of those of V. In the first case,
it is sufficient to choose the same almost-complex structure Jj, as for frs
because Vj is holomorphic. In the second case, consider the pull-back f;Jo
of the standard complex structure of CP? via the map fx. Since all cusp
points of Vj lie far from the branch curve of fi, the differential of fy is
locally an isomorphism and satisfies a uniform lower bound. Therefore the
asymptotic holomorphicity of the sections defining s is enough to ensure
that fyJo differs from J by at most O(k~'/?) in any C" norm. A standard
argument using a smooth cut-off function can be used in order to define a
smooth almost-complex structure which coincides with f;Jo near the cusp
point and with J outside a small ball.

We now turn to property (6). Consider a point z € X where the first
two sections defining f7,, namely Qo(s;) and Q1(sx), are both very small,
bounded by some constant 1 which will be given a value later in the argu-
ment. Because the quadratic map V3 is close to V3, and because the only
preimage of (0 : 0 : 1) by V3 is (0 : 0 : 1) itself, the quantities s)(z) and
si(z) are also small, and can be bounded by C(n + ||[V5 — V{'||)!/2, where
C is a suitable uniform constant. Recall that, because fi is quasiholomor-
phic, (52,3,16) is y-transverse to 0 for some constant v > 0. If we assume
that ||V — V3| is sufficiently small compared to 7, and if 7 is chosen small
enough, we get that (32, s,lc) is bounded by v at the point z. Transversality
then ensures that V(s,s})(z) is bounded from below by ~, or equivalently
that Jac(fx)(z) is bounded from below by a constant related to . On the
other hand, observe that, if V3 is chosen generic, then the image of its branch
curve avoids the point (1 : 0 : 0) by a certain distance p > 0. Observing
that fi, () lies at distance O(n) from (0: 0 : 1), we get that, if n is chosen
sufficiently small, then fJ, (x) lies at distance at least p/2 from the branch
curve of V. This implies that the Jacobian of V at fi(z) cannot vanish,
and is in fact bounded from below by some positive constant (depending on
p only). So, Jac(f},)(z) = Jac(fx)(z) Jac(Vy)(fx(x)) is bounded from below
by a fixed constant independently of k. This implies immediately (because
the sections @;(sx) are uniformly C'-bounded) that the covariant derivative
of (Qo(sk), @1(sk)) at z is surjective and bounded from below by a uniform
constant. So property (6) holds.

We finally look at property (7), which actually is equivalent to the state-
ment that the image of the branch curve be locally braided. Most of the
work has already been done in the proof of Lemma 1. More precisely, after
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removing the intersection Zj , the branch curve of f;, splits into the two com-
ponents Ry and f~ I(R'Q), and we consider them separately. It was shown
in the proof of Lemma 1 that all the critical points of 4 = (¢ o f3,) g, are
non-degenerate. Moreover it was shown that these critical points all lie in a
neighborhood of C; U T, U Z, which implies that fj is locally holomorphic
with respect to a suitable almost-complex structure (J; or Ji); so the image
of its differential is a complex subspace in T'CIP?, and so is the tangent space
to fi.(Rk), which implies that 51% also vanishes at the tangency points.
This takes care of the component Ry (whose image we actually already
knew to be locally braided from Lemma 1).

We now look at the component f,~ ! (Rj) away from the points of 7}, : since
fx is a local diffeomorphism at all such points, the expected transversality
of d(m o fJ,) is equivalent to the same property for d(m o V3) restricted to
R),. However it is easy to check that such a transversality property holds as
soon as Vj is chosen generic (actually, as soon as V;(R)) is locally braided).
Of course the transversality estimate on 0(w o f},) depends on the distance
dy, because a lower bound on Jfj is used when lifting the transversality
property from wo Vy to wo f},. Also observe that the holomorphicity of V;
implies that the differential of 7o V2'| R, vanishes completely at the tangency

points of the branch curve of V; (these are genuine tangencies); this clearly
implies the same property for = o f}, at the tangency points coming from
£ H(RY). This concludes the proof. O

Proposition 2 implies that we can proceed in the following way to con-
struct quasiholomorphic coverings given by sections of L&%* for large k : first
construct stably quasiholomorphic coverings fi, as given by Proposition 1 ;
then, define f5, = Vj o f) for a generic perturbation V; of V3 ; and finally
perturb f, in order to get quasiholomorphic coverings.

Following the arguments in [1] and [4] (see also [2] and the argument in
§2.3 below), we can make the following important observations concerning
the process by which the maps fj, are perturbed and made quasiholomor-
phic. The first step of the construction of quasiholomorphic coverings is
to ensure that all the required uniform transversality properties are satis-
fied over all of X. This process is a purely local iterative construction, so
that when one starts with f}, it is sufficient to perturb the given sections
of L®2k near the points of T, or equivalently near the points of Z ; the
required perturbation can be chosen smaller than any fixed given constant
(independent of k, as the obtained transversality estimates would otherwise
not be uniform), and decays exponentially fast away from the points of Z; .
The next step in order to construct quasiholomorphic coverings is to ensure
property (5) of Definition 5 at the cusp points as well as the last requirement
of property (7) at the tangency points ; since the necessary perturbation is
bounded by a fixed multiple of k~1/2, it has no effect whatsoever on braid
monodromy outside of a fixed small neighborhood of Z}..
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At this point in the construction, the branch curves are already locally
braided and therefore have well-defined braid monodromies up to m-equi-
valence ; ensuring the remaining conditions (3') and (8) has no effect on
the monodromy data. More precisely, the self-transversality of the branch
curves (condition (8)) is obtained by an arbitrarily small perturbation, which
is precisely how one defines the braid factorization associated to a locally
braided curve. And finally, condition (3') is obtained by a perturbation
process which does not affect the branch curve (see [4]) ; in fact, in our
precise case, the properties of f; and the holomorphicity of Vj make this
perturbation largely unnecessary. Finally, notice that, once the covering
maps fy, are perturbed and made quasiholomorphic, the braid monodromy
invariants associated to them must coincide with those associated to for, at
least provided that k is large enough : this is a direct consequence of the
uniqueness result of [4].

As a consequence of these observations, by computing the braid factor-
ization corresponding to the branch curve of f, (very singular, with com-
ponents of large multiplicity), a great step towards computing the braid
factorization for fo is already accomplished : the only remaining task is to
understand the effect on braid factorizations of the perturbation performed
near the points of Z;. This justifies the strategy of proof used in §3.

2.3. Proof of Proposition 1. Proposition 1 can be proved using the same
techniques as in [1] and [4] (see also [2]) ; however, the result of [3] can be
used to greatly simplify the argument. Observe that the properties expected
of s; are of two types : on one hand, uniform transversality properties,
which are open conditions on the holomorphic part of the jet of sg, and on
the other hand, compatibility properties, involving the vanishing of certain
antiholomorphic derivatives along the branch curve. The proof therefore
consists of two parts. In the first part, successive perturbations of s; are
performed in order to achieve the various required transversality properties ;
each perturbation is chosen small enough in order to preserve the previously
obtained transversality properties. In the second part, s; is perturbed along
the curve Ry by at most a fixed multiple of k~'/2 in order to obtain the
compatibility conditions.

The first part of the argument can be either carried out as in [1] and [4],
or more efficiently by using the result of [3] in the following manner.

Let B, = C® ® L®*, and consider the holomorphic jet bundles J2E) =
E,oT*X10 @ B, @ (T*X(l’o))g,%n ® E). We define the holomorphic 2-jet
j2s of a section s € I'(E}) as (s,0s,0(85)sym), discarding the antiholomor-
phic terms or the antisymmetric part of d0s (these terms are bounded by
O(k~'/?) for asymptotically holomorphic sections). Recall from [3] the no-
tion of finite Whitney quasi-stratification of a jet bundle :

Definition 8. Let (A, <) be a finite set carrying a binary relation without
cycles (i.e., ay < -+ < ap = a, £ a1). A finite Whitney quasi-stratification
of J2Ey indezed by A is a collection (S%)aca of smooth submanifolds of
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J?Ey, transverse to the fibers, not necessarily mutually disjoint, with the
following properties : (1) 0S* = §o — 8% C Us<a S ; (2) given any point
p € 8%, there exists b < a such that p € S® and such that either S® C 0S¢
and the Whitney regularity condition is satisfied at all points of S°, or p &
O, where O g, C S is the set of points where the 2-jet of a section of Ey, can
intersect S° transversely (in particular © g, = () whenever codime S° > 2).

As in [3], say that a sequence of finite Whitney quasi-stratifications Sk
of J2E,, is asymptotically holomorphic if all the strata are approximately
holomorphic submanifolds of J2E},, with uniform bounds on the curvature
of the strata and on their transversality to the fibers of J2E}.

It was shown in [3] that, given asymptotically holomorphic finite Whitney
quasi-stratifications Sy of J2E}, it is always possible for large enough k
to comstruct asymptotically holomorphic sections of Fj whose 2-jets are
uniformly transverse to the strata of Sy ; moreover, these sections can be
chosen arbitrarily close to any given asymptotically holomorphic sections
of Fj. The result also holds for one-parameter families of sections, which
implies that the constructed sections are, for large k, canonical up to isotopy.

Using local approximately holomorphic sections of L®* and coordinates
over X, the fibers of J2E}, can be identified with the space ‘722,3 of jets of
holomorphic maps from C? to C3. It was observed in [3] that, if a sequence
of finite Whitney quasi-stratifications of J2E}, is such that by this process
the restrictions of Si, to the fibers of J2E), are all identified with a fixed
given finite Whitney quasi-stratification of J2%3 by complex submanifolds,
then the quasi-stratifications Sy are asymptotically holomorphic.

We define finite Whitney quasi-stratifications of J2E}) in the following
way. Consider the symmetric holomorphic part j2s(z) of the 2-jet of a
section s = (59, s!,5?) € T'(Ey) at a point z € X ; if s(x) # 0, denote by f
the corresponding CP2-valued map, and by ¢* (i € {0,1,2}) its projections
to CP! along coordinate axes if they are well-defined. Finally, if Jac f(z) =
A?0f(z) = 0 and dJac f(z)sym = (00f(%))sym A Of(z) # 0, call R, the
kernel of the (1,0)-form O0Jac f(z)sym ; one easily checks that R, is well
defined in terms of j%s only and that it differs from the tangent space at
= to the branch curve of f by at most O(k~1/2). We define the following
submanifolds of J2Ej, (in the last two definitions, {i,j, k} = {0,1,2}) :

Z ={j%s(z), s(z) = 0} (codim. 3)
Zij ={j%s(z), s'(z) = s/(z) = 0} (codim. 2)
Z; ={js(z), s'(z) = 0} (codim. 1)
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2 ={5s(2), s(x) #0, 0f () = 0} (

St ={"s(z) ¢ Z, 0f () # 0, Jac f(z) = 0} (

¥t ={j%s(z) € ', dJac f(z)sym = 0} (
nhl :{jQS(.’L‘) ex! — Z;, of(x)r, = 0} (codim.
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One easily checks that all these subsets are smooth submanifolds of 7 2Ek.
Moreover, Z, Z; and Z;; are closed ; 052 C Z ; 0%! and 9%} are contained
inY2UZ; o8t CRlUT2UZ; 08 CS2UZ U (Zoy —Og,) ; 05 C
Eé Us2uzu (Zo1 — 6201) ; 0S; C (ij — @ij) ; 852{ C (ij — @ij) U
(Z; — ©z,). Therefore, these submanifolds define quasi-stratifications S, of
J?Ey,. Note that, because X! = ©! — Oy, the stratum X! can in fact be
eliminated from this description. Moreover, if one uses local approximately
holomorphic coordinates and asymptotically holomorphic sections of L®* to
trivialize J2E}, it is easy to see that the resulting picture is the same above
every point of X : the submanifolds in Sy are identified with holomorphic
submanifolds of J35 defined by the same equations. Therefore, by [3] the
quasi-stratifications S are asymptotically holomorphic.

It is easy to see that conditions (1), (2), (3), (4) and (6) of Definition 5 are
equivalent to the uniform transversality of j2s; to Z, %2, B!, &bl and Zy,
respectively. Similarly, conditions (2) and (3) of Definition 7 correspond to
the uniform transversality of j2sj to Z; and Z;j respectively. Observing that
0(¢x|r,) can only vanish at a point z € Ry, if either O¢i(z) = 0 or O(fy r,)
vanishes at x, we can rephrase condition (7) of Definition 5 in terms of
uniform transversality to the singular submanifold of J2E}, consisting of
the union of 1! (cusp points) and ¥} (tangencies), intersecting regularly
along Ei o1 (“vertical” cusp points). Therefore, it is equivalent to the uniform
transversality of j2s; to X!, Bl and Ztl ! Finally, conditions (4) and (5)
of Definition 7 correspond to the uniform transversality of j2sj to S} and S;
respectively.

So, the uniform transversality of j2s; to the quasi-stratifications S, as
given by the main result of [3] provided that k is large enough, is equiva-
lent to the various transversality requirements listed in Definitions 5 and 7.
Moreover, the sections of C? ® L®* constructed in this manner are canonical
up to isotopy, as follows from Theorem 3.2 of [3] : given any two sequences of
such sections, it is possible for large enough k to find one-parameter families
of sections of C? ® L®* interpolating between them and enjoying the same
uniform transversality properties for all parameter values.
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We now turn to the second part of the argument, namely obtaining the
other required properties by perturbing the sections s; by at most O(k‘l/ 2),
which clearly affects neither holomorphicity nor transversality properties.
The argument is exactly the same as in [4] ; the only difference is that the
set Fj, of points where the map f; must made holomorphic with respect to
a slightly perturbed almost-complex structure is now slightly larger : one
now sets Fj = Ci, U T UZ;, instead of F;, = Cy. ~

As in [1] and [4], one first chooses suitable almost-complex structures Jj
differing from J by O(k~1/?) and integrable near the finite set Fy. It is
then possible to perturb f; near these points in order to obtain condition
(5) of Definition 5, by the same argument as in §4.1 of [1]. Next, a generic
small perturbation yields the self-transversality of Dy (property (8) of Def-
inition 5). Finally, a suitable perturbation of fi, supported near Ry and
vanishing near the points of Fy, yields property (3') of Definition 5 along
the branch curve, without modifying Ry and Dy, and therefore without af-
fecting the previously obtained compatibility properties. As shown in [4]
these various constructions can be performed in one-parameter families, ex-
cept for property (8) of Definition 5 where cancellations of pairs of nodes
must be allowed ; this yields the desired result of uniqueness up to isotopy,
and completes the proof of Proposition 1.

3. THE DEGREE DOUBLING FORMULA FOR BRAID MONODROMIES

3.1. Generalities about the braid group. We begin by recalling general
definitions and notations concerning the braid group on d strings. Con-
sider a set P = {p1,...,pq} of d points in the plane, and recall that
By = mo Difff (R2, P) is by definition the group of equivalence classes of
compactly supported orientation-preserving diffeomorphisms of the plane
which leave invariant the set P, where two diffeomorphisms are equivalent
if and only if they induce the same automorphism of 7 (R? — P). Equiva-
lently By can be considered as the fundamental group of the configuration
space of d points in the plane : a braid corresponds to a motion of the
points p1, ... ,pg such that they remain distinct at all times and eventually
return to their original positions (but possibly in a different order) up to
homotopy. An important subgroup of By is the group of pure braids Py (the

braids which preserve each of the points p1,... ,ps individually) ; it is clear
that By/P,; is the symmetric group Sy.
We will place the points p1,... ,pq in that order on the real axis, and de-

note by X; the positive (counterclockwise) half-twist along the line segment
joining p; to p;41, for each 1 <3 < d — 1. It is a classical fact that By is
generated by the d — 1 half-twists X;, and that the relations between them
are X,X] = XJX, whenever |’L — ]| > 1 and XzXz-i—le = Xi—l—lXiXi—l—l- The
center of the braid group is generated by the element A% = (X;... Xy 1),
which corresponds to rotating everything by 2.
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We will be especially interested in the half-twists

Zij=Xj 1. X - Xi- X - X (1<i<j<d).

The braid Z;; is a positive half-twist along a path joining the points p; and
p; and passing above all the points inbetween :

Note in particular that Z;;;1 = X; and that Z;; commutes with Zy,
whenever 1 < j < k < lori < k <1l < j. Other useful relations are
ZijZiyy = ZiwZix, = ZjrZ;j whenever i < j < k (these three expressions
differ by a Hurwitz move).

The following factorization of A? as a product of half-twists corresponds
to the braid monodromy of a smooth curve of degree d in CP? (see [8]) :

A2 = (X;...X41)%

Another important factorization is

d-1 d d i1
v 2i=11 11 7 =111 %
i=1j=i+1 i=2j=1

(these two expressions are clearly Hurwitz equivalent). This factorization
corresponds to the braid monodromy of a union of d lines in generic position
(see [8]).

We now turn to geometric monodromy representations. Consider the
branch curve D of an n-sheeted branched covering over CP2, and fix geo-
metric generators 71, ...,7q of m1(CP? — D) (small loops going around the
d = deg D intersection points of D with a given generic fiber of the projec-
tion 7). It is then possible to define as in §1.1 the geometric monodromy
representation 6 : Fy — S, associated to the covering. As observed in
§1.1, the fact that the product y; - - - - - 74 is trivial in 71 (CP? — D) implies
that the product of the d transpositions 6(~y1),...,0(y4) in S, is also trivial,
and the connectedness of the considered covering of CP? implies that these
transpositions generate S,.

It is a well-known fact that any two factorizations of the identity element
in S, as a product of the same number of transpositions generating S,
are equivalent by a succession of Hurwitz moves (this can be seen e.g. by
comparing the two corresponding n-sheeted simple branched covers of CP!).
Therefore, after a suitable reordering of the sheets of the covering 7 : D —
CP! (which amounts to a global conjugation of the braid factorization),
one may freely assume that the permutations 6(v;) are equal to certain
predetermined transpositions. Our choice of transpositions in the case of
the branch curve of f; will be made explicit in §3.6.
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3.2. The folding process. We now compute the braid monodromy of the
curve V4 (D), where Dy is the branch curve of one of the stably quasiholo-
morphic maps fi given by Proposition 1 and VJ is a generic perturbation of
V3 as in §2.2. In fact, as observed in Lemma 1, the choice of V] rather than
V3 (or any other holomorphic quadratic map) does not affect the outcome
of the calculation, which also remains valid if Dy, is simply assumed to be
any braided curve such that V;(Dy) is locally braided. The idea of the com-
putation is to reduce oneself to the easy case where Dy is a union of lines in
general position in CP? ; once this is done, the actual calculation follows an
argument described by Moishezon in [9], which we repeat here for the sake
of completeness.

As explained in the introduction, a suitable linear contraction map makes
it possible to squeeze all the interesting topological features of Dy into a
small ball, outside of which Dy looks like a union of lines. More precisely,
for any non-zero complex number a, denote by 1, the automorphism of CP?
defined by 94(z:y:2) = (z:ay + (1 —a)z:az + (1 — a)z). When a converges
to 0, all the points whose first coordinate is non-zero converge towards the
point py = (1:1:1), which lies away from the branch curve of V7.

Observe that 1, maps fibers of 7w to fibers of 7 ; as a consequence, the
curves 1,(Dy) are braided for all values of a. Moreover, 1, restricts to the
line Ly : {x = 0} as the identity, and when a — 0 the image of any line
passing through a point p = (0:y:z) and transverse to Ly converges to the
line through p and py.

By an arbitrarily small perturbation, and without losing the other prop-
erties of Dy, we can easily assume that the point (0:1:1) does not belong
to Dy, and that none of the nodes of Dy, lies on Ly. Moreover, by properties
(2) and (4) of Definition 7, none of the cusps and tangencies of Dy lies close
to Ly. As a consequence, when ¢ is sufficiently close to 0, the curve 1, (D)
is braided, and outside of a small ball centered at pg it is arbitrarily close to
the union of d = deg Dy, lines joining the points of Dy N Ly with pg. Because
the points (0:0:1), (0:1:0) and (0:1:1) do not lie on Dy, one easily checks
that the images by Vi of these d lines are distinct non-degenerate conics in
CP2.

As an immediate consequence, for ag small enough the curve V3 (14, (Dk))
is locally braided, and its braid factorization is obtained by plugging the
braid factorization of Dy into the formula for the braid monodromy of a
union of d conics passing through the point pg.

Moreover, observe that the braid factorization for V) (Dy), or equivalently
for V3 (Dy,), is m-equivalent to that for V¥ (14, (Dy)). Indeed, taking a path
of non-zero complex numbers (a(t));c[o,1] such that a(0) =1 and a(1) = a,
the family 9,(;) (D) defines an isotopy of braided curves between Dy and
its image by 1,,. However, the set of braided curves isotopic to Dy and
whose image by V3 is locally braided defines a open subset Dy of the set
D of all braided curves isotopic to Dy, and D — Dy has real codimension
2. This is because the only ways in which the image by V; can fail to be
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locally braided is if the curve goes through one of the three points where the
differential of V3 vanishes, or if it intersects the branch curve of Vi at one of
its cusps, in a non-tranverse way, or with a tangent direction whose image by
V3 is not immersed. Therefore, a generic perturbation of the one-parameter
family of braided curves 9, (D) turns it into an isotopy of braided curves
whose image by V7 is an isotopy of locally braided curves ; this implies that
the braid factorizations for V.Y (1,,(Dy)) and for V3 (Dy) are m-equivalent
(in fact, in the case of complex curves it is easy to check that they are even
Hurwitz and conjugation equivalent).

As a first step, we therefore need to compute the braid monodromy of
a union of d conics passing through pg. Observe that any configuration
of d non-degenerate conics in CP? intersecting each other transversely at
po gives rise to a well-defined braid factorization as soon as none of the
conics passes through the pole of the projection 7 : any such configuration
is a locally braided curve, and can be perturbed into a braided curve (a
union of conics in general position) by an arbitrarily small perturbation.
The connectedness of the space of such configurations implies that, up to
Hurwitz and conjugation equivalence, it does not actually matter which
conics are used for the computation of the braid monodromy.

Following Moishezon, the calculation can be carried out by simultaneously
“degenerating” all the conics to pairs of lines, i.e. by considering a limit con-
figuration where each of the conics is very close to a union of two lines. We
can label the 2d lines appearing in the picture by indices 1,...,d,1"...,d,
in such a way that the two lines corresponding to the i-th conic are labelled
i and 7/ (1 < i < d). Moreover, we can consider a configuration where
the lines labelled 1,...,d all intersect each other near the point py, while
the mutual intersection points of the lines labelled 1/,...,d" all lie close to
another point p) € CP?.

Remember that the braid monodromy consists of motions of the 2d inter-
section points of the conics with a given reference fiber of the projection 7 ;
we label the 2d intersection points in the same manner as the correspond-
ing lines, and we can safely assume after a suitable isotopy that the points
1,...,d,1',...,d lie in that order on the real axis in the plane.

We have already seen in the previous section that the braid monodromy of
2d lines in general position can be expressed using equation (1) ; using the
commutation relations between Z;;’s, a sequence of Hurwitz moves yields
the factorization

d—1 d d d d—-1 d
(2) af =11 IT 25 111145 11 11 %
i=1 j=i+1 i=1j=1 i=1 j=i+1
In this expression, the first set of factors corresponds to the mutual in-
tersections of the lines labelled 1,...,d near the point pg, while the second
set of factors corresponds to the intersections of the lines labelled 1,...,d
with those labelled 1’,...,d’, and the last part corresponds to mutual inter-

sections of the lines labelled 1, ..., d’ near pj. To get the braid monodromy
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for the d conics we need to “regenerate” the nodal points where the line
labelled 7 intersects the line labelled ', for all i. This amounts to replacing
each factor ZZ?Z-, by the product Z;; - Z;;, as the smoothing of each node
creates two tangency points.

Via further Hurwitz moves, i.e. by choosing a different ordering of the
nodes and tangency points, it is possible to simplify this expression : indeed,
the contribution of the intersections between the two groups of d lines,

d -1 d
3) (117 -z -z 11 2%);
=1 j=1 Jj=i+1

can be rewritten as follows : by moving the first factor Zyor to the left, one
can rewrite the beginning of (3) as

2 72 2 2
Z111Z22/Z111’(2) Z12Z13/ e Zld’Z1’2’ Z22’ e

where Zy1 (9) is a half-twist between 1 and 1’ going around 2 and 2'. Sub-

sequently moving factors Zss, ..., Zgy to the left one obtains the new ex-
pression

d d i-1 d
(4) I % - H(H 2 Ziw- [] ij)

i=1 i=1 j=1 j=it1

where Z;;1 (g) is a half-twist along the following path :

Moving the Z]%i, and ZZ?]- factors to the left, one can rewrite (4) as

d d—-1 d d 1—1 d
© 211 11 2 T %11 2
i=1 i=1 j=i+1 i=2j=1 i=1

The easiest way to follow these calculations (and all others involving Hur-
witz moves) is to observe that each factor which is not being moved has to
be conjugated by the product of all the factors moved across it.

To shorten notations, let us denote by L4 the factorization of Afi in terms
of ij corresponding to d lines in general position as given by (1) (the two
given expressions are Hurwitz equivalent), and let L), be the same expression
with Z3, instead of Z7; ; the braid factorization corresponding to d conics
can then be rewritten as

d d
(6) A3y =Lg- H Ziyp + Lq - Ly - H Ziy - Ly.
i=1 i=1
This description of d conics intuitively corresponds to the following picture,
where the factors in Ly and L/, correspond to the nodes in the four places
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where the conics intersect, while the Z;;» factors correspond to the tangency
points on the left and on the right :

It is actually also possible to obtain (6) directly from a careful explicit
calculation in coordinates, starting from a picture similar to this one. Let
us also mention that a formula very similar to (6) can be found in [9].

For reasons that will be apparent later on, we need to rewrite the expres-
sion (6) in a different form. Observe first that Hurwitz moves to the left
yield the identities

d d d d
La- H Ziit = H Ziy-Ly  and Ly H Ziy = HZii’ + Lg.
i=1 i=1 i=1 i=1

Since the factors in Lq commute with those in L), the expression in (6) is
Hurwitz equivalent to

L HZ“/ Lg- (L})? HZ“,

=1

Finally, Hurwitz moves to the right make it p0551b1e to rewrite the braid
factorization for d conics as

(7) 2d = H Zzz’ Ld LI H Zn’

=1

where Z; is a half-twist along the following path :

As explained at the beginning of this section, in order to get the braid fac-
torization for V4 (Dy) we need to replace in (7) one of the pieces correspond-
ing to the braid monodromy of a union of d lines by the braid factorization
corresponding to Dy.

There are four possible places where this operation can be performed,
corresponding to the four mutual intersection points of the conics. It is
geometrically clear that these four possible choices are equivalent. More al-
gebraically, the right-hand side of (7) is Hurwitz equivalent to the expression
II it - (L3 -T1 Ziz - L, which by moving the last L/, factor to the left can
be turned into an expression where the four L), factors play symmetric roles.

We denote by Fj the braid factorization for Dy, embedding implicitly
the braid group By in Bsg by considering a ball containing only the first
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d points. Substituting Fy, for the factor Ly in (7), we have obtained the
following result :

Proposition 3. The braid factorization corresponding to the curve Vij(Dy)
is given by the formula

a -1 d ,
(8) A3y = HZiz" - Fy - (H H Zi2’j’> 'HZiz"-
i=1 i=1 j=i+1 i=1

The manner in which the expression Fj was plugged into (7) can be justi-
fied as follows. First observe that, because the factor Ly in (7) corresponds to
intersections between the lines labelled 1, ..., d without any twisting around
the other lines 1, ..., d’, the image of the embedding B; — Bs, giving the
braid factorization for V;(Dy) has to be the expected one. Still, it is not
clear a priori whether the formula (8) should involve Fj, or its conjugate
(Fy)q by some braid @Q € By. However, we observe that, as suggested by
the geometric intuition, all possible choices yield equivalent results for the
braid factorization of Vj(Dy). More precisely, defining X, = Z,,4; and
X} = Zy (y41y for any 1<r<d—1, we claim that replacing Fy by (F;)x, in
the r.h.s. of (8) yields an expression which is Hurwitz and conjugation equiv-
alent to the original one. This is proved by observing that the conjugated
expressions (L)) xz, (][] Zin)x, x: and ([] Z;) x, x: are Hurwitz equivalent
to the unconjugated ones (checking these identities is an easy task left to the
reader), so that a global conjugation by X, X, and a sequence of Hurwitz
moves can compensate for the conjugation of Fj.

3.3. The V; branch curve. We now compute the braid factorization corre-
sponding to the branch curve D of the quadratic map V (or more generally
of any generic quadratic holomorphic map from CP? to itself). Elementary
calculations show that Do is a curve of degree 6 with nine cusps, no nodal
points, and tangent to the fibers of 7 in three points.

The braid factorizations for branch curves of generic polynomial maps
from CP? to itself in any degree have been computed by Moishezon [10] (see
also [11]), using a very technical and intricate argument. For the sake of
completeness, we provide a direct calculation in the degree 2 case. The key
observation is that the generic Veronese projection Vy can be realized as a
small deformation of the degenerate map Vi : (z :y: 2) — (22 : y? : 22).
The ramification locus of V3 in the source CP? consists of three lines, which
map two-to-one to three lines in the target CP? : the branching divisor of V)
therefore consists of three lines with multiplicity 2. However, observe that
the transversality properties of this branching divisor with respect to the
projection 7 are very bad, in particular near the point (0:0:1). So, in order
to obtain the generic curve Dy we need to perturb the branch divisor of
V3 near the three points where the double lines intersect each other (being
especially careful near the pole of the projection 7), and also to separate the
two components of each double line.
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We label 1 and 2 the two lines corresponding to y = 0 ; we label 3 and
4 those corresponding to z = 0, and finally 5 and 6 those corresponding to
z = 0. For calculations in the braid group, the six corresponding points will
be placed on the real axis in the natural order. In order to avoid the pole
of the projection 7, we compose the map V) with the linear transformation
(z:y:2z) = (x+nz:y+nz:2z), for n > 0 small. The picture is the following :

On this diagram, the fibers of 7 correspond to vertical lines, with the
real axis going upwards, and the reference fiber is far to the left. The braid
factorization is computed by considering the three intersection points, which
obviously play very similar roles. The first intersection point, for which we
study the braid monodromy by considering paths close to the real axis in
the base, involves the double lines 1 — 2 and 3 — 4, the first of which has the
greatest slope ; computations in local coordinates yield a word in the braid
group By, which needs to be embedded into Bg simply by considering a disc
containing the points 1,2, 3,4 and centered on the real axis.

The second intersection point, for which we need to consider a path in the
base passing above the real axis, involves 1 — 2 and 5 — 6, the first of which
again has the greatest slope ; because the local picture is the same, the local
computation yields the same word in By as for the first point. It can be
checked that, since we choose a path passing “behind” the first point in the
base, we must use an embedding of By into Bg corresponding to a domain
containing the points 1, 2, 5, 6 and passing above the real axis near the points
3,4 ; intuitively, going halfway clockwise around the first point in order to
connect the base point to the second point means that we must conjugate
the local monodromy by a half-twist between 1,2 and 3,4. Finally, the third
point involving 3 — 4 and 5 — 6 again corresponds to the same local picture ;
one checks that the embedding of By into Bg corresponding to the choice
of a path passing “behind” the two other points in the base is simply that
given by a disc containing the points 3,4, 5,6 and centered on the real axis.

Consider any of the three intersection points between the lines composing
the singular branch divisor, where we want to compute the local contribution
to braid monodromy after a small generic perturbation. At such a point, the
map V3 is given in local affine coordinates by (z,y) — (z2,?) ; we choose
to perturb it into the map

fi(@y) — (@ + oy, v + Ba),

where a and 8 are small nonzero constants. The ramification curve is given
by the vanishing of the Jacobian of f, which is 4zy — af ; the branch curve



THE DEGREE DOUBLING FORMULA 29

of f is therefore parametrized as
2 232
2 @B B )
Tt —, z),z € C—{0}¢.
{( +4:v’16:1:2+5 ’ {0}

We also need to specify the projection map in the local coordinates : it
can be assumed to be (z1,22) — 21 + €z for a small nonzero value of the
constant e.

With this setup, the branch curve of f presents one tangency point and
three cusps, and the corresponding factorization in By can be expressed as

9) Ziy - Zs - Zia) - Zis,
where Zy9,31) = (Z3323,) Z12(Z353Z3,) " is the following half-twist :

One can easily check that the product of the factors in (9) is equal to
Z19734 7% 72, 72, 72,, which amounts to the double lines 1 — 2 and 3 — 4
intersecting each other while the two lines in each double line (1 and 2 on
one hand, 3 and 4 on the other hand) twist by a half-turn around each other :
this is exactly the expected contribution (the presence of the half-twists is
due to the fact that each double line is the image of a 2 : 1 covering branched
at the singular point).

Finally, one needs to put together the contributions of the three intersec-
tion points, using the embeddings By — Bg described above. One easily
checks that the local perturbations performed near the three singular points
to obtain the generic picture can be glued together without introducing any
extra contributions to the braid monodromy ; this is in agreement with the
observation that the product

(Z12Z234 77323, Z33 Z5) - (Z12Z56 215 216 Zgs Ziag ) - (34 Zisg 25 Ziag Zoas L)

of the global monodromies around the three singular points is equal to A2.
In conclusion, we get the following formula for the braid monodromy of Ds,
obtained by putting together three expressions similar to (9) :

Proposition 4. The braid factorization corresponding to the branch curve
of Vi is given by the formula

(10) Af = (233231 219,30) Z33) - (235216 Z12y(56) Zs) * (Zs 26 Zaay(56) Zis)

where Zgpy(cq) = (Z2.Z2) Zap(Z2.Z2,)7" is a half-twist interchanging a and b
along a path that goes around the points labelled ¢ and d.

Observe that, although (9) looks very similar to the formula obtained by
Moishezon for the braid monodromy at what he calls a “3-point”, the two
geometric situations are very different : Moishezon’s 3-points correspond to
a generic projection of a very degenerate algebraic surface, with locally a
covering map of degree 3, while the points we describe here correspond to a
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very degenerate projection of a smooth algebraic surface, with locally a cov-
ering map of degree 4. Still, among other things this similarity between the
formulas implies that the two methods for computing the braid factorization
of D yield equivalent answers.

We finish this section by briefly describing the geometric monodromy
representation 6y, : w1 (CP? — Dy) — Sy corresponding to this factorization.
Each double line in the branch curve of V) corresponds to two disjoint trans-
positions in Sy, while the transpositions corresponding to lines in different
double lines are adjacent. Therefore, after a suitable reordering of the four
sheets of the covering V5, one may assume that the six geometric generators
Y1,---,7% (small loops going around each of the six points labelled 1,...,6
in the plane) are mapped to the transpositions (12), (34), (13), (24), (14)
and (23) respectively. One easily checks that all the braids appearing in
the factorization (10) satisfy the compatibility relations stated in the intro-
duction (e.g., for the first factor Z3,, the transpositions 6y, (1) = (12) and
0y, (v3) = (13) are indeed adjacent).

3.4. Regeneration of the mutual intersections. We now describe the
contribution to the braid monodromy of Ds; of an intersection point of
V5(Dy) with Dy. As observed in §2.2, the behavior of the map fi, = Vo f
above such a point is not generic, and a perturbation is needed in order to
obtain the generic map for. The local description of this perturbation is the
following :

Lemma 2. The contribution of an intersection point of Ry with f,;l(R'Q) to
the braid monodromy of the branched covering for, can be locally computed by
working with the following models in local complex coordinates : f}, (z,y) =
(—22 + vy, —y?), and for(z,y) = (=22 + y,—y% + ex), where € is a small
non-zero constant, ™ being the projection to the first component.

Proof. Provided that k is large enough and given a point p € Ry N f, 1(R’Q),
the argument in §3 of [1] (see also [4],[3]) implies that a small perturbation
term, localized near p, can be added to fj, in order to make it generic and
achieve the required transversality properties near p ; the other transversal-
ity properties of fi, are not affected if the perturbation is chosen small
enough. Moreover, the one-parameter construction used in [1] to prove
uniqueness up to isotopy implies that the space of admissible perturbations
is path connected (once again provided that k is large enough).

Local models for the various maps can be obtained as follows. First
observe that there exist local holomorphic coordinates (z1,22) on CP? near
fx(p) in which V; can be expressed as (z1,22) +— (21, —22). Moreover, it was
shown in [1] that there exist local approximately holomorphic coordinates
(z,y) on X and (31, Z2) on CP? in which f is given by (z,y) — (22,7).

Recall that fy satisfies properties (2) and (5) of Definition 7. Therefore,
provided that Vj is chosen sufficiently close to Vi (which is always assumed
to be the case), we know two things : first, by property (2), the branch
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curve Dy, = f(Ry) intersects the ramification curve R} of VJ transversely ;
second, by property (5), the tangent space to Dy at fr(p) does not lie in
the kernel of the differential of Vi, i.e. the image by V; of the branch curve
of fi is locally immersed. Therefore, Dy, given by the equation z; = 0, is
transverse at fi(p) to both axes of the coordinate system (z;,2) on CP2.

A first consequence is that (Z,29) are local approximately holomorphic
coordinates on CP? ; replacing the coordinate y on X by § = f(22), we
obtain that the expression of fi in the local coordinates (x,4) and (Z1, 22)
remains (z,y) — (z2,v).

Another consequence is that the coeflicients of Z; and 2z in the expression
of z; as a function of Z; and 2o are both non-zero. Therefore, near the
origin we can write z; = 71 ¢(21, 20) + 229(20) + O(k~/2), where ¢ and ¢
are non-vanishing holomorphic functions and the last part corresponds to
the antiholomorphic terms.

Working with coordinates (z1,22) on CP?, the expression of fj becomes
(z,y) — (#2¢(x?,y) + y(y) + O(k~/?),y). Performing the coordinate
change (z,y) — (izp(z2,y)"/?,y) on X, we can reduce the model for f, to
the simpler expression (z,y) — (—z2 + yih(y) + O(k~/?),y). Decomposing
1 into even and odd degree parts, we can write

For(@y) = (=27 + yvo(¥?) + 21 (y?) + O(k™2), —?).

Composing with the coordinate change (u,v) — (u + vip1(—v), viho(—v)?)
on CP2, we reduce to £l (,y) = (~22 + yho(y?) + Ok~Y/2), g2 (y)?).
Finally, the coordinate change (z,y) — (z,%%0(y?)) on X yields the expres-
sion fh, (z,y) = (—2? +y+ O(k~'/2), —y?). This expression differs from the
desired one only by antiholomorphic terms, which are bounded by O(k~'/?)
and therefore can be discarded without affecting the local braid monodromy
computations.

We know that for large enough k the space of admissible asymptotically
holomorphic local perturbations of f, near p (i.e. perturbations satisfying
the required uniform transversality properties) is path connected. Therefore,
we are free to choose the perturbation which suits best our purposes ; fixing a
constant € # 0, we set for, to be of the form (z,y) — (—z2+y, —y*>+ex). One
easily checks that, provided that the chosen value of € is bounded from below
independently of k, this map locally satisfies all the required properties.

Concretely, this perturbation of fj, can be performed in the same man-
ner as in [1], by considering the very localized asymptotically holomorphic
sections szzf) of L®* with exponential decay away from p first introduced by
Donaldson in [5]. It is easy to check that, by adding to one of the sections
of L®? defining the covering map f3, a small multiple of z - sg‘,’f,p, where x
is the first coordinate function on X near p, the map fj, itself is affected
by a perturbation which coincides at the first order with the desired one.
This is sufficient to ensure that the braid monodromy is the desired one. In

fact, replacing the coefficient in front of 35‘,’6{1) by a suitable polynomial of
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higher degree in the coordinates, we can even make the perturbation of f7,
coincide with the desired one up to arbitrarily high order.

We finally consider the projection 7 used to define braid monodromy.
Recall that the various hypotheses made on V3 and fj ensure that the branch
curve of V) remains locally transverse to the fibers of 7. Furthermore, over
a neighborhood of the considered point, the tangent space to the branch
curve of f§, in CP? remains very close to the direction determined by the
branch curve of V4 (in our local model, the first coordinate axis) ; an easy
calculation shows that the same property remains true for for (see also
below). It follows that the local braid monodromy does not depend at all on
choice of the projection 7 as long as its fibers are locally transverse to the
first coordinate axis. Therefore, we can safely choose 7 to be the projection
to the first coordinate axis. O

From the above argument we know that the local braid monodromy of
for can be computed using for for the local model

(‘Ta y) = (_"I"2 + Y, _y2 + G‘T)

where € is a small non-zero constant. The Jacobian of this map is 4zy — €,
and its branch curve can be parametrized as

9 € €
{(—w + 12 1622 +e:v>,:1: eC- {0}}

The signs have been chosen in such a way that, taking e along the positive
real axis and taking the base point at a large negative real value of the first
coordinate, the intersection of the branch curve with the reference fiber
of 7 consists of three points aligned along the real axis, the left-most one
corresponding to the branch curve of f; while the two others correspond to
the branch curve of V.

Projecting to the first component (or choosing any other generic projec-
tion), the only remarkable features of the branch curve near the origin are
three cusps, and the corresponding braid factorization is

(11) VAR AT AT

where the point labelled 1 corresponds to the branch curve of f;, while the
points labelled 2 and 3 correspond to the branch curve of Vj, and where
Zygy3) = Z22321222’32 is a half-twist exchanging 1 and 2 along a path that
goes around 3 :

A short calculation in Bs shows that the product of the factors in (11) is
equal to Za3(Z%,7Z%)?, which amounts to the line labelled 1 twisting twice
around 2 and 3 while these two lines undergo a half-twist. This is consistent
with the geometric intuition, since the branch curve of fj, folded onto itself
by V3, hits the branch curve of Vj in the following manner :
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The line labelled 1 intersects 2 and 3 with multiplicity 2 because the image
of Dy by V4 is necessarily tangent to the branch curve of Vj wherever they
intersect ; the lines 2 and 3 twist around each other by a half-turn because
they arise as the two sheets of a 2:1 covering branched at the origin (they
correspond to the two preimages by fi of each point where V; is ramified).

In order to understand how the braid monodromy given in (11) fits in the
global picture, we now need to explain the labelling of the various compo-
nents making up Dy and the corresponding geometric monodromy repre-
sentation.

Notations. As described above the branch curve Dy is obtained by
deforming the union of V4 (Dy) and n copies of Dy. Its degree is therefore
d = 2d + 6n. For braid group calculations, we will assign labels 1,...,d and
1,...,d to the 2d sheets corresponding to V4 (D) (in the same manner as
in §3.2), and ia, g, ig,1j, 4y, iy for 1 <i <n to the 6n sheets corresponding
to the n copies of Dy. More precisely, recall that the branch curve of Vj
is obtained as a perturbation of the branch curve of V), which consists of
three double lines : therefore the n copies of Dy can be thought of as three
groups of 2n lines. These three groups correspond to the three subscripts
a, 8 and v ; for each value of i the two labels 7, and i,, correspond to the
perturbation of a double line in the i-th copy of the branch curve of V.

When using Z;; notations it will be understood that the 2d + 6n inter-
section points of Dy, with the reference fiber of the projection 7 are to
be placed on the real axis in the order 1,...,d,1",...,d', 1,,1.,24,20,...,
T, My, 18, 1/’3, ... ,ng,n'ﬂ, L, 1'7, ... ,nn,,n’7 ; a suitable choice of geometric
configuration and reference fiber of 7 can be used to legitimate this choice.

We now give a description of the geometric monodromy representation
O : 7r1((CP2 — Dyi) — Syn. First we describe our choice of geometric
generators of m (CP? — Dy, ). Remember that the 2d+ 6n intersection points
of Dy, with the chosen reference fiber of 7 all lie on the real axis ; choosing
the base point far above the real axis, we use a system of 2d + 6n generating
loops, each joining the base point to one of the intersection points along a
straight line, circling once around the intersection point, and going back to
the base point along the same straight line.

The 4n sheets of the covering fo can be thought of as four groups of
n sheets, which we will label as i,,%p,%.,%¢ for 1 < ¢ < mn. Consider a
situation similar to that of §3.2, where most of the branch curve of fj is
concentrated into a small ball far away from the branch curve of Vj : this
results in a picture where the parts of the branch curve corresponding to
V5 (Dy,) connect to each other the n sheets of a single group (1,,...,n, for
example), while the copies of Dy connect the various groups of n sheets
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to each other. In particular, the transpositions in Sy, corresponding to
the geometric generators around 1,...,d,1’,...,d" are directly given by the
geometric monodromy representation 6 associated to Dy : for any 1 <
r < d, if 6 maps the r-th geometric generator to the transposition (i7)
in S,, then, calling 7, and -y, the geometric generators in m; (CP? — Dyy)
corresponding to r and 7/, one gets Oor(vr) = ok (V) = (iaja)- Finally, each
of the n copies of Dy connects four sheets to each other, one in each group
of n, in the same manner as for V itself : therefore Ay, maps the geometric
generators around iy, iy, ig, iy, iy and @7, to (i4is), (icia), (laic), (ivia), (iafa)
and (ip7.) respectively, for all 1 < i < n.

Once again, a suitable choice of geometric configuration and reference
fiber of # makes it possible to substantiate the above claims. Different
geometric choices lead to different descriptions of the braid monodromy and
of s, but the final answers remain the same up to Hurwitz and conjugation
equivalence in any case.

We now describe the contribution to the braid monodromy of a point
where a piece of Vj(Dy), say e.g. the line labelled 7’ for some 1 < r < d,
hits one of the three groups of 2n lines making up the n copies of Do, say
e.g. the lines labelled 1,,1. ,..., 14,7},

If one just considers the composed map Vj o fi, the n copies of the branch
curve Dy of V4 all lie in the same position, and the curve V;(Dy) hits them
tangently (and therefore with local intersection multiplicity +2). To obtain
the generic map for, we add a small perturbation, which affects the situation
by moving the n copies of Dy apart from each other and also by modifying
the intersection of Ry with f; '(R5) in the manner explained above. More
precisely, R, admits 2n — 2 local lifts to X which do not locally intersect
the branch curve of fi (because they lie in different sheets of the covering)
and thus do not require any special treatment, while the two other sheets
of fx give rise to “lifts” of RY intersecting the branch curve of fj and each
other. Therefore, when computing the braid factorization of Doy, we can
locally consider the n copies of Do as consisting of 2n — 2 parallel lines,
each intersected twice by V5 (D) (giving rise to two nodes), and two “lines”
parallel to the others which are hit by Vj(Dj) in the manner previously
explained.

Pulling things back into the reference fiber of along a certain path in the
base of the fibration 7 evidences the important role played by two specific
paths in the reference fiber, namely the path along which the point labelled
r' approaches the group of 2n points 1,,...,n,, and the path along which
two of these 2n points approach each other. To phrase things differently,
these two paths determine an embedded triangle that collapses as one moves
from the reference fiber towards the intersection point.

We assume that the configuration is such that, after pulling back into the
reference fiber of 7, the path along which the point labelled r’ approaches
the 2n other points is the simplest possible one passing above the real axis.
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Whether this is truly the case or whether the formula needs to be adjusted by
a suitable global conjugation will be determined later on, when the contribu-
tions of the various points are put together into a global braid factorization
in Bogi6n-

The geometric monodromy representation fo; maps the geometric gener-
ator around 7’ to a transposition of the form (p,q,), for some 1 < p,q < n.
The two lines hit in a non-trivial manner are those labelled p, and ¢, which
under the map 60y correspond respectively to the transpositions (p,pp) and
(qaqp) in S4n. The other 2n — 2 lines (i, for i € {p,q} and i}, for all 7) lie in
different sheets of the covering and their intersections with r’ simply remain
as nodes in the branch curve Dyy.

We will for now leave unspecified the path along which the points p, and
qo approach each other near the considered point. Instead, we perform a
conjugation by a suitable braid in Bs, in order to ensure that, instead of
their normal positions, the points p, and ¢, have been moved to the right
of the 2n — 2 other points, and that the vanishing cycle is the line segment
joining them. The situation is then described by the following diagram :

Qo
Da !

As usual the reference fiber is to the left, and the vertical direction cor-
responds to the real axis in the fibers of .

Recalling that V5 (Dy) hits Dy tangently, the expected total contribution
to the braid monodromy corresponds to r’ twisting twice around each of
the lines 1,,1!,...,n4,n,. For the reasons explained above, a half-twist
between the lines p, and g, is also to be expected.

In order to compute the braid factorization, we choose the following sys-
tem of generating paths in the base of the fibration 7 (placing once again
the base point far away on the negative real axis). Observing that in the
chosen configuration the singular fibers of 7 all lie along the real axis, the
first path connects the base point to the first intersection of ' with n/, by
passing below the real axis; the second one similarly joins the base point
to the first intersection of 7’ with n, by passing below the real axis; and
so on, going from right to left, until all 2n — 2 nodes in the left half of the
diagram have been considered. The following three paths join the base point
to the three cusp singularities arising from the perturbation of the singular
point in the middle of the diagram, passing above the real axis. Finally, the
remaining 2n — 2 paths join the base point to the intersections in the right
half of the diagram, passing above the real axis, and going from left to right
(the first of these paths ends at the second intersection of 7' with nl, the
last one ends at the second intersection with 1,). As should always be the
case, the paths are ordered counterclockwise around the base point.
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Observing that the line labelled r' behaves similarly to the graph of the
identity function in the left half of the diagram and similarly to the graph
of —Id in the right half, one obtains the following expression as braid mon-
odromy for our reference configuration :

1 1
(12) H (Z’%ifm [Zg'ia]iﬁi{p,q}) “Frpaga - H (Zf% [Z’?'ia]iQ{p,q}> ’
i=n i=n

where the products are to be performed in the reverse order (first i = n,
finishing with ¢ = 1), and the notation [... J;g, o1 indicates that the enclosed
factor is not present for ¢ = p or i = ¢. In (12), the notation Fy,, 4,
represents an expression similar to (11) ; Zpr is a half-twist along the path

We now bring the two points p, and ¢, back to their respective positions,
moving them along paths passing above the real axis. The half-twists Zyir
and Z., are not affected by this motion ; therefore, the expression (12)
remains unaffected.

However, this choice of paths for the motion of p, and ¢, is completely
arbitrary : it corresponds to the case where the embedded triangle with
vertices ', p, and g, which collapses as one approaches the considered
singular point is the simplest possible one lying in the upper half-plane.
If p, and ¢, approach each other in a manner different from this one, we
need to conjugate the expression (12) by an element of the braid group Ba,
(acting on the points 1,,...,n,) globally preserving the two points p, and
da- Therefore, still assuming that r’ approaches 1,,...,n/, by passing above
the real axis, we have the following result :

Proposition 5. The braid monodromy for the intersection of the line 7'
with the 2n lines 14,1.,,...,nq4,n., is Hurwitz and conjugation equivalent to
the following factorization :

’

1
52 2 3 3 3
(13) H (Z’"’ifx [ZT’ia]iQ{p,q}) Zrpa " Lrge” Lripaiiaa)

=n
1 \ A
H (Zr?’i{x [Zz’ia]ig{p,q}) )

i=n
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where Z'T/T and ZT.IT are as described above, and Z,, . (q,) 15 a half-twist
along the path

Observe that the conjugates of the expression (13) by certain elements of
Bsyy, are Hurwitz equivalent to (13). Indeed, consider the subgroup Ba,—2 X
By C By, of braids which globally preserve the triangle formed by 7', p,
and qo. The factor By is generated by the half-twist Z,_,, interchanging
Pa and qq, while the factor By, s is generated by half-twists interchanging
two of the 2n — 2 other points along a path passing below the real axis.
Conjugating (13) by Z,,4, simply amounts to a modification of the three
central degree 3 factors of (13) by two Hurwitz moves. Similarly, conjugation
by one of the half-twists generating B, o (interchanging two consecutive
points among the 2n — 2) is equivalent to two Hurwitz moves, one among
the Zf, , factors and the other among the ZE,T factors. This is in agreement
with the geometric intuition suggesting that, since all these conjugations do
not affect the triangle joining 7', p, and g, they do not modify the braid
monodromy in any significant way.

However, conjugating (13) by an element of By, lying outside of Ba,, o X
By affects non-trivially the path along which p, and ¢, approach each other,
and therefore yields an expression which is not Hurwitz equivalent to the
original one (this can be seen directly by observing that the product of all
factors in (13) is modified by the conjugation).

3.5. The assembling rule. We now study how the various elements de-
scribed above fit together to provide the braid factorization for Dog. We
will start by considering, as a toy model, a curve made up of d conics and
three lines, corresponding to the following diagram (drawn for d = 2) :

The d conics play the role of Vi (Dy), while the three lines correspond to
the Dy part. As usual, the vertical direction corresponds to the real axis
in the fibers of m, and the reference fiber is to the left of the diagram ;
in the reference fiber the points are placed on the real axis in the order
1,...,d,1,...,d, «a,8,v. Although the space of all configurations of d conics
and three lines tangent to them in CP? is connected, thus making all possible
choices equally suitable, the choice of the configuration represented above is
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motivated by its remarkable similarity to the configurations chosen in §3.2
and §3.3 for V4 (Dy) and D9 respectively. In particular, one easily checks
that the braid monodromy for the chosen configuration of the d conics is
exactly the one computed in §3.2 (equation (7)).

The braid monodromy for this configuration of d conics and three lines
can be computed explicitly in coordinates. However this tedious calcula-
tion is not very illuminating, and we derive the same answer by a different
method : we start from a situation where the lines are in general position
with respect to the conics, and we follow on the level of braid factorizations
the deformation of such a generic configuration into the specific desired one.
In fact, keeping track of the deformation amounts to performing a sequence
of Hurwitz moves with the aim of bringing next to each other the two fac-
tors arising from the intersections of each line with each conic ; the resulting
braid factorization contains consecutive identical degree 2 factors, so that
merging the intersections becomes a trivial task.

The standard braid factorization assembling formula for the union of two
tranversely intersecting curves of respective degrees p and ¢ is given by

P ptq

(14) Av=00-1T 11

=1 j=p+1

where the points are labelled 1,...,p for the first curve and p+1,....p+¢
for the second, and AIZ, and Ag stand for the braid factorizations of the
two components. The braid groups B, and B, are implicitly embedded into
By 4 by considering two disjoint disks containing the p first points and the ¢
last points respectively. The formula (14) can be easily checked by applying
a suitable isotopy to the two components so that, outside of two mutually
disjoint balls, they behave like respectively p and ¢ mutually transverse lines.

In our case we want the three lines to be tangent to the conics, so we need
to perform Hurwitz moves on this factorization so that the two intersections
of each line with each conic can be brought together. Our starting point, as
given by (14) and (7), is the factorization

d d

= (H Ziw - La- (L)* - ] Zii’) :
i=1 1=1

d d

2 2 2 2 2 72 72
11 (757522 - 11 (ZhaZis2E,) - (ZasZen Z5,) -
i=1 i=1
Moving the Z;; factors to the right, one replaces the central Z2, Z? 325 2 terms

(10% 'L
by Z3 2337, ; then, moving the rightmost terms to the left, one obtalns

the new expression

d
(HZu' Lq- (Lg) ) (H (ZiaZipZi, )) (ZasZarZ55) HZM’
1=1

=1 =1
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where Z;; is a half-twist along the following path :

To shorten notations, we will write this factorization in the form
d d
(16) A’ =T1] % La-©-]] Z,
i=1 i=1
and work only with the central part ©, which geometrically corresponds to

the upper half of the considered diagram. Using the commutativity rules in
the central part, one can rewrite © as

= (L )3 ) (1:[1 H Z ‘B H ) Z§7Z§7) :

Moving the second set of Z3, and Z3 s factors to the left, one can rewrite
this expression as

d
= L')?"(leﬁ) Hz’ﬂ{a}Hz’ﬂn v{ﬂ}HZ ZonZ5y)
i

where Zjg.1o) and Zy. 1) are half-tw1sts along the followmg paths :

Zit B;{a} Ziy{B}

A succession of Hurwitz moves to the right makes it possible to rewrite
O as

d
LI)3'<HZ3 ) HZ%ﬁ oy Zapo” HZz'ﬂ H iii8) " ZanZhy Hsz
=1

=1

where Z~a,3,05 Zav and Zg7 are half-twists along the following paths :

Moving Z2; , Z2, and Zj,, to the left, one can rewrite © as

> (,ljl ZiQ’a)Q ' ~0‘/3 0 (H ) 257 - (zljl ZZ?W)Q.
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Moving the Zi2’ 8 factors to the left, one obtains the new expression

d d 9
. (H Zi2’ ) (H Z’ﬂ) 6 ZQ’YZ/B’Y (H Zi2"7) )
i=1 i=1

where Zaﬁ is a half-twist along the path

Observing that each factor ZZ-Q, j i L!, commutes with the products ] ZZ?, o

and [] ZZ?, 8 and also with Ziﬂ, ng and Zg,y, a sequence of Hurwitz moves
to the left makes it possible to rewrite © as

d 2 d 2 d 2
(17) Lg- (H Zi2’a) Ly (H Zz?’ﬂ) ’ Zgzﬂznggv Ly (H Zi?’v) )
i=1 i=1 i=1

We now study more in detail the first part of (17), namely

oozt (11 .) =TI 11 2+ ({1#)"

i=1 j=i+1

A sequence of Hurwitz moves to the right makes it possible to rewrite this

=11 ﬁ Zﬁj"ﬁ(zfazfa)’

i=1 j=i+1 i=1

expression as

Using commutation relations, more Hurwitz moves yield the identity
d d
a = H( H Zi2’j' : Zi%aZA'iz’a)'
i=1 j=i+1
Next we move ZiQ, o to the left and obtain

ou- 117 11 Zyen-28).

=1 j=i+1

where Zj (o) = ZiT(fZi:j: Z3, is a twist along the path
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Finally, moving the Z factors to the left, one obtains the identity

i'j'3(a)
d
O0 = H( H 73 (a))
i=1 j=i+1

Geometrically this expression corresponds to the following picture :

(0]
1 2'%

Proceeding similarly with the pieces involving B and < in the expression

. —2
(17), and lettlng Zz”j’;( ) Zz’ﬂZ IZ,ﬂ and ZZ] (7) = Zi”y Zi'j'ZiQ"y (these
twists correspond to the same picture as Z; ;i) but going around 3 or ~y

instead of «), the factorization (17) rewrites as

d d d
o =[1(, H B H((Zz?’ﬁ)Q' [T Z0)-
i=1 j=i+1 =1 Jj=i+1
d d
ZQ/J’ZZ Z%W'H<(Zi2’7)2' H Zi2’j';(7)>'
i=1 j=i+1

We have finally achieved our goal of bringing next to each other the two
intersections of each conic with each line. Therefore, going back to (16), we
finally obtain :

Proposition 6. The braid factorization corresponding to the union of d
conics and three lines tangent to them is given by

(18)
d d d d
A’ =[] Zi - La- H( H Zij ) 'H(Zﬁﬂ' 11 Zi%jﬁ(ﬂ)) ‘
=1 =1 j=1+1 =1 Jj=i+1
d d
: ngzg'y ' H(Zﬁ H Z; 3'5(7) ) ' H Ziy-
i=1 j=it1 i=1

As explained above, the connectedness of the space of configurations of
mutually tangent conics and lines implies that, for a different choice of the
initial configuration, the braid factorization remains the same up to Hurwitz
equivalence and global conjugation.

For completeness, we briefly describe how the reader may re-obtain the
formula (18) by a direct calculation from the diagram presented at the be-
ginning of this section (we describe the case d = 2, the extension to all
values of d being trivial). We start again from the diagram representing the
intersection of the configuration with R? c C2.
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All the special points are sent to the real axis by the projection 7, and
labelling them in the obvious manner they are, from left to right, in the
following order (after slightly deforming the projection in a manner which
clearly doesn’t affect the braid factorization) : 11’, 22" (tangencies), 12, 1'a,
12", 2, aB, 2'8, 1’2", 1'B, ary, By, 1"y, 1’2, 2'v (nodes and double nodes),
11', 22' (tangencies).

The base point is placed on the real axis, immediately to the right of the
first two tangencies (and to the left of all other points). The intersection
with the reference fiber differs from the expected one by a permutation of
the points labelled 1’ and 2’ (the points are in the order 1,2,2',1', , 8,7) ;
this is taken care of by conjugating all computed monodromies by a half-
twist, namely the point labelled 1’ is brought back to the left of 2/ by moving
it counterclockwise along a half-circle passing above 2.

The system of generating loops that we use to define the braid factoriza-
tion is given by paths joining the base point to the various other points in
the following manner (one easily checks that these paths are ordered coun-
terclockwise around the base point). The first two paths join the base point
to the points 11’ and 22’ on its left, starting below the real axis and rotating
twice clockwise around 11’ and 22’ (see diagram below). The four following
paths join the base point to the points 12, 1, 1’2’ and 2'« on its right,
passing above the real axis. The next four paths reach the points 1’3, 1’2/,
2'3 and «f in that order, starting above the real axis and crossing it between
1’8 and a7y to reach their end points from below, as shown on the diagram.
The following two paths join the base point to ey and $7, simply passing
above the real axis. The next three paths have 1'y, 1’2" and 2y as end
points, passing above the real axis but circling once clockwise around the
three points before reaching them. Finally, the last two paths connect the
base point to the two rightmost points 11’ and 22', passing above the real
axis and circling twice clockwise around them. The picture is as follows :

af 28 1'21'8 >\
11" 22/ 12 'a 12" 2'a ay By\l'y 12" 2'y 1" 22

The monodromy around each point is computed using the following ob-
servation : placing oneself along the real axis, close to the image in the
base of one of the special points, the intersection points of the curve with
the fiber of 7 all lie along the real axis (except at the outermost tangencies
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where some points have moved off the axis), and the two points involved in
the monodromy lie next to each other. The monodromy then corresponds
to a twist along a line segment between these two points ; more importantly,
restricting oneself to a half-circle around the considered point in the base
amounts to rotating the two points in the fiber around each other by half
the total angle. With this understood, and decomposing each path into
half-circles around the various points, the computations simply become a
tedious task of careful accounting.

After suitably conjugating by a half-twist between 1’ and 2/, it turns
out that the braid monodromies along the various given loops are exactly
the factors appearing in (18), except in the case of the tangency points 11’
and 22" at either extremity. In fact, the monodromies around the tangency
points differ from Ziw and Zp by a conjugation by ZfQ (or more generally
the square of Aﬁ when d > 2) ; a global conjugation of all factors by this
braid eliminates the discrepancy and yields the desired formula.

3.6. The degree doubling formula. We finally turn to our main ob-
jective, computing the braid factorization for Dy,. Recall from §2.2 that
the generic covering map for can be obtained as a small perturbation of
f5e = Vo fr, where Vj is a generic quadratic holomorphic map obtained by
slightly perturbing V) : (z : y : 2) — (2% : y? : 2?). More precisely, Proposi-
tion 2 states that, away from the intersection points of the two branch curves
Ry and f, 1(R’Q), the map f}, satisfies almost all expected properties, the
only problem for the definition of braid monodromy invariants being that
its branch curve is not everywhere transverse to itself ; of course, it is also
necessary to perturb fj, near the intersection points in order to obtain a
generic local model.

Recall that, by the main result of [4], f}, can be made generic near the
points of Z, = Ry, N f; ' (R}) by adding to it small perturbation terms (see
also the argument at the end of §2.2). Provided that the perturbations
are chosen small enough, the transversality properties satisfied by f5, away
from these points are not affected. Moreover, recall that for large k the
one-parameter argument proving the uniqueness up to isotopy of quasiholo-
morphic coverings also implies the connectedness of the space of admissible
perturbations of fj, near a given point of Z; (see the proof of Lemma 2).
Therefore, the perturbation of f}, affects the braid monodromy near each
of the points of 7}, exactly as described in §3.4.

It is important to observe that these perturbations of fi, only signifi-
cantly affect the branch curve near the points of Z; : away from Zj, the
branch curve of the perturbed map remains Cl-close to that of [ (the
perturbation terms are very small in comparison with the transversality es-
timates satisfied by fj,). Therefore, no unexpected changes can take place
in the braid monodromy, although some pairs of nodes may be created when
self-transversality is lost.
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Another seemlingly crucial point to be understood is the manner in which
the n copies of the branch curve of Vj are moved into mutually transverse
positions. Indeed, as explained at the end of §3.4 this information directly
determines the contribution to the braid monodromy of the points of Z; by
modifying the local configuration of vanishing cycles. Similarly, the braid
monodromy arising near the points (1:0:0), (0:1:0) and (0:0:1) from the
cusps and tangency points in the n copies of Dy is strongly related to the
local configuration in each group of 2n lines. Therefore, our lack of control
over the manner in which each of the three groups of 2n lines is arranged
may seem rather disturbing.

Fortunately, up to m-equivalence this does not affect the final outcome
of the calculations. Indeed, in most places the 2n components labelled
lg,---,n,, (or similarly the two other groups of 2n lines) all lift into dif-
ferent sheets of the covering for : X — CP? ; the only exceptions are near
the intersection points of Dy with V;(Dy), where two of the 2n curves actu-
ally meet each other (e.g., those labelled p, and g, in §3.4), and similarly
near the points of intersection between two groups of 2n lines, where the
two curves coming from the same copy of D2 (e.g., those labelled i, and i)
also merge. In any case, we are free to move the various lines across each
other, as long as the two distinguished components are kept together ; in this
process, the braid factorization only changes when pairs of intersections are
created or cancelled, which always amounts to an m-equivalence. Observe
moreover that all possible configurations can be deformed into each other in
this way ; this follows e.g. from the fact that all the curves under consider-
ation, whether self-transverse or not, are locally braided. We conclude that
up to m-equivalence the braid monodromy does not depend on the chosen
configuration.

Another more algebraic way to express the same idea is the following. As
observed at the end of §3.4, the manner in which the local braid monodromy
arising from a point of Z; depends on the local configuration is a conjuga-
tion by an element () of By, which after multiplication by an element of
Bon_2 X By can easily be assumed to be a pure braid. Denoting by @ the
factorized expression corresponding to the standard configuration and by
®( its conjugate by the braid (), we have the chain of m-equivalences

Do~Q Q1 P~Q-2-Q7' ~Q Q3" 2,

where the first operation is a pair creation and the two others are Hurwitz
moves ; therefore, conjugating ® by @ is equivalent to inserting the two
factors ) and le, which are both pure braids in By,. A similar phenom-
enon occurs near the intersection points between two groups of 2n lines :
the choice of a specific configuration amounts to a conjugation by a pure
braid in By, X Bs,, which after a suitable m-equivalence simply amounts to
inserting some pure braids into the factorization. Finally, some intersections
between the 2n lines also occur outside of these points, which means that,
independently of the issue of the local configurations, some pure braids in
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By, appear as factors. Collecting all the pure braids in Bs, we have ob-
tained in this description, we get that the choice of a specific configuration
amounts to the choice of a set of pure braid factors in By, (or more precisely,
three such sets of factors, one for each of the groups of lines labelled «, 3
and 7). The product of these factors is always the same independently of
the chosen configuration, because in the end we only consider factorizations
of A2. The result then follows from the following observation : given a
pure braid Q € Bay,, any two decompositions of @ into products of positive
and negative twists differ from each other by Hurwitz moves and pair can-
cellations. This can be seen by realizing a factorization of () as the braid
monodromy of a curve with 2n components in C? and by observing that any
two such configurations are deformation equivalent (e.g., when @@ = 1 the
components can be unknotted by translating them).

As explained in §3.2, we can deform the curve Dy so that its image by
V3 becomes arbitrarily close to a union of d conics, at which point the
braid factorization for V)(Dy), or equivalently Vy(Dy), is given by (8). First
consider the singular map Vo f), whose branch curve is the union of V?(Dy)
with three lines (each of which has multiplicity 2n). These three lines always
intersect V) (Dy) tangently. Therefore, after slightly deforming the map Vy’
so that the three lines composing its branch curve avoid the pole of the
projection 7, the braid factorization for the branch curve of V¥ o fj, is very
close to that given by Proposition 6 ; keeping in mind the result of §3.2, the
only difference between the braid monodromy for Vi) o f; and (18) is that
the Ly term in (18) should be replaced by the braid factorization Fy, for Dy.

The discussion at the beginning of this section gives a description of the
modifications that occur when V3 is replaced by VJ and f4 is perturbed
into the generic map for. In this situation, the lines labelled «, 8 and + in
§3.5 each need to be replaced by a set of 2n lines. As we know from our
study of the structure of fo), near the points of Z;,, the factors Zﬁ o Zﬁ 8 and
ZZ%7 in (18) need to be replaced by expressions similar to (13) ; as explained
above we do not have to worry about the details of the local configurations.

Moreover, the factors Zg 8 Zgw and ng in (18) need to be replaced by the
factorizations describing the behavior of n copies of Dy near one of the points
where two groups of 2n lines intersect each other. The contribution of each
copy of Dy has been computed in §3.3, but we must also take into account
the mutual intersections between the various components. Fortunately, as
explained above we do not have to worry about the exact local configuration,
so we can choose one that simplifies calculations.

Finally, we also need consider the mutual intersections of the 2n lines
labelled 1,,...,n,, (and similarly in the two other groups) ; although the
possibility of moving the lines across each other gives a lot of freedom, the
manner in which they intersect is largely determined by the twisting phe-
nomena arising at the points of intersection with V;(Dy) or with the other
groups of 2n lines. Indeed, since the total braid monodromy for the branch
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curve of fo), has to be A2, the amount of twisting of any two lines around
each other, and more precisely the product of all the degree +2 factors in-
volving 1,,...,n, is entirely determined by the chosen configurations at
the intersection points with V(D) and the other groups of 2n lines. As
observed above, the various possible decompositions of this product into de-
gree +2 factors are all m-equivalent to each other, so that once again we can
choose one freely (more geometrically, it is quite clear that any two configu-
rations of the lines that are compatible with the local configurations chosen
at the intersection points can be deformed into one another and hence yield
m-equivalent results).

We now need to explicitly describe the geometric monodromy represen-
tation 0 : Fy — S, for fi. Recalling from §3.1 that all geometric morphisms
0: Fy — S, are equivalent to each other up to conjugation, we are free to
choose the one most suited to our purposes ; since the choice that we now
make is in some particular cases not the most practical one, we will also
explain how to adapt the formula for a different choice of 6.

Let us assume from now on that n = deg fr and d = deg Dy, satisfy the
inequality d < n(n —1). This inequality is satisfied in almost all examples ;
in particular, given any symplectic 4-manifold, it is satisfied as soon as k is
large enough. Consider geometric generators 7i,...,yq of 7 (CP? — Dy) :
the loops 7; are contained in the reference fiber of the projection to CP!,
in which, assuming that the base point and the d intersection points with
Dy, all lie on the real axis, they join the base point to the i-th intersection
point by passing above the real axis, circle once counterclockwise around
the intersection point, and return to the base point along the same path.

Performing a suitable global conjugation of the braid monodromy of fj, if
necessary, we can assume that the geometric monodromy representation is
such that the transpositions 6(v1),...,0(y4) are respectively equal to the d
first terms of the factorized expression

n—1 n
=T II GG
i=1 j=i+1
in the symmetric group S,. This choice is legal because d is even and
d > 2n — 2. For each 1 <4 < n(n — 1) we define the two indices 1 < p(i) <
q(i) < n such that the i-th factor of this expression in S, is the transposition

(p(i)q(7)) ; in particular 8(vy;) = (p(i)q(7)) for all 7 < d.

We first consider the contribution of the intersection points of V(D)
with Dy. Making the same choice of local configurations as in §3.4, each
factor Zj,, in (18) needs to be replaced by

1
3 3 3
) 11 ( Z3 ) i oty at )}) Zip(i)e " Liq)a " Lirpiaiali)a)

j=n 1
H ( \Z o 7#{p(2),q(i )})

Jj=n
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and similarly for the Zﬁ 5 and Z§7 factors.

We next consider the intersections of the 2n lines labelled 14, ..., n,, with
the 2n lines labelled 1g, ... ,n’ﬂ. We choose as local configuration a situation
consisting of n identical copies of D5 shifted away from each other by generic
translations. The amounts by which the various copies are translated away
from each other are assumed to be much larger than the distance between
the two lines in a pair (e.g., iq and 4,) ; although this configuration can no
longer be considered as a very small perturbation of f},, it is quite clear
that the translation process preserves the property of being locally braided,
so that in terms of braid monodromy this configuration is m-equivalent to
that obtained by a small perturbation of fj,. This choice of configuration
can be represented on the following diagram :

L7
J

7 o

In this picture each intersection along the diagonal corresponds to a copy
of Dy, yielding an expression similar to that in (9), while all other intersec-
tions occur between different copies of Dy and simply yield nodes. However,
recall from the computations in §3.5 that, when inserted into the expression
for the global braid monodromy, all local braid monodromy contributions
need to be conjugated in such a way that the various twists are performed
along paths similar to the one appearing in the definition of Zaﬂ. There-
fore, if we momentarily ignore the specificities of the intersections along the
diagonal, the braid monodromy for nodal intersections between the two sets
of 2n lines should be given by

n n
72 ~2 72 72
1111 (Ziajﬂziajgzi;js Zz‘;j'g) :
i=1j=1

where for any 7 € {1,4,1,,...,nq,n,} and v € {1,3,1:6,...,na,n'ﬁ} the

notation Z,, represents a half-twist along the path

However, according to the calculations performed in §3.3, the intersections
corresponding to ¢ = j consist of three cusps and one tangency point set up
as in (9) rather than four nodes. Therefore, the correct contribution to the
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braid factorization of fo is given by the expression

n -1
2 52 52 53
(20) H(H (ZZaJﬂZzaJBZ Ziy jg) ZZaZaZzaz Zaza;(lﬁlg)ZZ’iﬂ
i=1

j=1
n
2 2 2
H (Zzt)t]ﬂ ZZa]g Zia]ﬁ Z'La]ﬂ) )
Jj=i+1

(2

inig 1 «ip

72, ) Zi i, (Z2

where Z'Lazix( b iﬁ

(igip) =
ing i, and i, along a path that goes around ig and 4} (the a points being
connected to the 8 points along the same type of path described above).

The factors ng and 257 in (18) are treated similarly, and give rise to

ZiZ, P )~1 is a half-twist exchang-
alp

expressions similar to (20), except that the paths along which the Z2, factors
twist now follow the model of Zgw or ng instead of Zgﬂ.

Our choice of local configuration for the « — 3 intersection is rather arbi-
trary ; however, a different choice would only affect the braid factorization
by conjugation by a pure braid in By, X Bs, (each factor acting on one group
of lines, while the path along which the groups are connected to each other
necessarily remains that of Zaﬁ). By the argument at the beginning of this
section, such a conjugation amounts up to m-equivalence to inserting some
pure braid factors in By, X By, into the global braid monodromy, which has
been shown not to affect the outcome of the computations, so that we can
safely ignore this issue.

We now look at the remaining nodal intersections between the 2n lines
1a,1%, ..., ng,n.,. The product of all these contributions to the braid mon-
odromy is determined in the following manner by the previously chosen
configurations at intersection points with V(D) and with the other groups
of 2n lines. If we consider only the relative motions of the 2n points labelled
ly,---,n., induced by the various braids in the factorization, it is easy to
check from the above formulas that the tangent intersection with the line
labelled 4’ in V5(Dy) contributes a half-twist Z,; qq), for all 1 < i < d,
while the intersection of i, and 4, with ig and 7} (or similarly i, and 7))

contributes the half-twist Z;_; . Therefore, the total contribution of inter-

section points is equal to HZ 1 Zp(i)aa(i)a (HZ 1 Zigil, ) .

On the other hand, recalling that we are looking for the braid factorization
of a curve in CP?, the overall relative motions of the 2n points 1,,...,n,
around each other must amount exactly to the central element A2 in By, ;
the contribution of the additional nodal intersections is therefore exactly the
difference between the contribution of intersection points and A3, . More-
over, recall from the discussion at the beginning of this section that the
decomposition of this contribution into a product of positive and negative
twists is unique up to m-equivalence. In order to explicitly compute this
decomposition, we first derive a suitable expression of A%n. Viewing the 2n
points 14,1%,...,14,n., as n groups of two points, it is easy to check that
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the full twist A2 can be expressed as

n

(21) A%n H H za]a Zaja zaj Z )HZZQQZQ

1=1 j=i+1 i=1

Note that the two parts of this expression can be exchanged by Hurwitz
moves. The second part of (21) corresponds exactly to the contribution of
the intersection points with the two other groups of 2n lines ; meanwhile, the
first d/2 factors Z7 ;.. correspond to the contribution of the points of Z; (re-
call the choice of geometric monodromy representation made above). There-
fore, the nodal intersections correspond exactly to the remaining factors in
(21). Inserting these braids at their respective positions in the factorization,
and bringing the Z; factors back to the beginning of the factorization by
Hurwitz moves, we finally obtain the following result :

Theorem 2. Let X be a compact symplectic 4-manifold, and let fr, : X —
CP? be an approzimately holomorphic branched covering given by three sec-
tions of L®%. Denote by Dy, the branch curve of fy, and let d = deg Dy, and
n = deg fx. Assume that d < n(n—1). Denote by Fy, the braid factorization
corresponding to Dy, and assume that the geometric monodromy represen-
tation 6 : m (CP? — D},) — Sy, is as described at the beginning of §3.6. Then,
with the notations described in §3.4, the braid factorization corresponding to
the branch curve Doy of for, is given up to m-equivalence by the following
formula, provided that k is large enough :

(22) A346n = Hznf quf F, -

d 1
H(H (Zf’j [Zfaa]ae{p(z)qu)}) Zinia " Zitg(i)a

i=1 \j=n
1

Z i (i)as(ai)e) H(Z,%j 2 ) s¢t0ti7000) ) H

j=n j=i+1

2 2 2
[Z (Daa(@Ys Zp' ()a q(i)azp'(naq'(i)a]i;o mod 2) '

n(n—1)/2

I1 ( 2 31)0 i) Zp 2000ty 2 2000 t(20)e 2o i)t (200 )
i=(d/2)+1
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d 1
_H(H (23,1283 sturaon)  Ziins ™ Zhais

1
p(z H( HB J7&{p(i),q(?)} ) H Z

Jj=n j=i+1

2 2
[Z D506, 2o (pa(0)5 p()gqf(i)a]izo mod 2> '

n(n—1)/2

2 2 2 2
I1 (Zmzz')gq(%)gZp(m‘)ﬂq(zz)'Z '(2i)a(20)p 20/ (20)50'(20) 5 )
i=(d/2)+1

n fi—1

2 2 73 Z3
H (H (ZzanZzanZzamZzaJ ) Zzalﬂzw Zalix;(iﬂib)zﬂxiﬁ '
i=1

Jj=1
n
2 2 72 2
H (ZZa]B ZZaJﬂZ a]ﬂ Zzzxjﬂ)
j=it1

n 1—1
H( (Zfa] Zzza]»yZ Z"z];) ZZSaZ'yZZaZ’ Zlazl s(Z’YZ ) Z i'y :
n
2 72
11 (22,,22,,%,.2; )) .
j=1+1

n [fi—1
2 2 2 2 73 73
H( (ZZg] Z’lB]A’Z’Lﬂ]»YZ’LB]A’) Zng»,Zsz’ ZZgzﬂ,(zwz )Zi’ﬁi»y

n
2 52 52 52
H (ZZﬁJwZ13]7Z131721317>> '

j=itl
TT(TT (225 2 Do) - Zot -2,
1 N ORTO) Y A O M O
1= j=n
1
3 72 2
Zioiystatirn 11 (Zz"j 1221, ) s tmtiratins ) H Vi
j=n j=i+1

2 2 2
[Zp(i)wq(i)'yZP'(i)WQ(i)WZpl(i)'YQ'(i)w]Z'EO mod 2> '
n(n—1)/2

2 2 2 2
II (Z (20)ya(2i)y Zp(2i)ya2iY, 2o/ (20),a(2i), 2, %%)w’(%»)-
i=(d/2)+1
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In this expression, the notation [...l;=0 mod 2 means that the enclosed fac-
tors are only present for even values of © ; the various notations for braids
represent half-twists along the following paths :
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ZTT’;(UU’) = (Z?’UZE’U’)ZTT’(272-"0272-’11’)_1

Remark : in the expression (22) we have made use of our specific choice of
geometric monodromy representation for fi, which requires the inequality
d < n(n —1) to hold in counterpart for the relative simplicity of the result-
ing factors. Also, we have chosen to insert some of the pure braid factors
involving the 2n lines 1,,...,n,, amid the contributions of the intersection
points of these lines with V5 (Dy), in order to avoid the need for a rewriting
of (21) using Hurwitz moves to isolate these contributions.

In general, if one wishes to get rid of the assumption made on the struc-
ture of the geometric monodromy representation 8 and to remove the con-
straint d < n(n — 1), the necessary modifications are rather easy and only
involve finding a different expression of A3 to replace (21). Namely, de-
note by (7(i)v(i)) the image in S, by 0 of the i-th geometric generator of
71(CP?2 — D;) (in the standard situation of (22) one has 7(i) = p(i) and
v(i) = q(7) but we now want to lift this assumption). Then, if we keep our
choice of the simplest local geometric configurations at points of Z;, the con-
tribution of these points to the twisting among the lines 1,,...,n,, is given
by the pure braid H;-izl Zr(i)av(i)e- We know that the total contribution of
nodal intersections between the 2n lines must be equal to

d B n _
Qa = (1:[1 Zr(i)av(z’)a) - A, - (1:[1 Zfaia) .

Since @), is a pure braid it can be decomposed into a product of positive
and negative twists involving 1,,...,n,. The resulting modification of the
“a@ factors” in lines 2 — 5 of (22) is as follows : in the first two of these
lines, p(i) and ¢(z) should be replaced by 7(i) and v(i) respectively ; the
following line, consisting only of nodal intersections inserted amid the other
contributions, should be deleted ; the last line, containing the main group
of nodal intersections, should be replaced by the chosen factorization of Q.
Similar modifications are also required for the 8 and -y parts of (22).
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As explained previously, the independence of the braid factorization upon
the choice of local configurations and the fact that any two geometric mon-
odromy representations differ from each other by a global conjugation imply
that the expression obtained for a non-standard choice of 6 is m-equivalent
to the standard one. In particular, the possible presence of negative twists
in the factorization of (), should not be considered as an indication of the
existence of non-removable negative nodes.

Remark : when X is a complex projective manifold, braid monodromy
becomes well-defined up to Hurwitz equivalence and global conjugation only,
since no negative nodes may appear in the (holomorphic) branch curve.
However, (22) only gives the answer up to m-equivalence even in this case.
If one looks more closely, the deformation process described in §3.2 can be
performed algebraically provided that L& is sufficiently positive, and there-
fore remains valid in the complex setting ; in fact, all the braid monodromy
computations described in §§3.2-3.5 are valid not only up to m-equivalence
but also up to Hurwitz equivalence and conjugation. However, what is not
clear from an algebraic point of view is the exact configuration in which the
lines 1,,...,n,, are placed by a generic algebraic perturbation performed
near the points of Z;. Determining this information now becomes an impor-
tant matter, since our argument to show that all possible configurations are
m~equivalent involves cancelling pairs of nodal intersections.

More precisely, provided that d < n(n — 1), by applying formula (22) we
obtain a braid factorization without negative twists, which is m-equivalent to
the braid factorization describing a generic algebraic map in degree 2k, but
we don’t know for sure whether the m-equivalence can be realized without
creating pairs of nodal intersections between the 2n lines 1,,...,n,, (resp.
B, 7). In fact, the perturbation of Vi o f that we perform near the points
of T}, is isotopic through m-equivalence to a generic algebraic perturbation
of V3 o fi, which itself would yield the usual algebraic braid monodromy
invariants as defined by Moishezon and Teicher.

Still, it seems very unlikely that such pair creation operations are ever
needed, and it is reasonable to formulate the following conjecture :

Conjecture. When X is a complex algebraic manifold, the degree doubling
formula (22) is valid up to Hurwitz equivalence and global conjugation.

Motivation for this conjecture comes from the following observation. As-
sume that identifying the braid monodromy given by (22) with that of a
generic algebraic map requires the creation of pairs of nodes. Then, con-
sidering only the relative motions of the 2n points labelled 1,, ..., n!, (resp.
B, 7), we obtain two factorizations of A3, as a product of positive twists
and half-twists in By, which are inequivalent in a certain sense. These two
factorizations can be thought of as describing the braid monodromy of two
symplectic nodal curves in CP?, both irreducible and of identical degree and
genus. The braid factorization in By, arising from (22) is easily checked to
be that of an algebraic nodal curve. Therefore, the inequivalence of the two



54 DENIS AUROUX AND LUDMIL KATZARKOV

factorizations would be a strong indication of the possibility of construct-
ing by purely complex algebraic methods a counterexample to the nodal
symplectic isotopy conjecture ; this would be extremely surprising.

4. THE DEGREE DOUBLING FORMULA FOR LEFSCHETZ PENCILS

4.1. Braid groups and mapping class groups. We now expand on the
ideas in §5 of [4] to provide a description of the relations between the braid
monodromy of a branch curve and the monodromy of the corresponding
Lefschetz pencil.

Recall that the Lefschetz pencils determined by approximately holomor-
phic sections of L& are obtained from the corresponding branched coverings
simply by forgetting one of the three sections, or equivalently by composing
the covering map with the projection 7 : CP? — {pt} — CP!. In particular
the curves making up the pencil are precisely the preimages of the fibers
of m by the branched covering, and the base points of the pencil are the
preimages of the pole of the projection 7.

Consider as previously the branched covering fr : X — CP2. Call n
its degree and d the degree of its branch curve Dy, and let 6 : Fy; =

m1(C—{q1,...,94}) = Sn be the corresponding geometric monodromy rep-
resentation. The map 6 determines a simple n-fold covering of CP! branched
at qi,...,q4 ; we will denote this covering as u : ¥y — CP!, where Yyisa

Riemann surface of genus ¢ = 1 —n + (d/2).

It is important for our purposes to observe that the Riemann surface ¥,
naturally comes with n marked points, corresponding to the base points of
the Lefschetz pencil : these n points are precisely the preimages by u of
the point at infinity in CP'. In particular, rather than simply working in
the mapping class group M, of X, in the usual way, we will consider the
mapping class group My, of a Riemann surface of genus g with n boundary
components, i.e. the set of isotopy classes of diffeomorphisms of the com-
plement of n discs centered at the given points in X, which fix each of the
n boundary components (or equivalently, diffeomorphisms of ¥, which fix
the n marked points and whose tangent map at each of these points is the
identity). Describing a Lefschetz pencil by a word in M, provides a more
complete picture than the usual description using M,, as it also accounts
for the relative positions of the base points of the pencil with respect to the
various vanishing cycles.

Recall the following construction from [4] : let C,(qu, - - ., gq) be the (finite)
set of all surjective group homomorphisms F; — S,, which map each of

the geometric generators v, ...,7v4 of Fy to a transposition and map their
product 1 - - - 74 to the identity element in S,,. Each element of C,,(q1,- .-, qq)
determines a simple n-fold covering of CP! branched at g, ..., g4.

Denote by X, the space of configurations of d distinct points in the plane.
The set of all simple n-fold coverings of CP! with d branch points and such
that no branching occurs above the point at infinity can be thought of as
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a covering él?'d,n above X, whose fiber above the configuration {qi,...,q4}
identifies with C,(q1,-..,q4). The braid group By identifies with the fun-
damental group of Xy, and therefore By acts on the fiber C,,(q1,...,qq4) by
deck transformations of the covering /’\?d,n.

Define the subgroup BY(6) as the set of all the loops in Xy whose lift at
the point pg € A?d’n corresponding to the covering described by 6 is a closed
loop in /'\?d’n, i.e. the set of all braids which act on Fy = m1(C—{q1,...,q4})
in a manner compatible with the covering structure defined by #. Denoting
by Q. the action of a braid @ on Fy, it is easy to check that BI(8) is the
set of all braids @) such that 8o Q, = 6.

There exists a natural (tautologically defined) bundle Vg ,, over é\?d’n whose
fiber is a Riemann surface of genus g. Each of these Riemann surfaces comes
naturally as a branched covering of CP!, and carries n distinct marked points
— the preimages of the point at infinity in CP* by the covering.

Given an element @ of B}(6) C By, it can be lifted to X, as a loop
based at the point py, and the monodromy of the fibration Yy, around
this loop defines an element of the mapping class group M, , of a Riemann
surface of genus g with n boundary components, which we will call 6,(Q).
More intuitively, viewing () as a compactly supported diffeomorphism of
the plane preserving {qi,...,qq}, the fact that Q € BY(f) means that the
diffeomorphism representing ) can be lifted via the covering u : ¥, — CP!
to a diffeomorphism of 4, whose class in the mapping class group is 6,(Q).

It is easy to check that the image of the braid monodromy homomorphism
is contained in BY(#) : this is because the geometric monodromy represen-
tation @ factors through 71 (CP? — D}), on which the action of the braids
arising in the monodromy is clearly trivial. Therefore, we can take the image
of the braid factorization by the map 6, and obtain a factorization in the
mapping class group M, ,. As observed in [4], all the factors of degree £2
or 3 in the factorization lie in the kernel of 6, ; therefore, the only remaining
terms are those corresponding to the tangency points of the branch curve
Dy, and each of these is a Dehn twist.

Recall from [4] that the image in the mapping class group My, of a half-
twist @ € BJ(#) can be constructed as follows. Call v the path in C joining
two of the branch points (say ¢; and ¢;) which describes the half-twist @
(v is the path along which the twisting occurs). Among the n lifts of v
to X4, only two hit the branch points of the covering ; these two lifts have
common end points, and together they define a loop ¢ in X,. Equivalently,
one may also define ¢ as one of the two non-trivial lifts of the boundary of
a small tubular neighborhood of v in C. In any case, one easily checks that
the element 6,(Q) in My, is a positive Dehn twist along the loop 4 (see
Proposition 4 of [4]).

As a consequence, one obtains the usual description of the monodromy of
the Lefschetz pencil as a word in the mapping class group whose factors are
positive Dehn twists. However, as observed by Smith in [12], the product
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of all these Dehn twists is not the identity element in M, ,, because after
blowing up the pencil at its base points one obtains a Lefschetz fibration in
which the exceptional sections have the non-trivial normal bundle O(—1).
Instead, the product of all the factors is equal to 6,(A2), which is itself equal
to the product of n positive Dehn twists, one along a small loop around each
of the n base points of the pencil.

It follows from the above considerations that we can lift the degree dou-
bling formula for braid monodromies obtained in §3 and obtain a similar
formula for Lefschetz pencils. The task is made even easier by the fact that
we only need to consider the tangency points of the branch curves.

We now introduce the general setup for the degree doubling formula. To
start with, recall that the branch curve Dy, is of degree d = 2d + 6n, while
the degree of the covering for is 4n. Recall from §3.4 the relation between
the geometric monodromy factorizations Ooy, : Fj — Sup and 0 : Fy — S, :
as previously, view the 4n sheets of fo as four groups of n sheets labelled
Tas iyt td, 1 < 2 < m, and use the same labelling of the branch points
as in §3. With these notations, the transpositions in Sy, corresponding to
the geometric generators around 1,...,d,1’,...,d" are directly given by the
geometric monodromy representation 8 associated to Dy : given 1 < r < d,
if 6 maps the r-th geometric generator to the transposition (i) in S, then,
calling 7, and -y, the geometric generators in F; corresponding to r and 7,
one gets Oor(vr) = Oo2x (V) = (iaja). Moreover, each of the n copies of V3
connects four sheets to each other, one in each group of n : the geometric
generators around iq, iy, g, i, iy and 4, are mapped by o, to (iaip), (icid),
(1a%e), (ipiq), (iaiq) and (ipi.) respectively, for all 1 <4 < m.

As a consequence, 0y determines a 4n-fold branched covering 4 : X5 —
CP!, with § = 29 + n — 1, whose structure is as follows. First, the preimage
of a disc D containing the d points labelled 1, ..., d consists of 3n+1 compo-
nents. One of these components (the sheets 1,,...,n,) is a n-fold covering
identical to the one described by 8y, i.e. it naturally identifies with the fiber
Y, of the Lefschetz pencil associated to fg, with n small discs removed.
These punctures correspond to the preimages of a small disc around the
point at infinity in the covering u : ¥, — CP!, i.e. they correspond to small
discs around the base points in X,. The other 3n components of 7~ !(D), in
which no branching occurs, are topologically trivial.

The same picture also describes the preimage of a disc D’ containing the
d points labelled 1, ..., d' : there is one non-trivial component which can be
identified with 3, punctured at its base points, and the other 3n components
are just plain discs.

Finally, the preimage by @ of the cylinder CP! — (D U D') consists of
n components, each of which is a four-sheeted covering branched at six
points, i.e. topologically a sphere with eight punctures. Actually, each of
these n components may be thought of as the fiber of the Lefschetz pencil
corresponding to the covering V5 (since we restrict ourselves to a cylinder we
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get eight punctures). For each i € {1,...,n} the corresponding component
of 4 1(CP! — (D UTD')) connects together the non-trivial components of
u~1(D) and u~(D’) with the trivial components corresponding to the sheets
’ib, ’ic and id.

In the end the Riemann surface 35 can be thought of as two copies of %,
glued together at the n base points. This description coincides exactly with
the one obtained by Smith in [12] via more direct methods.

4.2. The degree doubling formula for Lefschetz pencils. In order to
simplify the description of the degree doubling formula for Lefschetz pencils,
we want to slightly modify the setup of §3.

First, we want to choose a different picture for 8y : recall that global
conjugations in By make it possible to choose the most convenient geometric
monodromy representation 8 : Fy; — S,. As a consequence we chose in §3
a setup that made the final answer (22) relatively easy to express, but as
observed in the remark at the end of §3.6 we could just as well have worked
with any other choice of 0y, the only price being a slightly more complicated
expression for the degree doubling formula. Note that the change of 85 only
affects factors of degree +2 in the formula, and therefore the half-twists
which are relevant for our purposes are not affected.

Here we want to choose 8, in such a way that the 4-th geometric generator
i is mapped to the transposition (1,2) if i < d —2(n — 1) = 2g, and
Ok (Ya—2;) = 0(Ya—2j—1) = (n— 7 —1,n—j) for all j < n —2. In other words,
the transpositions 0 (y;) correspond to the factorization

n—1
Id= (1’2)2;] ’ H (’L,’L + 1)2
=1

in S§,. Another change that we want to make is in the ordering of the
d = 2d + 6n points that appear in the diagrams of §3 along the real axis.
Namely, we want to replace the ordering 1,...,d, 1',...,d', 14,...,n! used
in §3 by the new ordering 1,...,d, 1a,...,n/, d',...,1'. This is done by
first moving the d points 1',...,d" clockwise around the points 1q,...,n)
by a half-turn, and then by rotating a disc containing the d points 1’,...,d’
counterclockwise by a half-turn.

Finally, in order to better visualize the positions of the base points of the
pencil (the 4n marked points on ), we want to move the fiber in which
they lie from the point at infinity in CP! back into our picture. We choose
to move the base points so that they correspond to the preimages of a point
b on the real axis lying inbetween the point labelled d and the point labelled
1lo. The motion bringing the point at infinity to b is performed along a
vertical line in the upper half-plane (this motion of course affects some of
the braids, but it was chosen in such a way that the resulting changes are
minimal).
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The effect of all these changes is to make the covering u : ¥ — CP! easier
to visualize, while simplifying the paths corresponding to the half-twists in
(22). The picture is the following :

In this picture, the labels in italics correspond to branch points and those
in boldface correspond to the sheets of the covering ; for simplicity we have
omitted the branch points 1,,... ,nir, which should be placed in the necks
joining the two halves, and the 3n other sheets which do not contribute to
the topology. When the 3n sheets 13, . .., ng are collapsed, the corresponding

base points are brought back to the sheets 1,, ..., n, near the branch points
la,y--- ,n'7 ; therefore, on the picture each x mark corresponds to four base
points.

In order to understand the Lefschetz pencil corresponding to for, we need
to place the various half-twists appearing in the braid factorization of Doy
on this picture. A first set of half-twists comes from the braid factorization
of Dy. These half-twists correspond exactly to the Dehn twists appearing in
monodromy of the Lefschetz pencil for fj, after a suitable embedding of M, ;,
into the mapping class group Mj 4,. Recall that the braid factorization in By
corresponding to Dy, is embedded into B; by considering a disc D containing
the d points labelled 1,...,d. Therefore, the corresponding embedding of
the mapping class group M, , into the larger mapping class group Mg 4,
is geometrically realized by the embedding into ¥; of the main connected
component of @~1(D), which as we know from §4.1 naturally identifies with
the Riemann surface X, punctured at each of the n base points. On the
above picture of ¥ this corresponds to the left half of the diagram.

Observe that all the other half-twists appearing in the braid factorization
for Dy are completely standard and depend only on d and n rather than
on the actual topology of the manifold X. Therefore, the degree doubling
formula for Lefschetz pencils is once again a universal formula : the word in
My 4, describing the Lefschetz pencil in degree 2k is obtained by embedding
the word describing the pencil in degree k via the above-described map
from Mg, into My, and adding to it a completely standard set of Dehn
twists which depends only on g and n but not on the actual topology of the
manifold X. This observation was already made by Ivan Smith in [12].
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The extra half-twists appearing in the degree doubling formula for braid
monodromies are Z;y and Z;; for 1 < i < d, and Ziai& (igil)? Ziaig S(ivit) and
Ziﬂ’ilﬂ;(i;yify) for 1 <14 < n, as described in §3.6 (their total number 2d + 3n
is in agreement with an easy calculation of Euler-Poincaré characteristics).
We will now describe the Dehn twists corresponding to these half-twists.

After the global conjugation described above, Z;; becomes a half-twist
along the following path :

Its lift to the mapping class group Mj 4, is a Dehn twist that we will call
7;, and which can be represented as follows when ¢ is even and i < 2g :

When 7 = 1 the undrawn parts on both sides of the picture are just
discs and the picture can therefore be slightly simplified ; conversely, when
i = 2g + 1 the points labelled (i + 1) and (i + 1)’ are immediately on both
sides of the central neck rather than as pictured.

For i even and ¢ > 2g + 2, 7; is described by the following picture (the
two necks shown correspond to the sheets numbered s and s + 1, where
s=35(i—29)>1):
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Finally, when 7 is odd and ¢ > 2g + 3, the picture describing 7; becomes
the following (the two necks shown correspond to the sheets numbered s and
s+1, where s = (i + 1 —2g) > 2) :

We now turn to ZAZ-Z-:, which after the above-described global conjugation
becomes a half-twist along the following path :

This path can be homotoped into the following one, which goes through
the point at infinity in CP! :

Therefore, the Dehn twists 7; € My 4, obtained by lifting Zii only differ
from 7; by a twisting in each of the necks joining the two halves of ¥z. As
a result, we get the following pictures (using the same notations as for 7;) :

The first picture corresponds to the case ¢ even, i < 2g ; the second one
to 7 odd, ¢ < 2g + 1. In each of the two necks, the vanishing loop circles
around the base point corresponding to the sheet labelled 1, (resp. 2,), but
not around those corresponding to sheets 1, 1. and 14 (resp. 2y, 2¢, 24).
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When ¢ > 2g + 2, the pictures become the following (the left one is for even
i, the right one for odd i) :

We now turn to the half—twists Ziaifl;(igilﬂ)’ Z’iai’a;(i»yify) and Zlﬁzb:("yzfy) (1 S

i < n). To simplify the diagrams we only represent the relevant points, i.e.
we forget ja, jo.J6, Js Jys Jy for j # i as these points do not play any role.
Moreover, we use the observation that, for the purposes of computing the
corresponding Dehn twists, we are allowed to move a path across a branch
point if the corresponding sheets of the covering are distinct. Finally, we
further simplify the diagrams by allowing ourselves to draw paths which go
through the point at infinity in CP'. With all these simplifications, we get
the following diagrams :

b ~

i ...... C.l X iai’a;(iﬂilg)
b ~

i ...... C.l X Zzazﬁx,(z»ﬂ’w)
b / d/ 1I ~

o eenen o X o o D e o « e o VAN

1 d " g iy i zg\ iy i P

It is now clear that the only relevant parts of ¥; are the sheets labelled
1y, te, tq Of the covering, as well as the part of the sheet labelled i, that
lies inbetween the points 1,...,d and d',...,1’. In particular, the loops we
obtain are entirely located in the i-th neck joining the two halves of ¥j ;
if we forget about the base points, the Dehn twists 7; o8, Ti,ay and 7 gy
corresponding to the half-twists Ziaig (igiy) Zz'ai’a (i) and Z pilyi(iyit,) T€
equal to each other, and are twists along a loop that simply goes around the
i-th neck joining the two halves of X.

In the presence of the four base points lying in the sheets i, iy, i and
iq of the covering, we have to be more careful, but it can be checked that
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the Dehn twists 7; o8, Ti,oy and 7; g, are respectively given by the following
diagrams (only the i-th neck is shown ; the base points are labelled a, b, c,
and d) :

r

1\ xb 1 \xb 1 xb
3 a . a . a
I X : xC I X : xC I X : X C
y xd y [ xd | xd
Ti,af Ti,ory Ti,By

Summarizing, we get the following result :

Theorem 3. Let X be a compact symplectic 4-manifold, and consider the
structure of symplectic Lefschetz pencil on X given by two sections of L®¥.
Let g be the genus of the fiber Xy, and let n be the number of base points.
Let d = 29 — 2+ 2n, and call ¥, the word in the mapping class group Mgy,
describing the monodromy of this pencil.

Let g = 2g+n—1, and view a Riemann surface ¥y of genus g as obtained
by gluing together two copies of X4 at the base points. Call v : My, — My ap
the inclusion map discussed above.

Then, provided that k is large enough and using the notations described
above, the monodromy of the symplectic Lefschetz pencil structure obtained
on X from sections of L®% is given by the word Vg in the mapping class
group My 4y, where

d d n n n
(23) =[5 117 (@) - [I7ies - []7i0r - [] 780
i=1 =1 i=1 i=1 i=1
and the Dehn twists 7;, 7;, Ti o, Tiay and T; g, are as described above.

Remark. One must be aware of the fact that, in the formula (23), com-
position products are written from left to right. This convention, which
is the usual one for braid groups, is the opposite of the usual notation for
composition products when working with diffeomorphisms (the order of the
factors then needs to be reversed).

It is also worth observing that the product of the factors in +(¥) is almost
exactly the twist by which 7; differs from 7;, the only difference being in the
position of the base points with respect to the vanishing cycle. Therefore,
if we forget about the base points, a sequence of Hurwitz moves in (23)
yields the following slightly simpler formula (in Mj instead of Mj 4,, and
observing that 7; 43, Ti,ay and 7; g, are equal in Mj):

d

d n
i=1 =1

i=1
It is clear from this expression that the Lefschetz fibration with total space
a blow-up of X and monodromy ¥y contains many Lagrangian (—2)-spheres
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joining pairs of identical vanishing cycles among those introduced by the de-
gree doubling procedure; however these spheres collapse when the Lefschetz
fibration is blown down along its exceptional sections, as they intersect non-
trivially two such sections.

The correctness of the formula (23) can be checked easily in some simple
examples : for instance, a generic pencil of conics on CP? has three singular
fibers, and can be considered as obtained from a pencil of lines by the
procedure described above. This corresponds to the limit case where n = 1,
d =0, g =0 and the word ¥, is empty. The three Dehn twists 71 o4, 71,0y
and 71,8, in My 4 then coincide with the well-known picture.

Another simple example that can be considered is the case of a pencil
of curves of degree (1,1) on CP! x CP!. The generic fiber of this pencil is
a rational curve (d = 2, n = 2, g = 0), and there are two singular fibers.
The corresponding word in My is 7 - 7, where 7 is a positive Dehn twist
along a simple curve separating the two base points. The degree doubling
procedure yields a word in M; g consisting of 12 Dehn twists. Forgetting the
positions of the base points, one easily checks that the reduction of this word
to My ~ SL(2,7Z) is Hurwitz equivalent to the well-known monodromy of
the elliptic surface E(1), which is exactly what one obtains by blowing up
the eight base points of a pencil of curves of degree (2,2) on CP* x CP*.
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