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1. INTRODUCTION

Symplectic manifolds are an important class of four-dimensional mani-
folds. The recent work of Seiberg and Witten [21], Taubes [19], Fintushel
and Stern [10] has improved drastically our understanding of the topology
of four-dimensional symplectic manifolds, based on the use of the Seiberg-
Witten invariants.

Recent remarkable results by Donaldson ([8],[9]) open a new direction in
conducting investigations of four-dimensional symplectic manifolds by anal-
ogy with projective surfaces. He has shown that every four-dimensional
symplectic manifold has a structure of symplectic Lefschetz pencil. Using
Donaldson’s technique of asymptotically holomorphic sections the first au-
thor has constructed symplectic maps to CP? [3]. In this paper we elaborate
on ideas of [3], [8] and [9] in order to adapt the braid monodromy techniques
of Moishezon and Teicher from the projective case to the symplectic case.

Our two primary directions are as follows :

(1) To classify, in principle, four-dimensional symplectic manifolds, us-
ing braid monodromies. We define new invariants of symplectic manifolds
arising from symplectic maps to CP?, by adapting the braid monodromy
technique to the symplectic situation ;

(2) To compute these invariants in some examples.

We will show some computations with these invariants in a sequel of this
paper. Here we concentrate on the first direction.

The second author was partially supported by NSF Grant DMS-9700605 and A.P.
Sloan research fellowship.
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Recall from [3] that a compact symplectic 4-manifold can be realized as
an approximately holomorphic branched covering of CP2. More precisely,
let (X,w) be a compact symplectic 4-manifold, and assume the cohomology
class 5-[w] to be integral. Fix an w-compatible almost-complex structure
J and the corresponding Riemannian metric g. Let L be a line bundle on
X whose first Chern class is 5-[w], endowed with a Hermitian metric and a
Hermitian connection of curvature —iw (more than one such bundle L exists
if H%(X,Z) contains torsion ; any choice will do). Then, for k& > 0, the line
bundles L* admit many approximately holomorphic sections, and the main
result of [3] states that for large enough k three suitably chosen sections of
LF determine X as an approximately holomorphic branched covering of CP?.
This branched covering is, in local approximately holomorphic coordinates,
modelled at every point of X on one of the holomorphic maps (z,y) — (z,y)
(local diffeomorphism), (z,y) + (z2,y) (branched covering), or (z,y)
(z3 — zy,y) (cusp). Moreover, the constructed coverings are canonical for
large enough k, and their topology is a symplectic invariant (it does not
even depend on the chosen almost-complex structure).

Although the concept of approximate holomorphicity mostly makes sense
for sequences obtained for increasing values of k, we will for convenience
sometimes consider an individual approximately holomorphic map or curve,
by which it should be understood that the discussion applies to any map or
curve belonging to an approximately holomorphic sequence provided that k
is large enough.

The topology of a branched covering of CP? is mostly described by that
of the image D C CP? of the branch curve ; this singular curve in CP? is
symplectic and approximately holomorphic. In the case of a complex curve,
the braid group techniques developed by Moishezon and Teicher can be
used to investigate its topology : the idea is that, fixing a generic projection
7 : CP? — {pt} — CP?, the monodromy of m p around its critical levels can
be used to define a map from ((CIP’1 — crit) with values in the braid group
B on d = deg D strings, called braid monodromy (see e.g. [16],[17],[20]).

The set of critical levels of mp, denoted by crit = {p1,...,pr}, consists
of the images by 7 of the singular points of D (generically double points
and cusps) and of the smooth points of D where it becomes tangent to
the fibers of m (“vertical”). Recall that, denoting by D’ a closed disk in
C and by L = {qi,...,94} a set of d points in D', the braid group By
can be defined as the group of equivalence classes of diffeomorphisms of D’
which map L to itself and restrict as the identity map on the boundary of
D', where two diffeomorphisms are equivalent if and only if they define the
same automorphism of m1(D" — {q1,...,qq4}). Elements of B; may also be
thought of as motions of d points in the plane.

Since the fibers of 7 are complex lines, every loop in CP! — crit induces a
motion of the d points in a fiber of m p, which after choosing a trivialization
of 7 can be considered as a braid. Since such a trivialization is only available
over an affine subset C C CP!, the braid monodromy should be considered as
a group homomorphism from the free group 71 (C— crit) to By. Alternately,
the braid monodromy can also be encoded by a factorization of the braid
Aﬁ (the central element in By corresponding to a full twist of the d points
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by an angle of 27) as a product of powers of half-twists in the braid group

By (see below).

In any case, it is not clear from the result in [3] that in our case the curve
D admits a nice projection to CP!. Tt is the aim of Sections 2 and 3 to
explain how the proofs of the main results in [3] can be modified in such
a way that the existence of a nice projection is guaranteed. The notations
and techniques are those of [3].

More precisely, recall that in the result of [3] the branch curves D =
f(R) are approximately holomorphic symplectic curves in CP? which are
immersed everywhere except at a finite number of cusps. We now wish to
add the following conditions :

1. (0:0:1) ¢ D.

2. The curve D is everywhere transverse to the fibers of the projection
7w:CP? - {(0:0:1)} - CP! defined by n(z :y: 2) = (z : y), except
at finitely many points where it becomes nondegenerately tangent to
the fibers. A local model in approximately holomorphic coordinates is
then 22 = 2 (with projection to the z; coordinate).

The cusps are not tangent to the fibers of 7.

4. D is transverse to itself, i.e. its only singularities besides the cusps
are transverse double points, which may have either positive or nega-
tive self-intersection number, and the projection of R to D is injective
outside of the double points.

5. The “special points”, i.e. cusps, double points and tangency points,
are all distinct and lie in different fibers of the projection 7.

6. In a 1-parameter family of curves obtained from an isotopy of branched
coverings as described in [3], the only admissible phenomena are cre-
ation or cancellation of a pair of transverse double points with opposite
orientations (self-transversality is of course lost at the precise param-
eter value where the cancellation occurs).

w

Definition 1. Approzimately holomorphic symplectic curves satisfying these
siz conditions will be called quasiholomorphic curves.

We will call quasiholomorphic covering an approzimately holomorphic
branched covering f : X — CP? whose branch curve is quasiholomorphic.

An isotopy of quasiholomorphic coverings is a continuous one-parameter
family of branched coverings, all of which are quasiholomorphic except for
finitely many parameter values where a pair of transverse double points is
created or removed in the branch curve.

Clearly the idea behind the definition of a quasiholomorphic covering is
to imitate the case of holomorphic coverings. Our main theorem is :

Theorem 1. For every compact symplectic 4-manifold X there exist quasi-
holomorphic coverings fy, : X — CP? defined by asymptotically holomorphic
sections of the bundle L* for k> 0.

Moreover, we will show in Section 3.2 that, for large enough k, the quasi-
holomorphic coverings obtained by this procedure are unique up to isotopy
(Theorem 5).

From the work of Moishezon and Teicher, we know that the braid mon-
odromy describing a branch curve in CP? is given by a braid factorization.
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Namely, the braid monodromy around the point at infinity in CP', which
is given by the central element Ag in By (because 7 determines a line bun-
dle of degree 1 over CP'), decomposes as the product of the monodromies
around the critical levels p1,...,p, of the projection 7. Easy computations
in local coordinates show that each of these factors is a power of a half-twist
(a half-twist corresponds to the motion of two points being exchanged along
a certain path and rotating around each other by a positive half-turn, while
the d — 2 other points remain fixed).

More precisely, the braid monodromy around a point where D is smooth
but tangent to the fibers of 7 is given by a half-twist (the two sheets of
the covering mp which come together at the tangency point are exchanged
when one moves around the tangency point) ; the braid monodromy around
a double point of D with positive self-intersection is the square of a half-
twist ; the braid monodromy around a cusp of D is the cube of a half-twist ;
finally, the monodromy around a double point with negative self-intersection
is the square of a reversed half-twist. Observing that any two half-twists in
By, are conjugate to each other, the braid factorization can be expressed as

T
AG = H(Q;l XI] Qj)a
j=1
where X7 is a positive half-twist exchanging ¢ and g2, ; is any braid,
and r; € {—2,1,2,3}. The case rj = —2 corresponds to a negative self-
intersection, r; = 1 to a tangency point, r; = 2 to a nodal point, and
rj = 3 to a cusp. The braids @, are of course only determined up to left
multiplication by an element in the commutator of X ;j .

For example, the standard factorization A2 = (Xj...X4_1)% of A2 in
terms of the d — 1 generating half-twists in By corresponds to the braid
monodromy of a smooth algebraic curve of degree d in CP2.

With this understood, there are four types of factorizations of A§ that
we can consider (each class in contained in the next one) :

1) Holomorphic — coming from the braid monodromy of the branch curve
of a generic projection of an algebraic surface to CP2.

2) Geometric — if after complete regeneration, it is (Hurwitz and conju-
gation) equivalent to the basic factorization A2 = (X ... X4 1)%

3) Cuspidal — all factors are positive of degree 1, 2 or 3.

4) Cuspidal negative — all factors are of degree —2, 1, 2 or 3.

Moishezon has shown [17] that the geometric factorizations are a much
larger class than the holomorphic ones. We do not know examples of cusp-
idal factorizations that are not geometric. We will prove in Section 4 that
cuspidal negative factorizations correspond to symplectic four-manifolds.

The braid factorization describing a curve D with cusps and (possibly
negative) nodes makes it possible to compute explicitly the fundamental
group of its complement in CP?, an approach which has led to a series
of papers by Moishezon and Teicher in the algebraic case (see e.g. [20]).
Consider a generic fiber C C CP? of the projection 7 : CP? — {pt} — CP!,
and call once again ¢y, ..., qq the d distinct points in which it intersects D.
Then, the inclusion of C — {qi,...,qq} into CP? — D induces a surjective
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homomorphism on the fundamental groups. Small loops 71, ...,7s around
qi,---,qq in C generate m, (CP? — D), with relations coming from the cusps,
nodes and tangency points of D. These d loops will be called geometric
generators of w1 (CP? — D).

The fundamental group 71 (CP? — D) is generated by ~i,. .., 74, with the
relation 7 ...7v4 ~ 1 and one additional relation coming from each of the
factors in the braid factorization :

M*Qj~7*xQ; ifr;=1,
[ *Qjsyex @~ 1 ifry = £2,
(r1y2m) * Q5 ~ (vemiy2) * Q5 if r; =3,

where * is the right action of B, on the free group Fy = m1(C—{q1,...,q4}) =
(Y1,---,74), and @; and r; are the braids and exponents appearing in the
braid factorization.

In order to describe a map X — CP? we also need a geometric monodromy
representation, encoding the way in which the various sheets of the covering
come together along the branch curve. Recall the following definition [17] :

Definition 2. A geometric monodromy representation associated to the
curve D C CP? is a surjective group homomorphism 6 from the free group Fy
to the symmetric group Sy of order n, such that the 0(vy;) are transpositions
(thus also the 6(y; * Q;)) and

0(71--.7a) =1,

0(7 % Qj) =0(v2*Q;) if rj =1,

0(v1 * Qj) and O(y2 x Q;) are distinct and commute if r; = £2,

0(v1*Q; ) and O(y2* Q;) do not commute (and hence satisfy a relation of
the type oo = ToT) if rj = 3.

In this definition, n corresponds to the number of sheets of the covering
X — CP? ; the various conditions imposed on (~y; * ;) express the natural
requirements that the map 0 : Fy — S, should factor through the group
71(CP2 — D) and that the branching phenomena should occur in disjoint
sheets of the covering for a node and in adjacent sheets for a cusp. Note
that the surjectivity of 8 corresponds to the connectedness of the covering
4-manifold.

The braid factorization and the geometric monodromy representation are
not entirely canonical, because choices were made both when labelling the
points p1, ..., p, in the base CP! and when labelling the points ¢1,...,qq in
the fiber of .

A change in the ordering of the points q,...,qgq corresponds to the op-
eration called global conjugation : all the factors in the braid factorization
are simultaneously conjugated by some braid () € By, and the geomet-
ric monodromy representation is affected accordingly. More algebraically,
let Q@ € By be any braid, and let Q. € Aut(F;) be the automorphism of
m(C — {q1,...,¢q}) induced by Q. Then, given a pair ({(Q;,r;)}1<j<r,6)
consisting of a braid factorization and a geometric monodromy representa-
tion, global conjugation by the braid @ leads to the pair ({(Q], i) hi<j<r, 0),
where Q; = Q; Q" and § = 60 Q..
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A change in the ordering of the points p1,...,p, corresponds to the oper-
ation called Hurwitz equivalence : the factors in the braid factorization are
permuted. A Hurwitz equivalence amounts to a sequence of Hurwitz moves,
where two consecutive factors A and B in the braid factorization are replaced
respectively by ABA™! and A (or B and B! AB, depending on which way
the move is performed). The geometric monodromy representation is not
affected.

By Theorem 1 we have quasiholomorphic covering maps fj : X — CP?
and, as noted above, the discriminant curves Dy might have negative inter-
sections. Some of these negative intersections are paired with positive ones :
in this case, deformations of the curve D} make it possible to remove a pair
of intersection points with opposite orientations, which leads to a new curve
D;.. This operation affects the braid monodromy, and even the fundamen-
tal group of the complement is modified : m (CP? — Dy) is the quotient of
71 (CP? — Dj) by the subgroup generated by the commutator of the two
geometric generators which come together at the intersection points.

Applying this procedure we can remove some pairs of positive and neg-
ative intersections : this is what we call a cancellation operation, which
amounts to removing two consecutive factors which are the inverse of each
other in the braid factorization (necessarily one of these factors must have
degree 2 and the other degree —2). The geometric monodromy representa-
tion is not affected.

The opposite operation is the creation of a pair of intersections and corre-
sponds to adding (Q~' X, 2Q).(Q7'x 2 Q) anywhere in the braid factoriza-
tion. It can only be performed if the new factorization remains compatible
with the geometric monodromy representation, i.e. if 8(y; * @) and €(y2 * Q)
are commuting disjoint transpositions.

Definition 3. We will say that two pairs (F1,61) and (Fy,0) (where F;
are braid factorizations and 6; are geometric monodromy representations)
are m-equivalent if there exists a sequence of operations which turn one into
the other, each operation being either a global conjugation, a Hurwitz move,
or a pair cancellation or creation.

We will prove in Section 3 that the coverings obtained in Theorem 1 are
unique up to isotopies of quasiholomorphic coverings. This allows us to
define new invariants of symplectic manifolds in Section 4. As a result we
get:

Theorem 2. FEvery compact symplectic 4-manifold with %[w] integral is
uniquely characterized by the sequence of cuspidal negative braid factoriza-
tions and geometric monodromy representations corresponding to the quasi-
holomorphic coverings of CP? canonically obtained for k > 0, up to m-
equivalence.

If H?(X,Z) contains torsion, one must either specify a choice of the line
bundle L or consider the braid monodromy invariants obtained for all possi-
ble choices of L. For general compact symplectic 4-manifolds, a perturbation
of w is required in order to satisfy the integrality condition, so one only ob-
tains a classification up to symplectic deformation (pseudo-isotopy).
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Theorem 2 transforms the classification of symplectic four-manifolds into
a purely algebraic problem (which is probably quite difficult), namely show-
ing that two words in the braid group (and the accompanying geometric
monodromy representations) are m-equivalent.

Remark 1. A different way to state Theorem 2 is to say that 4-dimensional
symplectic manifolds are classified up to symplectic deformation (or up to
isotopy if one adds the integrality constraint on %[w]) by the sequence of
braid factorizations and geometric monodromy representations obtained for
k > 0 up to m-equivalence.

The presence of negative nodes in the branch curves given by Theorem 1
seems to be mostly due to the technique of proof. It seems plausible that
these negative nodes can be removed for large k, which gives the following
conjecture :

Conjecture 1. Every compact symplectic 4-manifold with %[w] integral is
uniquely characterized by a sequence of cuspidal braid factorizations and geo-
metric monodromy representations corresponding to quasiholomorphic cov-
erings of CP? canonically obtained for k > 0, up to Hurwitz and conjugation
equivalence.

This conjecture would make easier the algebraic problem raised by The-
orem 2.

Conversely, given a cuspidal negative braid factorization and a geometric
monodromy representation one can reconstruct a quasiholomorphic curve
and a quasiholomorphic covering. A similar result has also been obtained
by F. Catanese ; see also the remark in [17], p. 157, for a statement similar
to the first part of this result.

Theorem 3. 1) To every cuspidal negative factorization of Ag corresponds
a quasiholomorphic curve, canonical up to smooth isotopy.

2) Let D be a quasiholomorphic curve of degree d and let 6 : Fy — S,
be a geometric monodromy representation. Then there erists a symplectic
4-manifold X which covers CP? and ramifies at D. Moreover the symplectic
structure on X is canonical up to symplectomorphism, and depends only on
the smooth isotopy class of the curve D.

We will also show in §4 that, when (X, w) is a symplectic 4-manifold and
D is the branch curve of a quasiholomorphic covering X — CP? given by
three sections of L* as in Theorem 1, the symplectic structure w’ on X given
by assertion 2) of Theorem 3 coincides with kw up to symplectomorphism :
therefore the construction of Theorem 3 is the exact converse of that of
Theorem 2.

We also show (in Section 5) that quasiholomorphic coverings and sym-
plectic Lefschetz pencils are quite closely connected :

Theorem 4. The quasiholomorphic coverings of CP? given by three asymp-
totically holomorphic sections of L* as in Theorem 1 determine symplectic
Lefschetz pencils in a canonical way.
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Remark 2. This gives a different proof of Donaldson’s theorem of existence
of Lefschetz pencil structures on any symplectic 4-manifold with %[w] in-
tegral [8]. Since the Lefschetz pencils we obtain are actually given by two
asymptotically holomorphic sections of L¥, they are clearly identical to the
ones constructed by Donaldson (up to isotopy).

In Section 5 we will also provide a more topological version of this result,
and describe how the monodromy of the Lefschetz pencil can be derived
quite easily from that of the branched covering.

Acknowledgments: We are very grateful to F. Bogomolov, M. Gromov
and R. Stern for their constant attention to this work. Special thanks to
S. Donaldson — without his suggestions this work could not be finished.
We were also informed that S. Donaldson and I. Smith have a different
approach to some of the above-discussed problems. We would like to thank
V. Kulikov and M. Teicher for many discussions and for sharing with us
their preprint [15]. We also thank F. Catanese for sharing with us ideas
about Theorem 3. Finally, we thank the referee for the careful reading and
numerous suggestions improving the exposition.

2. COMPATIBILITY OF BRANCH CURVES WITH A PROJECTION TO CP!

We first prove a couple of technical propositions that allow us to extend
the results from [3] and prove Theorem 1.

Recall that the main results of [3] are obtained by constructing, for large
enough k, sections s; = (32,3,16,3%) of the vector bundles C* @ L¥ over X
which are asymptotically holomorphic, «-generic for some v > 0, and satisfy
a O-tameness condition. One then shows that these properties imply that
the corresponding projective maps fr = (52 : s,lc : s%) : X — CP? are ap-
proximately holomorphic branched coverings. For the sake of completeness
we briefly recall the definitions (see [3] for more details) :

Definition 4. Let (si)x>0 be a sequence of sections of C® ® L* over X.
The sections sy are said to be asymptotically holomorphic if they are uni-
formly bounded in all CP norms by constants independent of k and if their
antiholomorphic derivatives ds, = (Vi)Y are bounded in all CP norms
by O(k~1/2). In these estimates the norms of the derivatives have to be
evaluated using the rescaled metrics g, = kg on X.

Definition 5. Let s; be a section of a complex vector bundle Ey, and let
v > 0 be a constant. The section sp is said to be ~y-transverse to 0 if,
at any point x € X where |sg(x)| < 7, the covariant derivative Vsy(z) :
T X — (Ey)y is surjective and has a right inverse of norm less than vy~ !
w.r.t. the metric gi.

We will often omit the transversality estimate v when considering a se-
quence of sections (sx)gs0 : in that case the existence of a uniform transver-
sality estimate which does not depend on £k will be implied.

Definition 6. Let s; be nowhere vanishing asymptotically holomorphic sec-
tions of C3 ® L¥, and fir a constant v > 0. Define the projective maps
fr = Psy, from X to CP? as fr(z) = (s)(z) : sk(z) : s2(z)). Define the
(2,0)-Jacobian Jac(fr) = det(0fk), and let R(sg) be the set of points of X
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where Jac(fy) vanishes, i.e. where Ofy is not surjective. We say that sy has
the transversality property Ps(7y) if |sk| > v and |0fklg, > v at every point
of X, and if Jac(fy) is y-transverse to 0.

Assume that sy satisfies Ps(y) : if k is large enough this implies that
R(sg) is a smooth symplectic submanifold in X. At a point of R(sy), Ofx has
complex rank one, so we can consider the quantity T (sg) = Ofx A dJac(fr)
as a section of a line bundle over R(sy).

We say that sy, is y-generic if it satisfies P3(y) and if T (s) is y-transverse
to 0 over R(sy). We then define the set of cusp points C(sy) as the set of
points of R(sg) where T (s;) = 0.

Definition 7. Let s be y-generic asymptotically J-holomorphic sections of
C3 ® L*. We say that the sections sy, are O-tame if there exist w-compatible
almost complex structures Jy, such that |J, — J| = O(k~Y2), Jy coincides
with J away from the cusp points, and Jy, is integrable over a small neigh-
borhood of C(sy), with the following properties :

(1) the map fr = Psy is Jy.-holomorphic over a small neighborhood of
C(Sk) ; _

(2) at every point of R(sy), the antiholomorphic derivative O(Psy) van-
ishes over the kernel of O(Ps).

Note that y-genericity is an open condition, and therefore stable under
small perturbations (up to decreasing 7). The existence of y-generic sec-
tions of C® ® L* follows from Propositions 1, 4, 5 and 7 of [3] ; O-tameness
is then enforced by a small perturbation (O(k~'/2)), the aim of which is to
cancel the antiholomorphic derivatives of the projective map fr = Ps at
the points of the branch curve R(s;) C X and at the cusp points C(s) C X.
This process yields asymptotically holomorphic sections of C? ® L*¥ which si-
multaneously have genericity and O-tameness properties, and therefore gives
rise to branched coverings.

For the enhanced result we wish to obtain here, the beginning of the
proof is the same : one first constructs asymptotically holomorphic sections
which are 7-generic exactly as in [3]. However, we need to add an extra
transversality requirement, in order to prepare the ground for obtaining the
properties 1, 2 and 3 of a quasiholomorphic covering (see Introduction).

Proposition 1. Let (sg)r>0 be asymptotically holomorphic sections of C2®
L¥, and fiz a constant € > 0. Then there exists a constant n > 0 such that,
for all large enough values of k, there exist asymptotically holomorphic sec-
tions oy, of C* @ LF such that |0y, — s|cs 4, < € and that the sections (09,0} )
of C2 ® L* are n-transverse to 0 over X. Moreover, the same statement
holds for families of sections indezed by a parameter t € [0,1].

This is precisely a restatement of the main result of [2], applied to the case
of the asymptotically holomorphic sections (32, s,lc) of C> ® L*. The bound
by € is stated here in C® norm rather than C' norm, but as explained in [3]
this is not relevant since such bounds automatically hold in all CP norms
(see the statement of Lemma 2 in [3] : because the uniform decay properties

of the sections 52‘32 hold in C? norm, the size of the perturbation is controlled

in C3 norm as well). O



10 DENIS AUROUX AND LUDMIL KATZARKOV

By choosing € much smaller than v and applying this result to y-generic
sections, one can therefore add the extra requirement that, decreasing «y if
necessary, the sections (s, s}) are y-transverse to 0 for large enough k. This
transversality result means that, wherever 32 and s,lC are both smaller in norm
than ¥, the differential of (s), s}) is surjective and larger than . Moreover,
by the definition of y-genericity the section s; remains everywhere larger in
norm than 7, so at such points one has |s?| > %. It is then easy to check
that, because the derivatives of si are uniformly bounded, there exists of a
constant 4 € (0, %), independent of k, such that, at any point of X where sg
and s,lc are smaller than 4, the map fr = Ps; is a local diffeomorphism. As a
consequence, the points where 32 and s,lc are smaller than 4 cannot belong to
the set of branch points R(s) ; therefore, because |s%| is uniformly bounded
over X, there exists a constant 4 > 0 such that D(s;) = fx(R(sx)) remains
at distance more than 4 from (0:0:1). By requiring all perturbations in
the following steps of the proof to be sufficiently small (in comparison with
%), one can ensure that such a condition continues to hold in all the rest of
the proof ; this already gives the required property 1, and more importantly
makes it possible to obtain another transversality condition which is vital
to obtain properties 2 and 3.

At all points where 32 and s,lc do not vanish simultaneously, including
(by the above argument) a neighborhood of R(sy), define ¢ = (s? : s})
(¢r is a function with values in CP'). What we wish to require is that
the restriction to TR(sy) of O¢y be transverse to 0 over R(sy), with some
uniform estimates ; alternately this can be expressed in the following terms :

Definition 8. A section s, € T'(C? ® LF) is said to be y-transverse to the
projection if the quantity K(sg) = O¢r A dJac(fi) is y-tranverse to 0 over
R(sg) (as a section of a line bundle).

Another equivalent criterion (up to a change in the constants), by Lemma
6 of [3], is the y-transversality to 0 of the quantity Jac(fx) @& K(sx) (as a
section of a rank 2 bundle) over a neighborhood of R(sg) ; this allows us
to use the globalization principle described in Proposition 3 of [3] in order
to obtain the required property by applying successive local perturbations
(note that the property we have just defined is local and C3-open in the
terminology of [3]). The argument below is very close to that in §3.2 of [3],
except that the property first needs to be established by hand near the cusp
points before the machinery of [3] can be applied to obtain transversality
everywhere else.

Proposition 2. Let § and y be two constants such that 0 < 0 < %, and
let (si)ks0 be asymptotically holomorphic sections of C* ® LF which are
v-generic and such that (32,3,19) s y-transverse to 0. Then there exists a
constant n > 0 such that, for all large enough values of k, there exist asymp-
totically holomorphic sections oy of C* ® L¥ such that |oy, —5k|cs g, <0 and
that the sections oy are y-transverse to the projection. Moreover, the same

statement holds for families of sections indezed by a parameter t € [0,1].
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Proof. Step 1. We first define, near a point £ € X which lies in a small
neighborhood of R(sg), an equivalent expression for K(sg) in local coordi-
nates. First, composing with a rotation in C? (constant over X, and acting
on the first two components s{ and s;), we can assume that sj.(z) = 0 and
therefore |s) ()| > 4 for some constant 4 > 0 independent of k (because of
the transversality to 0 of (s?,s;)). Consequently s{ remains bounded away
from 0 over a ball of fixed radius around z. It follows that over this small
ball we can consider, rather than fi, the map

sk s
hi(y) = (h,lc(y),h%(y)) - (sIéEZ;’ Sggz;)

In this setup, Jac(f;) can be replaced by Jac(hg) = 6hj, A Oh3, and ¢ can
be replaced by s}c / 32 = h,lc. Therefore, set

K(sg) = Oh} A dJac(hy,).

The same argument as in §3.2 of [3] proves that the transversality to 0 of
K(sk) over a small ball By, (z,r) N R(sg) is equivalent, up to a change in
constants, to that of K(si) : the key remark is that the ratio between Jac(f%)
and Jac(hy) is the jacobian of the map ¢ : (21,22) + [1: 21 : 23] from C? to
CP? (which is a quasi-isometry over a neighborhood of hy(z)), and therefore
has bounded derivatives and remains bounded both from below and above
over a neighborhood of z ; and similarly for the ratio between d¢; and ah}c,
which is the jacobian of the locally quasi-isometric map ¢/ : z; — [1 : 2]
from C to CP*.

Therefore, in order to be able to apply Proposition 3 of [3] to obtain the
desired result, we only need to show that there exist constants p, ¢ and
¢ > 0 such that, if k is large enough and if By, (z,c) N R(sx) # 0, then by
adding to s, a perturbation smaller than § and with gaussian decay away
from z it is possible to ensure the n-transversality to 0 of I@(sk)‘ R(sy) OVer
By, (z,¢) N R(sk), where n = ¢'6(log 6—1)~P.

Step 2. In this step we wish to obtain transversality to 0 of I@(sk)| R(sk)
over a neighborhood of the set of cusp points C(sg). For this, recall that, by
the assumption of -y-genericity, the quantity 7 (sx) = 0fx A dJac(fy), which
by definition vanishes at the cusp points, is y-transverse to 0 over R(sy). It
follows that at any cusp point z € C(sg), using the notations of Step 1, at
least one of the two quantities Ohj. A 8Jac(hg) and 8h% A dJac(hy), which
both vanish at x, has a derivative along R(s) larger than some constant
7" (independent of k). So there are two cases : the first possibility is that
K(sg) = Oh; N8Jac(hy) has a derivative at = along R(sy) bounded away from
zero by 4/. In that case, i.e. when the derivative dOhy(z) has a sufficiently
large first component, or equivalently when the limit tangent space to D(sy)
at the cusp point lies sufficiently away from the direction of the fibers of ,
no perturbation of s; is necessary to achieve the required property over a
small neighborhood of z. Note by the way that this geometric criterion is
consistent with the observation that the transversality to 0 of I@(sk)| R(sy,) at
the cusp points precisely corresponds to the required property 3, i.e. the
cusps not being tangent to the fibers of the projection to CP*.
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The second case corresponds to the situation where the cusp of D(sy) at
fr(z) is nearly tangent to the fiber of w. In that case, a perturbation of sy
is necessary in order to move the direction of the cusp away from the fiber
and achieve the required transversality property. The norm of Bh}c(a:) can
be assumed to be as small as needed (smaller than any given fixed constant
independent of k, since if it were larger the cusp at  would actually satisfy
the first alternative for a suitable choice of 7' and no perturbation would
be necessary). The transversality properties of s; then imply that 6h2(z)
is bounded away from 0 by a fixed constant, and so does the restriction to
R(sg) of 8(0hZ A 8Jac(hy))(z).

Consider local approximately holomorphic Darboux coordinates (z, z2)
on a neighborhood of z as given by Lemma 3 of [3], and let sfc";fc be an

approximately holomorphic section of L* with gaussian decay away from z
as given by Lemma 2 of [3]. Let A be the polynomial function of degree 3 in
z,i, z,% and their complex conjugates obtained by keeping the degree 1, 2 and

3 terms of the Taylor series expansion of hz 52 / sfcefv at x : A vanishes at z, and

the function A = /\s};‘:gfv/sg has the property that OX = dh3 + O(|2|?), where
|z| is a notation for the norm of (z},z2) or equivalently up to a constant
factor the gi-distance to z. Moreover the asymptotic holomorphicity of s
implies that the antiholomorphic terms in \ are bounded by O(k~'/2), which

makes )\sfcei an admissible perturbation as its antiholomorphic derivatives

are bounded by O(k_l/ 2). We now study the effect of replacing s by s +
w(@, where w € C is a small coefficient and @ = (0, )\sf:fv, 0).

We first look at how this perturbation of sy affects R(si) and the cusp
point z. Adding wQ to s amounts to adding (wdA,0) to (Ohy,0h2), and
therefore adding wA to Jac(hy), where A = X A Oh? = O(|z[®). It follows
in particular that z still belongs to R(sx+w@), and even the tangent spaces
to R(sg +wQ) and R(sg) coincide at z. Since for small w the submanifold
R(sk+wQ@) is a small deformation of R(s), it can locally be seen as a section
of TX over R(si). Recall that Jac(hy) is v'-transverse to 0 over a ball of fixed
gr-radius around z for some 7' > 0 independent of k : therefore, restricting
to a smaller ball (whose size remains independent of k¥ and z) if necessary, the
derivative VJac(hy) admits everywhere a right inverse p : A20T*X — TX.
It is then easy to see that R(sy + w@) is obtained by shifting R(sy) by an
amount equal to —p(wA)+O(jwA[2). It follows that the value of K (s +wQ)
at a point of R(sy+wQ) differs from the value of K(sy) at the corresponding
point of R(sy) by an amount

O(w) = w A A Jac(hy) +w OhL A OA — V(K (s)).plwA) + O(w?|z|?).
Recall that X — 0h? = O(|z|?), A = O(|z[?) and A = O(|z|?) : therefore
O(w) = w ok} A dJac(hi) + O(|z]?).

Recall that the restriction to T, R(sk) of (0h2 A 8Jac(hy))(z) is bounded
away from 0 by a fixed constant : therefore, a suitable choice of the complex
number w ensures both that the perturbation w@ added to s is much
smaller than ¢ in C? norm, and that the derivative

A~

(K (s + wQ)) TR(sp+w@) (7) = O(K(sk) rR(ss) (%) + O(O(W)) TR(s1) ()
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has norm bounded from below by a certain constant independently of k.

Because of the uniform bounds on all derivatives of si, the quantity
(K (s + WQ))|TR(s,+w@) Temains bounded from below over the intersec-
tion of R(sy + w@Q) with a ball of fixed gi-radius centered at z. It follows
that the restriction of K(sx + wQ) to R(sx + w@) is transverse to 0 over a
neighborhood of z. Checking more carefully the dependence of the estimates
on the size of the maximum allowable perturbation J, one gets that there
exist constants ¢ and ¢ € (0,1) (independent of z, k and ¢) such that a
perturbation of s smaller than § in C® norm and with gaussian decay away
from x can be used to achieve the cd-transversality to 0 of K(sk) r(s,) over
the ball By, (z,cd).

This result is quite different from what is required to apply Proposition
3 of [3] (in particular the size of the ball on which transversality is achieved
is not independent of §) ; however a similar globalization argument can be
applied, as we wish to cover only a neighborhood of the set of cusp points
rather than all of X. As in the usual argument, the key observation is
the existence of a constant D > 0 (independent of k£ and §) such that, if
two cusp points z and z’' are mutually gg-distant of more than D, then
the perturbation applied at £ becomes much smaller than %cé in C? norm
over a neighborhood of z’ (this is because the perturbations we use have
uniform gaussian decay properties). Therefore, as the required transversality
property is local and C3-open, it is possible to simultaneously add to sj the
perturbations corresponding to several cusp points x; which lie sufficiently
far apart from each other, without any risk of interference between the
perturbations : denoting by oy the perturbed section, %cé—transversality to
0 holds for K(oy) r(s,) Over the union of all balls By, (z;,c'd).

Moreover the perturbation applied at z; preserves the property of z; being
a cusp point, so the positions of the cusp points are only affected by the
perturbations coming from the other points : therefore, because of the ~-
genericity properties of s, the cusp point z; of the perturbed section oy,
which corresponds to the cusp point z; of the original section s lies at gg-
distance from z; bounded by a fixed multiple of ¢d. In particular, decreasing
the value of ¢ if necessary to make it much smaller than ¢’ (and increasing
D consequently) one may assume that the cusp points z; are moved by less
than 1¢'6, so that }cé-transversality to 0 holds for K (0%)|r(oy) OVer the union
of all balls By, (z}, £¢6).

Now notice that, because the sections s; are <y-generic, there exists a
constant > 0 independent of k such that any two points of C(sg) are
mutually gg-distant of more than r (cusps are isolated). It follows that
there exists an integer N independent of k£ such that the set of cusps can be
partitioned into at most N finite subsets C;(si), 1 < j < N, such that any
two points in a given subset are mutually distant of more than D+2. We can
then proceed by induction : in the first step one starts from s; o = s and
perturbs it by less than %(5 over a neighborhood of C; (s,9) in order to achieve
Tcb-transversality to 0 of K(sk,1)|R(sy,.,) (Where 1 is the perturbed section)
over the 1¢/6-neighborhood of Ci(sk,1) (where the partition of C(syp) in N
subsets is implicitly transferred to C(sg,1))-
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In the (j + 1)-th step one starts from the section sj ; constructed at
the previous step, which satisfies the property that ’C(Sk,j)|R(sk,j) is (%C)jé—
transverse to 0 over the ¢’ (c)7~1d-neighborhood of Ui<; Ci(sk,5)- A pertur-
bation smaller than $(%c)7d at the points of C;1(sk,;) can be used to obtain
a section sy j1 such that K(sk,j+1)|R(sk,j+1) is (ic)ﬁ"'ld-transverse to 0 over
the 1¢'(fc)?6-neighborhood of Cji1(sk,j+1). Moreover, since the perturba-
tion was chosen small enough and by the assumption on sy ;, this transver-
sality property also holds over the +c'(3c)?~!é-neighborhood of Ui<; Ci(Sk,5)-
Since the cusp points of s ;1 differ from those of s; ; by a distance of at
most a fixed multiple of (7c)7d, which is much less than }c'(3c)?~16 by
an assumption made on ¢ and ¢ (¢ < ¢, see above), the 1¢/(1c)/d-neigh-
borhood of |J;; Ci(sk,j+1) is contained in the 1 (3¢)?~1§-neighborhood of
Ui<; Ci(sk,j)- Therefore sy i1 satisfies the hypotheses needed for the fol-
lowing step of the inductive process, and the construction can be carried out
until all cusp points have been taken care of.

The only point which one has to check carefully is that the points of
Cj+1(sk,;) are indeed mutually distant of more than D (otherwise one can-
not proceed as claimed above). However s ; differs from s; o by at most
di<i $(%c)'6, which is less than § since ¢ < 1. Therefore the cusp points of
sy,; differ from those of sy ¢ by a g-distance which is at most a fixed multi-
ple of 4, i.e. less than 1 if one takes ¢ sufficiently small in the statement of
Proposition 2 (decreasing the size of the maximum allowable perturbation
is obviously not a restriction). It follows immediately that, since the points
of Cjt1(sk,0) are mutually distant of at least D + 2, those of C;1(sk, ;) are
mutually distant of at least D, and the inductive argument given above is
indeed valid.

This ends Step 2, as we have shown that a perturbation of s; smaller
than ¢ can be used to ensure the 7)-transversality to 0 of K(sk)|g(s,) over the

¢"-neighborhood of C(si), where n = (1¢)V§ and ¢’ = 1/ (3¢)V~L4.

Step 3. In this step we wish to obtain the transversality to 0 of K(s) |R(sk)
everywhere. As observed at the end of Step 1, we only need to show that
there exist constants p, ¢ and ¢’ > 0 independent of ¢ such that, for large
enough k, given any point z € X, if By, (z,c) N R(s;) # 0 then by adding
to si a perturbation smaller than § and with gaussian decay away from z it
is possible to ensure the 7-transversality to 0 of I@(sk)| R(sy,) over By, (z,¢) N
R(sy), where n = ¢/§(logé~')™P. By the result of Step 2, and restricting
oneself to a choice of ¢ smaller than half the constant ¢’ introduced in Step
2, one actually needs to obtain this result only in the case where z lies at
distance more than ¢” from C(sy).

Recall that the y-genericity of s; and the assumption that = lies away
from the cusp points imply that the quantity 7 (si) = 9fx A dJac(f), which
is y-transverse to 0, is bounded away from 0 at x. With the notations of
Step 1, it follows that at least one of the two quantities (9h,1C A 0Jac(hy) and
Oh? A 8Jac(hy) has norm bounded from below by a fixed constant « at z
(depending only on v and the uniform bounds on si). Therefore, two cases

can occur : the first possibility is that I@(sk) = Ohj. A 8Jac(hg) has norm
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more than « at z, and therefore remains larger than § over a ball of fixed
radius around z as its derivatives are uniformly bounded. In that case, one
gets §-transversality to 0 over a ball of fixed gy-radius around z without
any perturbation.

The other case, which is the one where we need to perturb s; to obtain
transversality, is the one where 0h}, A dJac(hy) is small (i.e. D(s) is nearly
tangent at fx(z) to the fiber of ). In that case, however, the quantity
X (sk) = 0hi A 8Jac(hi) is bounded from below by § over a neighborhood
of z.

As in Step 2, consider local approximately holomorphic Darboux coor-
dinates (2;,22) on a neighborhood of = as given by Lemma 3 of [3], and
let 32‘32 be an approximately holomorphic section of L* with gaussian decay
away from z as given by Lemma 2 of [3]. Let A be the polynomial func-
tion of degree 3 in z,%, z,% and their complex conjugates obtained by keeping
the degree 1, 2 and 3 terms of the Taylor series expansion of hi 32 / sz‘jfc

at z : X vanishes at z, and the function \ = )\sﬁfc/ 32 has the property

that O\ = Oh% + O(|z|), where |z| is a notation for the norm of (z},z2)
or equivalently up to a constant factor the gi-distance to x. Moreover the
asymptotic holomorphicity of s; implies that the antiholomorphic terms in
X are bounded by O(k~'/?), which makes )\sfc‘fﬂ an admissible perturbation

as its antiholomorphic derivatives are bounded by O(k~1/2). We now study
the effect of replacing s by s +w@, where w € C is a small coefficient and
Q= (0, Asf:ga 0).

As in Step 2, one computes that R(sx + w@) is obtained by shifting
R(s;) by an amount equal to —p(wA) + O(|wA|?), where p is a right inverse
of VJac(hg) and A = 9X A Oh? = O(|z|®). Tt follows that the value of

K(sk +wQ) at a point of R(s; +wQ) differs from the value of K(s;) at the
corresponding point of R(sy) by an amount

O(w) = w X A dJac(hy) +w Ot A A — V(K(s))-p(wA) + O(w?|z[?).

As V(IAC(sk)) and p are approximately holomorphic, one has ©(w) = wO" +
O(|w|?) + O(k~'/?), where

0% = 9\ A dJac(hy) + Ohi A DA — V(K (s1)).p(A).
Recalling that OX — 9h7 = O(|2]?), A = O(|2|*) and OA = O(|z|?), one gets
0% = 9h2 A dJac(hy) + O(|2)?) = X(sk) + O(|z%).

In particular, it follows from the initial assumption |X (s;)(z)| > « that ©°
remains larger than § over a ball of fixed radius centered at .

We now proceed as in Section 3.2 of [3] : first use Lemma 7 of [3] to
find an approximately holomorphic map 6y : D™ — R(sg) (where DT is the
disk of radius % in C), satisfying the estimates given in the statement of

the lemma, whose image is contained in a neighborhood of z over which 6°

remains larger than §, and such that the image of the unit disk D contains
R(sg)NBy, (z,r") for some fixed constant 7’ > 0. Define over D the complex

valued function
k) (0k(2))

_ Ko
= o)
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Because O° is bounded from below over ;(D1), the function v satisfies
the hypotheses of Proposition 6 of [3] (or equivalently Proposition 3 of [2])
provided that k is sufficiently large. Therefore, if Cy is a constant larger
than |Q|cs g, , and if k is large enough, there exists w € C, with |w| < Cio’
such that vy + w is e-transverse to 0 over the unit disk D in C, where
e = & log((&)™H)™.

Multiplying again by ©° and recalling that 6;(D) D R(sg) N By, (z,7'),
we get that the restriction to R(sy) of K(sy) +wO? is ¢-transverse to 0 over
R(sg) N By, (z,r"), for some €’ differing from e by at most a constant factor.
Recall that ©(w) = wO° 4+ O(|w|?) + O(k~'/?), and note that |w|? is at most
of the order of §2 while € is of the order of §log(6=1)~? : so, if § is small
enough and k is large enough, K(si) + ©(w) differs from K(s;) + wO° by
less than %’ and is therefore €%-transverse to 0 over R(s;) N By, (z,r").

The perturbation w@ is smaller than ¢, and therefore moves R(sy) by at
most O(d). So, if § is chosen small enough, one can safely assume that the
points of R(sy) are shifted by a distance less than ’2—’, and therefore that the
point of R(sy) corresponding to any given point in R(sy + wQ) N By, (z, ’2—’)
lies in By, (z,r'). It then follows immediately from the definition of ©(w)
that K(s;+ wQ) R(sy+w@) 18 €”-transverse to 0 over R(sy+wQ)N By, (z, %)
for some €” > 0 differing from ¢ by at most a constant factor.

This is precisely what we set out to prove, and it is then easy to combine
Lemma 6 and Proposition 3 of [3] in order to show that the local pertur-
bations of s; which give transversality near a given point x can be fitted
together to obtain a transversality result over all X. The proof of Proposi-
tion 2 in the case of isolated sections is therefore complete.

Step 4. We now consider the case of one-parameter families of sections,
where the argument still works similarly : we are now given sections sy
depending continuously on a parameter ¢ € [0,1], and try to perform the
same construction as above for each value of ¢, in such a way that everything
depends continuously on .

The argument of Step 1 carries over to the case of 1-parameter families
without any change ; however one has to be very careful when carrying out
the argument of Step 2. As explained in Section 4.1 of [3], the transversality
properties of s, imply that the cusp points (i.e. the points of Cj,(s¢))
depend continuously on ¢ and that their number remains constant (actually,
the gi-distance between two cusp points remains uniformly bounded from
below independently of £ and ¢). Without loss of generality, we can assume
the maximum allowable perturbation size § to be much smaller than the
constant ' introduced in Step 2 (minimum size of the derivative at z; along
R(st,) of Ohy AOJac(hy) as given by the transversality estimates on T (sy)).
Moreover, let us assume for now that when ¢ varies over [0, 1], the cusp points
move by no more than the unit distance in gy norm (i.e. two cusp points
which are far from each other at ¢ = 0 retain this property for all ¢ € [0, 1]).

Let (zt);e[0,1) be a continuous path of points of Cj,(sy ), and let Q2 be the
set of all ¢ such that the derivative at z; of K(s;y) along R(s;) is smaller
than 7/ (i.e. all ¢ such that a perturbation is necessary in order to ensure
the required transversality property). For ¢ € Q, the same construction as
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in Step 2 still works, since the technical results from [3] are also valid in
the case of 1-parameter families : therefore one can define, for all ¢ € €,
approximately J;-holomorphic sections @Q; of C? ® L* and complex numbers
w smaller than ¢, which depend continuously on %, in such a way that
stk + wQ)y satisfies the desired transversality property on a neighborhood
of z;. We need to define a valid perturbation for all ¢ € [0, 1] rather than
only for ¢t € Q : for this, define 8 : [0,7'] — [0,1] to be a smooth cut-off
function which equals 1 over [0, 37'] and vanishes over [2+/,7'], and set v(t)

to be the norm of Vle(st,k)‘R(st’k)(xt). Set

Ttk = Bv(t)) weQy

for t € Q and 7, = 0 for t ¢ Q : this section of C* ® LF is approximately
holomorphic for all ¢ (as the multiplicative coefficient is just a constant
number for any given t), and depends continuously on ¢ by construction.
When v(t) is less than %’y' , the perturbation 7;j coincides with w;Q;, so
adding it to s;; does indeed provide the expected transversality properties.
For all other values of ¢, the bound |V}AC(st,k)‘R(st,k)(:vt)| > 27 implies that
st already satisfies the required transversality property over a neighborhood
of z; : so it follows from the fact that the required property is C3-open that,
if § is sufficiently small compared to 7', then the transversality property still
holds (with a slightly decreased transversality estimate) for the perturbed
section s; + ;. Therefore, we have established the transversality to 0 of

~

K(stk + k) | R(s, p+7..) OVer a neighborhood of z; for all ¢ € [0, 1].

Recall that we have made the assumption that when ¢ varies over [0, 1],
the cusp points move by no more than the unit distance in gy norm : this
is necessary in order to apply the globalization process described in Step 2.
Indeed, this ensures that, if one partitions C(sq ) into a fixed number N of
subsets Ci(sox) whose points are mutually distant of at least D + 4, then
for all ¢ € [0,1] the corresponding partition of C(s; ) into subsets C;(s; )
(1 <4 < N) still has the property that any two points of C;(s. ) are distant
of at least D + 2. Therefore, the globalization argument of Step 2 can be
applied for all ¢ € [0,1] : as previously, successive perturbations make it
possible to ensure the expected transversality property for all ¢ € [0, 1] first
near the points of the first subset, then near the points of the second subset,
and so on until after N steps all the cusp points have been handled.

We now consider the general case, where the variations of the cusp points
with ¢ are no longer bounded. In that case, a simple compactness argument
allows one to find a sequence of numbers 0 = ¢35 < t1 < ... < tor 1 <
tor = 1 such that, over each interval [t;,?;+1], the cusp points move by
a gg-distance no greater than % (the length 2T of the sequence cannot be
controlled a priori). Over each of the intervals [t;,¢;11] the previous ar-
gument can be applied. In particular, in a first step we can find, for all
t € Ty = ;< g[t2i, tai41], sections 7 of C3® @ L*, smaller than g, depending
continuously on ¢, and such that KC(s;x + Ttyk)|R(5t,lc+7't,k) is p-transverse to 0
over a neighborhood of the cusp points for all £ € 77 and for some constant
1 > 0 independent of k. It is then clearly possible to define asymptotically
holomorphic sections 75 of C* ® LF for t ¢ Ty in such a way that the sec-
tions 7,4, are for all ¢ € [0,1] smaller than % and depend continuously on ¢
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(e.g. by using cut-off functions away from T7). Let st g = Stk + Te @ these
sections depend continuously on ¢, and K(sé,k)| R(s) ;) is n-transverse to 0
over a neighborhood of the cusp points for all ¢ € T7.

Because the cusp points of sé,k differ from those of s, 5 by O(9), it can
be ensured (decreasing ¢ if necessary) that the cusp points of si,k move by
a gi-distance no greater than 1 over each interval [to;y1,%2;42]. Therefore
the above procedure can be applied again : one can find, for all ¢t € Th =
Ui<r[t2i+1, t2i42], sections 7/, of C3 ® L*, much smaller than 7, depending
continuously on ¢, and such that K(s ; + 7, ) r(s, (+71 ) 18 transverse to 0
over a neighborhood of the cusp points for all ¢ € Tp. As previously, one
can define asymptotically holomorphic sections 7'{, i of C3Q Lk for all t ¢ T,
in such a way that the sections 7, , are for all ¢ € [0 1] much smaller than 7
and depend continuously on ¢. Let St = 3t y Tt i - these sections depend
continuously on ¢, and K(s} ) r(s 54 is transverse to 0 over a neighborhood
of the cusp points not only for all ¢ € T5 by construction, but also for all
t € T1 because they differ from St by less than n and transversality to 0 is
an open property. This ends the proof that the construction of Step 2 can
be carried out in the case of one-parameter families of sections.

We now consider the construction of Step 3, in order to complete the
proof of Proposition 2 for one-parameter families of sections. The argument
is then similar to the one at the end of Section 3.2 of [3]. We have to show
that, near any point x € X, one can perturb s;; to ensure that, for all ¢
such that z lies in a neighborhood of R(stk), K(stk) rs,,) is transverse to
0 over the intersection of R(s: ) with a ball centered at x : Proposition 3 of
[3] also applies to one-parameter families of sections and is then sufficient to
conclude. As observed at the beginning of Step 3, because we already know
how to ensure the required transversality property over a neighborhood of
the cusp points, it is sufficient to restrict oneself to those values of ¢ such
that z lies away from C(s; ). Even more, one only needs to handle the case
where the quantity I@(st,k) is small at z (because, as explained in Step 3,
the transversality property otherwise holds near z without perturbing s; ).

When all these conditions hold, the argument of Step 3 can be used
to provide the required transversality property over a neighborhood of z
for all suitable values of ¢, because all the technical results involved in the
construction, namely Lemma 2, Lemma 3, Lemma 7 and Proposition 6 of [3],
also apply to the case of one-parameter families of sections. More precisely,
there exist constants ¢, ¢, ¢”, @ and o/ > 0 with the following properties : let
Q C [0,1] be the set of all ¢ such that By, (z,2c) N R(s¢x) # 0, By, (z,2")N
C(six) = 0 and |K(sex)(7)| < 2a. Let Q C [0,1] be the set of all ¢ such that
either By, (z,c) N R(syx) = 0, By, (@, ") NCsex) # 0 or |[K(ser)(z)| > e
Then for all ¢ € ) the restriction to R(s;x) of K(syx) is o/-transverse to 0
over By, (z,c) N R(syy) (this comes from trivial remarks and from having
already obtained the transversality property near the cusp points) ; and,
provided that k is large enough, one can by the argument of Step 3 construct,
for all ¢ € Q, sections Q; of C? ® L* and complex numbers w; smaller than
d, depending continuously on ¢, and such that K(sx +wiQ)|r(s, , +wi@:) 18
n-transverse to 0 over By, (z,c) N R(sty + wiQt), where n = /6(log 6—1)P
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It is clear that Q and € cover [0,1]. Let 8 : [0,1] — [0,1] be a continuous
function which equals 1 outside of Q and vanishes outside of Q (such a
B can e.g. be constructed using cut-off functions and distance functions),
and let 7, be the sections of C3 @ L* defined by Ter = B(t)wiQy for all
t€Q,and 7y, = 0 for all £ ¢ 2. Then it is easy to check that the sections
Stk + Tt k, which depend continuously on ¢ and differ from s; ; by at most 6,
satisfy the required transversality property over By, (z, %c) for all ¢ € [0, 1].
Indeed, for t € Q, one notices that Stk + T 1 differs from s;; by at most
6, and therefore the o'-transversality to 0 of K(stk)|r(s, ;) over Bg,(z,c¢) N
R(st) implies the %a'—transversality to 0 of K(stp + Ttvk)|R(5t,k+Tt,k) over
By, (z, )N R(sy;+T,k), provided that ¢ is sufficiently small compared to o/
(decreasing § if necessary is clearly not a problem). Meanwhile, for ¢ ¢ €,
one has 7y, = wiQy, so the n-transversality to 0 of K(s;y + Tt,k)‘R(st,”Tt,k)
over By, (z,5) N R(syk + 7¢) follows immediately from the construction.

Therefore the required transversality property can be ensured locally by
small perturbations for one-parameter families of sections as well, which
allows us to complete the proof of Proposition 2 by the usual globalization
argument (recall that Lemma 6 and Proposition 3 of [3] also apply to one-
parameter families of sections). O

3. EXISTENCE AND UNIQUENESS OF QUASIHOLOMORPHIC COVERINGS

3.1. Self-transversality and proof of Theorem 1. In this subsection we
give a proof of Theorem 1. Propositions 1 and 2, together with the results
in Sections 2 and 3 of [3], allow us to construct, for some constant v > 0
and for all large k, asymptotically holomorphic sections (or 1-parameter
families of sections) whose first two components are ~y-transverse to 0 and
with the additional properties of being y-generic and -transverse to the
projection to CP. We now consider further perturbation in order to obtain
O-tameness (see Definition 7), enhanced by a similar condition of tameness
with respect to the projection (ensuring the second property stated in the
introduction), and simple self-transversality conditions (properties 4, 5 and
6 in the introduction). The procedure is the following.

Step 1. We first use Proposition 8 of [3] in order to obtain the correct
picture over a neighborhood of C(sy) : namely, the existence of perturbed
almost-complex structures Ji, which differ from J by O(k~'/?), are inte-
grable near the cusp points and enable us to perturb the sections s; by
O(k~'/2) to make them holomorphic over a neighborhood of the set of cusp
points (the same result also holds for 1-parameter families of sections).

Step 2. We now add the property of tameness with respect to the pro-
jection :

Definition 9. Let s, be asymptotically holomorphic sections of C> ® L,
transverse to the projection. Let T(sy) be the (finite) set of points of R(sy)—
C(sk) where K(sg) vanishes (these points will be called “tangency points”).
We say that sy, is tamed by the projection 7 : CP? — {pt} — CP' if O(Ps})
vanishes at every point of T(sg).
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Note that, since the gi-distance between a tangency point and a cusp
point is bounded from below (because of the transversality estimates), it
doesn’t actually matter whether one works with J or J;, as they coincide
outside of a small neighborhood of the cusp points whose size can be chosen
freely (see Section 4.1 of [3]).

We now show that, by adding to sj a perturbation of size O(k~'/2), one
can ensure tameness with respect to the projection. Indeed, let z be a
point of T(sg), and let fr = Psg. Choose a constant § > 0 smaller than
half the g,-distance between any two tangency points and than half the g-
distance between any tangency point and any cusp point (these distances
are uniformly bounded from below because of the transversality estimates).
Define a section x of f; TCP? over By, (z,§) by the following identity : given
any vector ¢ € T, X of norm less than §,

x(exp,(§)) = B(I€]) 9 fk(2).&,

where 3 : [0,6] — [0,1] is a smooth cut-off function equal to 1 over [0, 4]
and 0 over [36,0], and where the fibers of ffTCP? at = and at exp,(£)
are implicitly identified using radial parallel transport. Repeating the same
process at any point of T(sy ), one similarly defines x over the d-neighborhood
of T(sy). Moreover, since x vanishes near the boundary of By, (z,d), it can
be extended into a smooth global section of f,;‘T(C]P’2 which vanishes outside
of the d-neighborhood of T(sy).

Recall that Vz € X the tangent space to CP? at fi(z) = Psi(z) is
canonically identified with the space of complex linear maps from Csy (z) to
(Csg(z))*t € C* @ LE. This allows us to define o4 (z) = si(z) — x(z).5x(z).
It follows from the construction of y that o; remains equal to s; outside the
d-neighborhood of T(o}) = T(s;) and differs from s;, by O(k~'/?) ; there-
fore o, satisfies the same holomorphicity and transversality properties as s
provided that k is large enough. Moreover, o is tamed by the projection to
CP!, since at any point z € T(sy) one has d(Poy)(z) = dfx(z) — Ox(z) = 0.

The construction clearly applies to one-parameter families without any
change, as the above construction is completely explicit and can be applied
for all ¢ € [0,1] in order to obtain x; and o) depending continuously on ¢
and satisfying for all ¢ the properties described above. Moreover it is easy to
check that, if sq; is already tamed by the projection, then the construction
yields og ; = sgk, and similarly for ¢ = 1.

Step 3. Without losing the previous properties, we now perturb s in
order to ensure that the images in CP? of the cusp points and tangency
points are all mutually disjoint, and lie in different fibers of the projection
to CP!.

Wherever s? and s}, are not both zero, let ¢x(z) = (s%(z) : si(z)) € CP".
One easily checks by a standard transversality argument that it is possible to
choose for all z € T(sg) UC(sg) an element w, € T¢k($)C]P)1 of norm smaller
than £~'/2, in such a way that the points eXPg, (o) (wy) are all different in
CP!. Moreover, the differential at the identity of the action of SU(2) on
CP! yields a surjective map from su(2) to T¢k($)(C]P’1, so one can actually
find elements u, € su(2) of norm O(k /2) and such that the infinitesimal
action of uy at ¢g(z) coincides with wy.
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Fix a constant § > 0 smaller than the gi-distance between any two points
of T(sk)UC(sg), and let S : [0,d] — [0, 1] be a smooth cut-off function equal
to 1 over [0,46] and 0 over [36,6] : then let x be the SU(2)-valued map
defined over the ball of g-radius ¢ around any point z € T(sg) UC(sg) by
the formula

x(y) = exp (B(dist(x, y)) uz) -

As x(y) becomes the identity near the boundary of By, (z, d), one can extend
X into a map from X to SU(2) by setting x(y) = Id for all y at distance
more than ¢ from T(s;) U C(sg). Finally, let o5 = x.sg, where SU(2) acts
canonically on the first two components (s?,s;) and acts trivially on the
third component 32-

By construction oy, differs from s, by O(k~'/?), so all asymptotic holo-
morphicity and genericity properties of s are preserved by the perturbation
provided that k is large enough. Moreover, over a ball of radius % around any
point x € T(sg) UC(sg) the map Poy, differs from Psy by the mere rotation
exp(uy) : therefore the cusp points and tangency points of oy are exactly
the same as those of si, and the properties of holomorphicity near the cusp
points and of tameness with respect to the projection to CP! are satisfied
by o as well. Finally, given any point z € T(sg) U C(sg) the projection
to CP! of oy (x) is exp(ug).-¢p(z) = €XPg, (z)(Wz), so the images in CP! of
the various cusp and tangency points are by construction all different, as
desired.

The same result also holds for one-parameter families of sections. Indeed,
as the dimension of CP! is strictly more than 1, the space of admissible
choices for the elements w, of Tj, (z)(CIP’l is always connected ; so one easily
defines, for all ¢t € [0,1] and for all z € T(ssx) U C(sk), tangent vectors
wy; such that the same properties as above hold for all ¢, and such that
along any continuous path (z¢).c[o,1) of cusp or tangency points the quantity
wy 4, depends continuously on ¢. The tangent vectors w;, can then be
lifted continuously to elements in s1(2), and the same construction as above
yields sections o;; which depend continuously on ¢ and satisfy the desired
properties for all ¢ € [0,1]. Moreover, if sqj already satisfies the required
property, then one can clearly choose the vectors w; ; in such a way that all
wp ; are zero, and therefore one gets o = sg ; similarly for ¢ = 1.

Step 4. Without losing the previous properties, we now perturb s in
order to ensure that the curve D(s;) = fx(R(sg)) is transverse to itself, i.e.
that all its self-intersection points are transverse double points (requirement
4 of the introduction) and no self-intersection occurs in the same fiber as a
cusp point or a tangency point.

For this, we simply remark that there exists a section u of f,;"T(CIP’2 over
R(sg) (i.e. a small deformation of D(s;) in CP?), smaller than k~'/2 in C3
norm, and which vanishes identically near the cusp and tangency points,
such that the deformed curve {expy, ,)(u(z)), = € R(sg)} is transverse to
itself. This follows from elementary results in transversality theory.

Use the exponential map to identify a tubular neighborhood of R(sy) with
a neighborhood of the zero section in the normal bundle N R(sy). Moreover,
let 6 be the section of T*X ® ffTCP? over R(sy), vanishing at the cusp
points, such that at any point z € R(sg) — C(sg) the 1-form 6, satisfies the
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properties 0z Tr(s,) = 0 and 8k, = —(Vuop) g,, where K; = Ker 0fy(z)
and p is the orthogonal projection to T R(sy)-

Fix a constant § > 0 sufficiently small, and define a section x of f,;‘T(C]P’2
over the d-tubular neighborhood of R(sy) by the following identity : given
any point z € R(sg) and any vector ¢ € Ny R(sy) of norm less than 4,

x(expy(£)) = B(IE]) (u(z) + 02(£)),

where 8 : [0,6] — [0,1] is a smooth cut-off function which equals 1 over
[0,16] and vanishes over [24,4], and where the fibers of f;TCP? at z and
at exp,(£) are implicitly identified using radial parallel transport. Since
x vanishes near the boundary of the chosen tubular neighborhood it can
be extended into a smooth section over all of X which vanishes away from
R(Sk)

We can then define o = s; + x.Sk, where the action of xy on s is as
explained in Step 2. The section o}, differs from s by O(k~'/?), so all
asymptotic holomorphicity and genericity properties of s; are preserved by
the perturbation provided that k is large enough. Moreover the perturbation
vanishes identically over a neighborhood of T(sy) U C(sg), so the cusp and
tangency points of o coincide with those of s, and the properties we have
obtained in Steps 1-3 above are not affected by the perturbation and remain
valid for oy,.

We now show that the curve D(oy) is transverse to itself : indeed, we
first notice that R(si) C R(oy), because at any point z € R(sg) one has

V(Poy)(z) = V(Psk)(x) + Vx(z) = V(Psg)(x) + Vu(z) o p + bs,

and therefore V(Poy) and V(Psy) coincide over the complex subspace K C
T, X, so that d(Poy) vanishes over K,, and therefore Jac(Poy) vanishes at
z, and = € R(oy). Because oy, is close to si, R(og) is contained in a neigh-
borhood of R(sg), so it is easy to prove that R(o;) = R(sg). Moreover, at a
point x € R(sk) one has x(z) = u(x), so the curve D(oy) is obtained from
D(sy) by applying the deformation u : therefore D(oy) is by construction
transverse to itself.

In the case of one-parameter families of sections, elementary transver-
sality theory implies that one can still find, for all ¢ € [0, 1], sections u; of
It T CP? over R(s; ), depending continuously on ¢ and vanishing identically
near the cusps and tangency points, which can be used as perturbations to
ensure a generic behavior of the curves D(s; ). The only additional generic
phenomenon that we must allow is the creation or cancellation of a pair of
transverse double points with opposite orientations ; apart from this phe-
nomenon the curves D(s; ) are isotopic to each other. Once the sections u;
are obtained, the rest of the construction is explicit, so defining 6, x; and
ok, as above for all ¢ € [0, 1] yields the desired result. Moreover, if the curve
D(so) is already transverse to itself then one can safely choose ug = 0,
which yields oq ; = s¢ ; similarly for ¢ = 1.

Step 5. We finally use Proposition 9 of [3] in order to construct sections
oy of C® ® L*, differing from s, by O(k '/?), and such that at any point
of R(o}) the derivative O(Poy) vanishes over the kernel of d(Poy). The
construction of this perturbation is described in Section 4.2 of [3]. It is
very important to observe that R(o;) = R(sg) as stated in [3] ; because
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oy coincides with sy over R(sy) one also has D(oy) = D(sg). So this last
perturbation, whose aim is to ensure that the constructed sections are O-
tame and therefore define approximately holomorphic branched coverings of
CP?, does not affect the branch curve in CP? and therefore preserves the
various properties of R(sy) and D(s) obtained in the previous steps.

The sections o}, of C3 ® L¥ we have constructed at this point satisfy all the
required properties : indeed, for sufficiently large k they are asymptotically
holomorphic and generic because they differ from the original sections by
O(k~'/?) ; they are O0-tame by construction (the property of holomorphicity
near the cusp points obtained in Step 1 was not affected by the later pertur-
bations) ; therefore by Theorem 3 of [3] the corresponding projective maps
are approximately holomorphic singular branched coverings. Moreover, the
first two components of o) are transverse to 0 (this open property is pre-
served by all our perturbations provided that k is large enough), so (0: 0: 1)
does not belong to the branch curve D(oy), which is the first requirement
stated in the introduction. Because our sections are -y-transverse to the pro-
jection for some constant v > 0 (see Definition 8 and Proposition 2), there
are only finitely many tangency points, and since the sections o are tamed
by the projection (because of the construction carried out in Step 2) the
local model at the tangency points is as stated in the second requirement of
the introduction.

The third requirement also follows directly from the property of «-trans-
versality to the projection (see the beginning of Step 2 in the proof of Propo-
sition 2 for the geometric interpretation of K(si) near a cusp point). The
fourth requirement, namely the self-transversality of D(oy), has been ob-
tained in Step 4 and is not affected by the perturbation of Step 5. More-
over, the images in CP! of the cusp and tangency points are all disjoint, as
obtained in Step 3 (this property is preserved by the perturbations carried
out in Steps 4 and 5), and the same property for double points has been
achieved in Step 4, so the fifth requirement stated in the introduction holds
as well. Therefore we have shown that the construction of branched cov-
ering maps described in [3] can be improved in order to obtain branched
coverings whose branch curve satisfies the additional requirements stated in
the introduction. This proves Theorem 1.

3.2. Uniqueness up to isotopy. In the next section we will use Theorem 1
to define invariants of the symplectic four-manifolds. We need the following
result of uniqueness up to isotopy.

Theorem 5. For large enough k, the coverings constructed following the
procedure described above are unique, up to isotopies of quasiholomorphic
coverings (see Definition 1).

This is a straightforward analogue of the result of uniqueness up to iso-
topy obtained in [3], except that we must allow the cancellation of pairs of
transverse double points with opposite orientations. More precisely, con-
sider sections sq  and s1 ; (k> 0) which define quasiholomorphic coverings
(the almost-complex structures Jy and J; for which the approximate holo-
morphicity properties hold need not be the same). Imitating the argument
in Section 4.3 of [3], interpolating one-parameter families of almost-complex
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structures J; and asymptotically J;-holomorphic sections s of C3QL* can
be constructed for all large k£ in such a way that the sections s;; satisfy
the required transversality properties for all ¢ € [0,1] : namely the sections
st are y-generic for some constant v > 0, their first two components are
transverse to 0, and they are transverse to the projection to CP!.

Without loss of generality we may assume that J; = Jp and sy = so
for all ¢ in some interval [0, €], and similarly that J; = J; and sy = s for
t € [1 —¢,1]. This makes it possible to perform Step 1 of §3.1 in such a way
that sk and s 4 are not affected by the perturbation (see the statement of
Proposition 8 of [3]). Because sg ) and s already satisfy all the expected
properties, it is then possible to carry out Steps 2-5 of §3.1 in such a way
that sp and s;; are not modified by the successive perturbations. The
result of this construction is a one-parameter family of branched covering
maps interpolating between the covering maps Psg ;, and Ps; j ; moreover all
these covering maps are quasiholomorphic, except for finitely many values
of ¢ which correspond to the cancellation or creation of a pair of transverse
double points in the branch curve (for these values of ¢ requirement 4 no
longer holds and needs to be replaced by requirement 6 of the introduction).

4. NEW INVARIANTS OF SYMPLECTIC FOUR-MANIFOLDS

As a consequence of Theorems 1 and 5, for large k& the topology of the
branch curves D(s;) C CP? and of the corresponding branched covering
maps is, up to cancellations and creations of pairs of double points, a topo-
logical invariant of the symplectic manifold (X, w).

As explained in the introduction, the topology of a quasiholomorphic
curve D C CP? of degree d is described by its braid monodromy, which can
be expressed as a group homomorphism p : 7 (C— crit) — By, where crit =
{p1,...,pr} consists of the projections of the nodes, cusps and tangency
points of the curve D. If one does not want to restrict the description to an
affine subset C C CP', it is also possible to consider the reduced braid group
B!, = B;/(AZ%) and view the braid monodromy as a map p : 71 (CP! —crit) —
B!, ; as soon as d > 2 one can easily recover p from p, since the images by p
of loops around each of the points p; can be lifted in only one way from B!,
to By as powers of half-twists (this follows from easy degree considerations
in By). More importantly, the braid monodromy can be expressed as a
factorization of the full twist Aﬁ in By. This factorization is of the form

T

A = [[@7" x77 Qy),

=1

where r; is equal to —2 for a negative self-intersection, 1 for a tangency
point, 2 for a nodal point, and 3 for a cusp. For a given curve D any
two factorizations representing the braid monodromy of D are Hurwitz and
conjugation equivalent (see e.g. [17]).

Consider two symplectic 4-manifolds X; and X5, and let f,z : X; — CP?,
i € {1,2}, £ > 0 be the maps given by Theorem 1, with discriminant
curves D,ic. Assume that D,ﬁ and D,% have the same degree di. Denote
by F{ the braid factorizations in Bg, describing these curves, and by 6%
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the corresponding geometric monodromy representations (see the introduc-
tion). Recall from the introduction that (F},6}) and (F7,0%) are said to
be m-equivalent if they differ by a sequence of global conjugations, Hurwitz
moves, and node cancellations or creations. The above considerations and
the uniqueness result obtained in the previous section (Theorem 5) imply
the following corollary :

Corollary 1. For any compact symplectic 4-manifold with %[w] integral,
the sequence of braid factorizations and geometric monodromy representa-
tions describing the coverings obtained in Theorem 1 s, up to m-equivalence,
an invariant of the symplectic structure.

In other words, given two symplectic manifolds X1 and Xo, if the corre-
sponding sequences of braid factorizations and geometric monodromy repre-
sentations are not m-equivalent for large k then X1 and Xo are not symplec-
tomorphic.

The above invariants can be used to distinguish symplectic manifolds.
There is a technique developed by Moishezon and Teicher for doing that in
some cases ; unfortunately the fact that there might be negative intersections
complicates everything. Two approaches are possible :

1) If the negative intersections cannot be removed then we have :

Corollary 2. In the situation above, if the sequences of minimal numbers
of negative half-twists in the factorizations Fk1 and F,? are different for large
k then X1 and X5 are not symplectomorphic.

Remark 3. In this statement we have to take the minimal numbers of
negative half twists among the results of all possible sequences of node can-
cellations and creations. For example it may happen that creating pairs of
nodes allows cancellations which were not possible initially.

Also note that all cancellation procedures are not equivalent : namely,
there might exist examples of positive cuspidal factorizations which are m-
equivalent but not Hurwitz and conjugation equivalent.

It will be interesting to find and study examples of symplectic manifolds
that can be told apart by the minimal numbers of negative half-twists in
their braid factorizations. Another interesting question is to study which
properties of projective surfaces remain valid for symplectic coverings of
CP? that correspond to cuspidal positive factorizations — e.g. can they have
arbitrary fundamental group ?

2) In case the negative intersections can be removed then we get Conjec-
ture 1. We now outline a possible approach to the elimination of negative
intersections, using the symplectic Lefschetz pencil structure associated to
a quasiholomorphic covering (see Section 5 below).

It seems possible to define a finite dimensional space E; of approximately
holomorphic sections of L¥ over each fiber C; of the symplectic Lefschetz
pencil. These spaces determine a vector bundle E over CP!. Each space F;
contains a divisor F consisting of all sections of L* such that two critical
levels of the corresponding projective map come together. A section o of E
determines a CP?-valued map, and the nodes of the corresponding branch
curve are given by the intersections of ¢ with F. Our aim is therefore
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to find an approximately holomorphic section o which always intersects F
positively.

It seems that, whatever the chosen connection on the bundle FE, it should
be possible by computing the index of the 0 operator to prove that E admits
holomorphic sections. However, it appears that it is not possible to find a
connection on £ which makes the divisor ¥ pseudo-holomorphic : there-
fore the holomorphicity of the section ¢ is not sufficient to ensure positive
intersection.

On the other hand, it seems relatively easy to find a connection on F for
which the divisor F' is approximately holomorphic. Unfortunately this does
not guarantee positive intersection with the section ¢ unless one manages to
obtain some uniform transversality estimates, and the techniques developped
in this paper fall short of applying to this situation.

The prospect of being able to remove all negative nodes and obtain Con-
jecture 1 is very appealing for many reasons. Among these, one can note
that the fundamental group 71 (CP? — Dy) becomes a symplectic invariant
in this situation.

Remark 4. It is an interesting question to try to relate the braid mon-
odromies obtained from the same manifold X for different degrees k. One
can actually show using techniques similar to Sections 2 and 3 that, if N > 2
is any integer and if k is large enough, then the branch curve Dy can be
obtained from Dy in the following way.

Consider the Veronese map Vy : P? — P? of degree N2, and let R(Vy) be
the corresponding smooth branch curve in the source P2. We can realize the
covering fi : X — P? in such a way that the branch curve Dy, is transverse to
R(Vy). The covering fyi, : X — P? can then be seen as a small perturbation
of Vy o fr. The branch curve of Vi o f in X is the union of the branch
curve of fi and of f, L(R(Vy)), so a perturbation is necessary to remove its
singularities and obtain the generic covering fng. The curve Dyy can then
be seen as a small deformation of the union of Vi (Dy) and deg(fx) copies of
the branch curve of the Veronese map. This construction will be described
in detail in a separate paper [4].

We will now prove Theorem 3, namely that any cuspidal negative factor-
ization together with a geometric monodromy representation can be used to
reconstruct a symplectic manifold. We start with part 1) of the statement.

Proof. Let p : m1(C—{p1,...,pr}) = By be the representation corresponding
to the given cuspidal negative factorization of AZ, and let C' be the universal
covering of C — {p1,...,pr}-

Recall that elements of By are equivalence classes of diffeomorphisms of
the disk D' inducing the identity on the boundary of D' and preserving a
set of d points {q1,...,q4} C D’ : therefore it is possible, at least from a
purely topological point of view, to construct the cross-product R of C' and
D’ above p, i.e. the quotient of C’ x D' by the relations

Y(z,w) ~ (vz,p(v)w) Vv € 7 (C—{p1,---,pr}),

where z and w are the coordinates on C' and D’ respectively. Define ' as
the curve in R consisting of all points (z, g;)-
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By construction, R is a disk bundle over C — {p1,...,p,} containing a
curve I' whose braid monodromy is precisely given by p.

Since the monodromy of p around infinity is Ag we can extend R to a P'-
bundle R’ over P! —{py,...,p,}. Inorder to extend R’ over all of P! we need
to define the geometry near the singular fibers. If the fiber corresponds to
an element of degree 1 in By (half-twist), we can arrange that, in a suitable
local trivialization of R’ and choosing a local coordinate z € C — {0} in the
base, the two sheets of I' exchanged by the half-twist correspond to the two
square roots of z in suitable local coordinates on the fiber D’. Similarly, the
two sheets should correspond to £z respectively in the case of an element
of degree 2 in the braid factorization, to the two square roots of 23 in the
case of an element of degree 3, and to =z for an element of degree —2.

With this geometric picture it is now possible to glue in the missing fibers.
Moreover we can arrange that all points ¢y, ..., g4 lie close to the origin in D,
i.e. that the curve I is contained in a neighboorhood of the zero section in R'.
We can also arrange that, near the singular fibers, the local models described
above hold in local approximately holomorphic complex coordinates. With
such a choice of complex structure, we get the Hirzebruch surface F!, as
well as a curve IV C F' with the prescribed singularities and admitting a
projection to P!, simply obtained as the closure of I" in F'L.

It now follows from the construction that I' is a quasiholomorphic curve.
Indeed, recall that IV lies in a neighborhood of the zero section in F' : this
neighborhood can be made as small as desired, and the curve IV can be made
as horizontal as desired (except near its tangency points), simply by rescaling
the vertical coordinate in F'. More explicitly, this vertical rescaling results
from the automorphism of F' described in each fiber CP! = C U {oc} by
the linear transformation z — Az, where X\ > 0 is a small enough constant.

After this rescaling process, which clearly does not affect the topology of
the curve I, the properties expected of a quasiholomorphic curve still hold
near the singular fibers, as it follows from the choice of the local models
made above and from the observation that the rescaling diffeomorphism
preserves the complex structure. Moreover, the tangent space to I' is almost
horizontal everywhere except near the tangency points, and therefore TV is
symplectic (because its tangent space at every point lies very close to a
complex subspace — near a tangency point this follows from the local model,
and at other points from the almost horizontality property of I'V). Finally
we need to observe that I/ remains away from the infinity section in F', so
we can blow down and recover a curve in CP2. This construction is clearly
canonical up to isotopy. O

Remark 5. One can also try to prove assertion 1) of Theorem 3 in the
following way. To every cuspidal negative factorization corresponds a rep-
resentation p : 7y (P! — crit) — B/. This representation defines a bundle
S — P! — {p1,...p,} with a fiber S; — Ay, where S; is the configuration
space of d points in C and A; is its diagonal. This is a bundle which is flat
w.r.t. the nonabelian Gauss-Manin connection [18]. The bundle S admits a
section s, defined by the braid factorization of the full twist (see [17]). The
section s defines a covering of P! — {py, ....p,} by a curve I'. By construction
this curve is in F'', and one can proceed similarly to the above argument in
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order to complete the proof. This second approach presents an interesting
way to look at the construction : if one can show that for £ > 0 the section
s is pseudoholomorphic and has nice intersection properties then we obtain
Conjecture 1.

We now turn to the second part of Theorem 3, namely reconstructing
a symplectic 4-manifold from a quasiholomorphic curve and a geometric
monodromy representation. Note by the way that geometric monodromy
representations are a very restrictive class of maps from Fj; to S, : the
existence of such a representation is a non-trivial constraint on the braid
factorization, and in many cases the geometric monodromy representation
is unique up to conjugation (see [7] and [14]).

Proof. By definition, the geometric monodromy representation 8 : F; — Sj,
factors through 71 (CP? — D) and therefore makes it possible to define a
smooth four-dimensional manifold X (unique up to diffeomorphism). The
projection X — P? is given everywhere by one of the three local models
given in [3] for branched coverings (local diffeomorphism, branched covering
of order 2, or cusp). Moreover these local models hold in orientation pre-
serving coordinates on X and approximately holomorphic coordinates on P?
(because the curve D is approximately holomorphic). Therefore the exis-
tence of a symplectic structure on X follows immediately from Proposition
10 of [3].

In order to show that this symplectic structure is canonically determined
up to symplectomorphism we need to recall the argument more in detail.
Proposition 10 of [3] is based on the following two observations. First, the
local models describing the map f : X — CP? at any point of its branch set
R C X make it possible to construct an exact 2-form a on X such that, at
any point € R, the restriction of o, to the (2-dimensional) kernel K, of
the differential of f is nonzero and compatible with the natural orientation
of K, (in other words, a induces a volume form on K, ). Next, one observes
that, calling wy the standard symplectic form on CP?, and given any exact
2-form o which induces a volume form on K, Vx € R, the 2-form f*wg + e
is symplectic for any small enough € > 0.

Although the construction of the 2-form « in [3] is far from being canon-
ical, the uniqueness of the resulting symplectic structure follows from a
straightforward argument : to start with, note that, because the 2-form «
is exact, Moser’s theorem implies that for a fixed o the symplectic struc-
ture does not depend on the chosen value of € (provided it is small enough).
Therefore we can fix ¢ as small as needed and just need to consider the de-
pendence on «. For this, let oy and a; be two exact 2-forms which induce
volume forms on K, at every point of R, and let a; = ta; + (1 — t)ap.
Then, for all ¢ € [0, 1], the 2-form «a; is exact and induces a volume form
on K, Yz € R. It follows easily that, for small enough € > 0, the 2-forms
f*wo + eay are symplectic for all ¢ € [0,1]. Since the forms oy are exact, if
follows from Moser’s theorem that (X, f*wy + eag) is symplectomorphic to
(X, f*wo + eay). Therefore the symplectic structure on X is canonical.

Moreover, the symplectic structure does not depend either on the choice
of D inside its isotopy class : indeed, let (D¢);c[o,1) be a family of quasiholo-
morphic curves and fix a geometric monodromy representation 6. It is clear
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that the corresponding branched covers are all diffeomorphic. Moreover, for
any to € [0,1] we can find an exact 2-form a4, which induces a volume form
on K, at every point of the branch curve of the covering f;,. However,
this non-degeneracy condition is open, so there exists an open subset Uy,
in [0,1] such that o, induces a volume form at every point of the branch
curve of the covering f; for any ¢ € Uy,. The compactness of [0, 1] implies
that finitely many subsets Uy, ,...,U;, cover [0,1] ; for every ¢ in [0,1] a
proper linear combination of ay,,...,q, can be defined in such a way as
to obtain exact 2-forms which still have the required property but depend
continuously on ¢. Once this is done, the above construction yields a family
w; of symplectic forms on X which depend continuously on ¢ and all lie in
the same cohomology class. The desired uniqueness result is then a direct
consequence of Moser’s theorem. O

Note that, when X is already known to admit a symplectic form w and
f : X — CP? is a branched covering given by sections of L* as in Theorem
1, the symplectic structure we construct is actually symplectomorphic to
kw. Indeed, in this case we have [f*wy| = k[w]. Therefore, the 2-form
a = kw — f*wy is exact. Since the local models for the covering map hold in
approximately holomorphic coordinates, the restriction of w to K is positive
at any point z of R, so that « induces a volume form on K : therefore the
canonical symplectic structure given by Theorem 3 can be chosen to be
f*wo + ea for any small € > 0. However it is known from Proposition 11
of [3] that the 2-forms f*wg + ea are symplectic for all € € (0,1] and define
the same structure up to symplectomorphism. In particular, for ¢ = 1 one
has f*wy + a = kw, so the symplectic form of Theorem 3 coincides with kw
up to symplectomorphism : therefore (X, w) can be recovered from its braid
monodromy invariants.

As a consequence, the manifold (X,w) is uniquely characterized by its
braid monodromy invariants ; this observation and Corollary 1 imply The-
orem 2.

Remark 6. To obtain a symplectic structure on X we could also use the
topological Lefschetz pencil X — P! corresponding to the branched covering
(see Theorem 6 in §5) : the existence of a symplectic structure on X then
follows from the results of Gompf (see also [1]). The fact that the curve D is
quasiholomorphic implies that all Dehn twists in the Lefschetz pencil have
the same orientation.

For braid factorizations which are not cuspidal negative, we do not get a
quasiholomorphic curve and as consequence we cannot build the symplectic
form on X as above. Of course the manifold X might still be symplectic
and admit a different quasiholomorphic covering to P2.

Finally, the procedure of constructing invariants can be generalized in
higher dimensions and using projections to higher-dimensional projective
spaces. Of course describing the properties of the branch set and finding an
analogue of the braid factorizations presents a real challenge.

In the 6-dimensional setting and still considering maps to CP? given by
three sections of L¥, we should get the following picture.
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Given any compact 6-dimensional symplectic manifold X, three well-
chosen asymptotically holomorphic sections of L¥ for k > 0 determine a
map fj from the complement of a finite set B, C X to CP? which behaves
like a generic projection of a complex projective 3-fold to CP?.

In particular, the generic fibers of fi are smooth symplectic curves in X
which fill X and intersect each other at the points of By (the base points
of the family of curves). Moreover, there exists a singular symplectic curve
Dy, in CP? which parametrizes the singular fibers of fz. At a generic point
p € Dy, the fiber f.~ L(p) is a singular symplectic curve where one loop is
pinched into a point, and the monodromy of the family of curves around
Dy, at p is given by a positive Dehn twist along the corresponding geometric
vanishing cycle, exactly as in a 4-dimensional Lefschetz fibration.

Conjecture 2. For large enough k the topological data arising from these
structures provides symplectic invariants : to every 6-dimensional symplectic
manifold corresponds a canonical sequence of braid factorizations (character-
izing the curves Dy) and maps from w1(CP? — Dy) to Map,, (characterizing
the family of symplectic curves), with suitable properties (in particular every
geometric generator of w1 (CP% — Dy,) is mapped to a Dehn twist).

Conversely, given a braid factorization with suitable properties and a map
from 7 (CP? — D) — Map, which sends geometric generators to Dehn
twists, we should be able to reconstruct a symplectic 6-manifold.

In this setup, let L be a generic line in CP2, and let W), = f,;l(L) : Wy is
a symplectic hypersurface in X realizing the class %[w] as in Donaldson’s
construction ; the restriction to L of the family of curves coincides with the
Lefschetz pencil structure obtained by Donaldson’s construction on W. We
will consider the above conjecture in a separate paper.

5. PROJECTIONS TO CP? AND LEFSCHETZ PENCILS

5.1. Quasiholomorphic coverings and Lefschetz pencils. In this sec-
tion we prove Theorem 4, namely the fact that quasiholomorphic coverings
determine Lefschetz pencils.

Proof. Let sy = (s9,st,s2) € T'(C* ® L*) be the sections which determine
the covering map fr = P(sk), and let ¢, be the CP!-valued map determined
by s? and s}, outside of fk_l(O :0:1). We use the notations and definitions
of Section 2. By assumption, the section s is the result of the procedure
described in Sections 2 and 3 for achieving Theorem 1, and therefore satis-
fies all the transversality properties introduced in Section 2, as well as the
tameness properties described in Section 3.1.

We claim that 32 and s,lC define a structure of symplectic Lefschetz pencil
on X. For this we need to check that, for some v > 0, (32, s,lc) is y-tranverse
to 0 as a section of C2 ® L¥, that O¢y, is y-transverse to 0 as well, and that
O¢y, vanishes at the points where d¢y = 0. By Proposition 12 of [3], these
three properties imply that 52 and s,lc define a Lefschetz pencil (see also
[8]) : the first property yields the expected structure at the base points of
the pencil, and the two other conditions imply that ¢ is a complex Morse
function.



BRANCHED COVERINGS OF CP2 AND INVARIANTS 31

The transversality to 0 of (32, s,lc) is granted by the construction carried

out to prove Theorem 1 : more precisely this property, which is one of the
transversality properties required at the very beginning of Section 3.1, is
achieved in Proposition 1. The other transversality properties which one re-
quires in this construction are y-genericity (Definition 6) and y-transversality
to the projection (Definition 8) : we now show that these properties imply
the transversality to 0 of J¢y with a transversality estimate decreased by
at most a constant factor. In other words, we show that the (2,0)-Hessian
00¢y, is non-degenerate (and has determinant bounded from below) at any
point where J¢y, is small.

Consider a point p € X where |0¢y| is smaller than v/C for some suitable
constant C. To start with, note that since 0fy is uniformly bounded 0¢y
cannot be smaller than -y/C unless the (2,0)-Jacobian Jac(fx) = det(df) is
smaller than . Because of the genericity property, Jac(fx) is y-transverse
to 0, and it follows immediately that p must lie very close to the branch
set R(si). In particular, if C is chosen large enough there exists a point
p' € R(sy) which lies sufficiently close to p in order to ensure that |0¢(p')]
is also much smaller than . This in turn implies that the quantity K(sx) =
0di N dJac(fy) is smaller than v at p' ; since K(si) is y-transverse to 0
over R(sg) (see Definition 8), p' must lie very close to a point g € R(s)
where K(sy) vanishes, i.e. either a cusp or a tangency point (see Definition
9). Moreover, cusp points are characterized by the transverse vanishing
of dfx N\ 0Jac(fy), so, as noted at the beginning of Step 2 in the proof of
Proposition 2, the transverse vanishing of (sx) at the cusps implies that
O¢y, cannot be too small at a cusp point (in other words, the cusps are not
close to being tangent to the fibers of the projection to CP!). Therefore g
is a tangency point, i.e. d¢x(q) = 0.

Because sy, is tamed by the projection 7 : CP% — {pt} — CP! we also have
0¢(q) = 0 (see Definition 9). Therefore the image of dfy(q) is exactly the
tangent space to the fiber of 7 through f;(g). Let Z; and Z3 be local complex
coordinates on CP? at fr(g) chosen in such a way that the projection 7 is
given by (Zi,Z3) +— Z; locally : it is then easy to check that zo = f;Z
has nonvanishing derivative at ¢ and that one can find a complex-valued
function z; such that (z1, 22) are approximately holomorphic local complex
coordinates on X. In these local coordinates the map fi is given by

fr(z1,22) = (ak,qu + b gz122 + ck,ng + O(k_1/2|z\2) + O(|z\3),z2).

One then has O¢y, = (2ag 421 +bg g22) dz1+(br g21+2ck g20) dza+O (k12| 2])+
O(|2|?) and Jac(fy) = 2ag,421 + by gz2 + O(k~'/2|2|) + O(|2|?), and therefore

K(sk) = 0pp AOJac(fi) = (b 4 —4ak,qCh,q)22 dz1 Adza+O (k™2 |2|)+0(|z]?).

The transverse vanishing of K(s) at ¢ therefore implies that by , — 4ay,¢Ck,q
is bounded away from 0. However this quantity is exactly the determinant
of the Hessian 00¢; at g, so 0¢ vanishes transversely at q. Since the
point p lies close to g, the (2,0)-Hessian of ¢y at p is nondegenerate as well.
This establishes the v/-transversality to 0 of d¢ for some constant v > 0
(independently of k).

We also know that O0f, vanishes at every tangency point, i.e. at every
point where 0¢y vanishes (this follows from the property of tameness with
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respect to the projection, see Definition 9) : this immediately implies that
Oy, vanishes at all points where O¢y, vanishes. The properties of 32 and s,lC
are therefore sufficient to ensure by Proposition 12 of [3] that they define a
symplectic Lefschetz pencil. O

Even when a branched covering is not determined by three approximately
holomorphic sections of a line bundle, it is still possible to recover a Lefschetz
pencil. This can actually be carried out in a setting more general than that
of quasiholomorphic curves : starting with a braid factorization consisting of
factors of degrees ranging from —3 to +3, it is possible to construct a curve
D C CP? which realizes this factorization and whose only singularities are
nodes and cusps (with either positive or negative orientation), and which
is transverse to the projection to CP! except at finitely many points where
a local model in complex coordinates is either 22 = y (when the degree is
+1) or 22 = y (when the degree is —1). Given a geometric monodromy
representation 6 : F; — S, we can then construct a 4-manifold X which
covers CP? and ramifies at D (in general this manifold is not symplectic
because we allow factors of degree —1 in the braid factorization). In this
very general setting we have :

Theorem 6. To every covering of CP? ramified at a curve given by a factor-
ization of A? into elements of degrees —3 to 3 there corresponds a topological
Lefschetz pencil whose singular fibers are given by the elements of degree +1
in the braid factorization. Moreover, if there are no elements of degree —1
then the Lefschetz pencil is chiral and therefore admits a symplectic struc-
ture.

The easiest way to prove this result is to use local models in order to show
that the composition of the CP?-valued covering map with the projection to
CP! defines a Lefschetz pencil. To start with, the branch curve in CP? does
not hit the point (0: 0 : 1) (the pole of the projection to CP!) ; this implies
that the topological structure near the base points (i.e. the preimages of
(0 : 0:1)) is exactly that of a pencil, because the covering map is a local
diffeomorphism at each of these points. Therefore one just needs to check
that the CP!-valued map obtained by projection of the covering map has
isolated critical points and that the topological structure at these points
is as expected. For this, observe that, when one restricts to the preimage
of any small ball in CP!, the branch curve in CP? behaves exactly like in
the quasiholomorphic case (after reversing the orientation in the case of a
negative tangency point or a negative cusp) : this implies that, like in the
proof of Theorem 4, the only critical points of the map to CP! correspond
to the tangency points. At a positive tangency point (i.e. an element of
degree +1 in the braid factorization) the behavior is that of a complex
Morse function, by local identification with the quasiholomorphic model ;
while at a negative tangency point (i.e. an element of degree —1 in the braid
factorization) the picture is mirrored and one needs to reverse the orientation
of CP! in order to recover the correct local model. In any case one gets a
topological Lefschetz pencil, and in the absence of negative tangency points
this pencil structure is compatible with the orientation. O
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5.2. Braid groups and mapping class groups. This observation that
branched coverings determine Lefschetz pencils can also be made at the
more algebraic level of monodromy factorizations. Indeed, let us consider
a negative cuspidal braid factorization of A2 in By, or equivalently the
corresponding braid monodromy morphism p : 71(C — {p1,...,pr}) — Ba.
Denote by m the number of factors of degree 1 (we will assume that these
correspond to the points py, ..., py) ; the argument also applies to the more
general factorizations described in Theorem 6, in which case one also needs
to add the elements of degree —1. Let D C CP? be the curve determined
by this braid factorization, and let us consider a geometric monodromy
representation 6 : Fy — Sy (recall from the introduction that 6 factors
through the natural surjection from Fy = m(C — {qi, ..., qq}) to 71 (CP? —
D)).

Because a branched covering determines a Lefschetz pencil, the mon-
odromies p and 6 of the branched covering should determine a monodromy
representation 1 : 7 (C — {p1,...,pm}) = My, where M, is the mapping
class group of a Riemann surface of genus g = 1 —n+(d/2), which describes
the topology of the Lefschetz pencil. The way in which 1) is related to p
and 6 can be described as follows ; the reader may also refer to the work of
Birman and Wajnryb [5] for a detailed investigation of the case n = 3.

First, consider the set C,,(q1, ... ,qq) of all simple n-fold coverings of CP*
branched at q1, ..., gq whose sheets are labelled by integers between 1 and n.
We just think of coverings in combinatorial terms, i.e. up to isotopy, so this
set is actually finite : more precisely C,,(q1,---,qq) is the set of all surjective
group homomorphisms F; — S, which map each of the generators v, ..., 74
of F; to a transposition and map their product =y;---7y4 to the identity
element in S),. In particular, the given geometric monodromy representation
6 : F; — S, determines an n-fold branched covering of CP?, i.e. § is an
element of Cp,(q1,---,9q)-

Observe that the braid group By acts naturally on Cp(q1,-..,qq)- Indeed,
recall that braids can be considered as equivalence classes of diffeomorphisms
of the disk preserving the set {qi,...,qq} ; therefore, given a braid Q €
By, one can choose a diffeomorphism ¢ representing it, and extend it to
a diffeomorphism ¢ of CP! which is the identity outside of the disk. The
action of the braid @ on Cy(q1,--.,qq) is given by the map which to a given
covering f : Xy — CP! associates the covering ¢o f. Tt can be easily checked
that the topology of the resulting covering does not depend on the choice
of ¢ in its equivalence class. Alternately, viewing a braid as a motion of
the branch points ¢1,...,qq in the plane, the above-described action of the
braid @ on Cp(q1,---,qq) simply corresponds to the natural transformation
that occurs when the branch points are moved along the given trajectories.

We now describe the action of By on Cp,(q1,- - -, ¢q) in terms of morphisms
from F; to S,. Recall that the braid group By acts on the free group
Fy; =m(C—-{q,-..,q4}), and denote by Q. : F; — Fy the automorphism
induced by a braid ) € By. Then, it can be easily checked that the action of
Q on Cp(q1,...,qq) simply corresponds to composition with @, : the action
of the braid @ on the covering described by 8 : F; — S,, yields the covering
described by 8o Q, : Fy — S,.
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We now define the subgroup BY() of B, as the stabilizer of 6 for this
action, i.e. the set of all braids ) such that € o @, = 6. These braids are
exactly those which preserve the covering structure defined by 6. Note by
the way that BY(9) is clearly a subgroup of finite index in By.

Whenever € BY(6), its action on the covering determined by @ can be
thought of as an element 6,(Q) of the mapping class group M, describing
how the Riemann surface X is affected when the branch points ¢, ..., g4 are
moved along the braid (). More precisely, choose as above a diffeomorphism
¢ of the disk representing @ and extend it as a diffeomorphism ¢ of CP!
preserving the branch points. It is then possible to lift ¢ via the branched
covering as a diffecomorphism of the surface g, whose class in the mapping
class group does not depend on the choice of ¢ in its equivalence class. This
element in M, is precisely 0,(Q). Viewing the braid @ as a motion of the
branch points, the transformation 0,(Q) can also be described in terms of
the monodromy that arises when the points ¢y, ..., ¢q are moved along their
trajectories. The map 6, : BY(6) — M, is naturally a group homomorphism.

Remark 7. A more abstract definition of 6, is as follows. Denote by Xy
the space of configurations of d distinct points in the plane. The set of all
n-fold coverings of CP! with d branch points and such that no branching
occurs above the point at infinity can be thought of as a covering P?d,n
above Xy, whose fiber above the configuration {qi,...,qq} identifies with
Cn(q1,---,494). The braid group B, identifies with the fundamental group
of X4, and the action of By on Cy,(q1,- .., qq) described above is exactly the
same as the action of 71 (X}y) by deck transformations of A?d,n- The subgroup
32(0) is then the set of all the loops in Xz whose lift at the point py € )\Nfd,n
corresponding to the covering described by 6 is a closed loop in A?d,n.
There exists a natural (tautologically defined) bundle Y, ,, over é\?d’n whose
fiber is a Riemann surface of genus g. Given an element ) of 32(0), it lifts
to é%d,n as a loop based at the point py, and the monodromy of the fibration
YVi,n around this loop is precisely the mapping class group element 6,(Q).

It is easy to check that the image of the braid monodromy homomorphism
p: m(C—{p1,...,pr}) = By is contained in BY(#) : this is because the
geometric monodromy representation @ factors through 7 (CP? — D), on
which the action of the elements of Im p is clearly trivial. Therefore, we can
define the composed map

%1 (C—{p1,...,pr}) -2 BY(O) L M,

The group homomorphism 1 is naturally the monodromy of the Lefschetz
pencil corresponding to p and #. Because the only singular fibers of the
Lefschetz pencil are those which correspond to elements of degree 1 in the
braid factorization, this map actually factors through the canonical surjec-
tion map m(C — {p1,.-.,pr}) = ®(C — {p1,...,pm}), thus yielding the
ordinary description of the monodromy of a Lefschetz pencil as a factoriza-
tion of the identity into a product of positive Dehn twists in the mapping
class group.
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We now describe how the images of the various factors in the braid factor-
ization by the map 6, can be computed explicitly. Such an explicit descrip-
tion makes it very easy to recover the monodromy of the Lefschetz pencil
out of the braid factorization and the geometric monodromy representation.

Proposition 3. The elements of degree +2 and 3 in the braid factorization
(i.e. the nodes and cusps) lie in the kernel of the map 6, : BY(0) — M.

Proof. This result is a direct consequence of the fact that the cusps and nodes
in the branch curve do not correspond to singular fibers of the Lefschetz
pencil. From a more topological point of view, the argument is as follows.
Consider a braid ) € By which arises as an element of degree 2 or 3
in the braid factorization. Since @ is a power of a half-twist, it can be
realized by a diffeomorphism ¢ of the disk D’ whose support is contained
in a small neighborhood U of an arc in D' — {q1,...,q4} joining two of the
branch points, say ¢; and g;. As explained above the element 6,(Q) in M, is
obtained by extending ¢ to the sphere and lifting it via the branched covering
f : 8y — CP'. In particular, 6,(Q) can be represented by a diffeomorphism
of £, whose support is contained in f~!(U).

In the case of a node (r; = +2), the transpositions in S,, corresponding
to loops around the two branch points are disjoint, and therefore f~1(U)
consists of n — 2 components : two of these components are double covers
of the disk U branched at one point (g; for one, g; for the other), and
f restricts to each of the n — 4 other components as an homeomorphism.
Therefore, f~1(U) is topologically a disjoint union of n — 2 disks contained
in the surface X, ; since no non-trivial element of the mapping class group
can have support contained in a union of disks, we conclude that 6,(Q) is
trivial, i.e. @ € Ker #6,.

In the case of a cusp (r; = 3), the transpositions in S, corresponding to
loops around the two branch points are adjacent, and f~!(U) consists of
n — 2 components : one of these components is a triple cover of the disk U
branched at two points, and f restricts to each of the n—3 other components
as an homeomorphism. By the same argument as above, f~1(U) is still
topologically a disjoint union of disks in ¥4, and therefore Q € Ker 0,. [

We now turn to the case where () is an element of degree 1 in the braid
factorization. We keep the same notation as above, letting U be a embedded
disk containing the two branch points ¢; and g; as well as the path joining
them along which the half-twist is performed. As previously, the mapping
class group element 6,(Q) can be represented by a diffeomorphism whose
support is contained in f~1(U). However, since the transpositions in S,
arising in the picture are now equal to each other, f~'(U) contains a topo-
logically non-trivial component, namely a double cover of U branched at
the two points ¢; and g;, which is homeomorphic to a cylinder. Since 6,(Q)
is necessarily trivial in the other components of f~(U), we can restrict
ourselves to this cylinder and assume that n = 2.

Denote by <y the (oriented) boundary of U, and by -1 and ~ys its two
lifts to the cylinder f !(U), which are precisely the two components of its
boundary.
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Proposition 4. The image of the half-twist Q by 0, : BY(8) — M, is the
positive Dehn twist along v1 (or 7v2).

Proof. Without loss of generality we can restrict ourselves to a neighborhood
of f~1(U), and assume that f is a two-fold covering. The mapping class
group element 6, (Q) is supported in the cylinder f~1(U), and therefore it
acts trivially on all loops in ¥, which admit a representative disjoint from
f~H(U). Tt is then easy to check that 6,(Q) is necessarily a power of the
Dehn twist along -y; (or equivalently 7,). This transformation is therefore
completely determined by the way in which it affects an arc § joining v; to v,
across the cylinder. The projections of y; and §, as well as their intersection
point and the two branch points, are as represented below (situation (

 half-twist ‘ '

The half-twist () has the effect of moving the curve § to the new curve
d' represented in (B). Observing that the lift of a small loop going twice
around g; is homotopically trivial in f ~1(U), the arc §' is homotopic to the
curve §" represented in (C), which can be easily seen to differ from § by a
positive Dehn twist along <. Therefore the transformation 0,(Q) € M, is
the positive Dehn twist along ;. O

Example. Let X be a smooth algebraic surface of degree 3 in CP3, and
let us consider a generic projection of CP? — {pt} to CP2. This makes X
a 3-fold cover of CP? branched along a curve C of degree 6 with 6 cusps
(there are no nodes in this case). For a generic projection to CP! the curve
C has 12 tangency points, and the corresponding braid group factorization
in B has been computed by Moishezon in [16]. For all 1 < j < k < 6,

let Z;, = Xp—1.-+ . Xj11.Xj XJ+11 k__ll be the half-twist along the
segment which joins ¢; and g in D? When the points g1,...,q are placed

along a circle : then the braid group factorization is given by
2
A§ = (Z35746 Z13 %91 Z19 Ziy Z3s) - Zi35 Zas Z13 2o

and the corresponding geometric monodromy representation 6 : 7 (D? —
{¢1,---,96}) — S3 maps the geometric generators around gi,...,qgs to the
transpositions (23), (12), (23), (12), (23) and (12) respectively.

The corresponding Lefschetz pencil has 3 base points and consists of ellip-
tic curves ; after blowing up X three times it becomes the standard elliptic
fibration of CP2#9C_]P2 over CP! with 12 singular fibers. Tts monodromy is
therefore expected to be given by the word (D,Dy)® = 1 in the mapping
class group M; = SL(2,7Z), where D, and D, are the Dehn twists along
the two generators a and b of m(T?). We now check that this is indeed
consistent with what one obtains from the above braid monodromy.
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We know that the braids Z3,, Z3, and Z3; lie in the kernel of 6., by
Proposition 3. Moreover, by Proposition 4 the other elements which appear
in the braid factorization are mapped to Dehn twists along suitable curves
Y35, V46, v13 and o4 in T2. The projections of these curves to P! are as
shown in the diagram below ; their only intersections are the five points
indicated by solid circles, and all these intersections happen in the second
sheet of the covering.

713 and o4 have intersection number +1, so they generate 71 (7?) = Z?2
and will be referred to as respectively a and b. One then easily checks that
v35 = b— a and 46 = —a (we use additive notation). Note that we don’t
have to worry about orientations as the positive Dehn twists D, and D_,
are the same for any loop 7.

It follows from these computations that the braid factorization given
above is mapped by 0, to the factorization (Dy_oD,D,Dp)3 in M;. A Hur-
witz operation changes Dy_,D, into D,Dy, so the Lefschetz pencil mon-
odromy we have just obtained is indeed Hurwitz equivalent to the expected
factorization (DyDp)S.

We end with a couple of general remarks.

Remark 8. There should exist intrinsic restrictions on braid monodromies
coming from the very structure of the braid group, in a manner quite sim-
ilar to the restrictions on the monodromy of a symplectic Lefschetz pencil
coming from the structure of the mapping class group. Since a braid fac-
torization and a geometric monodromy representation determine a word in
the mapping class group, every known restriction on the monodromy of Lef-
schetz fibrations should yield a corresponding restriction on the braid group
factorizations for which a geometric monodromy representation exists.

For example, it is known [1] that the image of the monodromy of a sym-
plectic Lefschetz fibration cannot be contained in the Torelli group. It is
also known that there does not exist any non-trivial element in the funda-
mental group of the generic fiber 3, which remains fixed by the monodromy
of the Lefschetz fibration ([12], [11]). It is an interesting question to study
how these restrictions translate on the level of braid factorizations. Another
related question is to look for any specific constraints on the separating van-
ishing cycles of a symplectic Lefschetz fibration coming from the underlying
braid factorization.

Remark 9. Both the braid factorizations arising from branched coverings
and the mapping class group factorizations arising in the Lefschetz pencil
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situation are quite difficult to use directly. In the Lefschetz pencil situa-
tion Donaldson has introduced the idea of dealing with an invariant which
would be easier to handle although containing less information. This invari-
ant arises by considering cylinders joining the geometric vanishing cycles
and coning them to get immersed Lagrangian —2-spheres in the symplec-
tic manifold. Using the correspondence described above between branched
coverings and Lefschetz pencils, we can see these cylinders as corresponding
to all possible degenerations of the branch curve where two tangency points
come together and form a double point. Hopefully these degenerations or
other related structures might help in deriving a more usable invariant from
braid monodromies.

6. EXAMPLES

We now consider the examples defined by Moishezon in [17]. These ex-
amples are obtained by putting together several geometric projections of
the Veronese surface to CP? and applying certain twists to the correspond-
ing braid factorization. These twists are performed in such a way that the
braid factorization remains geometric, so that one obtains new manifolds
as branched coverings of CP? ramified along the curves constructed by this
procedure (see [17]). Specializing to the case of Veronese maps of degree 3,
we obtain a infinite sequence of smooth four-dimensional manifolds X3 ;.

Proposition 5. The manifolds X3; are all homeomorphic.

Proof. It was remarked by Moishezon in [17] that all X3; are simply con-
nected. We will show that X3 ; are not spin and therefore their homeomor-
phism type is determined by their signature and Euler characteristic.

We now compute the signature and Euler characteristic of the manifolds
X, obtained by Moishezon by twisting Veronese maps of degree p. All X, ;
are p’-sheeted coverings of CP? ramified at curves D, ; of degree dp, with &,
cusps and v, nodes, where d, = 9p(p — 1) and

27

Ky =27(p — 1)(4p = 5), vp=Z-(p—D((p—1)(B3p” — 14) +2)

(these values are computed in [17]). We get immediately that the genus g,
of Dy is given by 2g, — 2 = d2 — 3d, — 2(kp + 1) = 27(p — 1)(5p — 6).

Let us denote by f,; the covering map, and consider the homology class
L = f,;(H) € Hy(Xp,,Z) given by the pull-back of the hyperplane. Also,
call K the canonical class of X, ;, and let R C X,; be the set of branch
points of the covering f,;. Because we are in a quasiholomorphic situation
we can consider R (or a small perturbation of it) as the zero set of the
(2,0)-Jacobian Jac(fp;), which is an approximately holomorphic section of
AOT* X ® [y det TCP?, a line bundle over Xp,; whose first Chern class is
3L + K. It follows that [R] = 3L + K.

We can now express the quantities dp, k, and 2g,—2 in terms of the classes
L and K. To start with, note that the degree of the covering f,; is given by
deg fpi = L.L. Next, d, = [D,;].H = [R].L = 3L.L+ K.L. Moreover, R is a
smooth connected symplectic curve, so its genus is given by the adjunction
formula : 2g, — 2 = [R].[R] + K.[R] = 9L.L + 9K.L + 2K.K. Finally,
the cusps are the points where Jfp; A dJac(fp,;) vanishes and O0Jac(fp;)
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does not vanish ; a quick computation of the Euler classes yields that x, =
12L.L +9K.L + 2K.K — ey ;, where e, ; is the Euler-Poincaré characteristic
of X, ;. Comparing these values with those from [17] one gets the equations

L.L = p?
3L.L+ K.L = 9p(p—1)
9L.L + 9K.L + 2K.K = 27(p— 1)(5p — 6)

12L.L+9K.L+2K.K —e,; = 27(p—1)(4p —5)
This yields

L.L =p? K.L=6p*—9

K.K = 36p* — 108p + 81 €pi = 30p% — 54p + 27.

In the case p = 3 this implies that K2 = 81, and e(X3;) = 135. Therefore

we conclude that the signature is 0(X3;) = —63 and hence the manifolds
X3, are not spin. Since they have the same Euler characteristic and signa-
ture they are all homeomorphic. U

It follows from [17] that the fundamental groups m (CP? — D3 ;) are all
different, although the curves D3 ; are in the same homology class and have
the same numbers of cusps and nodes.

This situation is a generalization of the well-known phenomenon of Zariski
pairs. Of course there are finitely many non-isotopic holomorphic curves of
a given degree with given numbers of nodes and cusps, so only finitely many
of the curves D3 ; are holomorphic.

On the other hand, as a consequence from Theorem 3 we get that all
smooth four-manifolds X3; are symplectic. It is then natural to ask the
following :

Question : Are the manifolds X3 ; symplectomorphic ?

We expect the answer to this question to be negative, because the braid
factorizations computed by Moishezon are quite different. If the manifolds
X3, are not symplectomorphic, then other natural questions arise : are
these manifolds diffeomorphic 7 Do they have the same Seiberg-Witten
invariants ?

If the Seiberg-Witten invariants cannot tell apart the manifolds X3 ;, then
the only way to show that the Moishezon manifolds are not symplectomor-
phic might be to use the invariants arising from symplectic branched cover-
ings or symplectic Lefschetz pencils.
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