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Symplectic manifolds

A symplectic structure on a smooth manifold is a 2-form w
such that dw = 0 and w A -- - A w 18 a volume form.

Example: R?", wy = > dx; A dy;.

(Darboux: every symplectic manifold is locally ~ (R*",wy),
i.e. there are no local invariants).

Example: Riemann surfaces (X, voly) are symplectic.
Example: Every Kahler manifold is symplectic.
(includes all complex projective manifolds)

but the symplectic category is much larger.
(Gompf 1994: VG finitely presented group, 3(X*, w) compact
symplectic such that m1(X) = G).

Symplectic manifolds are not always complex, but they are
almost-complex, i.e. there exists J € End(TX) such that

J?*=—Id, g(u,v) = w(u, Jv) Riemannian metric.

At any given point (X, w, J) looks like (C"*, wy, %), but J is
not integrable (V.J # 0; 8* # 0; [T+, T10] ¢ T19). So there
are no holomorphic functions (in particular no holomorphic
local coordinates).

The moduli space of compatible almost-complex structures
is always contractible.



Symplectic topology

Typical problems:
— Which smooth manifolds admit symplectic structures ?
— Classity symplectic structures on a given smooth manifold.

(Moser: if [w] € H*(X, R) is fixed then all small deformations

are trivial).

Why we care:
— Physics (classical mechanics; string theory; ...)
— Next step after understanding complex manifolds.

Some facts from complex geometry extend to symplectic
manifolds; most don’t.

A lot is known if dim X = 4. Core ingredient: structure
of Seiberg-Witten / Gromov-Witten invariants of symplectic
4-manifolds (Taubes).

For dim X > 6, almost nothing is known. E.g., no known

non-trivial obstruction to the symplecticity of compact 6-
manifolds (except J[w] € H*(X,R) s.t. [w]™ #0).



Approximately holomorphic geometry

Idea:

Since we have almost-complex structures, even though there
are no holomorphic sections and linear systems, we can work
similarly with approximately holomorphic objects.

(Donaldson, ~1995)
Setup:  (X*",w) symplectic, compact
o 5-[w] € H*(X,Z) (not restrictive)
o J compatible with w ; ¢(.,.) =w(., J.)
o L line bundle such that ¢;(L) = 5-[w]

« V¥ with curvature —iw; Vi =0l 4 0k
O s(v) = 2(VEs(v) +iVEs(Jv)).

If X Kahler, then L is a holomorphic ample line bundle, i.e.
L®* has many holomorphic sections for k large enough.

= projective embeddings X < CP¥ (Kodaira).
= smooth hypersurfaces (Bertini).

= linear systems, projective maps.



Approximately holomorphic sections

X symplectic: J is not integrable = no holomorphic sections.
However, local approximately holomorphic model:

(X, z), w, J «—  (C",0), wo, (¢+...)
L®k, Vv +— C, d—|—§2(2jd,§j—2jd2’j).

= sp.(2) = exp(—3k|z]?) is
j{ approx. holomorphic !

x

A sequence of sections s; € T'(L®*) is approx. holomorphic
if sup [0s,| < C'k~'/% sup |0s| (+ similarly for higher order
derivatives).

(open condition! = no finite dim. space of sections)

For k > 0 the curvature of L®* (F}, = —ikw) probes the
small-scale geometry of X = J becomes almost integrable.

(sup |0sk| ~ V'k : rescale metric by vk for uniform bounds)

Goal: find some approx. holomorphic sections which behave
“generically” .



Approximately holomorphic
hypersurfaces

Theorem 1. (Donaldson, 1996) If k > 0, then L®*
admits approx. holomorphic sections s whose zero sets
Wi are smooth symplectic hypersurfaces.

Make up for loss of holomorphicity by achieving estimated
transversality: require |dsg(z)| > sup |0sy| along s; ' (0).
(uniform lower bound instead of just dsy(z) # 0)

These symplectic submanifolds have some special properties
typical of complex submanifolds:

— Letfschetz hyperplane: W} have the same homotopy and
homology groups as X up to middle dimension.

— Uniqueness: fixing k£ > 0, the submanifolds W}, are, up
to isotopy, independent of all choices made (even for J !).

Also consider linear systems of > 2 sections:

E.g., (80, 51) well-chosen approx. hol. sections of L& (k > 0)
= symplectic Lefschetz pencils (Donaldson, 1999)
(= family of hypersurfaces parametrized by CP* with isolated
singularities and standard local models).
The topological data encoded in the pencil determines (X, w)
up to symplectomorphism.



Branched covers of CP?

Theorem 2. (A., 2000) For k > 0, three suitable ap-
prozx. hol. sections of L®* define a map X — CP? with
generic local models, canonical up to isotopy.

(X*, w) symplectic, so, s1, 52 € ['(L®*) well-chosen
= f=(sp:81:89): X — CP?

Local models near branch curve R C X :

— branched cover : (z,y) — (2%, 1). /{
R: z=0 f(R): X=0

X 5 CP% (21,...,20) = (224 + 22, 2)
—cusp : (z,y) = (2° — 7Y, ).
R: y=3z> f(R): 27X? =4Y3 =
X 5 CP% (21,...,20) = (23— zizn + 23+ -+ 22_1, 2)

R smooth connected symplectic curve in X.
D = f(R) symplectic, immersed except at the cusps.

Generic singularities :
complex cusps; nodes (both orientations)

- KX
Theorem 2 = up to cancellation of nodes, the topology of D
is a symplectic invariant (if k large).

6



Topological invariants

2
CP D
%
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Topological data for a branched cover of CP?:

1) Branch curve: D C CP?
(up to isotopy and node cancellations).

2) Monodromy: @ : m(CP?* — D) — Sy (N = deg f)

(surjective, maps y; to transpositions).

D and 6 determine (X, w) up to symplectomorphism.

When dim X > 4, main difference: 6 takes values in the
mapping class group of the generic fiber.

This group is complicated; however there is a dimensional
induction procedure = given (X?",w) and k > 0 we get

1) (n — 1) plane curves D,,, D,_1, ..., Dy C CP?,
2) (92 X 7T1(CP2 — D2) — SN.

and these data determine (X, w) up to symplectomorphism.

= In principle it is enough to understand plane curves !
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The topology of plane curves
(Moishezon-Teicher, Auroux-Katzarkov-Yotov)

Perturbation = D = singular branched cover of CP!.

CP? — {o0}
Vi
deg D =d

op! lﬂ:(xq:xlza:g)l%(xozacl)

Monodromy = p : 7, (C — {pts}) — By (braid group)

= D is described by a “braid group factorization”
(involving cusps, nodes, tangencies).

The braid factorization characterizes D completely.

Problem: once computed, cannot be compared.

= more manageable (incomplete) invariant 7



Fundamental groups of complements

(Moishezon-Teicher, Auroux-Donaldson-Katzarkov)

Test problem: distinguish symplectically some homeo-
morphic complex surfaces of general type. (Seiberg-Witten
etc. are useless for this).

Moishezon-Teicher: use 7;(CP? — D) as invariant.

m1(CP?—D) is generated by “geometric generators” (;)1<i<d ;
relations given by the braid factorization.

Problem: in the symplectic case, node cancellations affect
m1(CP*—D},). = consider a quotient Gy, = 71 (CP?—Dy,)/ ~
that is a symplectic invariant for £ > 0.

Fact: 1 — GY = Gy — Sy X Zg — 7y — 1.
(N = deg fx, d = deg Dy)

Known examples ((CIP’Q, CP! x CP!, ruled surfaces, double
covers, ... ): for large k,

1) Gk — 7T1((CIP>2 — Dk)

2) GY is almost abelian: [GY), G}] has at most 4 elements.

3) ... but Ab(GY) depends only on homeomorphism data!
(intersection pairing, divisibility of |w] and Kx)



