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CHARACTERISTIC VARIETIES CHARACTERISTIC VARIETIES

CHARACTERISTIC VARIETIES

Let X be a connected, finite-type CW-complex.
Fundamental group G = π1(X , x0): a finitely generated, discrete
group, with Gab � H1(X ,Z).
Character group pG = Hom(G,C�) � H1(X ,C�): an abelian,
complex algebraic group, with pG � yGab.

DEFINITION

V i
d (X ) = tρ P pG | dimC Hi(X ,Cρ) ¥ du.

Here:
Cρ is the rank 1 local system defined by ρ, i.e, C viewed as a
module over ZG, via g � x = ρ(g)x .
Hi(X ,Cρ) = Hi(C�(rX )bZG Cρ).

Note:
Each set V i

d (X ) is a subvariety of pG.
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CHARACTERISTIC VARIETIES CHARACTERISTIC VARIETIES

EXAMPLE (CIRCLE)

We have �S1 = R.
Identify π1(S1, �) = Z = xty and ZZ = Z[t�1]. Then:

C�(
�S1) : 0 // Z[t�1]

t�1 // Z[t�1] // 0

For ρ P Hom(Z,C�) = C�, get

C�(
�S1)bZZ Cρ : 0 // C

ρ�1 // C // 0

which is exact, except for ρ = 1, when H0(S1,C) = H1(S1,C) = C.
Hence:

V0
1 (S

1) = V1
1 (S

1) = t1u

V i
d (S

1) = H, otherwise.
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CHARACTERISTIC VARIETIES CHARACTERISTIC VARIETIES

EXAMPLE (TORUS)

Identify π1(T n) = Zn, and xZn = (C�)n. Then:

V i
d (T

n) =

#
t1u if d ¤ (n

i ),

H otherwise.

EXAMPLE (PUNCTURED PLANE)

Let X = Cztn pointsu. Identify π1(X ) = Fn, and xFn = (C�)n. Then:

V1
d (X ) =

$&%(C�)n if d   n,
t1u if d = n,
H if d ¡ n.

EXAMPLE (ORIENTABLE SURFACE OF GENUS g ¡ 1)

V1
d (Σg) =

$&%(C�)2g if d   2g � 1,
t1u if d = 2g � 1,2g,
H if d ¡ 2g.
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CHARACTERISTIC VARIETIES CHARACTERISTIC VARIETIES

Some properties:

Homotopy invariance: If X � Y , then V i
d (Y ) � V i

d (X ), for all i ,d .

Product formula: V i
1(X1 �X2) =

�
p+q=i V

p
1 (X1)� Vq

1 (X2).

Degree 1 interpretation: The sets V1
d (X ) depend only on

G = π1(X )—in fact, only on G/G2. Write them as V1
d (G).

Functoriality: If ϕ : G� Q is an epimorphism, then ϕ̂ : pQ ãÑ pG
restricts to an embedding V1

d (Q) ãÑ V1
d (G), for each d .

Alexander invariant interpretation: Let X ab Ñ X be the maximal
abelian cover. View H�(X ab,C) as a module over Λ = C[Gab],
and identify pG = Spec(Λ). Then:¤

j¤i

V j
1(X ) = supp

(à
j¤i

Hj
(
X ab,C

))
.
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CHARACTERISTIC VARIETIES GREEN–LARZARSFELD SETS

GREEN–LARZARSFELD SETS

Let M be a compact, connected, Kähler manifold, e.g., a smooth,
complex projective variety.

The basic structure of the sets V i
d (M) was determined by Green

and Lazarsfeld, building on work of Castelnuovo and de Franchis,
Beauville, and Catanese.

The theory was further developed by Simpson, Ein–Lazarsfeld,
and Campana.

Arapura extended the description of the Green–Lazarsfeld sets to
quasi-Kähler manifolds; in particular, to smooth, quasi-projective
varieties X .

Work of Arapura, further refined by Dimca, Delzant, Budur,
Libgober, and Artal Bartolo–Cogolludo–Matei, describes the
varieties V1

1 (X ) in terms of pencils.
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CHARACTERISTIC VARIETIES GREEN–LARZARSFELD SETS

1T

ρT ρ

xπ1

translated torus

direction torus

THEOREM

If M is compact Kähler, then each set V i
d (M) is a finite union of

unitary translates of algebraic subtori of {π1(M).
Furthermore, if M is projective, then all the translates are by
torsion characters.
If X = XzD is a smooth, quasi-projective variety, and b1(X ) = 0,
then each set V i

d (X ) is a finite union of unitary translates of
algebraic subtori of {π1(X ).
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CHARACTERISTIC VARIETIES GREEN–LARZARSFELD SETS

ORBIFOLDS AND PENCILS

Let Σg,r be a Riemann surface of genus g ¥ 0, with r ¥ 0 points
removed.

Fix points q1, . . . ,qs on the surface, and assign to these points
integer weights µ1, . . . , µs with µi ¥ 2.

The orbifold Σ = (Σg,r , µ) is hyperbolic if
χorb(Σ) := 2� 2g � r �

°s
i=1(1� 1/µi) is negative.

A hyperbolic orbifold Σ is small if either Σ = S1 �S1 and s ¥ 2, or
Σ = C� and s ¥ 1; otherwise, Σ is large.

Let Γ = πorb
1 (Σg,r , µ). Write pΓ = pΓ� � pA, with A finite. Then:

V1
1 (Γ) =

$'&'%
pΓ if Σ is a large hyperbolic orbifold,(pΓzpΓ�)Y t1u if Σ is a small hyperbolic orbifold,
t1u otherwise.
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CHARACTERISTIC VARIETIES GREEN–LARZARSFELD SETS

Let X be a smooth, quasi-projective variety, and G = π1(X ).

A surjective, holomorphic map f : X Ñ (Σg,r , µ) is called an
orbifold fibration (or, a pencil) if

the generic fiber is connected;
the multiplicity of the fiber over each marked point qi equals µi ;
f admits an extension f̄ : X Ñ Σg which is also a surjective,
holomorphic map with connected generic fibers.

Such a map induces an epimorphism f7 : G� Γ, where
Γ = πorb

1 (Σg,s, µ), and thus a monomorphism pf7 : pΓ ãÑ pG.

THEOREM

V1
1 (X ) =

¤
f large

im(pf7)Y ¤
f small

(
im(pf7)z im(pf7)�)Y Z ,

where Z is a finite set of torsion characters.
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CHARACTERISTIC VARIETIES GREEN–LARZARSFELD SETS

HYPERPLANE ARRANGEMENTS

Let A be a (central) arrangement of n hyperplanes in C`.

Complement M(A) = C`z
�

HPA H. Note: M(A) � PM(A)�C�.

Identify H1(M(A),Z) = Zn and Hom(π1(M(A)),C�) = (C�)n.

Then V1(A) = V1
1 (M(A)) � (C�)n is isomorphic to

V1
1 (PM(A)) � tt P (C�)n | t1 � � � tn = 1u � (C�)n�1.

THEOREM (FALK–YUZVINSKY)

Each positive-dimensional, non-local component of V1(A) is of the
form ρT , where ρ is a torsion character, T = f �(H1(Σ0,k ,C�)), for
some orbifold fibration f : M(A)Ñ (Σ0,k , µ), and either

k = 2, and f has at least one multiple fiber, or

k = 3 or 4, and f corresponds to a multinet with k classes on the
multiarrangement (A,m), for some m.
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CHARACTERISTIC VARIETIES GREEN–LARZARSFELD SETS

2

2

2

EXAMPLE

Let A be the B3 arrangement, with defining polynomial
Q = xyz(x � y)(x + y)(x � z)(x + z)(y � z)(y + z).

Then A admits a multinet with 3 classes and weight 4.
This defines a 2-dimensional component T � V1(A).
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CHARACTERISTIC VARIETIES APPLICATIONS

APPLICATIONS OF CHARACTERISTIC VARIETIES

Homology of finite, regular abelian covers
Homology of the Milnor fiber of an arrangement

Homological and geometric finiteness of regular abelian covers
Bieri–Neumann–Strebel–Renz invariants
Dwyer–Fried invariants

Connection to resonance varieties
The Tangent Cone Theorem
Obstructions to formality
Obstructions to (quasi-) projectivity
3-manifold groups and Kähler groups

Connection to the Alexander polynomial
The Alexander polynomial of a quasi-projective variety
3-manifold groups and quasi-projective groups
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FINITE ABELIAN COVERS

HOMOLOGY OF FINITE ABELIAN COVERS

Let X be a connected, finite-type CW-complex, and G = π1(X ).

Let A be a finite abelian group.

Every epimorphism ν : G Ñ A determines a regular, connected
A-cover X ν Ñ X .

Let k be a field, p = char(k). Assume p = 0 or p - |A|. Then

Hq(X ν, k) � Hq(X ,k[A]) �
à
ρPpA

Hq(X ,kρ).

Hence
dimk Hq(X ν,k) =

¸
d¥1

��Vq
d (X , k)X im(pν)�� .
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FINITE ABELIAN COVERS

1T

ρT ρ

/C

vs

1Tk /k

Let X be a smooth, quasi-projective variety.

PROPOSITION (DENHAM–S.)

Suppose there is a small orbifold fibration f : X Ñ (Σ, (µ1, . . . , µs)) and
a prime p dividing gcd tµ1, . . . , µsu. Then, for any integer q ¡ 1 not
divisible by p, there exists a regular, q-fold cyclic cover Y Ñ X such
that H1(Y ,Z) has p-torsion.

Proof uses the following fact from [Dimca–Papadima–S.]: The direction
tori associated with two orbifold fibrations of V1

1 (X ) either coincide or
intersect only at the identity.
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MILNOR FIBRATION OF AN ARRANGEMENT

Let A be a hyperplane arrangement in C`.

For each H P A, pick a linear form fH with ker(fH) = H

Let m P ZA be choice of multiplicities, with gcd(mH : H P A) = 1.

The polynomial map Qm =
±

HPA f mH
H : C` Ñ C restricts to the

Milnor fibration, f : M(A)Ñ C�.

Milnor fiber: F = F (A,m) := f�1(1).

Set N =
°

HPA mH , and let ζ = exp(2πi/N). Geometric
monodromy: h : F Ñ F , (z1, . . . , zd ) ÞÑ (ζz1, . . . , ζzd ).

Identify F /ZN with U = PM(A). Get a regular, N-fold cover,
F Ñ U, classified by λ : π1(U)� ZN , xH ÞÑ gmH .

If char(k) - N, then:

dimk Hj(F ,k) =
¸
d¥1

���V j
d (U, k)X im(pλ)��� .
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FINITE ABELIAN COVERS MILNOR FIBRATION

@
@
@
@
@
@�

�
�
�
�
�

A C

B

B

C

A

EXAMPLE

Let A be the braid arrangement in C3, defined by the polynomial
Q = (x2 � y2)(x2 � z2)(y2 � z2).
V1(A) � (C�)6 has 4 local components of dimension 2,
corresponding to 4 triple points.
The rational map P2 99K P1, (x , y , z) ÞÑ (x2 � y2, x2 � z2)
restricts to a fibration M(A)Ñ P1zt(1,0), (0,1), (1,1)u. This
yields a 2-dimensional component in V1(A).
Let λ : π1(U)Ñ Z6 � C� be the diagonal character. Then
λ2 P V1

1 (U), yet λ R V1
1 (U). Hence, b1(F (A)) = 5 + 2 � 1 = 7.

In fact, H1(F (A),Z) = Z7.
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FINITE ABELIAN COVERS MILNOR FIBRATION

THEOREM (DENHAM-S.)
Let A a hyperplane arrangement which admits a multinet partition into
3 classes, with at least one hyperplane H for which the multiplicity
µH ¡ 1 (plus another mild assumption). Let p be a prime dividing µH .
Then:

There is a choice of multiplicities m on the deletion B = AztHu
such that H1(F (B,m),Z) has p-torsion.
There is a “polarized" arrangement C = B}m, and an integer j ¥ 1
such that Hj(F (C),Z) has p-torsion.

COROLLARY

For every prime p ¥ 2, there is an arrangement Ap and an integer
j ¥ 1 such that Hj(F (Ap),Z) has non-trivial p-torsion.
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FINITE ABELIAN COVERS MILNOR FIBRATION

EXAMPLE

Let A be the B3 arrangement, with defining polynomial
Q = xyz(x � y)(x + y)(x � z)(x + z)(y � z)(y + z).

Let B = Aztz = 0u be the deleted B3 arrangement.

V1(A) contains a translated subtorus ρT , arising from a small
pencil M(B)Ñ C� with a single multiple fiber of multiplicity 2.

Hence, there is 2-torsion in H1(F (B,m),Z), for certain m.

A parallel connection construction on B produces an arrangement
C of 27 hyperplanes in C9, with defining polynomial

Q = x1x2(x2
1 �x2

2 )(x
2
1 �x2

3 )(x
2
2 �x2

3 )y1y2y3y4y5y6 � � � (x1 + x3�2y6)

The 2-torsion part of H7(F (C),Z) is Z108
2 .
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HOMOLOGICAL AND GEOMETRIC FINITENESS OF REGULAR ABELIAN
COVERS

GEOMETRIC AND HOMOLOGICAL FINITENESS IN

ABELIAN COVERS

Let X be a connected, finite-type CW-complex, with G = π1(X ).

Let A be an abelian group (quotient of Gab).

Equivalence classes of Galois A-covers of X can be identified with
Epi(G,A)/ Aut(A) � Epi(Gab,A)/ Aut(A).

G

ν
!!

ab // Gab

π

��
A

ÐÑ X ab pπ //

pab
!!

X ν

pν

��
X

Goal: Use the characteristic varieties of X to analyze the
geometric and homological finiteness properties of regular
A-covers of X .
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HOMOLOGICAL AND GEOMETRIC FINITENESS OF REGULAR ABELIAN
COVERS BIERI–NEUMANN–STREBEL–RENZ INVARIANTS

THE BIERI–NEUMANN–STREBEL–RENZ INVARIANTS

Let G be a finitely generated group. Set S(G) = (Hom(G,R)zt0u)/R+.

DEFINITION (BIERI, NEUMANN, STREBEL 1987)

Σ1(G) = tχ P S(G) | Cχ(G) is connectedu.

Here, C(G) is the Cayley graph, and Cχ(G) the induced subgraph on
vertex set Gχ = tg P G | χ(g) ¥ 0u.
Σ1(G) is an open set, independent of choice of generating set for G.

DEFINITION (BIERI, RENZ 1988)

Σk (G,Z) =
 

χ P S(G) | the monoid Gχ is of type FPk
(
.

Here, G is of type FPk if there is a projective ZG-resolution P Ñ Z,
with Pi finitely generated for all i ¤ k .

ALEX SUCIU (NORTHEASTERN) GREEN-LAZARSFELD SETS CIRM LUMINY WORKSHOP 20 / 47



HOMOLOGICAL AND GEOMETRIC FINITENESS OF REGULAR ABELIAN
COVERS BIERI–NEUMANN–STREBEL–RENZ INVARIANTS

The Σ-invariants form a descending chain of open subsets,
S(G) � Σ1(G,Z) � Σ1(G,Z) � � � �

Σ1(G,Z) = Σ1(G).

Σk (G,Z) � H ùñ G is of type FPk .

Note that a non-zero χ : G Ñ R has image Zr , for some r ¥ 1.

The Σ-invariants control the finiteness properties of normal
subgroups N �G for which G/N is free abelian:

N is of type FPk ðñ S(G,N) � Σk (G,Z)

where S(G,N) = tχ P S(G) | χ(N) = 0u.

In particular: ker(χ : G� Z) is f.g. ðñ t�χu � Σ1(G).
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HOMOLOGICAL AND GEOMETRIC FINITENESS OF REGULAR ABELIAN
COVERS BIERI–NEUMANN–STREBEL–RENZ INVARIANTS

Let X be a connected CW-complex with finite k -skeleton, for some
k ¥ 1. Let G = π1(X , x0). For each χ P S(X ) = S(G), set

yZGχ =
!

λ P ZG | tg P supp λ | χ(g)   cu is finite, @c P R
)

This is a ring, which contains ZG as a subring; hence, a ZG-module.

DEFINITION (FARBER, GEOGHEGAN, SCHÜTZ)

Σq(X ,Z) = tχ P S(X ) | Hi(X , yZG�χ) = 0, @ i ¤ qu

Bieri: If G is of type FPk , then Σq(G,Z) = Σq(K (G,1),Z), @q ¤ k .

The sphere S(X ) parametrizes all regular, free abelian covers of X .
The Σ-invariants of X keep track of the geometric finiteness properties
of these covers.
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HOMOLOGICAL AND GEOMETRIC FINITENESS OF REGULAR ABELIAN
COVERS THE DWYER–FRIED INVARIANTS

THE DWYER–FRIED INVARIANTS

Another tack was taken by Dwyer and Fried, also in 1987.

Any epimorphism ν : H1(X ,Z)� Zr gives rise to a regular
Zr -cover X ν Ñ X . Such covers are parametrized by the
Grassmannian Grr (H1(X ,Q)), via the correspondence 

regular Zr -covers of X
(
ÐÑ

 
r -planes in H1(X ,Q)

(
X ν Ñ X ÐÑ Pν := im(ν� : Qr Ñ H1(X ,Q))

DEFINITION

The Dwyer–Fried invariants of X are the subsets

Ωi
r (X ) =

 
Pν P Grr (H1(X ,Q))

�� bj(X ν)   8 for j ¤ i
(
.

More generally, for any abelian group A, we may consider the sets
Ωi

A(X ) = t[ν] P Epi(G,A)/ Aut(A) | bj(X ν)   8, for j ¤ iu.
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AN UPPER BOUND FOR THE Σ-INVARIANTS

In order to compare the invariants Σi(X ) � S(X ) � H1(X ,R) and
Ωi

r (X ) � Grr (H1(X ,Q)) with the characteristic varieties
V i(X ) :=

�
j¤i V

j
1(X ) � H1(X ,C�), we need one more notion.

Let exp : H1(X ,C)Ñ H1(X ,C�) be the coefficient homomorphism
induced by C Ñ C�, z ÞÑ ez .
Given a Zariski closed subset W � H1(X ,C�), define its
“exponential tangent cone" at 1 to be

τ1(W ) = tz P H1(X ,C) | exp(λz) P W , @λ P Cu

LEMMA (DIMCA–PAPADIMA–S.)

τ1(W ) is a finite union of rationally defined linear subspaces.

Write τQ
1 (W ) = τ1(W )XH1(X ,Q) and τR

1 (W ) = τ1(W )XH1(X ,R).
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HOMOLOGICAL AND GEOMETRIC FINITENESS OF REGULAR ABELIAN
COVERS AN UPPER BOUND FOR THE Σ-INVARIANTS

Let χ P S(X ), and set Γ = im(χ) � Zr , for some r ¥ 1.
A Laurent polynomial p =

°
γ nγγ P ZΓ is χ-monic if the greatest

element in χ(supp(p)) is 0, and n0 = 1.
Let RΓχ be the localization of ZΓ at the multiplicative subset of all
χ-monic polynomials; it’s both a ZG-module and a PID.
For each i ¤ k , set bi(X ,χ) = rankRΓχ

Hi(X ,RΓχ).

THEOREM (PAPADIMA–S.)

1 �χ P Σk (X ,Z) ùñ bi(X ,χ) = 0, @i ¤ k.
2 χ R τR

1 (Vk (X ))ðñ bi(X ,χ) = 0, @i ¤ k.

Hence:
Σi(X ,Z) � S(X )zS(τR

1 (V i(X )))

Thus, Σi(X ,Z) is contained in the complement of a finite union of
rationally defined great subspheres.
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HOMOLOGICAL AND GEOMETRIC FINITENESS OF REGULAR ABELIAN
COVERS A FORMULA AND A BOUND FOR THE Ω-INVARIANTS

A FORMULA AND A BOUND FOR THE Ω-INVARIANTS

THEOREM (DWYER–FRIED, PAPADIMA–S.)

For an epimorphism ν : π1(X )� Zr , the following are equivalent:
1 The vector space

Àk
i=0 Hi(X ν,C) is finite-dimensional.

2 The algebraic torus Tν = im
(
ν̂ : xZr

ãÑ {π1(X )
)

intersects the
variety Vk (X ) in only finitely many points.

Note that exp(Pν bC) = Tν. Thus:

COROLLARY

Ωi
r (X ) =

 
P P Grr (H1(X ,Q))

�� dim
(
exp(P bC)X V i(X )

)
= 0

(
More generally, for any abelian group A:

PROPOSITION (S.-YANG-ZHAO)

Ωi
A(X ) =

 
[ν] P Epi(π1(X ),A)/ Aut(A) | im(ν̂)X V i(X ) is finite

(
.
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HOMOLOGICAL AND GEOMETRIC FINITENESS OF REGULAR ABELIAN
COVERS A FORMULA AND A BOUND FOR THE Ω-INVARIANTS

Let V be a homogeneous variety in kn. The set
σr (V ) =

 
P P Grr (kn)

��P XV � t0u
(

is Zariski closed.
If L � kn is a linear subspace, σr (L) is the special Schubert variety
defined by L. If codim L = d , then codim σr (L) = d � r + 1.

THEOREM

Ωi
r (X ) � Grr (H1(X ,Q))zσr

(
τQ

1 (V i(X ))
)

Thus, each set Ωi
r (X ) is contained in the complement of a finite

union of special Schubert varieties.
If r = 1, the inclusion always holds as an equality. In general,
though, the inclusion is strict.
Similar inclusions hold for the sets Ωi

A(X ), see [S.-Yang-Zhao]
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COVERS COMPARING THE BOUNDS ON THE Σ- AND Ω-INVARIANTS

COMPARING THE Σ- AND Ω-BOUNDS

THEOREM (S.)

Suppose that Σi(X ,Z) = S(X )zS(τR
1 (V i(X ))).

Then Ωi
r (X ) = Grr (H1(X ,Q))zσr (τ

Q
1 (V i(X ))), for all r ¥ 1.

In general, this implication cannot be reversed.

COROLLARY

Suppose there is an integer r ¥ 2 such that Ωi
r (X ) is not Zariski open.

Then Σi(X ,Z) � S(τR
1 (V i(X )))A.
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HOMOLOGICAL AND GEOMETRIC FINITENESS OF REGULAR ABELIAN
COVERS COMPARING THE BOUNDS ON THE Σ- AND Ω-INVARIANTS

Using a result of Delzant (2010), we prove:

THEOREM (PAPADIMA–S.)

Let M be a compact Kähler manifold with b1(M) ¡ 0. Then
Σ1(M,Z) = S(τR

1 (V1(X )))A if and only if there is no pencil f : M Ñ E
onto an elliptic curve E such that f has multiple fibers.

PROPOSITION (S.)

Let M be a compact Kähler manifold. If M admits an orbifold fibration
with base genus g ¥ 2, then Ω1

r (M) = H, for all r ¡ b1(M)� 2g.
Otherwise, Ω1

r (M) = Grr (H1(M,Q)), for all r ¥ 1.

PROPOSITION (S.)
Let M be a smooth, complex projective variety, and suppose M admits
an orbifold fibration with multiple fibers and base genus g = 1. Then
Ω1

2(M) is not an open subset of Gr2(H1(M,Q)).
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HOMOLOGICAL AND GEOMETRIC FINITENESS OF REGULAR ABELIAN
COVERS COMPARING THE BOUNDS ON THE Σ- AND Ω-INVARIANTS

EXAMPLE (THE CATANESE–CILIBERTO–MENDES LOPES SURFACE)

Let C1 be a smooth curve of genus 2 with an elliptic involution σ1.
Σ1 = C1/σ1 is a curve of genus 1

Let C2 be a curve of genus 3 with a free involution σ2.
Σ2 = C2/σ2 is a curve of genus 2.

Let M = C1 �C2/σ1 � σ2. Then M is a minimal surface of general
type with pg(M) = q(M) = 3 and K 2

M = 8.

Projection onto the first coordinate yields an orbifold fibration, f1,
with two multiple fibers, both of multiplicity 2, while projection onto
the second coordinate defines a holomorphic fibration f2:

C2

/σ2

��

C1 �C2
pr2oo

/σ1�σ2

��

pr1 // C1

/σ1

��
Σ2 M

f1 //f2oo Σ1
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HOMOLOGICAL AND GEOMETRIC FINITENESS OF REGULAR ABELIAN
COVERS COMPARING THE BOUNDS ON THE Σ- AND Ω-INVARIANTS

Identify H1(M,Z) = Z6 and H1(M,C�) = (C�)6. Then

V1(M) = tt4 = t5 = t6 = 1, t3 = �1u Y tt1 = t2 = 1u,

with the two components corresponding to the pencils f1 and f2.

Thus, τ1(V1(M)) = tx1 = x2 = 0u.

The set Ω1
2(M) is not open, not even in the usual topology on the

Grassmannian.

Hence, Ω1
2(M) � σ2(τ

Q
1 (V1(M)))A.

Hence, Σ1(M,Z) � S(τR
1 (V1(M)))A.
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RESONANCE VARIETIES AND THE TANGENT CONE THEOREM RESONANCE VARIETIES

RESONANCE VARIETIES

Let X be a connected, finite-type CW-complex
Let A = H�(X ,C). For each a P A1, we have a2 = 0.
Thus, may form the cochain complex

(A, �a) : A0 a // A1 a // A2 // � � �

DEFINITION

The resonance varieties of X are the (homogeneous) algebraic sets

Ri
d (X ) = ta P A1 | dimC H i(A,a) ¥ du.

We always have

τ1(V i
d (X )) � TC1(V i

d (X )) � Ri
d (X ),

but both inclusions may be strict, in general.
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RESONANCE VARIETIES AND THE TANGENT CONE THEOREM FORMALITY

FORMALITY

Let X be a connected CW-complex with finite 1-skeleton.

X is formal if there is a zig-zag of cdga quasi-isomorphisms from
(APL(X ,Q),d) to (H�(X ,Q),0).

X is k-formal (for some k ¥ 1) if each of these morphisms induces
an iso in degrees up to k , and a monomorphism in degree k + 1.

X is 1-formal if and only if G = π1(X ) is 1-formal, i.e., its Malcev
Lie algebra, mG = Prim(yQG), is quadratic.

For instance, compact Kähler manifolds and complements of
hyperplane arrangements are formal.

X1, X2 formal ùñ X1 �X2 and X1 _X2 are formal

M1, M2 formal, closed n-manifolds ùñ M1#M2 formal
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RESONANCE VARIETIES AND THE TANGENT CONE THEOREM TANGENT CONE THEOREM

TANGENT CONE THEOREM

THEOREM (DIMCA–PAPADIMA–S.)

Let X be a 1-formal space. Then, for each d ¡ 0,

τ1(V1
d (X )) = TC1(V1

d (X )) = R1
d (X ).

Consequently, R1
d (X ) is a union of rationally defined linear

subspaces in H1(X ,C).
In upper bound for Σ1(X ,Z) we may replace τR

1 (V1(X )) by
R1(X ,R), and similarly for the bound on Ω1

r (X ).
This theorem yields a useful formality test.
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RESONANCE VARIETIES AND THE TANGENT CONE THEOREM TANGENT CONE THEOREM

EXAMPLE

Let G = xx1, x2, x3, x4 | [x1, x2], [x1, x4][x�2
2 , x3], [x�1

1 , x3][x2, x4]y. Then
R1

1(G) = tx P C4 | x2
1 � 2x2

2 = 0u splits into linear subspaces over R

but not over Q. Thus, G is not 1-formal.

EXAMPLE

F (Σg ,n): the configuration space of n labeled points of a
Riemann surface of genus g (a smooth, quasi-projective variety).
π1(F (Σg ,n)) = Pg,n: the pure braid group on n strings on Σg .

Using computation of H�(F (Σg ,n),C) by Totaro, get

R1
1(P1,n) =

"
(x , y) P Cn �Cn

���� °n
i=1 xi =

°n
i=1 yi = 0,

xiyj � xjyi = 0, for 1 ¤ i   j   n

*
For n ¥ 3, this is an irreducible, non-linear variety (a rational normal

scroll). Hence, P1,n is not 1-formal.
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RESONANCE VARIETIES AND THE TANGENT CONE THEOREM TANGENT CONE THEOREM

RESONANCE VARIETIES OF QUASI-KÄHLER

MANIFOLDS

THEOREM (DIMCA–PAPADIMA–S.)

Let X be a quasi-Kähler manifold. Let tLαuα be the non-zero irred
components of R1

1(X ). If X is 1-formal, then

1 Each Lα is a linear subspace of H1(X ,C).

2 Each Lα is p-isotropic (i.e., the restriction of YX to Lα has rank p),
with dim Lα ¥ 2p + 2, for some p = p(α) P t0,1u.

3 If α � β, then Lα X Lβ = t0u.

4 R1
d (X ) = t0u Y

�
α:dim Lα¡d+p(α) Lα.

Furthermore,
5 If X is compact, then X is 1-formal, and each Lα is 1-isotropic.

6 If W1(H1(X ,C)) = 0, then X is 1-formal, and each Lα is
0-isotropic.
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RESONANCE VARIETIES AND THE TANGENT CONE THEOREM TANGENT CONE THEOREM

PROPAGATION OF COHOMOLOGY JUMP LOCI

A space X with π1(X ) = G is a duality space of dimension n if
Hp(X ,ZG) = 0 for p � n and Hn(X ,ZG) � 0 and torsion-free.

By analogy, we say X is an abelian duality space of dimension n if
Hp(X ,ZGab) = 0 for p � n and Hn(X ,ZGab) � 0 and torsion-free.

THEOREM (DENHAM–S.–YUZVINSKY)

Let X be an abelian duality space of dim n. For any character
ρ : G Ñ C�, if Hp(X ,Cρ) � 0, then Hq(X ,Cρ) � 0 for all p ¤ q ¤ n.
Thus, the characteristic varieties of X “propagate":

V1
1 (X ) � V2

1 (X ) � � � � � Vn
1 (X ).

Moreover, if X admits a minimal cell structure, then

R1
1(X ) � R2

1(X ) � � � � � Rn
1(X ).
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RESONANCE VARIETIES AND THE TANGENT CONE THEOREM TORIC COMPLEXES

TORIC COMPLEXES AND RIGHT-ANGLED ARTIN

GROUPS

L simplicial complex of dimension d on n vertices.

Let TL be the respective toric complex: the subcomplex of T n

obtained by deleting the cells corresponding to the missing
simplices of L.

TL is a connected, minimal CW-complex, with dim TL = d + 1.

π1(TL) is the right-angled Artin group associated to graph
Γ = L(1):

GΓ = xv P V (Γ) | vw = wv if tv ,wu P E(Γ)y.

K (GΓ,1) = T∆Γ , where ∆Γ is the flag complex of Γ.

TL is formal, and so GΓ is 1-formal.
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RESONANCE VARIETIES AND THE TANGENT CONE THEOREM TORIC COMPLEXES

Identify H1(TL,C) = CV, the C-vector space with basis tv | v P Vu.

THEOREM (PAPADIMA–S.)

Ri
d (TL) =

¤
W�V°

σPLVzW
dimC

rHi�1�|σ|(lkLW
(σ),C)¥d

CW,

where LW is the subcomplex induced by L on W, and lkK (σ) is the link
of a simplex σ in a subcomplex K � L.

Using (1) resonance upper bound, and (2) computation of Σk (GΓ,Z)
by Meier, Meinert, VanWyk (1998), we get:

COROLLARY (PAPADIMA-S.)

Σk (TL,Z) �
( ¤

i¤k

Ri
1(TL,R)

)A
Σk (GΓ,Z) =

( ¤
i¤k

Ri
1(T∆Γ ,R)

)A
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RESONANCE VARIETIES AND THE TANGENT CONE THEOREM TORIC COMPLEXES

THEOREM (DIMCA–PAPADIMA–S.)

The following are equivalent:

1 GΓ is a quasi-Kähler group
2 Γ = Kn1,...,nr := K n1 � � � � �K nr

3 GΓ = Fn1 � � � � � Fnr

1 GΓ is a Kähler group
2 Γ = K2r

3 GΓ = Z2r

L is Cohen–Macaulay if for each simplex σ P L, the cohomologyrH�(lk(σ),Z) is concentrated in degree n� |σ| and is torsion-free.

THEOREM (DENHAM–S.–YUZVINSKY)

TL is an abelian duality space (of dimension d + 1) if and only if L is
Cohen–Macaulay, in which case both V i

1(TL) and Ri
1(TL) propagate.
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RESONANCE VARIETIES AND THE TANGENT CONE THEOREM TORIC COMPLEXES

BESTVINA–BRADY GROUPS

NΓ = ker(ν : GΓ � Z), where ν(v) = 1, for all v P V (Γ).

THEOREM (DIMCA–PAPADIMA–S.)

The following are equivalent:

1 NΓ is a quasi-Kähler group
2 Γ is either a tree, or Γ = Kn1,...,nr , with

some ni = 1, or all ni ¥ 2 and r ¥ 3.

1 NΓ is a Kähler group
2 Γ = K2r+1

3 NΓ = Z2r

EXAMPLE (ANSWERS A QUESTION OF J. KOLLÁR)

Γ = K2,2,2  GΓ = F2 � F2 � F2  NΓ = the Stallings group
NΓ is finitely presented, but rank H3(NΓ,Z) = 8, so NΓ not FP3.
Also, NΓ = π1(C

2ztan arrangement of 5 linesu).
Thus, NΓ is a quasi-projective group which is not commensurable
(even up to finite kernels) to any group π having a finite K (π,1).
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RESONANCE VARIETIES AND THE TANGENT CONE THEOREM TORIC COMPLEXES

HYPERPLANE ARRANGEMENTS

THEOREM (S.)

Let A be an arrangement of affine lines in C2, and G = π1(M(A)).
The following are equivalent:

G is a Kähler group.
G is a free abelian group of even rank.
A consists of an even number of lines in general position.

Also equivalent:

G is a right-angled Artin group.
G is a finite direct product of finitely generated free groups.
The multiplicity graph of A is a forest.

THEOREM (DENHAM–S.–YUZVINSKY)

If A has rank d, then M(A) is an abelian duality space of dim d, and
both the characteristic and the resonance varieties of M(A) propagate.
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THREE-DIMENSIONAL MANIFOLDS

3-MANIFOLD GROUPS

QUESTION (DONALDSON–GOLDMAN 1989, REZNIKOV 1993)

Which 3-manifold groups are Kähler groups?

Reznikov (2002) and Hernández-Lamoneda (2001) gave partial
solutions.

THEOREM (DIMCA–S.)

Let G be the fundamental group of a closed 3-manifold. Then G is a
Kähler group ðñ G is a finite subgroup of O(4), acting freely on S3.

Idea of proof: compare the resonance varieties of (orientable)
3-manifolds to those of Kähler manifolds.
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THREE-DIMENSIONAL MANIFOLDS

PROPOSITION

Let M be a closed, orientable 3-manifold. Then:
1 H1(M,C) is not 1-isotropic.

2 If b1(M) is even, then R1
1(M) = H1(M,C).

PROPOSITION

Let M be a compact Kähler manifold with b1(M) � 0. If
R1

1(M) = H1(M,C), then H1(M,C) is 1-isotropic.

But G = π1(M), with M Kähler ñ b1(G) even.
Thus, if G is both a 3-mfd group and a Kähler group ñ b1(G) = 0.
Using work of Fujiwara (1999) and Reznikov (2002) on Kazhdan’s
property (T), as well as Perelman (2003), it follows that G is a
finite subgroup of O(4).
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THREE-DIMENSIONAL MANIFOLDS

Further improvements have been obtained since then by Kotschick
and Biswas, Mj, and Seshadri.

QUESTION

Which 3-manifold groups are quasi-Kähler groups?

THEOREM (DIMCA–PAPADIMA–S.)

Let G be the fundamental group of a closed, orientable 3-manifold.
Assume G is 1-formal. Then the following are equivalent:

1 m(G) � m(π1(X )), for some quasi-Kähler manifold X.

2 m(G) � m(π1(M)), where M is either S3, #nS1 �S2, or S1 � Σg .
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THREE-DIMENSIONAL MANIFOLDS

ALEXANDER POLYNOMIAL

Let X abf p
ÝÑ X be the maximal torsion-free abelian cover, defined

by G ab
ÝÑ H = H1(G)/tors � Zn.

Let AG = H1(X abf,p�1(x0);Z) be the Alexander module, over the
ring ZH � Z[t�1

1 , . . . , t�1
n ].

The Alexander polynomial ∆G P ZH is the gcd of all codimension
1 minors of a presentation matrix for AG.

PROPOSITION (DIMCA–PAPADIMA–S.)

V̌1(G)zt1u = V (∆G)zt1u,
where

V̌1(G) = union of codim. 1 components of V1(G)X pG0

V (∆G) = hypersurface in pG0 defined by ∆G.

EXAMPLE

If G = π1(S3zK ), then V1
1 (G) = tz P C� | ∆G(z) = 0u Y t1u.
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THREE-DIMENSIONAL MANIFOLDS

THEOREM (DIMCA–PAPADIMA–S.)

Let G be a quasi-Kähler group, and ∆G its Alexander polynomial.
If b1(G) � 2, then the Newton polytope of ∆G is a line segment.
If G is actually a Kähler group, then ∆G

.
= const.

Using
a strengthening of the above result;
the relation between the Alexander norm and the Thurston norm
due to McMullen;
recent work of Agol, Kahn–Markovic, Wise, and Przytycki–Wise;
a few more things,

we prove:

THEOREM (FRIEDL–S.)

Let N be a compact 3-manifold with empty or toroidal boundary. If
π1(N) is a quasi-projective group, then all the prime components of N
are graph manifolds.
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