GREEN-LAZARSFELD SETS AND THE TOPOLOGY OF SMOOTH ALGEBRAIC VARIETIES

Alex Suciu

Northeastern University

Workshop on Singularities of Differential Equations in Algebraic Geometry

CIRM Luminy, France

June 8, 2012

ALEX SUCIU (NORTHEASTERN)

CHARACTERISTIC VARIETIES

- Let *X* be a connected, finite-type CW-complex.
- Fundamental group G = π₁(X, x₀): a finitely generated, discrete group, with G_{ab} ≃ H₁(X, Z).
- Character group G
 ^ˆG = Hom(G, C*) ≅ H¹(X, C*): an abelian, complex algebraic group, with G
 ^ˆG ≅ G_{ab}.

Definition

$$\mathcal{V}_{d}^{i}(X) = \{ \rho \in \widehat{G} \mid \dim_{\mathbb{C}} H_{i}(X, \mathbb{C}_{\rho}) \ge d \}.$$

Here:

- C_ρ is the rank 1 local system defined by ρ, i.e, C viewed as a module over ZG, via g ⋅ x = ρ(g)x.
- $H_i(X, \mathbb{C}_{\rho}) = H_i(C_*(\widetilde{X}) \otimes_{\mathbb{Z}G} \mathbb{C}_{\rho}).$

Note:

• Each set $\mathcal{V}_d^i(X)$ is a subvariety of \widehat{G} .

EXAMPLE (CIRCLE)

We have $\widetilde{S^1} = \mathbb{R}$. Identify $\pi_1(S^1, *) = \mathbb{Z} = \langle t \rangle$ and $\mathbb{Z}\mathbb{Z} = \mathbb{Z}[t^{\pm 1}]$. Then:

$$C_*(\widetilde{S}^1): 0 \longrightarrow \mathbb{Z}[t^{\pm 1}] \xrightarrow{t-1} \mathbb{Z}[t^{\pm 1}] \longrightarrow 0$$

For $\rho \in \operatorname{Hom}(\mathbb{Z}, \mathcal{C}^*) = \mathbb{C}^*$, get

$$C_*(\widetilde{S^1}) \otimes_{\mathbb{Z}\mathbb{Z}} \mathbb{C}_{\rho} : \mathbf{0} \longrightarrow \mathbb{C} \xrightarrow{\rho-1} \mathbb{C} \longrightarrow \mathbf{0}$$

which is exact, except for $\rho = 1$, when $H_0(S^1, \mathbb{C}) = H_1(S^1, \mathbb{C}) = \mathbb{C}$. Hence:

$$\mathcal{V}_1^0(\mathcal{S}^1) = \mathcal{V}_1^1(\mathcal{S}^1) = \{1\}$$

 $\mathcal{V}_d^i(\mathcal{S}^1) = \emptyset$, otherwise.

ALEX SUCIU (NORTHEASTERN)

EXAMPLE (TORUS)

Identify $\pi_1(T^n) = \mathbb{Z}^n$, and $\widehat{\mathbb{Z}^n} = (\mathbb{C}^*)^n$. Then: $\mathcal{V}_d^i(T^n) = \begin{cases} \{1\} & \text{if } d \leq \binom{n}{i}, \\ \emptyset & \text{otherwise.} \end{cases}$

EXAMPLE (PUNCTURED PLANE)

Let $X = \mathbb{C} \setminus \{n \text{ points}\}$. Identify $\pi_1(X) = F_n$, and $\widehat{F_n} = (\mathbb{C}^*)^n$. Then: $\mathcal{V}_d^1(X) = \begin{cases} (\mathbb{C}^*)^n & \text{if } d < n, \\ \{1\} & \text{if } d = n, \\ \emptyset & \text{if } d > n. \end{cases}$

EXAMPLE (ORIENTABLE SURFACE OF GENUS g > 1)

$$\mathcal{V}_{d}^{1}(\Sigma_{g}) = \begin{cases} (\mathbb{C}^{*})^{2g} & \text{if } d < 2g - 1, \\ \{1\} & \text{if } d = 2g - 1, 2g, \\ \emptyset & \text{if } d > 2g. \end{cases}$$

Some properties:

- Homotopy invariance: If $X \simeq Y$, then $\mathcal{V}_d^i(Y) \cong \mathcal{V}_d^i(X)$, for all *i*, *d*.
- Product formula: $\mathcal{V}_1^i(X_1 \times X_2) = \bigcup_{p+q=i} \mathcal{V}_1^p(X_1) \times \mathcal{V}_1^q(X_2).$
- Degree 1 interpretation: The sets $\mathcal{V}_d^1(X)$ depend only on $G = \pi_1(X)$ —in fact, only on G/G''. Write them as $\mathcal{V}_d^1(G)$.
- *Functoriality:* If $\varphi \colon G \to Q$ is an epimorphism, then $\hat{\varphi} \colon \hat{Q} \hookrightarrow \hat{G}$ restricts to an embedding $\mathcal{V}_d^1(Q) \hookrightarrow \mathcal{V}_d^1(G)$, for each *d*.
- Alexander invariant interpretation: Let X^{ab} → X be the maximal abelian cover. View H_{*}(X^{ab}, C) as a module over Λ = C[G_{ab}], and identify Ĝ = Spec(Λ). Then:

$$\bigcup_{j\leqslant i}\mathcal{V}_1^j(\boldsymbol{X}) = \operatorname{supp}\Big(\bigoplus_{j\leqslant i}H_j\big(\boldsymbol{X}^{\operatorname{ab}},\mathbb{C}\big)\Big).$$

- Let *M* be a compact, connected, Kähler manifold, e.g., a smooth, complex projective variety.
- The basic structure of the sets Vⁱ_d(M) was determined by Green and Lazarsfeld, building on work of Castelnuovo and de Franchis, Beauville, and Catanese.
- The theory was further developed by Simpson, Ein–Lazarsfeld, and Campana.
- Arapura extended the description of the Green–Lazarsfeld sets to quasi-Kähler manifolds; in particular, to smooth, quasi-projective varieties *X*.
- Work of Arapura, further refined by Dimca, Delzant, Budur, Libgober, and Artal Bartolo–Cogolludo–Matei, describes the varieties $\mathcal{V}_1^1(X)$ in terms of pencils.

THEOREM

- If *M* is compact Kähler, then each set $\mathcal{V}_d^i(M)$ is a finite union of unitary translates of algebraic subtori of $\pi_1(M)$.
- Furthermore, if M is projective, then all the translates are by torsion characters.

• If $X = \overline{X} \setminus D$ is a smooth, quasi-projective variety, and $b_1(\overline{X}) = 0$, then each set $\mathcal{V}_d^i(X)$ is a finite union of unitary translates of algebraic subtori of $\widehat{\pi_1(X)}$.

ORBIFOLDS AND PENCILS

- Let Σ_{g,r} be a Riemann surface of genus g ≥ 0, with r ≥ 0 points removed.
- Fix points q₁,..., q_s on the surface, and assign to these points integer weights μ₁,..., μ_s with μ_i ≥ 2.
- The orbifold $\Sigma = (\Sigma_{g,r}, \mu)$ is *hyperbolic* if $\chi^{\text{orb}}(\Sigma) := 2 2g r \sum_{i=1}^{s} (1 1/\mu_i)$ is negative.
- A hyperbolic orbifold Σ is *small* if either $\Sigma = S^1 \times S^1$ and $s \ge 2$, or $\Sigma = \mathbb{C}^*$ and $s \ge 1$; otherwise, Σ is *large*.
- Let $\Gamma = \pi_1^{\text{orb}}(\Sigma_{g,r}, \mu)$. Write $\widehat{\Gamma} = \widehat{\Gamma}^{\circ} \times \widehat{A}$, with A finite. Then:

 $\mathcal{V}_1^1(\Gamma) = \begin{cases} \widehat{\Gamma} & \text{if } \Sigma \text{ is a large hyperbolic orbifold,} \\ \left(\widehat{\Gamma} \backslash \widehat{\Gamma}^\circ\right) \cup \{1\} & \text{if } \Sigma \text{ is a small hyperbolic orbifold,} \\ \{1\} & \text{otherwise.} \end{cases}$

- Let X be a smooth, quasi-projective variety, and $G = \pi_1(X)$.
- A surjective, holomorphic map $f: X \to (\Sigma_{g,r}, \mu)$ is called an *orbifold fibration* (or, a pencil) if
 - the generic fiber is connected;
 - the multiplicity of the fiber over each marked point q_i equals μ_i ;
 - *f* admits an extension $\overline{f} : \overline{X} \to \Sigma_g$ which is also a surjective, holomorphic map with connected generic fibers.
- Such a map induces an epimorphism $f_{\sharp} \colon G \to \Gamma$, where $\Gamma = \pi_1^{\text{orb}}(\Sigma_{g,s}, \mu)$, and thus a monomorphism $\widehat{f}_{\sharp} \colon \widehat{\Gamma} \hookrightarrow \widehat{G}$.

THEOREM

$$\mathcal{V}_1^1(X) = \bigcup_{f \ large} \operatorname{im}(\widehat{f}_{\sharp}) \cup \bigcup_{f \ small} \left(\operatorname{im}(\widehat{f}_{\sharp}) ackslash \operatorname{im}(\widehat{f}_{\sharp})^\circ \right) \cup Z,$$

where Z is a finite set of torsion characters.

ALEX SUCIU (NORTHEASTERN)

HYPERPLANE ARRANGEMENTS

- Let \mathcal{A} be a (central) arrangement of *n* hyperplanes in \mathbb{C}^{ℓ} .
- Complement $M(\mathcal{A}) = \mathbb{C}^{\ell} \setminus \bigcup_{H \in \mathcal{A}} H$. Note: $M(\mathcal{A}) \cong \mathbb{P}M(\mathcal{A}) \times \mathbb{C}^*$.
- Identify $H_1(M(\mathcal{A}), \mathbb{Z}) = \mathbb{Z}^n$ and $\text{Hom}(\pi_1(M(\mathcal{A})), \mathbb{C}^*) = (\mathbb{C}^*)^n$.
- Then $\mathcal{V}^1(\mathcal{A}) = \mathcal{V}^1_1(\mathcal{M}(\mathcal{A})) \subset (\mathbb{C}^*)^n$ is isomorphic to $\mathcal{V}^1_1(\mathbb{P}\mathcal{M}(\mathcal{A})) \subseteq \{t \in (\mathbb{C}^*)^n \mid t_1 \cdots t_n = 1\} \cong (\mathbb{C}^*)^{n-1}.$

THEOREM (FALK-YUZVINSKY)

Each positive-dimensional, non-local component of $\mathcal{V}^1(\mathcal{A})$ is of the form ρT , where ρ is a torsion character, $T = f^*(H^1(\Sigma_{0,k}, \mathbb{C}^*))$, for some orbifold fibration $f: M(\mathcal{A}) \to (\Sigma_{0,k}, \mu)$, and either

- k = 2, and f has at least one multiple fiber, or
- k = 3 or 4, and f corresponds to a multinet with k classes on the multiarrangement (A, m), for some m.

EXAMPLE

- Let \mathcal{A} be the B₃ arrangement, with defining polynomial Q = xyz(x y)(x + y)(x z)(x + z)(y z)(y + z).
- Then \mathcal{A} admits a multinet with 3 classes and weight 4.
- This defines a 2-dimensional component $T \subset \mathcal{V}^1(\mathcal{A})$.

APPLICATIONS OF CHARACTERISTIC VARIETIES

- Homology of finite, regular abelian covers
 - Homology of the Milnor fiber of an arrangement
- Homological and geometric finiteness of regular abelian covers
 - Bieri–Neumann–Strebel–Renz invariants
 - Dwyer–Fried invariants
- Connection to resonance varieties
 - The Tangent Cone Theorem
 - Obstructions to formality
 - Obstructions to (quasi-) projectivity
 - 3-manifold groups and Kähler groups
- Connection to the Alexander polynomial
 - The Alexander polynomial of a quasi-projective variety
 - 3-manifold groups and quasi-projective groups

HOMOLOGY OF FINITE ABELIAN COVERS

- Let X be a connected, finite-type CW-complex, and $G = \pi_1(X)$.
- Let *A* be a finite abelian group.
- Every epimorphism $\nu: G \to A$ determines a regular, connected *A*-cover $X^{\nu} \to X$.
- Let \Bbbk be a field, $p = char(\Bbbk)$. Assume p = 0 or $p \nmid |A|$. Then

$$H_q(X^{\nu}, \Bbbk) \cong H_q(X, \Bbbk[A]) \cong \bigoplus_{\rho \in \widehat{A}} H_q(X, \Bbbk_{\rho}).$$

Hence

$$\dim_{\Bbbk} H_q(X^{\nu}, \Bbbk) = \sum_{d \ge 1} |\mathcal{V}_d^q(X, \Bbbk) \cap \operatorname{im}(\widehat{\nu})|.$$

Let X be a smooth, quasi-projective variety.

PROPOSITION (DENHAM-S.)

Suppose there is a small orbifold fibration $f: X \to (\Sigma, (\mu_1, ..., \mu_s))$ and a prime p dividing gcd $\{\mu_1, ..., \mu_s\}$. Then, for any integer q > 1 not divisible by p, there exists a regular, q-fold cyclic cover $Y \to X$ such that $H_1(Y, \mathbb{Z})$ has p-torsion.

Proof uses the following fact from [Dimca–Papadima–S.]: The direction tori associated with two orbifold fibrations of $\mathcal{V}_1^1(X)$ either coincide or intersect only at the identity.

ALEX SUCIU (NORTHEASTERN)

MILNOR FIBRATION OF AN ARRANGEMENT

- Let \mathcal{A} be a hyperplane arrangement in \mathbb{C}^{ℓ} .
- For each $H \in A$, pick a linear form f_H with ker $(f_H) = H$
- Let $m \in \mathbb{Z}^{\mathcal{A}}$ be choice of multiplicities, with $gcd(m_H : H \in \mathcal{A}) = 1$.
- The polynomial map $Q_m = \prod_{H \in \mathcal{A}} f_H^{m_H} \colon \mathbb{C}^\ell \to \mathbb{C}$ restricts to the Milnor fibration, $f \colon M(\mathcal{A}) \to \mathbb{C}^*$.
- Milnor fiber: $F = F(A, m) := f^{-1}(1)$.
- Set $N = \sum_{H \in \mathcal{A}} m_H$, and let $\zeta = \exp(2\pi i/N)$. Geometric monodromy: $h: F \to F$, $(z_1, \dots, z_d) \mapsto (\zeta z_1, \dots, \zeta z_d)$.
- Identify F/\mathbb{Z}_N with $U = \mathbb{P}M(\mathcal{A})$. Get a regular, *N*-fold cover, $F \to U$, classified by $\lambda : \pi_1(U) \twoheadrightarrow \mathbb{Z}_N, x_H \mapsto g^{m_H}$.
- If $char(\Bbbk) \nmid N$, then:

$$\dim_{\Bbbk} H_{j}(F, \Bbbk) = \sum_{d \ge 1} \left| \mathcal{V}_{d}^{j}(U, \Bbbk) \cap \operatorname{im}(\widehat{\lambda}) \right|.$$

ALEX SUCIU (NORTHEASTERN)

EXAMPLE

- Let \mathcal{A} be the braid arrangement in \mathbb{C}^3 , defined by the polynomial $Q = (x^2 y^2)(x^2 z^2)(y^2 z^2)$.
- 𝒱¹(𝔅) ⊂ (𝔅*)⁶ has 4 local components of dimension 2, corresponding to 4 triple points.
- The rational map $\mathbb{P}^2 \longrightarrow \mathbb{P}^1$, $(x, y, z) \mapsto (x^2 y^2, x^2 z^2)$ restricts to a fibration $M(\mathcal{A}) \longrightarrow \mathbb{P}^1 \setminus \{(1, 0), (0, 1), (1, 1)\}$. This yields a 2-dimensional component in $\mathcal{V}^1(\mathcal{A})$.
- Let $\lambda \colon \pi_1(U) \to \mathbb{Z}_6 \subset \mathbb{C}^*$ be the diagonal character. Then $\lambda^2 \in \mathcal{V}_1^1(U)$, yet $\lambda \notin \mathcal{V}_1^1(U)$. Hence, $b_1(F(\mathcal{A})) = 5 + 2 \cdot 1 = 7$.
- In fact, $H_1(F(\mathcal{A}), \mathbb{Z}) = \mathbb{Z}^7$.

THEOREM (DENHAM-S.)

Let *A* a hyperplane arrangement which admits a multinet partition into 3 classes, with at least one hyperplane *H* for which the multiplicity $\mu_H > 1$ (plus another mild assumption). Let *p* be a prime dividing μ_H . Then:

- There is a choice of multiplicities *m* on the deletion B = A\{H} such that H₁(F(B, m), Z) has p-torsion.
- There is a "polarized" arrangement C = B∥m, and an integer j ≥ 1 such that H_i(F(C), Z) has p-torsion.

COROLLARY

For every prime $p \ge 2$, there is an arrangement A_p and an integer $j \ge 1$ such that $H_j(F(A_p), \mathbb{Z})$ has non-trivial *p*-torsion.

EXAMPLE

- Let A be the B₃ arrangement, with defining polynomial Q = xyz(x y)(x + y)(x z)(x + z)(y z)(y + z).
- Let $\mathcal{B} = \mathcal{A} \setminus \{z = 0\}$ be the deleted B_3 arrangement.
- V¹(A) contains a translated subtorus ρT, arising from a small pencil M(B) → C* with a single multiple fiber of multiplicity 2.
- Hence, there is 2-torsion in $H_1(F(\mathcal{B}, m), \mathbb{Z})$, for certain *m*.
- A parallel connection construction on B produces an arrangement C of 27 hyperplanes in C⁹, with defining polynomial

 $Q = x_1 x_2 (x_1^2 - x_2^2) (x_1^2 - x_3^2) (x_2^2 - x_3^2) y_1 y_2 y_3 y_4 y_5 y_6 \cdots (x_1 + x_3 - 2y_6)$

• The 2-torsion part of $H_7(\mathcal{F}(\mathcal{C}), \mathbb{Z})$ is \mathbb{Z}_2^{108} .

GEOMETRIC AND HOMOLOGICAL FINITENESS IN ABELIAN COVERS

- Let *X* be a connected, finite-type CW-complex, with $G = \pi_1(X)$.
- Let A be an abelian group (quotient of G_{ab}).
- Equivalence classes of Galois *A*-covers of *X* can be identified with $\text{Epi}(G, A) / \text{Aut}(A) \cong \text{Epi}(G_{ab}, A) / \text{Aut}(A)$.

 Goal: Use the characteristic varieties of X to analyze the geometric and homological finiteness properties of regular A-covers of X.

ALEX SUCIU (NORTHEASTERN)

THE BIERI–NEUMANN–STREBEL–RENZ INVARIANTS

Let *G* be a finitely generated group. Set $S(G) = (\text{Hom}(G, \mathbb{R}) \setminus \{0\}) / \mathbb{R}^+$.

DEFINITION (BIERI, NEUMANN, STREBEL 1987)

 $\Sigma^{1}(G) = \{ \chi \in S(G) \mid C_{\chi}(G) \text{ is connected} \}.$

Here, C(G) is the Cayley graph, and $C_{\chi}(G)$ the induced subgraph on vertex set $G_{\chi} = \{g \in G \mid \chi(g) \ge 0\}.$

 $\Sigma^{1}(G)$ is an open set, independent of choice of generating set for G.

DEFINITION (BIERI, RENZ 1988)

 $\Sigma^k(G, \mathbb{Z}) = \{ \chi \in S(G) \mid \text{the monoid } G_{\chi} \text{ is of type } FP_k \}.$

Here, *G* is of type FP_k if there is a projective $\mathbb{Z}G$ -resolution $P_{\bullet} \to \mathbb{Z}$, with P_i finitely generated for all $i \leq k$.

ALEX SUCIU (NORTHEASTERN)

- The Σ -invariants form a descending chain of open subsets, $S(G) \supseteq \Sigma^1(G, \mathbb{Z}) \supseteq \Sigma^1(G, \mathbb{Z}) \supseteq \cdots$
- $\Sigma^1(G,\mathbb{Z}) = \Sigma^1(G)$.
- $\Sigma^k(G, \mathbb{Z}) \neq \emptyset \implies G \text{ is of type } \mathsf{FP}_k.$
- Note that a non-zero $\chi: G \to \mathbb{R}$ has image \mathbb{Z}^r , for some $r \ge 1$.
- The Σ-invariants control the finiteness properties of normal subgroups N ⊲ G for which G/N is free abelian:

N is of type $\mathsf{FP}_k \iff S(G, N) \subseteq \Sigma^k(G, \mathbb{Z})$

where $S(G, N) = \{\chi \in S(G) \mid \chi(N) = 0\}.$

• In particular: $\ker(\chi: G \twoheadrightarrow \mathbb{Z})$ is f.g. $\iff \{\pm \chi\} \subseteq \Sigma^1(G)$.

Let *X* be a connected CW-complex with finite *k*-skeleton, for some $k \ge 1$. Let $G = \pi_1(X, x_0)$. For each $\chi \in S(X) = S(G)$, set

$$\widehat{\mathbb{Z}G}_{\chi} = \left\{ \lambda \in \mathbb{Z}^{\boldsymbol{G}} \mid \{ \boldsymbol{g} \in \operatorname{supp} \lambda \mid \chi(\boldsymbol{g}) < \boldsymbol{c} \} \text{ is finite, } \forall \boldsymbol{c} \in \mathbb{R} \right\}$$

This is a ring, which contains $\mathbb{Z}G$ as a subring; hence, a $\mathbb{Z}G$ -module.

DEFINITION (FARBER, GEOGHEGAN, SCHÜTZ) $\Sigma^{q}(X, \mathbb{Z}) = \{ \chi \in S(X) \mid H_{i}(X, \widehat{\mathbb{Z}G}_{-\chi}) = 0, \forall i \leq q \}$

Bieri: If *G* is of type FP_k , then $\Sigma^q(G, \mathbb{Z}) = \Sigma^q(K(G, 1), \mathbb{Z}), \forall q \leq k$.

The sphere S(X) parametrizes all regular, free abelian covers of X. The Σ -invariants of X keep track of the geometric finiteness properties of these covers.

ALEX SUCIU (NORTHEASTERN)

THE DWYER–FRIED INVARIANTS

- Another tack was taken by Dwyer and Fried, also in 1987.
- Any epimorphism $\nu: H_1(X, \mathbb{Z}) \twoheadrightarrow \mathbb{Z}^r$ gives rise to a regular \mathbb{Z}^r -cover $X^{\nu} \to X$. Such covers are parametrized by the Grassmannian $\operatorname{Gr}_r(H^1(X, \mathbb{Q}))$, via the correspondence

$$\{\text{regular } \mathbb{Z}^r \text{-covers of } X\} \longleftrightarrow \{r \text{-planes in } H^1(X, \mathbb{Q})\}$$

$$X^{\nu} \to X \iff P_{\nu} := \operatorname{im}(\nu^* \colon \mathbb{Q}^r \to H^1(X, \mathbb{Q}))$$

DEFINITION

The Dwyer-Fried invariants of X are the subsets

 $\Omega_r^i(X) = \{ \mathbf{P}_{\nu} \in \operatorname{Gr}_r(H^1(X, \mathbb{Q})) \mid b_j(X^{\nu}) < \infty \text{ for } j \leq i \}.$

More generally, for any abelian group *A*, we may consider the sets $\Omega_{\mathcal{A}}^{i}(X) = \{ [\nu] \in \operatorname{Epi}(G, \mathcal{A}) / \operatorname{Aut}(\mathcal{A}) \mid b_{j}(X^{\nu}) < \infty, \text{ for } j \leq i \}.$

ALEX SUCIU (NORTHEASTERN)

AN UPPER BOUND FOR THE Σ -invariants

In order to compare the invariants $\Sigma^{i}(X) \subset S(X) \subset H^{1}(X, \mathbb{R})$ and $\Omega^{i}_{r}(X) \subset \operatorname{Gr}_{r}(H^{1}(X, \mathbb{Q}))$ with the characteristic varieties $\mathcal{V}^{i}(X) := \bigcup_{j \leq i} \mathcal{V}^{j}_{1}(X) \subset H^{1}(X, \mathbb{C}^{*})$, we need one more notion.

- Let exp: H¹(X, C) → H¹(X, C*) be the coefficient homomorphism induced by C → C*, z ↦ e^z.
- Given a Zariski closed subset W ⊂ H¹(X, C*), define its "exponential tangent cone" at 1 to be

 $\tau_1(W) = \{ z \in H^1(X, \mathbb{C}) \mid \exp(\lambda z) \in W, \ \forall \lambda \in \mathbb{C} \}$

LEMMA (DIMCA-PAPADIMA-S.)

 $\tau_1(W)$ is a finite union of rationally defined linear subspaces.

Write $\tau_1^{\mathbb{Q}}(W) = \tau_1(W) \cap H^1(X, \mathbb{Q})$ and $\tau_1^{\mathbb{R}}(W) = \tau_1(W) \cap H^1(X, \mathbb{R})$.

- Let $\chi \in S(X)$, and set $\Gamma = im(\chi) \cong \mathbb{Z}^r$, for some $r \ge 1$.
- A Laurent polynomial $p = \sum_{\gamma} n_{\gamma} \gamma \in \mathbb{Z}\Gamma$ is χ -monic if the greatest element in $\chi(\operatorname{supp}(p))$ is 0, and $n_0 = 1$.
- Let $\mathcal{R}\Gamma_{\chi}$ be the localization of $\mathbb{Z}\Gamma$ at the multiplicative subset of all χ -monic polynomials; it's both a $\mathbb{Z}G$ -module and a PID.
- For each $i \leq k$, set $b_i(X, \chi) = \operatorname{rank}_{\mathcal{R}\Gamma_{\chi}} H_i(X, \mathcal{R}\Gamma_{\chi})$.

THEOREM (PAPADIMA–S.)

 $(2) \ \chi \notin \tau_1^{\mathbb{R}}(\mathcal{V}^k(X)) \Longleftrightarrow b_i(X,\chi) = 0, \ \forall i \leq k.$

Hence:

 $\Sigma^{i}(X,\mathbb{Z}) \subseteq \mathcal{S}(X) \backslash \mathcal{S}(\tau_{1}^{\mathbb{R}}(\mathcal{V}^{i}(X)))$

Thus, $\Sigma^{i}(X, \mathbb{Z})$ is contained in the complement of a finite union of rationally defined great subspheres.

ALEX SUCIU (NORTHEASTERN)

A FORMULA AND A BOUND FOR THE Ω -invariants

THEOREM (DWYER-FRIED, PAPADIMA-S.)

For an epimorphism $\nu : \pi_1(X) \twoheadrightarrow \mathbb{Z}^r$, the following are equivalent:

- **(1)** The vector space $\bigoplus_{i=0}^{k} H_i(X^{\nu}, \mathbb{C})$ is finite-dimensional.
- 2 The algebraic torus $\mathbb{T}_{\nu} = \operatorname{im} \left(\hat{\nu} \colon \widehat{\mathbb{Z}^r} \hookrightarrow \widehat{\pi_1(X)} \right)$ intersects the variety $\mathcal{V}^k(X)$ in only finitely many points.

Note that $\exp(\mathbf{P}_{\nu} \otimes \mathbb{C}) = \mathbb{T}_{\nu}$. Thus:

COROLLARY

 $\Omega^{i}_{r}(X) = \left\{ \boldsymbol{P} \in \operatorname{Gr}_{r}(H^{1}(X, \mathbb{Q})) \mid \dim\left(\exp(\boldsymbol{P} \otimes \mathbb{C}) \cap \mathcal{V}^{i}(X)\right) = \mathbf{0} \right\}$

More generally, for any abelian group A:

PROPOSITION (S.-YANG-ZHAO)

 $\Omega^{i}_{\mathcal{A}}(X) = \big\{ [\nu] \in \mathsf{Epi}(\pi_{1}(X), \mathcal{A}) / \operatorname{Aut}(\mathcal{A}) \mid \operatorname{im}(\hat{\nu}) \cap \mathcal{V}^{i}(X) \text{ is finite} \big\}.$

- Let *V* be a homogeneous variety in \mathbb{k}^n . The set $\sigma_r(V) = \{P \in \operatorname{Gr}_r(\mathbb{k}^n) \mid P \cap V \neq \{0\}\}$ is Zariski closed.
- If L ⊂ kⁿ is a linear subspace, σ_r(L) is the special Schubert variety defined by L. If codim L = d, then codim σ_r(L) = d − r + 1.

Theorem

$$\Omega_{r}^{i}(X) \subseteq \operatorname{Gr}_{r}(H^{1}(X, \mathbb{Q})) \backslash \sigma_{r}(\tau_{1}^{\mathbb{Q}}(\mathcal{V}^{i}(X)))$$

- Thus, each set Ωⁱ_r(X) is contained in the complement of a finite union of special Schubert varieties.
- If r = 1, the inclusion always holds as an equality. In general, though, the inclusion is strict.
- Similar inclusions hold for the sets $\Omega^i_A(X)$, see [S.-Yang-Zhao]

Comparing the Σ - and Ω -bounds

THEOREM (S.)

Suppose that $\Sigma^{i}(X, \mathbb{Z}) = S(X) \setminus S(\tau_{1}^{\mathbb{R}}(\mathcal{V}^{i}(X))).$

Then $\Omega_r^i(X) = \operatorname{Gr}_r(H^1(X, \mathbb{Q})) \setminus \sigma_r(\tau_1^{\mathbb{Q}}(\mathcal{V}^i(X)))$, for all $r \ge 1$.

In general, this implication cannot be reversed.

COROLLARY

Suppose there is an integer $r \ge 2$ such that $\Omega_r^i(X)$ is not Zariski open. Then $\Sigma^i(X, \mathbb{Z}) \neq S(\tau_1^{\mathbb{R}}(\mathcal{V}^i(X)))^{c}$. Using a result of Delzant (2010), we prove:

THEOREM (PAPADIMA-S.)

Let M be a compact Kähler manifold with $b_1(M) > 0$. Then $\Sigma^1(M, \mathbb{Z}) = S(\tau_1^{\mathbb{R}}(\mathcal{V}^1(X)))^{c}$ if and only if there is no pencil $f: M \to E$ onto an elliptic curve E such that f has multiple fibers.

PROPOSITION (S.)

Let *M* be a compact Kähler manifold. If *M* admits an orbifold fibration with base genus $g \ge 2$, then $\Omega_r^1(M) = \emptyset$, for all $r > b_1(M) - 2g$. Otherwise, $\Omega_r^1(M) = \operatorname{Gr}_r(H^1(M, \mathbb{Q}))$, for all $r \ge 1$.

PROPOSITION (S.)

Let *M* be a smooth, complex projective variety, and suppose *M* admits an orbifold fibration with multiple fibers and base genus g = 1. Then $\Omega_2^1(M)$ is not an open subset of $\operatorname{Gr}_2(H^1(M, \mathbb{Q}))$.

ALEX SUCIU (NORTHEASTERN)

EXAMPLE (THE CATANESE-CILIBERTO-MENDES LOPES SURFACE)

- Let C_1 be a smooth curve of genus 2 with an elliptic involution σ_1 . $\Sigma_1 = C_1 / \sigma_1$ is a curve of genus 1
- Let C_2 be a curve of genus 3 with a free involution σ_2 . $\Sigma_2 = C_2 / \sigma_2$ is a curve of genus 2.
- Let $M = C_1 \times C_2 / \sigma_1 \times \sigma_2$. Then *M* is a minimal surface of general type with $p_g(M) = q(M) = 3$ and $K_M^2 = 8$.
- Projection onto the first coordinate yields an orbifold fibration, f_1 , with two multiple fibers, both of multiplicity 2, while projection onto the second coordinate defines a holomorphic fibration f_2 :

$$C_{2} \xleftarrow{pr_{2}} C_{1} \times C_{2} \xrightarrow{pr_{1}} C_{1}$$

$$\downarrow /\sigma_{2} \qquad \downarrow /\sigma_{1} \times \sigma_{2} \qquad \downarrow /\sigma_{1}$$

$$\Sigma_{2} \xleftarrow{f_{2}} M \xrightarrow{f_{1}} \Sigma_{1}$$

• Identify $H_1(M, \mathbb{Z}) = \mathbb{Z}^6$ and $H^1(M, \mathbb{C}^*) = (\mathbb{C}^*)^6$. Then

$$\mathcal{V}^1(M) = \{t_4 = t_5 = t_6 = 1, t_3 = -1\} \cup \{t_1 = t_2 = 1\},\$$

with the two components corresponding to the pencils f_1 and f_2 .

- Thus, $\tau_1(\mathcal{V}^1(M)) = \{x_1 = x_2 = 0\}.$
- The set $\Omega_2^1(M)$ is not open, not even in the usual topology on the Grassmannian.
- Hence, $\Omega_2^1(M) \subsetneq \sigma_2(\tau_1^Q(\mathcal{V}^1(M)))^{c}$.
- Hence, $\Sigma^1(M, \mathbb{Z}) \subsetneq \mathcal{S}(\tau_1^{\mathbb{R}}(\mathcal{V}^1(M)))^{c}$.

RESONANCE VARIETIES

- Let X be a connected, finite-type CW-complex
- Let $A = H^*(X, \mathbb{C})$. For each $a \in A^1$, we have $a^2 = 0$.
- Thus, may form the cochain complex

$$(A, \cdot a): A^0 \xrightarrow{a} A^1 \xrightarrow{a} A^2 \longrightarrow \cdots$$

DEFINITION

The resonance varieties of X are the (homogeneous) algebraic sets

$$\mathcal{R}^{i}_{d}(X) = \{ a \in A^{1} \mid \dim_{\mathbb{C}} H^{i}(A, a) \geq d \}.$$

We always have

$$\tau_1(\mathcal{V}_d^i(X)) \subseteq \mathsf{TC}_1(\mathcal{V}_d^i(X)) \subseteq \mathcal{R}_d^i(X),$$

but both inclusions may be strict, in general.

ALEX SUCIU (NORTHEASTERN)

FORMALITY

- Let *X* be a connected CW-complex with finite 1-skeleton.
- X is formal if there is a zig-zag of cdga quasi-isomorphisms from (A_{PL}(X, Q), d) to (H*(X, Q), 0).
- X is k-formal (for some k ≥ 1) if each of these morphisms induces an iso in degrees up to k, and a monomorphism in degree k + 1.
- X is 1-formal if and only if $G = \pi_1(X)$ is 1-formal, i.e., its Malcev Lie algebra, $\mathfrak{m}_G = \operatorname{Prim}(\widehat{\mathbb{Q}G})$, is quadratic.
- For instance, compact Kähler manifolds and complements of hyperplane arrangements are formal.
- X_1, X_2 formal $\implies X_1 \times X_2$ and $X_1 \vee X_2$ are formal
- M_1 , M_2 formal, closed *n*-manifolds $\implies M_1 \# M_2$ formal

TANGENT CONE THEOREM

THEOREM (DIMCA–PAPADIMA–S.)

Let X be a 1-formal space. Then, for each d > 0,

 $\tau_1(\mathcal{V}_d^1(X)) = \mathsf{TC}_1(\mathcal{V}_d^1(X)) = \mathcal{R}_d^1(X).$

- Consequently, R¹_d(X) is a union of rationally defined linear subspaces in H¹(X, ℂ).
- In upper bound for $\Sigma^1(X, \mathbb{Z})$ we may replace $\tau_1^{\mathbb{R}}(\mathcal{V}^1(X))$ by $\mathcal{R}^1(X, \mathbb{R})$, and similarly for the bound on $\Omega_r^1(X)$.
- This theorem yields a useful formality test.

EXAMPLE

Let $G = \langle x_1, x_2, x_3, x_4 | [x_1, x_2], [x_1, x_4] [x_2^{-2}, x_3], [x_1^{-1}, x_3] [x_2, x_4] \rangle$. Then $\mathcal{R}_1^1(G) = \{x \in \mathbb{C}^4 | x_1^2 - 2x_2^2 = 0\}$ splits into linear subspaces over \mathbb{R} but not over \mathbb{Q} . Thus, *G* is *not* 1-formal.

EXAMPLE

F(Σ_g, *n*): the configuration space of *n* labeled points of a Riemann surface of genus *g* (a smooth, quasi-projective variety).
 π₁(*F*(Σ_g, *n*)) = *P*_{g,n}: the pure braid group on *n* strings on Σ_g.

Using computation of $H^*(F(\Sigma_g, n), \mathbb{C})$ by Totaro, get

$$\mathcal{R}_{1}^{1}(P_{1,n}) = \left\{ (x, y) \in \mathbb{C}^{n} \times \mathbb{C}^{n} \middle| \begin{array}{l} \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i} = 0, \\ x_{i}y_{j} - x_{j}y_{i} = 0, \end{array} \right\}$$

For $n \ge 3$, this is an irreducible, non-linear variety (a rational normal scroll). Hence, $P_{1,n}$ is not 1-formal.

ALEX SUCIU (NORTHEASTERN)

RESONANCE VARIETIES OF QUASI-KÄHLER MANIFOLDS

THEOREM (DIMCA–PAPADIMA–S.)

Let *X* be a quasi-Kähler manifold. Let $\{L_{\alpha}\}_{\alpha}$ be the non-zero irred components of $\mathcal{R}_{1}^{1}(X)$. If *X* is 1-formal, then

- **(1)** Each L_{α} is a linear subspace of $H^1(X, \mathbb{C})$.
- 2 Each L_{α} is *p*-isotropic (i.e., the restriction of \cup_X to L_{α} has rank *p*), with dim $L_{\alpha} \ge 2p + 2$, for some $p = p(\alpha) \in \{0, 1\}$.
- (3) If $\alpha \neq \beta$, then $L_{\alpha} \cap L_{\beta} = \{0\}$.

Furthermore,

- **5** If X is compact, then X is 1-formal, and each L_{α} is 1-isotropic.
- If $W_1(H^1(X, \mathbb{C})) = 0$, then X is 1-formal, and each L_α is 0-isotropic.

ALEX SUCIU (NORTHEASTERN)

PROPAGATION OF COHOMOLOGY JUMP LOCI

- A space X with $\pi_1(X) = G$ is a *duality space* of dimension *n* if $H^p(X, \mathbb{Z}G) = 0$ for $p \neq n$ and $H^n(X, \mathbb{Z}G) \neq 0$ and torsion-free.
- By analogy, we say X is an *abelian duality space* of dimension *n* if $H^p(X, \mathbb{Z}G^{ab}) = 0$ for $p \neq n$ and $H^n(X, \mathbb{Z}G^{ab}) \neq 0$ and torsion-free.

THEOREM (DENHAM-S.-YUZVINSKY)

Let X be an abelian duality space of dim n. For any character $\rho: G \to \mathbb{C}^*$, if $H^p(X, \mathbb{C}_{\rho}) \neq 0$, then $H^q(X, \mathbb{C}_{\rho}) \neq 0$ for all $p \leq q \leq n$. Thus, the characteristic varieties of X "propagate":

 $\mathcal{V}_1^1(X) \subseteq \mathcal{V}_1^2(X) \subseteq \cdots \subseteq \mathcal{V}_1^n(X).$

Moreover, if X admits a minimal cell structure, then

 $\mathcal{R}_1^1(X) \subseteq \mathcal{R}_1^2(X) \subseteq \cdots \subseteq \mathcal{R}_1^n(X).$

ALEX SUCIU (NORTHEASTERN)

TORIC COMPLEXES AND RIGHT-ANGLED ARTIN GROUPS

- *L* simplicial complex of dimension *d* on *n* vertices.
- Let T_L be the respective *toric complex*: the subcomplex of Tⁿ obtained by deleting the cells corresponding to the missing simplices of L.
- T_L is a connected, minimal CW-complex, with dim $T_L = d + 1$.
- $\pi_1(T_L)$ is the *right-angled Artin group* associated to graph $\Gamma = L^{(1)}$:

$$G_{\Gamma} = \langle \mathbf{v} \in \mathbf{V}(\Gamma) \mid \mathbf{vw} = \mathbf{wv} \text{ if } \{\mathbf{v}, \mathbf{w}\} \in \mathbf{E}(\Gamma) \rangle.$$

• $K(G_{\Gamma}, 1) = T_{\Delta_{\Gamma}}$, where Δ_{Γ} is the *flag complex* of Γ .

• T_L is formal, and so G_{Γ} is 1-formal.

Identify $H^1(T_L, \mathbb{C}) = \mathbb{C}^{\vee}$, the \mathbb{C} -vector space with basis $\{v \mid v \in \vee\}$.

THEOREM (PAPADIMA-S.)

$$\mathcal{R}_{d}^{i}(T_{L}) = \bigcup_{\substack{\mathsf{W} \subset \mathsf{V} \\ \sum_{\sigma \in L_{\mathsf{V} \setminus \mathsf{W}}} \mathsf{dim}_{\mathsf{C}} \widetilde{H}_{i-1-|\sigma|}(\mathsf{lk}_{L_{\mathsf{W}}}(\sigma), \mathsf{C}) \ge d} \mathbb{C}^{\mathsf{W}}$$

where L_W is the subcomplex induced by L on W, and $lk_K(\sigma)$ is the link of a simplex σ in a subcomplex $K \subseteq L$.

Using (1) resonance upper bound, and (2) computation of $\Sigma^k(G_{\Gamma}, \mathbb{Z})$ by Meier, Meinert, VanWyk (1998), we get:

COROLLARY (PAPADIMA-S.)

$$\Sigma^{k}(T_{L},\mathbb{Z}) \subseteq \big(\bigcup_{i \leq k} \mathcal{R}_{1}^{i}(T_{L},\mathbb{R})\big)^{c}$$
$$\Sigma^{k}(G_{\Gamma},\mathbb{Z}) = \big(\bigcup_{i \leq k} \mathcal{R}_{1}^{i}(T_{\Delta_{\Gamma}},\mathbb{R})\big)^{c}$$

THEOREM (DIMCA-PAPADIMA-S.)

The following are equivalent:

- *L* is *Cohen–Macaulay* if for each simplex $\sigma \in L$, the cohomology $\widetilde{H}^*(lk(\sigma), \mathbb{Z})$ is concentrated in degree $n |\sigma|$ and is torsion-free.

THEOREM (DENHAM-S.-YUZVINSKY)

 T_L is an abelian duality space (of dimension d + 1) if and only if L is Cohen–Macaulay, in which case both $\mathcal{V}_1^i(T_L)$ and $\mathcal{R}_1^i(T_L)$ propagate.

ALEX SUCIU (NORTHEASTERN)

BESTVINA-BRADY GROUPS

 $N_{\Gamma} = \ker(\nu \colon G_{\Gamma} \twoheadrightarrow \mathbb{Z}), \text{ where } \nu(\nu) = 1, \text{ for all } \nu \in V(\Gamma).$

THEOREM (DIMCA-PAPADIMA-S.)

The following are equivalent:

- (1) N_{Γ} is a quasi-Kähler group
- 2 Γ is either a tree, or $\Gamma = K_{n_1,...,n_r}$, with some $n_i = 1$, or all $n_i \ge 2$ and $r \ge 3$.

N_Γ is a Kähler group
 Γ = K_{2r+1}
 N_Γ = Z^{2r}

EXAMPLE (ANSWERS A QUESTION OF J. KOLLÁR)

 $\Gamma = \mathcal{K}_{2,2,2} \rightsquigarrow \mathcal{G}_{\Gamma} = \mathcal{F}_2 \times \mathcal{F}_2 \times \mathcal{F}_2 \rightsquigarrow \mathcal{N}_{\Gamma} = \text{the Stallings group}$

 N_{Γ} is finitely presented, but rank $H_3(N_{\Gamma}, \mathbb{Z}) = \infty$, so N_{Γ} not FP₃.

Also, $N_{\Gamma} = \pi_1(\mathbb{C}^2 \setminus \{ \text{an arrangement of 5 lines} \}).$

Thus, N_{Γ} is a quasi-projective group which is not commensurable (even up to finite kernels) to any group π having a finite $K(\pi, 1)$.

ALEX SUCIU (NORTHEASTERN)

HYPERPLANE ARRANGEMENTS

THEOREM (S.)

Let \mathcal{A} be an arrangement of affine lines in \mathbb{C}^2 , and $\mathcal{G} = \pi_1(\mathcal{M}(\mathcal{A}))$. The following are equivalent:

- G is a Kähler group.
- G is a free abelian group of even rank.
- A consists of an even number of lines in general position.

Also equivalent:

- G is a right-angled Artin group.
- G is a finite direct product of finitely generated free groups.
- The multiplicity graph of \mathcal{A} is a forest. 0

THEOREM (DENHAM-S.-YUZVINSKY)

If A has rank d, then M(A) is an abelian duality space of dim d, and both the characteristic and the resonance varieties of $M(\mathcal{A})$ propagate.

ALEX SUCIU (NORTHEASTERN)

3-MANIFOLD GROUPS

QUESTION (DONALDSON-GOLDMAN 1989, REZNIKOV 1993)

Which 3-manifold groups are Kähler groups?

Reznikov (2002) and Hernández-Lamoneda (2001) gave partial solutions.

THEOREM (DIMCA–S.)

Let G be the fundamental group of a closed 3-manifold. Then G is a Kähler group \iff G is a finite subgroup of O(4), acting freely on S³.

Idea of proof: compare the resonance varieties of (orientable) 3-manifolds to those of Kähler manifolds.

PROPOSITION

Let M be a closed, orientable 3-manifold. Then:

- ① $H^1(M, \mathbb{C})$ is not 1-isotropic.
- 2 If $b_1(M)$ is even, then $\mathcal{R}^1_1(M) = H^1(M, \mathbb{C})$.

PROPOSITION

Let *M* be a compact Kähler manifold with $b_1(M) \neq 0$. If $\mathcal{R}^1_1(M) = H^1(M, \mathbb{C})$, then $H^1(M, \mathbb{C})$ is 1-isotropic.

- But $G = \pi_1(M)$, with *M* Kähler $\Rightarrow b_1(G)$ even.
- Thus, if G is both a 3-mfd group and a Kähler group $\Rightarrow b_1(G) = 0$.
- Using work of Fujiwara (1999) and Reznikov (2002) on Kazhdan's property (T), as well as Perelman (2003), it follows that *G* is a finite subgroup of O(4).

Further improvements have been obtained since then by Kotschick and Biswas, Mj, and Seshadri.

QUESTION

Which 3-manifold groups are quasi-Kähler groups?

THEOREM (DIMCA-PAPADIMA-S.)

Let G be the fundamental group of a closed, orientable 3-manifold. Assume G is 1-formal. Then the following are equivalent:

(1) $\mathfrak{m}(G) \cong \mathfrak{m}(\pi_1(X))$, for some quasi-Kähler manifold X.

② $\mathfrak{m}(G) \cong \mathfrak{m}(\pi_1(M))$, where *M* is either S^3 , $\#^n S^1 \times S^2$, or $S^1 \times \Sigma_g$.

ALEXANDER POLYNOMIAL

- Let $X^{\text{abf}} \xrightarrow{p} X$ be the maximal torsion-free abelian cover, defined by $G \xrightarrow{ab} H = H_1(G)/\text{tors} \cong \mathbb{Z}^n$.
- Let $A_G = H_1(X^{\text{abf}}, p^{-1}(x_0); \mathbb{Z})$ be the Alexander module, over the ring $\mathbb{Z}H \cong \mathbb{Z}[t_1^{\pm 1}, \dots, t_n^{\pm 1}]$.
- The Alexander polynomial $\Delta_G \in \mathbb{Z}H$ is the gcd of all codimension 1 minors of a presentation matrix for A_G .

PROPOSITION (DIMCA-PAPADIMA-S.)

 $\check{\mathcal{V}}_{1}(G) \setminus \{1\} = V(\Delta_{G}) \setminus \{1\},$

where

• $\check{\mathcal{V}}_1(G) =$ union of codim. 1 components of $\mathcal{V}_1(G) \cap \widehat{G}^0$

• $V(\Delta_G) = hypersurface$ in \hat{G}^0 defined by Δ_G .

EXAMPLE

If
$$G = \pi_1(S^3 \setminus K)$$
, then $\mathcal{V}_1^1(G) = \{z \in \mathbb{C}^* \mid \Delta_G(z) = 0\} \cup \{1\}.$

ALEX SUCIU (NORTHEASTERN)

THEOREM (DIMCA-PAPADIMA-S.)

Let G be a quasi-Kähler group, and Δ_G its Alexander polynomial.

• If $b_1(G) \neq 2$, then the Newton polytope of Δ_G is a line segment.

• If G is actually a Kähler group, then $\Delta_G \doteq \text{const.}$

Using

- a strengthening of the above result;
- the relation between the Alexander norm and the Thurston norm due to McMullen;
- recent work of Agol, Kahn–Markovic, Wise, and Przytycki–Wise;
- a few more things,

we prove:

THEOREM (FRIEDL-S.)

Let N be a compact 3-manifold with empty or toroidal boundary. If $\pi_1(N)$ is a quasi-projective group, then all the prime components of N are graph manifolds.

ALEX SUCIU (NORTHEASTERN)