
INTEGRAL STRUCTURE ON QUANTUM COHOMOLOGY (AFTER IRITANI)

by

Etienne Mann

In these two talks, we will explain a part of the paper of Iritani, titled “An integral structure in quantum cohomology
and mirror symmetry for toric orbifolds” Arxiv 0903.1463v3 To simplify the exposition, we restrict to the manifold
case.

PART I

FIRST TALK

1. Gromov-Witten invariants with gravitational descendants

Let X be a smooth proper manifold over C. Let d ∈ H2(X,Z). We define the moduli space of stable maps to X ,
denoted by M0,n(X, d). To simplify the exposition, we only consider the geometric point of it.

M0,n(X, d) :=





(C, f, (x1, . . . , xn)) where C is a nodal curve of genus 0,
xi are distincts marked points on the smooth part of C
and f → X such that f∗[C] = d and the automorphism

group of (C, f, x) is finite




/ ∼

The moduli space M0,n(X, d) is a smooth proper orbifold of finite type over C. We define the i-th evaluation map

evi : M0,n(X, d) → X

(C, f, x) 7→ f(xi)

On M0,n(X, d), we have L1, . . . ,Ln line bundles which are the cotangent bundle of the curve at the marked point xi

i.e.

Li |(C,f,x):= T ∗
xi
C.

Definition 1.1. — Put ψi := c1(Li). Let γ1, . . . , γn be in H∗(X,C). We define the Gromov-Witten invariants with
gravitational descendants by the formula

〈
ψk1

1 γ1, . . . , ψ
kn
n γn

〉
0,n,d

:=

∫

M0,n(X,d)

ψk1

1 γ1 ∪ . . . ∪ ψ
kn
n γn

The Gromov-invariant satisfies some properties, we will just give “the divisor axiom”. This axiom expresses the
special role that plays the classes in H2(X,C).

Proposition 1.2. — For γ ∈ H2(X,C), we have

〈
ψk1

1 γ1, . . . , ψ
kn
n γn, γ

〉
0,n+1,d

=

(∫

d

γ

)〈
ψk1

1 γ1, . . . , ψ
kn
n γn, γ

〉
0,n,d

+
∑

i

〈
ψk1

1 γ1, . . . , ψ
ki−1
i γi ∪ γ, . . . , ψ

kn
n γn, γ

〉
0,n,d
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Fix (φ0 = 1, φ1, . . . , φN ) a homogeneous basis of H∗(X,C). Denote by (t0, . . . , tN ) the associated coordinates on
H∗(X). Put τ :=

∑
i tiφi. Denote by (φ1, . . . , φN ) the dual basis with respect to the Poincaré duality.

Definition 1.3. — Let α, β ∈ H∗(X).

α •τ β :=
∑

d∈H2(X,Z)

∑

ℓ≥0

N∑

k=1

e
R

d
τ2

ℓ!
φk 〈α, β, τ ′, . . . , τ ′, φk〉0,ℓ+3,d

where τ = τ ′ + τ2 with τ2 ∈ H2(X) and τ ′ ∈ ⊕k 6=1H
2k(X).

The neutral element for this product is 1.

Assumption 1.4. — We assume that the quantum product is convergent over an open set U ⊂ H∗(X) such that U
contains the following directions :

1. τ ′ → 0
2. ℜe(

∫
d
τ2) → −∞ for any d 6= 0 ∈ H2(X,Z).

The limit point is called the large radius limit. At this large radius limit, the quantum product become the usual
cup product.

2. An integrable connection

Definition 2.1. — – We define a trivial holomorphic bundle F over U ×C with fibers H∗(X) ie. F := H∗(X)×
(U × C) → U × C. We denote z the coordinate on C.

– We define the following meromorphic connection :

∇∂ti
:= ∂ti +

1

z
φk•τ ∇z∂z := z∂z −

1

z
E •τ +µ

where

E := c1(TX) +

N∑

k=1

(
1 −

deg φk

2

)
tkφk µ(φk) :=

1

2
(deg φk − n)φk

– Denote by 〈·, ·〉 the Poincaré duality on H∗(X). Denote by ι : U × C → U × C sending (τ, z) 7→ (τ,−z). On
(F,∇), we define a pairing

S : ι∗O(F ) ×O(F ) → OU×C

by S(φi, φj) := 〈φi, φj〉 and S(a(τ,−z)·, ·) = S(·, a(τ, z)·).

To have a variation of a nc-Hodge structure, we need to define a Z-structure and to check that

– the Z-structure is compatible with the Stokes data
– the opposedness axiom.

In what follows, we will define a Z-structure which is natural from the point of view of mirror symmetry. I do not
know is this Z structure is compatible with the stokes data. The opposedness axiom is true at the large radius limit
(cf the paper of Iritani tt∗...)

Remark 2.2. — 1. The global section φk of F are not flat. Indeed, we have

∇∂tk
1 :=

1

z
φk and ∇z∂z1 := −

1

z
E −

n

2
1

2. The Euler field E is defined by

E :=
∑

k

rk∂tk
+
∑

k

(
1 −

degφk

2

)
tk∂tk

where c1(TX) =
∑

k rkφk. Put Gr := ∇z∂z + ∇E + n/2. We have

Gr = z∂z + dE + µ+ n/2 and Gr(1) = 0.

The data (F,∇∂tk
,Gr) is called a graded semi-infinite VHS defined by Serguei Barannikov.

The properties of the Gromov-Witten invariants implies that

Proposition 2.3. — The connection ∇ is flat and the pairing S(·, ·) is ∇-flat.
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For α ∈ H∗(X), we define

L(τ, z)α := eτ2/zα−
∑

(d,ℓ) 6=(0,0)

N∑

k=0

φk

ℓ!

〈
φk, τ

′, . . . , τ ′,
e−τ2/zα

z + ψ

〉

0,ℓ+2,d

e
R

d
τ2 = α+O(z−1)

where (z + ψ)−1 :=
∑

j≥0(−1)jz−j−1ψj = z−1(...).

Proposition 2.4. — Put ρ := c1(TX).

1. For α ∈ H∗(X), we have :

∇kL(τ, z)α = 0 ∇z∂zL(τ, z)α = L(τ, z)
(
µ−

ρ

z

)
α.

2. The multi-valued section L(τ, z)z−µzρα is ∇-flat.

3. Denote 〈·, ·〉 the Poincaré duality. For any α, β ∈ H∗(X), we have 〈L(τ, z)α,L(τ, z)β〉 = 〈α, β〉.
4. We have L(τ, z)−1 = L(τ,−z).
5. The section L(τ, z) is characterized by its asymptotic at the large radius limit

ie. L : U × C → GLn(H∗(X)) is the unique application such that for any α ∈ H∗(X), we have ∇XL(τ, z)α = 0
for any vector field X and L(τ, z)α ∼ e−τ2/zα at the large radius limit.

3. Integral structure

Let α ∈ H∗(X,Z) such that α∪ : H∗(X,Z) →֒ H∗(X,Z). This induces a Z-structure on the bundle F as follows.
We have the following morphism of global (multivalued)-section

(O(F ), dU×C)
z−µzρ

//

(
O(F ),

∇X :=dX

∇z∂z := z∂z + µ− z−1ρ

)
L(τ,z)

//

(
O(F ),

∇X :=dX+z−1X•

∇z∂z := z∂z −z−1E • +µ

)

H∗(X,Z)
?�

OO

H∗(X,Z)? _
α∪oo

(1)

We consider a very special Z-structure induced by the cohomology class

Γ(TX) :=
∏

i

Γ(1 + δi) = exp(−γρ+
∑

k≥2

(k − 1)!ζ(k)Chk(TX))

where ρ = c1(TX), δi are the Chern root of TX and γ is the Euler constant.

Definition 3.1. — We define the Z-structure on the bundle (F,∇) by the diagram (1) and the following morphism
Γ(TX) ∪ (2iπ)deg /2 : H∗(X,Z) → H∗(X,C). We call it the Γ-structure.

In the following, we will give two reasons why this Γ-structure is good. The first one is a nice behaviour with respect
to K-theory. The second one uses mirror symmetry but we need to restrict to toric Fano smooth variety.

3.1. Γ-structure and K-theory. — Recall that the Chern character Ch : K(X) → H∗(X,Z) become an isomor-
phism tensoring by C.

Theorem 3.2 (Iritani). — For V1, V2 ∈ K(X). We have

S(ZK(V1), ZK(V2)) = (V1, V2)K(X)(:= χ(V ∨
2 ⊗ V1)).

Where ZK is defined by the following commutative diagram

K(X)

Ch

��

ZK

--ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

H∗(X,Z)
Γ(TX)(2iπ)deg /2

// (O(F ), dX + z∂z)
L(τ,z)z−µzρ

// (O(F ),∇)

(2)
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3.2. Γ-function and mirror symmetry. — In this section we assume that X is a smooth toric Fano variety.
Recall that 1 ∈ H∗(X) was the unit. Put J(τ, z) := L(τ, z)−11(= L(τ,−z)1). Consider the following diagram

Remark 3.3. — The J-function is a very important function in the work of Givental. For example, we can recover
the quantum product via the J-function as follows : We have ∇∂tk

1 = φi/z. The previous diagram implies that

∂tk
J = L(τ,−z)φi/z. So we deduce that z2∂ti∂tjJ = L(τ,−z)φi •τ φj . To compute the quantum product, one should

expand z2∂ti∂tjJ with respect to the power of z.

Let us restrict the J-function to H2(X,C) (where the divisor axiom holds) ie. τ = τ2 + τ ′ where τ ′ = 0. Put
J(τ2, z) := J(τ2 + 0, z). We also restrict the bundle to U2 := U |τ ′=0. Let φ1, . . . , φr the basis of H2(X,Z) which are
in the closure of the Kähler cone of X .

Definition 3.4. — We denote Σ(1) the 1-dimensional cone of the fan Σ of X . For any ray ρ, we denote Dρ the
associate toric divisor. We define the I-function which is a cohomological valued function by

I(τ2, z) := eτ2/z
∑

d∈H2(X,Z)

e
R

d
τ2

∏

ρ∈Σ(1)

∏+∞
ν=Dρ(d)(Dρ + (Dρ(d) − ν)z)
∏+∞

ν=0(Dρ + (Dρ(d) − ν)z)

Theorem 3.5 (Givental). — If X is a smooth toric Fano variety then I(τ2, z) = J(τ2, z).

Proposition 3.6. — We have Γ(TX) =
∏

ρ(1 +Dρ) and

z−c1(TX)zµI(τ2, z) = Γ(TX)z−n/2eτ2z−c1(TX)
∑

d∈H2(X,Z)

e
R

d
τ2z−

R

d
c1(TX)

∏
ρ∈Σ(1) Γ(Dρ +Dρ(d) + 1)

Ĥ(τ2, z) := z−n/2eτ2/2iπz−c1(TX)/2iπ
∑

d∈H2(X,Z)

e
R

d
τ2z−

R

d
c1(TX)

∏
ρ∈Σ(1) Γ(Dρ/2iπ +Dρ(d) + 1)

where Ĥ is defined by the following diagram

H∗(X,Z)
Γ(TX)(2iπ)deg /2

//

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY (O(F ), dU×C)
z−µzc1(T X)

//

''NNNNNNNNNNN
(O(F ), dU + ∇z∂z )

L(τ,z)
//

vvnnnnnnnnnnnn

(O(F ),∇)

ssffffffffffffffffffffffffffff

U2 × C̃∗
Ĥ

kk

z−c1(T X)zµI
ii

J=I
55

1

44

We can now state the main result of Iritani that is that the integral structure given by the Γ(TX)(2iπ)deg/2 is
related to the integral structure of its mirror. More precisely, we have the following result.

Theorem 3.7 (Iritani). — Put H(τ2, z) := (2πz)n/2

(−2π)n Ĥ(τ2, z). We have

∫

X

H(τ2,−z) ∪ Td(TX) =
1

(2iπ)n

∫

ΓR

e−Wq/zωq.

where Wq : Yq → C is the mirror of X with Yq ≃ (C∗)#Σ(1)−dim H2(X,C) and ΓR = {y ∈ Yq | yρ > 0}.

To see this Theroem in K-theory, we put HK(τ2, z) := (2πz)n

(−2π)nZ
−1
K (1).

Corollary 3.8. —

S(1, ZK(OX)) =
1

(−2πz)n/2

∫

ΓR

e−Wq/zωq

PART II

SECOND TALK

4. GKZ-system

Definition 4.1. — Let {v1, . . . , vm} ∈ Zn(:= N) be a set where m ≥ n and {v1, . . . , vm} generates N ⊗ R. Let
a ∈ Cn. A GKZ-system associated to these data is definied by the following operators:
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– for j ∈ {1, . . . , n}, put

Zj,a :=

m∑

i=1

vijλi∂λi + aj

– Let Λ := {ℓ ∈ Zm |
∑m

i=1 ℓivi = 0}. For any ℓ ∈ Λ, put

�ℓ :=
∏

ℓi>0

(∂λi)
ℓi −

∏

ℓi<0

(∂λi )
−ℓi

4.1. GKZ-system associated to a smooth toric variety. — Let X be a smooth toric variety. Denote by Σ(1)
the set a rays of the fan Σ. Put m := #Σ(1). Denote by D1, . . . , Dm the toric divisors associated to the rays. We
have the following exact sequence

0 // H2(X,Z)
D

// Zm
β

// N // 0(3)

where D : d 7→
∑m

i=1Di(d)ei and β : ei 7→ vi which are the generators of the rays. Applying the functor Hom(−,Z)
to this exact sequence, we get

0 // M
β∗

// (Zm)∗
D∗

// H2(X,Z) // 0(4)

where β∗ : m 7→
∑m

i=1m(vi)e
∗
i and D∗ : e∗i 7→ Di.

So the deduce the following equalities

∀d ∈ H2(X,Z),
∑

i=1

Di(d)vi = 0 in N

∀m ∈M,
∑

i=1

m(vi)Di = 0 in H2(X,Z)

m∑

i=1

viDi = 0 : as a map H2(X,Z) → N(5)

To define the GKZ-system associated to X , we put

– v1, . . . , vm are the generators of the rays,
– a := 0.

Lemma 4.2. — We have Λ = H2(X,Z).

Using notation of Definition 4.1, we have for any d ∈ H2(X,Z),

�d :=
∏

i:Di(d)>0

(∂λi )
Di(d) −

∏

i:Di(d)<0

(∂λi)
−Di(d)

Let β1, . . . , βr be a basis of the Mori cone i.e. cone of effective classes in H2(X,Z). Let T1, . . . , Tr be the Poincaré
dual basis in H2(X,Z). For a ∈ {1, . . . , r}, put

qa :=

m∏

i=1

λ
Di(βa)
i

qd :=

r∏

a=1

qTj(d)
a =

m∏

i=1

λ
Di(d)
i for d ∈ H2(X,Z).(6)

Notice that with this notation, puting qa := eta , we have eτ2 =
∏r

a=1 q
Ta
a .

Lemma 4.3. — For i ∈ {1, . . . , n}, we have Zi,0(q
d) = 0. Moreover, if for all i ∈ {1, . . . , n}, we have Zi,0(

∏m
j=1 λ

ℓj

j ) =

0 then (ℓ1, . . . , ℓm) ∈ Λ = H2(X,Z).

So to solve the GKZ-system, we look for functions that depends on the qa’s variables such that �dΦ = 0.
In the literature, solutions of GKZ-system are

Φ(λ1, . . . , λm, α1, . . . , αm) :=
∑

d∈H2(X,Z)

m∏

i=1

λ
Di(d)+αi

i

Γ(Di(d) + 1 + αi)

where
∑m

i=1 αivi = a(= 0) and αi are parameters.
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As we have seen before in (5), we have
∑m

i=1Divi = 0, so we deduce a cohomological valued function

Φ(λ1, . . . , λm, D1, . . . , Dm) :=
∑

d∈H2(X,Z)

m∏

i=1

λ
Di(d)+Di

i

Γ(Di(d) + 1 +Di)

=
∑

d

qd

∏r
a=1 q

Ta
a∏m

i=1 Γ(Di(d) + 1 +Di)

= eτ2

∑

d

qd 1∏m
i=1 Γ(Di(d) + 1 +Di)

with the notation of (6)

Compare with Proposition 3.6, the last expression is almost the expression Ĥ(2iπτ2, z = 1).
If we want to use the logarithmic derivative in �d i.e. δi := λi∂λi we put for any d ∈ H2(X,Z)

�
′
d :=

∏

i:Di(d)>0

λ
Di(d)
i �d.

We deduce

�
′
d =

∏

i:Di(d)>0

δi(δi − 1) · · · (δi − (Di(d) − 1)) − qd
∏

i:Di(d)<0

δi(δi − 1) · · · (δi − (−Di(d) − 1))

Notice that we can express the differential operator �d with the qa’s coordinates, namely we have

δi = λi∂λi =

r∑

a=1

Di(βa)qa∂qa .

4.2. z-GKZ system and A-side. — Here, we will suppose that X is Fano. There is a generalization of GKZ
system where, we introduce an additional variable denoted by z. To do so, we should replace in the formulas of
Definition 4.1, ∂λi by z∂λi .

With the same discussion as before, for d ∈ H2(X,Z), we just look at the operators

(�′
d,z :=)Pd :=

∏

i:Di(d)>0

zδi(zδi − z) · · · (zδi − (Di(d) − 1)z) − qd
∏

i:Di(d)<0

zδi(zδi − z) · · · (zδi − (−Di(d) − 1)z)

Recall that we have

δi =

r∑

a=1

Di(βa)qa∂qa =

r∑

a=1

ρaqa∂qa

where c1(TX) = D1 + · · · +Dm =
∑r

a=1 ρaTa.
We define the differential module

MGKZ := C[z, q±]〈zqa∂qa〉/〈Pd, d ∈ H2(X,Z)〉.

We define the associated sheaf

MGKZ := MGKZ ⊗C[z,q±] OVε×C

where Vε := {0 < |qa| < ε} is an open in H2(X,C)/Pic(X) ≃ (C∗)r.

Proposition 4.4. — The sheaf MGKZ is a finitely generated OVε×C-module. The fiber at any point (q, z) ∈ Vε × C

is less than dimC H
∗(X,C).

In Section 3, we used the variables τ2, but here we use the variables qa = eta . To make this precise, one should

quotient the bundle (O(F ),∇) with an action of the Picard group of X . The quotient bundle is denoted by (O(F̃ ),∇).
With the qa’s variable the large limit point is qa = 0.

H∗(X,Z)
Γ(TX)(2iπ)deg /2

//

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

(
O(F̃ ), dU×C

)
z−µzc1(T X)

//

&&MMMMMMMMMM

(
O(F̃ ), dU + ∇z∂z

)
L(q,z)

//

wwooooooooooo

(
O(F̃ ),∇

)

ssfffffffffffffffffffffffffffff

Vε × C
Ĥ

jj

z−c1(T X)zµI
gg J=I 66

1

44

Lemma 4.5. — For any d ∈ H2(X,Z), we have

Pd(Ĥ(q, z)) = Pd(I(q, z)) = 0 and Pd(

∫

Γ

eWq/zωq) = 0
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Proposition 4.6. — The following morphism is an isomorphism

MGKZ ⊗C[z,q±] OVε×C −→ (O(F̃ ),∇)

P (z, q, z∂) 7−→ P (z, q, z∇)1

Sketch of proof. — The morphism is well-defined because of Lemma 4.5 and

P (z, q, z∇)1 = L(q, z)P (z, q, zqa∂qa)I(q, z).

For i ∈ {1, . . . ,m}, we have

I(q, z) = e
Pr

a=1 Ta log qa/z(1 +O(q, z−1))

zδiI(q, z) = e
Pr

a=1 Ta log qa/z(Di +O(q, z−1))

As L(q, z)α = e
Pr

a=1 −Ta log qa/zα+O(q) and the cohomology of X is generated by the classes Di, there exist operators
Pj(z, q, z∇) such that

Pj(z, q, z∇)1 = φj +O(q)

where φj is a basis of H∗(X,C). This implies the morphism of the proposition is onto. By rank consideration, we
conclude.

4.3. z-GKZ and B-side. — The B-side is construct as follows. Applying the functor HomZ(−,C∗) to the exact
sequence (3), we get

0 // Hom(N,C∗) // Y := (C∗)m pr
// M := Hom(H2(X,Z),C∗) // 0

The Landau-Ginzburg model associated to the toric variety X is

Y
W //

pr

��

C

M

where W = w1 + · · · + wm. For q ∈ M, we denote Yq := pr−1(q) and Wq := W |Yq . Notice that Yq is isomorphic to

(C∗)n where n = rkN . Let M0 be a Zariski open set of M where Wq is convenient and non-degenerated. For (q, z)
in M0 × C∗, define

R∨
Z,(q,z) := Hn(Yq, y ∈ Yq : ℜe(Wq(y)/z) ≪ 0},Z)

Lemma 4.7. — The relative homology group R∨
Z,(q,z) are a local system of rank dimH∗(X,C).

We can also define a intersection pairing

R∨
Z,(q,−z) ×R∨

(q,z) → Z.

Denote by RZ the dual local system. Denote by R := RZ ⊗OM0×C∗ . The associated locally free sheaf endowed with
a flat connection and a pairing. Identifying Yq with (C∗)n, we denote

ωq =
dy1 ∧ · · · ∧ dyn

y1 · · · yn
.

A relative n-differential form

ϕ(q, z, y) := f(q, z, y)eWq(y)/zωq where f(q, z, y) ∈ OM0×C∗×Yq

defines a section of R via integration over Lefschetz thimbles Γ ∈ R∨
Z,(q,z):

[ϕ](q, z) :=
1

(−2πz)n/2

∫

Γ

f(q, z, y)eWq(y)/zωq ∈ OO0×C∗ .

Now we extend the bundle R over M0 × C by relative n-form that are regular at z = 0. We denote this extension by
R(0).

Proposition 4.8. — The following morphism is an isomorphism

MGKZ ⊗C[z,q±] OVε×C −→ (R(0) |Vε×C,∇)

P (z, q, z∂) 7−→ P (z, q, z∇)[eWq(y)/zωq]
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5. Integral structures and Mirror symmetry

In this section, we state the main result of Iritani that is the integra structure defined on both side are isomorphic.

Theorem 5.1. — We have an isomorphism of between the locally free sheaves (O(F̃ ),∇, S(·, ·)) and (R(0),∇, (·, ·)R)
such that the section 1 maps to [eWq(y)/zωq] i.e.

(R(0),∇, (·, ·)R)

''OOOOOOOOOOO

Mir // (O(F̃ ),∇, S(·, ·))

wwooooooooooo

Vε × C

1

;;

[eWq(y)/zωq ]

cc

Moreover, the integral structures coincide via the morphism Mir.

Sketch of proof. — Denote by O(F̃ )∇ the flat section of O(F̃ ). Consider the morphism

ψ : R∨
Z,(q,z) := Hn(Yq, y ∈ Yq : ℜe(Wq(y)/z) ≪ 0},Z) −→ O(F̃ )∇

Γ 7−→ sΓ(q, z)

such that for any section [ϕ] of R(0)

S(Mir([ϕ])), sΓ(q, z)) =
1

(−2πz)n/2

∫

Γ

f(q, z, y)eWq(y)/zωq

where ϕ = f(q, z, y)eWq(y)/zωq.
We have to show that ψ(R∨

Z,(q,z)) is equal to ZK(K(X)) which is the Z-structure defined on the A-side.

Firstly, let us show that sΓR
= ZK(OX) (see diagram (2) for the definition of ZK). As Mir(eWq(y)/zωq) = 1, the

Corollary 3.8 implies that

(Mir(eWq(y)/zωq), ZK(OX)) =
1

(−2πz)n/2

∫

ΓR

e−Wq/zωq.

Let Pi(q, z, z∂qa) be an differential operator such that Pi(q, z, z∇)1 = φi +O(q). Applying this operator to the identity
above, we get

(φi +O(q), ZK(OX)) =
1

(−2πz)n/2

∫

ΓR

Pi · (e
−Wq/zωq).

We deduce that sΓR
= ZK(OX).

Secondly, show that ZK(K(X)) ⊂ ψ(R∨
Z,(q,z)). For any L ∈ Pic(X), we have ZK(L) = L · ZK(OX). Moreover, the

image ψ(R∨
Z,(q,z)) is stable by the action of line bundles. So ZK(L) belongs to ψ(R∨

Z,(q,z)). As K(X) is generated by

line bundles, we deduce that ZK(K(X)) ⊂ ψ(R∨
Z,(q,z)).

Finally, as the pairings coincide and they are unimodular, we conclude that ZK(K(X)) = ψ(R∨
Z,(q,z)).
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