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Slogan/hope

Start from the µ-homotopy class of an isolated hypersurface
singularity.

The base space of a certain global versal unfolding should be an
atlas of distinguished bases (up to signs) of its Milnor lattice.

Looijenga 73 + Deligne 74: yes for the ADE singularities.

Hertling + Roucairol 07: yes for the simple elliptic singularities.

Hertling 11: 2 steps towards the slogan/hope for all singularities:

A “global µ-constant stratum” ⊂ a global versal base space.
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Isolated hypersurface singularity

f : (Cn+1, 0)→ (C, 0) holomorphic, isolated singularity at 0,

Milnor number µ = dimOCn+1,0/(
∂f

∂xi
) Jacobi algebra

Choose a good representative.

The Milnor lattice is Ml(f ) := Hn(f −1(r),Z) ∼= Zµ (some r > 0)

On Ml(f ) we have the monodromy Mon (quasiunipotent),
the intersection form I ((−1)n-symmetric),
the Seifert form L (unimodular).

L determines Mon and I .

GZ(f ) := Aut(Ml(f ),Mon, I , L) = Aut(Ml(f ), L).

3 / 26



Universal unfolding

F : (Cn+1 ×M, 0)→ (C, 0) universal unfolding of f .

Choose a good representative F : X → ∆

Base space M ∼= neighborhood of 0 in Cµ.

(M, ◦, e,E ) is an F-manifold with Euler field.
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Caustic, Maxwell stratum, µ-constant stratum

M ⊃ K3 := {t ∈ M |Ft has not µ A1-singularities} caustic

M ⊃ K2 := {t ∈ M |Ft has µ A1-singularities,

but < µ critical values} Maxwell stratum

M ⊃ K3 ⊃ Sµ := {t ∈ M |Ft has only one singularity x0

and Ft(x0) = 0} µ-constant stratum.

On M −K3 the critical values u1, ..., uµ are locally canonical
coordinates, there the multiplication is semisimple.
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Lyashko-Looijenga map

t 7→ crit. values of Ft mod Symµ

LL : M → Cµ/Symµ

∪ ∪
K3 ∪ K2 → discriminant

It is locally biholomorphic on M − (K3 ∪ K2),

branched of order (2 resp. 3) along (K2 resp. K3).
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Distinguished basis
Choose t ∈ M − (K3 ∪ K2),

choose a distinguished system of paths γ1, ..., γµ in ∆:

Push vanishing cycles to r > 0, r ∈ ∂∆:

δ1, ..., δµ ∈ Ml(f ) ∼= Hn(F−1t (r),Z)

δ = (δ1, ..., δµ) is a distinguished basis of the Milnor lattice,

it is unique up to signs: (±δ1, ...,±δµ).
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Coxeter-Dynkin diagram

L(δtr , δ) = (−1)
(n+1)(n+2)

2 ·

1 ∗
. . .

0 1

 =: (−1)
(n+1)(n+2)

2 · S .

S ←→ Coxeter-Dynkin diagram (CDD) of δ :

Numbered vertices 1, ..., µ,
the line between i and j is weighted by sij (no line if sij = 0).

All CDD’s are connected (Gabrielov).

B := {all distinguished bases in Ml(f )},
(B up to signs) = B/Zµ2 ,
The braid group Brµ acts on B, B is one orbit of Brµ n Zµ2 .

B comes from one t, many (γ1, ..., γµ).
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Stokes regions
But now: many t, one (γ1, ..., γµ):

Now S is a Stokes matrix of the Brieskorn lattice of Ft .
Get a map

LD : M − (K3 ∪ K2) → B/Zµ2
t 7→ (δ (mod signs) from these paths)

The connected components of the fibers are Stokes regions,
the boundaries are Stokes walls.
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A conjecture (in unfinished form)

Crossing a Stokes wall at a generic point ∼
action of a standard braid on δ.

LD induces
L̃D : {Stokes regions} → B/Zµ2 .

Conjecture: The fibers of LD are connected. Equiv: L̃D is injective.

For the question whether it is surjective, the local M is too small,
in general. And the local M is the reason for “unfinished form”.
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ADE singularities, Looijenga 73

Looijenga 73: M ∼= Cµ,

LL : M → Cµ/Symµ is a branched covering of order µ!(deg f )µ

|W | ,

 LL(one Stokes region)
1:1→ (Cµ/Symµ − discriminant),

 deg LL = |{Stokes regions}|

and LL branched covering  L̃D is surjective.

For Aµ L̃D is injective. Question 73: Also for Dµ, Eµ?
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ADE singularities, Deligne 74

In the case n ≡ 0 mod 4, (Ml(f ), I ) is the root lattice of type ADE.

Deligne 74: In that case

B = {bases δ of Ml(f ) | I (δi , δi ) = 2, sδ1 ◦ ... ◦ sδµ = Mon}

and

|B/Zµ2 | = ... = deg LL.

 L̃D is bijective.  The slogan/hope holds for ADE.
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ADE singularities, H+Roucairol 07

New argument for L̃D injective:

Suppose, A and B are Stokes regions with L̃D(A) = L̃D(B).

 CDD(A) = CDD(B) and S(A) = S(B).

 ∃! deck trf. ψM :

A 7→ B
M → M ⊃ K2 ∪ K3

↘ ↙ ↓
Cµ/Symµ ⊃ discriminant

Proof with: sij ∈ {0,±1} (⇐ I pos. def.),
sij = 0↔ K2, sij = ±1↔ K3.
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ADE singularities, their symmetries, H 00

Aut(M, ◦, e,E )
surj← Aut(F ) L99 Aut(f )→ GZ(f )→ GZ(f )/{± id}

Aut(M, ◦, e,E )
surj← Aut(f )

surj→ GZ(f )/{± id}

Aut(M, ◦, e,E )
isom←→ GZ(f )/{± id}

ψM ψhom

 L̃D(A) = L̃D(B)⇒ ψhom = [± id]⇒ ψM = id⇒ A = B.
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Simple elliptic singularities, Jaworski 86

Theorem
(H+Roucairol 07) A good global versal base space Mgl exists,

for which L̃D is bijective. ( the slogan/hope holds.)

∃ Legendre families ftµ with tµ ∈ C− {0; 1}.

Jaworski 86: ∃ a global unfolding F = ftµ +
∑µ−1

i=1 mi ti with:

MJaw = Cµ−1 × (C− {0; 1}), and F is locally universal.

Theorem (Jaworski 86)

LLJaw : MJaw − (K2 ∪ K3)→ Cµ/Symµ − discriminant

is a covering.
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Simple elliptic singularities, H-Roucairol 07

Mgl := ( universal covering of MJaw ) ∼= Cµ−1 ×H.

Jaworski’s thm  LLgl : Mgl − (K2 ∪ K3)→ Cµ/Symµ − discr.
is a covering.

 L̃D is surjective.

Theorem (H-Roucairol 07)

∃ partial compactification

MJaw ⊃ MJaw ← Cµ−1
↓ ↓
P1 ⊃ C− {0; 1} t

to an orbibundle s.t. LLJaw : MJaw → Cµ/Symµ

is (almost) a branched covering, except that 0-section → {0}.
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simple elliptic singularities, H+Roucairol 07

 New proof of Jaworski’s thm, and know deg LLJaw .

Now the argument for the injectivity of L̃D is as for ADE, but:

1) I semidefinite on ML(f )⇒ sij ∈ {0,±1,±2}, with

0 ↔ K2,

±1 ↔ K3,

±2 ↔ fibers above 0, 1,∞ in LLJaw

2) Aut(Mgl , ◦, e,E ) ∼= GZ(f )/{± id}.
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2 steps towards the slogan/hope for all singularities

1st step (H 11): Construction of Mmar
µ .

Mmar
µ = {“marked” singularities in one µ-homotopy class}/(right equiv.),

locally Mmar
µ
∼= some µ-constant stratum,

GZ(f0) acts properly discontinuously on Mmar
µ .

2nd step (Work in progress): construction of Mgl ⊃ Mmar
µ .

Mgl is a thickening of Mmar
µ to a µ-dim F-manifold with Euler field,

locally isomorphic to the base of the univ. unfolding of a singularity,
E -invariant,
GZ(f0) acts properly discontinuously on Mgl ,

Aut(Mgl , ◦, e,E ) ∼= GZ(f0)/{± id}.
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Conjectures

Conjecture: Mmar
µ ist connected (equiv.: Mgl is connected).

LL : Mgl → Cµ/Symµ

is well defined.

L̃D : {Stokes regions} → B/Zµ2

is well defined if Mgl is connected. But in general Mgl is not
algebraic, and LL is far from being a (branched) covering.

Conjecture: L̃D is injective.

Question: Is L̃D bijective?
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On the 1st step, marked singularities

Fix a singularity f0.

Definition
(a) Its µ-homotopy class is

{singularities f | ∃ a µ-constant family connecting f and f0}.

(b) A marked singularity is a pair (f ,±ρ) with f as in (a) and

ρ : (Ml(f ), L)
∼=→ (Ml(f0), L).
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Mmar
µ (f0) and Mµ(f0)

Definition
(c) Two marked singularities (f1,±ρ1) and (f2,±ρ2) are

right equivalent (∼R)
⇐⇒ ∃ biholomorphic ϕ : (Cn+1, 0)→ (Cn+1, 0) s.t.

(Cn+1, 0)
ϕ→ (Cn+1, 0)

↓ f1 ↓ f2
C = C

,
Ml(f1)

ϕhom→ Ml(f2)
↓ ρ1 ↓ ±ρ2

Ml(f0) = Ml(f0)

(d)

Mmar
µ (f0)

as a set
:= {(f ,±ρ) as above}/ ∼R .

(e) ∼R for f gives

Mµ(f0) := {f in the µ-homotopy class of f0}/ ∼R .
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Results on Mmar
µ (f0) and Mµ(f0)

Theorem ((a) H 99, (b)-(d) H 11)

(a) Mµ(f0) can be constructed as an analytic geometric quotient.

(b) Mmar
µ (f0) can be constructed as an analytic geometric quotient.

(c) GZ(f0) acts properly discontinuously on Mmar
µ (f0) via

ψ ∈ GZ(f0) : [(f ,±ρ)] 7→ [(f ,±ψ ◦ ρ)].

Mµ(f0) = Mmar
µ (f0)/GZ(f0).

(d) Locally Mmar
µ (f0) is isomorphic to a µ-constant stratum.

Locally Mµ(f0) is isomorphic to a (µ-constant stratum)/(a finite
group).
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µ-constant monodromy group

Definition

(Mmar
µ )0 := component of Mmar

µ which contains [(f0,± id)],

Gmar (f0) := the subgroup of GZ(f0) which acts on (Mmar
µ )0

“µ-constant monodromy group′′

 GZ(f0)/Gmar (f0)
1:1←→ {components of Mmar

µ (f0)}.

Conjecture: Mmar
µ (f0) is connected, equiv.: Gmar (f0) = GZ(f0).

Theorem
True for the singularities with modality ≤ 1 and for the 14
exceptional bimodal singularities. There Mmar

µ is simply connected.
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Brieskorn lattices

f a singularity. Its Brieskorn lattice is

H ′′0 (f ) :=
Ωn+1
Cn+1,0

df ∧ dΩn−1
Cn+1,0

with actions of τ (multiplication by τ) and ∂−1τ (τ is the value
coordinate).

LBL(f ) := isomorphism class of (Ml(f ), L,H ′′0 (f )).

It carries all information from periods and Ml(f ).

H 97: Classifying space DBL(f0) for such data.
GZ(f0) acts properly discontinuously on it.
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Torelli type conjectures

Conjecture (H 91, doctoral thesis): LBL(f ) determines f up to ∼R .
Equiv. (H 00): The period map

Mµ(f0)→ DBL(f0)/GZ(f0), [f ] 7→ LBL(f ),

is injective.

Conjecture (H 11): The period map

Mmar
µ (f0)→ DBL(f0), [(f ,±ρ)] 7→ ρ(H ′′0 (f ))

is injective.

Theorem
True for the singularities with modality ≤ 1 and for the 14
exceptional bimodal singularities.

25 / 26



A last thought

If Mgl − (K3 ∪ K2) were a moduli space (up to right equivalence)
for marked functions Ft (with µ different critical points and values)

then the slogan/hope could be seen as a global Torelli type
conjecture for these functions:

The (Fourier-Laplace transformed) Brieskorn lattice with marking
of Ft is determined by

• the critical values of Ft and

• the distinguished basis LD(t) ∈ B/Zµ2 .

Then there were global Torelli type conjectures for the semisimple
and the nilpotent points in Mgl .
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