Marked singularities, their moduli spaces and atlases of Stokes data

Claus Hertling

Universität Mannheim

07.06.2012

イロン イロン イヨン イヨン 三日

1/26

Slogan/hope

Start from the μ -homotopy class of an isolated hypersurface singularity.

The base space of a certain global versal unfolding should be an atlas of distinguished bases (up to signs) of its Milnor lattice.

Looijenga 73 + Deligne 74: yes for the ADE singularities.

Hertling + Roucairol 07: yes for the simple elliptic singularities.

Hertling 11: 2 steps towards the slogan/hope for all singularities:

A "global μ -constant stratum" \subset a global versal base space.

Isolated hypersurface singularity

 $f:(\mathbb{C}^{n+1},0)
ightarrow(\mathbb{C},0)$ holomorphic, isolated singularity at 0,

Milnor number
$$\mu = \dim \mathcal{O}_{\mathbb{C}^{n+1},0}/(rac{\partial f}{\partial x_i})$$
 Jacobi algebra

Choose a good representative.

The Milnor lattice is $MI(f) := H_n(f^{-1}(r), \mathbb{Z}) \cong \mathbb{Z}^{\mu}$ (some r > 0)

On MI(f) we have the monodromy Mon (quasiunipotent), the intersection form I ((-1)ⁿ-symmetric), the Seifert form L (unimodular).

L determines Mon and I.

$$G_{\mathbb{Z}}(f) := \operatorname{Aut}(MI(f), Mon, I, L) = \operatorname{Aut}(MI(f), L).$$

Universal unfolding

 $F: (\mathbb{C}^{n+1} \times M, 0) \to (\mathbb{C}, 0)$ universal unfolding of f.

Choose a good representative $F : \mathcal{X} \to \Delta$ Base space $M \cong$ neighborhood of 0 in \mathbb{C}^{μ} . (M, \circ, e, E) is an F-manifold with Euler field.

Caustic, Maxwell stratum, μ -constant stratum

 $M \supset \mathcal{K}_3 := \{t \in M \,|\, F_t \text{ has not } \mu \text{ } A_1 \text{-singularities} \}$ caustic

 $M \supset \mathcal{K}_2 := \overline{\{t \in M \mid F_t \text{ has } \mu \text{ } A_1 \text{-singularities}, }$ but $< \mu \text{ critical values}$ Maxwell stratum

 $M \supset \mathcal{K}_3 \supset S_\mu := \{t \in M \,|\, F_t \text{ has only one singularity } x^0$ and $F_t(x^0) = 0\} \quad \mu\text{-constant stratum}.$

On $M - \mathcal{K}_3$ the critical values $u_1, ..., u_\mu$ are locally *canonical* coordinates, there the multiplication is semisimple.

Lyashko-Looijenga map

$$\begin{array}{cccc} t & \mapsto & \operatorname{crit.} \text{ values of } F_t \mod Sym_\mu \\ LL : & M & \to & \mathbb{C}^\mu/Sym_\mu \\ & \cup & & \cup \\ & \mathcal{K}_3 \cup \mathcal{K}_2 & \to & \operatorname{discriminant} \end{array}$$

6/26

It is locally biholomorphic on $M - (\mathcal{K}_3 \cup \mathcal{K}_2)$, branched of order (2 resp. 3) along (\mathcal{K}_2 resp. \mathcal{K}_3).

Distinguished basis

Choose $t \in M - (\mathcal{K}_3 \cup \mathcal{K}_2)$,

choose a distinguished system of paths $\gamma_1, ..., \gamma_\mu$ in Δ :

Push vanishing cycles to $r > 0, r \in \partial \Delta$:

$$\delta_1, ..., \delta_\mu \in Ml(f) \cong H_n(F_t^{-1}(r), \mathbb{Z})$$

 $\underline{\delta} = (\delta_1, ..., \delta_{\mu})$ is a *distinguished basis* of the Milnor lattice, it is unique up to signs: $(\pm \delta_1, ..., \pm \delta_{\mu})$.

7/26

Coxeter-Dynkin diagram

$$L(\underline{\delta}^{tr},\underline{\delta}) = (-1)^{\frac{(n+1)(n+2)}{2}} \cdot \begin{pmatrix} 1 & & * \\ & \ddots & \\ 0 & & 1 \end{pmatrix} =: (-1)^{\frac{(n+1)(n+2)}{2}} \cdot S.$$

 $S \longleftrightarrow$ Coxeter-Dynkin diagram (CDD) of $\underline{\delta}$:

Numbered vertices $1, ..., \mu$, the line between *i* and *j* is weighted by s_{ij} (no line if $s_{ij} = 0$). All CDD's are connected (Gabrielov).

 $\mathcal{B} := \{ \text{all distinguished bases in } MI(f) \},\$

 $(\mathcal{B} \text{ up to signs}) = \mathcal{B}/\mathbb{Z}_2^{\mu},$ The braid group Br_{μ} acts on \mathcal{B} , \mathcal{B} is one orbit of $Br_{\mu} \ltimes \mathbb{Z}_2^{\mu}$.

 \mathcal{B} comes from one *t*, many $(\gamma_1, ..., \gamma_\mu)$.

Stokes regions

But now: many t, one $(\gamma_1, ..., \gamma_\mu)$:

Now S is a Stokes matrix of the Brieskorn lattice of F_t . Get a map

$$\begin{array}{rcl} LD: M - (\mathcal{K}_3 \cup \mathcal{K}_2) & \rightarrow & \mathcal{B}/\mathbb{Z}_2^{\mu} \\ & t & \mapsto & (\underline{\delta} \pmod{\text{signs}} \text{ from these paths}) \end{array}$$

The connected components of the fibers are *Stokes regions*, the boundaries are *Stokes walls*.

9 / 26

A conjecture (in unfinished form)

Crossing a Stokes wall at a generic point \sim action of a standard braid on $\underline{\delta}.$

LD induces \widetilde{LD} : {Stokes regions} $\rightarrow \mathcal{B}/\mathbb{Z}_2^{\mu}$. Conjecture: The fibers of *LD* are connected. Equiv: \widetilde{LD} is injective.

For the question whether it is surjective, the local M is too small, in general. And the local M is the reason for "unfinished form".

ADE singularities, Looijenga 73

Looijenga 73: $M \cong \mathbb{C}^{\mu}$,

 $LL: M o \mathbb{C}^{\mu}/Sym_{\mu}$ is a branched covering of order $rac{\mu!(deg \ t)^{\mu}}{|W|}$,

 \rightsquigarrow *LL*(one Stokes region) $\stackrel{1:1}{\rightarrow} (\mathbb{C}^{\mu}/Sym_{\mu} - \text{discriminant}),$

 $\rightarrow \quad \text{deg } LL = |\{\text{Stokes regions}\}|$ and *LL* branched covering $\rightarrow \widetilde{LD}$ is surjective.

For A_{μ} LD is injective. Question 73: Also for D_{μ} , E_{μ} ?

ADE singularities, Deligne 74

In the case $n \equiv 0 \mod 4$, (MI(f), I) is the root lattice of type ADE.

Deligne 74: In that case

$$\mathcal{B} = \{ \text{bases } \underline{\delta} \text{ of } MI(f) \,|\, I(\delta_i, \delta_i) = 2, \, s_{\delta_1} \circ ... \circ s_{\delta_{\mu}} = Mon \}$$

and

$$|\mathcal{B}/\mathbb{Z}_2^{\mu}| = \ldots = \deg LL.$$

 $\rightsquigarrow \widetilde{LD}$ is bijective. \rightsquigarrow The slogan/hope holds for ADE.

ADE singularities, H+Roucairol 07

New argument for \widetilde{LD} injective:

Suppose, A and B are Stokes regions with $\widehat{LD}(A) = \widehat{LD}(B)$. $\rightarrow CDD(A) = CDD(B)$ and S(A) = S(B).

 $\begin{array}{l} \text{Proof with: } s_{ij} \in \{0, \pm 1\} \ (\Leftarrow I \text{ pos. def.}), \\ s_{ij} = 0 \leftrightarrow \mathcal{K}_2, \quad s_{ij} = \pm 1 \leftrightarrow \mathcal{K}_3. \end{array}$

ADE singularities, their symmetries, H 00

$$\operatorname{\mathsf{Aut}}(M,\circ,e,E) \stackrel{\operatorname{\mathsf{surj}}}{\leftarrow} \operatorname{\mathsf{Aut}}(F) \xleftarrow{} \operatorname{\mathsf{Aut}}(f) \to G_{\mathbb{Z}}(f) \to G_{\mathbb{Z}}(f)/\{\pm\operatorname{\mathsf{id}}\}$$

$$\operatorname{Aut}(M, \circ, e, E) \stackrel{\operatorname{surj}}{\leftarrow} \operatorname{Aut}(f) \stackrel{\operatorname{surj}}{\to} G_{\mathbb{Z}}(f) / \{\pm \operatorname{id}\}$$

$$\begin{array}{ccc} \operatorname{Aut}(M,\circ,e,E) & \stackrel{\operatorname{isom}}{\longleftrightarrow} & G_{\mathbb{Z}}(f)/\{\pm\operatorname{id}\}\\ \psi_M & \psi_{hom} \end{array}$$

 $\rightsquigarrow \widetilde{LD}(A) = \widetilde{LD}(B) \Rightarrow \psi_{hom} = [\pm \mathrm{id}] \Rightarrow \psi_M = \mathrm{id} \Rightarrow A = B.$

Simple elliptic singularities, Jaworski 86

Theorem

(H+Roucairol 07) A good global versal base space M^{gl} exists, for which \widetilde{LD} is bijective. (\rightsquigarrow the slogan/hope holds.)

∃ Legendre families $f_{t_{\mu}}$ with $t_{\mu} \in \mathbb{C} - \{0; 1\}$. Jaworski 86: ∃ a global unfolding $F = f_{t_{\mu}} + \sum_{i=1}^{\mu-1} m_i t_i$ with: $M^{Jaw} = \mathbb{C}^{\mu-1} \times (\mathbb{C} - \{0; 1\})$, and F is locally universal. Theorem (Jaworski 86)

$$LL^{Jaw}:M^{Jaw}-(\mathcal{K}_2\cup\mathcal{K}_3) o \mathbb{C}^\mu/Sym_\mu-d$$
iscriminant

is a covering.

Simple elliptic singularities, H-Roucairol 07

 $M^{gl} := ($ universal covering of $M^{Jaw}) \cong \mathbb{C}^{\mu-1} \times \mathbb{H}.$ Jaworski's thm $\rightsquigarrow LL^{gl} : M^{gl} - (\mathcal{K}_2 \cup \mathcal{K}_3) \to \mathbb{C}^{\mu}/Sym_{\mu} - \text{discr.}$ is a covering. $\rightsquigarrow \widetilde{LD}$ is surjective.

Theorem (H-Roucairol 07)

∃ partial compactification

$$egin{array}{rcl} \overline{M^{Jaw}} &\supset & M^{Jaw} &\leftarrow & \mathbb{C}^{\mu-1} \ & \downarrow & & \downarrow \ \mathbb{P}^1 &\supset & \mathbb{C}-\{0;1\} & t \end{array}$$

to an orbibundle s.t. LL^{Jaw} : $M^{Jaw} \to \mathbb{C}^{\mu}/Sym_{\mu}$ is (almost) a branched covering, except that 0-section $\to \{0\}$.

simple elliptic singularities, H+Roucairol 07

 \rightsquigarrow New proof of Jaworski's thm, and know deg LL^{Jaw} .

Now the argument for the injectivity of LD is as for ADE, but: 1) I semidefinite on $ML(f) \Rightarrow s_{ij} \in \{0, \pm 1, \pm 2\}$, with

$$\begin{array}{rcl} 0 & \leftrightarrow & \mathcal{K}_2, \\ \pm 1 & \leftrightarrow & \mathcal{K}_3, \\ \pm 2 & \leftrightarrow & \text{fibers above } 0, 1, \infty \text{ in } \overline{LL^{Jaw}} \end{array}$$

2) Aut $(M^{gl}, \circ, e, E) \cong G_{\mathbb{Z}}(f)/\{\pm \operatorname{id}\}.$

2 steps towards the slogan/hope for all singularities

1st step (H 11): Construction of M_{μ}^{mar} .

 $M_{\mu}^{mar} = \{$ "marked" singularities in one μ -homotopy class $\}/($ right equiv.),

locally $M_{\mu}^{mar} \cong$ some μ -constant stratum, $G_{\mathbb{Z}}(f_0)$ acts properly discontinuously on M_{μ}^{mar} .

2nd step (Work in progress): construction of $M^{gl} \supset M^{mar}_{\mu}$.

 M^{gl} is a thickening of M_{μ}^{mar} to a μ -dim F-manifold with Euler field, locally isomorphic to the base of the univ. unfolding of a singularity, *E*-invariant,

 $G_{\mathbb{Z}}(f_0)$ acts properly discontinuously on M^{gl} ,

$$\operatorname{Aut}(M^{gl}, \circ, e, E) \cong G_{\mathbb{Z}}(f_0)/\{\pm \operatorname{id}\}.$$

Conjectures

Conjecture: M_{μ}^{mar} ist connected (equiv.: M^{gl} is connected).

$$LL: M^{gl} \to \mathbb{C}^{\mu}/Sym_{\mu}$$

is well defined.

$$\widetilde{\textit{LD}}: \{ \mathsf{Stokes \ regions} \}
ightarrow \mathcal{B}/\mathbb{Z}_2^{\mu}$$

is well defined if M^{gl} is connected. But in general M^{gl} is not algebraic, and *LL* is far from being a (branched) covering.

Conjecture: \widetilde{LD} is injective.

Question: Is \widetilde{LD} bijective?

On the 1st step, marked singularities

Fix a singularity f_0 .

Definition (a) Its μ -homotopy class is

{singularities $f \mid \exists$ a μ -constant family connecting f and f_0 }.

(b) A marked singularity is a pair $(f,\pm\rho)$ with f as in (a) and

 $\rho: (MI(f), L) \stackrel{\cong}{\to} (MI(f_0), L).$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゅう

20 / 26

 $M_{\mu}^{mar}(f_0)$ and $M_{\mu}(f_0)$

Definition (c) Two marked singularities $(f_1, \pm \rho_1)$ and $(f_2, \pm \rho_2)$ are right equivalent (\sim_R) $\iff \exists$ biholomorphic $\varphi : (\mathbb{C}^{n+1}, 0) \to (\mathbb{C}^{n+1}, 0)$ s.t. $(\mathbb{C}^{n+1},0) \xrightarrow{\varphi} (\mathbb{C}^{n+1},0) \qquad MI(f_1) \xrightarrow{\varphi_{hom}} MI(f_2)$ $\begin{array}{cccc} \downarrow f_1 & \downarrow f_2 & , & \downarrow \rho_1 & \downarrow \pm \rho_2 \\ \mathbb{C} & = & \mathbb{C} & & MI(f_0) & = & MI(f_0) \end{array}$ (d)

$$M^{mar}_{\mu}(f_0) \stackrel{ ext{as set}}{::=} \{(f,\pm
ho) ext{ as above}\}/\sim_R.$$

(e) \sim_R for f gives

 $M_{\mu}(f_0) := \{f \text{ in the } \mu\text{-homotopy class of } f_0\} / \sim_R .$

Results on $M_{\mu}^{mar}(f_0)$ and $M_{\mu}(f_0)$

Theorem ((a) H 99, (b)-(d) H 11)

(a) M_μ(f₀) can be constructed as an analytic geometric quotient.
(b) M^{mar}_μ(f₀) can be constructed as an analytic geometric quotient.
(c) G_Z(f₀) acts properly discontinuously on M^{mar}_μ(f₀) via

$$\psi \in G_{\mathbb{Z}}(f_0) : [(f, \pm \rho)] \mapsto [(f, \pm \psi \circ \rho)].$$

 $M_{\mu}(f_0) = M_{\mu}^{mar}(f_0)/G_{\mathbb{Z}}(f_0).$

(d) Locally $M_{\mu}^{mar}(f_0)$ is isomorphic to a μ -constant stratum. Locally $M_{\mu}(f_0)$ is isomorphic to a $(\mu$ -constant stratum)/(a finite group).

μ -constant monodromy group

Definition

 $(M_{\mu}^{mar})^{0} :=$ component of M_{μ}^{mar} which contains $[(f_{0}, \pm id)],$ $G^{mar}(f_{0}) :=$ the subgroup of $G_{\mathbb{Z}}(f_{0})$ which acts on $(M_{\mu}^{mar})^{0}$ " μ -constant monodromy group"

$$\rightsquigarrow \quad G_{\mathbb{Z}}(f_0)/G^{mar}(f_0) \stackrel{\text{1:1}}{\longleftrightarrow} \{\text{components of } M_{\mu}^{mar}(f_0)\}.$$

Conjecture: $M_{\mu}^{mar}(f_0)$ is connected, equiv.: $G^{mar}(f_0) = G_{\mathbb{Z}}(f_0)$.

Theorem

True for the singularities with modality ≤ 1 and for the 14 exceptional bimodal singularities. There M_{μ}^{mar} is simply connected.

Brieskorn lattices

f a singularity. Its Brieskorn lattice is

$$extsf{H}_0''(f):=rac{\Omega^{n+1}_{\mathbb{C}^{n+1},0}}{df\wedge d\Omega^{n-1}_{\mathbb{C}^{n+1},0}}$$

with actions of τ (multiplication by τ) and ∂_{τ}^{-1} (τ is the value coordinate).

LBL(f) := isomorphism class of $(MI(f), L, H_0''(f))$.

It carries all information from periods and MI(f).

H 97: Classifying space $D_{BL}(f_0)$ for such data. $G_{\mathbb{Z}}(f_0)$ acts properly discontinuously on it.

Torelli type conjectures

Conjecture (H 91, doctoral thesis): LBL(f) determines f up to \sim_R . Equiv. (H 00): The period map

$$M_{\mu}(f_0)
ightarrow D_{BL}(f_0)/G_{\mathbb{Z}}(f_0), \quad [f] \mapsto LBL(f),$$

is injective.

Conjecture (H 11): The period map

$$M^{mar}_{\mu}(f_0)
ightarrow D_{BL}(f_0), \quad [(f, \pm
ho)] \mapsto
ho(H_0''(f))$$

is injective.

Theorem

True for the singularities with modality ≤ 1 and for the 14 exceptional bimodal singularities.

A last thought

If $M^{gl} - (K_3 \cup K_2)$ were a moduli space (up to right equivalence) for marked functions F_t (with μ different critical points and values)

then the slogan/hope could be seen as a *global Torelli type conjecture* for these functions:

The (Fourier-Laplace transformed) Brieskorn lattice with marking of F_t is determined by

- the critical values of F_t and
- the distinguished basis $LD(t)\in \mathcal{B}/\mathbb{Z}_2^{\mu}.$

Then there were global Torelli type conjectures for the semisimple and the nilpotent points in M^{gl} .