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1 Introduction

The aim of this talk is to define a correspondance between quantum cohomology (A-side)
and singularity theory (B-side) : this is an aspect of mirror symmetry. The main idea is
to attach to each A-model (resp. B-model) a quantum differential system (and not only a
quantum D-module in the sense of [9]), that is a trivial bundle on P1×M (M depends on the
situation : it can be the germ (Cµ, 0) or C∗...), equipped with a meromorphic connection with
prescribed poles and a flat “metric” : two models will be mirror partners if their quantum
differential systems are isomorphic. On the A-side, such quantum differential systems arise
canonically (see Samuel Boissière’s talk). On the B-side, the situation is a priori less clear :
starting with a B-model (a regular, tame function on an affine manifold), it is indeed possible
to construct several quantum differential systems, which can be difficult to compare. A
canonical construction, which fits very well with mirror symmetry (at least on the known
examples !), is given by Hodge theory (“M. Saito’s method”).

These notes are organized as follows : we first define quantum differential systems (for
which Frobenius manifolds are a good motivation). We then explain how to attach (cano-
nically) such a system to a regular, tame, function on an affine manifold. The last part is
devoted mirror symmetry : a good test is provided by the small quantum cohomology of
weighted projective spaces. We end with few words about the “J-function” of a quantum
differential system.

2 Quantum differential systems (or Saito structures)

2.1 A motivation : Frobenius manifolds

Let M be a complex manifold. A Frobenius structure on M (see for instance [10], [13]) is
defined by the following data (ΘM denotes the sheaf of holomorphic vector fields on M) :

1. a commutative and associative product ∗ on ΘM (a Higgs field i.e Φ : ΘM → ΘM⊗Ω1
M ,

OM -linear, such that Φ ∧ Φ = 0),
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2. a nondegenerate, symmetric, flat bilinear form g on ΘM (its Levi-Civita connection 5
is flat),

3. two vector fields : e (5-flat, the identity for the product) and the Euler vector field
E which gives the homogeneity of the structure1. Often (semi-simple adE and in flat
coordinates),

E =

µ∑
i=1

(diti + ci)∂ti

The numbers di define the spectrum of the Frobenius structure.

These objects satisfy the following compatibility relation : if π : P1×M → M , the connection
∇ which is defined on the trivial bundle π∗ΘM by

∇ = π∗5+
π∗Φ
θ

+ (
Φ(E)

θ
+5E)

dθ

θ

is flat2. Notice that this connection has a pole of Poincaré rank less or equal to 1 at θ = 0
and a logarithmic pole at τ := θ−1 = 0.

The bilinear form g satisfy the following conditions :

1. Frobenius property : g(ΦX(Y ), Z) = g(Y, ΦX(Z)), X, Y, Z ∈ ΘM ,

2. homogeneity : there exists D ∈ C such that Eg(X, Y )− g([E, X], Y )− g(X, [E, Y ]) =
Dg(X, Y ), X,Y ∈ ΘM .

2.2 Quantum differential systems : definition

Conversely, the data

1. G a trivial3 vector bundle on P1 × M , equipped with a flat meromorphic connection
∇, with poles of Poincaré rank less or equal to 1 along {0} ×M and logarithmic ones
along {∞} ×M ,

2. S a ∇-flat pairing O(G)⊗ j∗O(G) → θdOP1×M where d ∈ Z and

j : P1 ×M → P1 ×M

is defined by j(θ, x) = (−θ, x) (θ coordinate on P1 − {∞}),
3. ϕ an isomorphism (”period map”) from i∗{θ=0}G onto ΘM ,

allow to define a Frobenius structure on M . A word of explanation : in a basis of global
sections the connection matrix is (because of the order of the poles)

(
A0(x)

θ
+ A∞(x))

dθ

θ
+ C(x) +

D(x)

θ

1For instance, 5eE = re, r ∈ C
2By definition Φ(E) is the multiplication E∗
3G ' π∗π∗G where π : P1 ×M → M
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where x = (x1, · · · , xµ) ∈ M . The flat connection 5 is first defined on i∗{θ=∞}G as the

restriction of the flat connection ∇ at τ := θ−1 = 0, (its matrix is C(x) in the obvious basis)
and we then use the identification between i∗{θ=∞}G and i∗{θ=0}G, via the global sections of G,
to define 5 on i∗{θ=0}G etc... The connection ∇ can thus be written as

∇ = 5+
Φ

θ
+ (

R0

θ
+ R∞)

dθ

θ

where 5 is a connection on E = i∗{θ=0}G and φ : E → E ⊗ Ω1M is OM -linear. We have

52 = 0, Φ∧Φ = 0 and 5Φ = 04. Notice that S sends the global sections onto θdOM and its
flatness gives the expected Frobenius and homogeneity properties.

Last, the period map shifts all these structures to ΘM and the flatness of ∇ gives the
expected relations.

Definition 2.2.1 I will call the tuple (M,G,∇, S, d) a quantum differential system (or a
Saito structure5) on M .

Example 2.2.2 (Quantum differential systems associated with the (small, orbifold...) quan-
tum cohomology, A-side, see also S. Boissière’s talk) One can attach a Saito structure to the
(small) quantum cohomology of a projective manifold X (we assume here that the quantum
product ◦ is everywhere convergent). The trivial bundle G is the one with fibers H∗(X,C),
that is

π : P1 ×M ×H∗(X,C) → P1 ×M

where M = H∗(X,C)6. Let {φk}N
k=1 be a homogeneous basis of H∗(X), {tk}N

k=1 be a system
of dual coordinates on H∗(X). The connection ∇ is defined by

∇∂tk
= ∂tk +

1

θ
φk ◦τ and ∇∂θ

= ∂θ − 1

θ2
E ◦τ +

1

θ
R

where ◦τ denotes the quantum product, parametrized by τ ∈ H∗(X,C),

E := c1(TX) +
N∑

k=1

(1− 1

2
degφk)t

kφk

and

R(φk) :=
degφk

2
φk.

Notice that, by definition, the φk’s are flat sections of 5. The flatness of ∇ follows from the
associativity and the commutativity of the quantum product etc... The pairing S (with values
in θnOP1×M , d = n here) is induced by (a, b) =

∫
X

a ∪ b, a, b ∈ H∗(X) : the homogeneity
property follows from the fact that (a, b) 6= 0 only if dega + degb = 2n. Same thing for
the small quantum cohomology, in which case we work over M = H0(X,C) ⊕ H2(X,C).
Analogous construction for orbifolds.

4The (flat) connection 5θ−1
:= 5+ Φ

θ is called the Dubrovin connection
5After K. Saito. It looks like the quantum D-modules defined in [9] but is in fact finer because only bundles

on C are considered in loc. cit
6Replace M by U if the quantum product converges on U ⊂ M
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3 Side B : the quantum differential system attached to

a regular function

The (Fourier-Laplace) transform of the Gauss-Manin connection and the Brieskorn lattice
of a tame regular function on an affine manifold yield the previous data. The idea is to work
with the differential system (rather than its solutions, we are not interested in real structures
here) satisfied by the Laplace integrals

∫

Γ

e−
f
θ ω

where f is a regular function on U (in practise, U = (C∗)n or U = (C)n) and ω ∈ Ωn(U)7.
This system is in fact a meromorphic connection on P1, with poles at θ = 0 and θ = ∞, i.e
a free C[θ, θ−1]-module G, of finite rank µ, equipped with a (flat) connection ∇ : G is the
Laplace transform of the usual Gauss-Manin system8. We have

G =
Ωn(U)[θ, θ−1]

(d− θ−1df) ∧ Ωn−1(U)[θ, θ−1]

(with words : we work modulo the exacts forms d(e−τfω)). The connection ∇ is defined by

θ2∇∂θ
(
∑

i

ωiθ
i) =

∑
i

fωiθ
i +

∑
i

iωiθ
i+1

(because of the kernel e−
f
θ ).

Step 1 : construction of a trivial (algebraic) bundle on P1. Let U0 (resp. U∞) be the
chart of P1 with coordinate θ (resp. τ), centered at 0 (resp. ∞). We need

1. a free C[θ]-submodule in G of maximal rank (in other words, a lattice in G, which gives
an extension of G at θ = 0), denote it by G0,

2. an opposite to G0, that is a free C[τ ]-submodule G∞ (an extension of G at θ = ∞)
such that9

G0 = G0 ∩G∞ ⊕ θG0 (1)

or/and G∞ = G0 ∩ G∞ ⊕ τG∞. If G0 =
∑

iC[θ]ωi, we can take for instance G∞ =∑
iC[τ ]ωi. The choice of a basis ω thus defines a trivial extension G of G0. Notice

that the restrictions of G at θ = 0 and θ = ∞ are isomorphic via the global sections
G0 ∩G∞ =

∑
iCωi, as it follows from equation (1).

7the cycle Γ is of course defined in order to give a meaning to the previous integral, see [12].
8via ∂t → θ−1 and t → θ2∇∂θ
9We have G = G0[τ ] = G∞[θ] so G0 and G∞ glue on C∗ and give a bundle G on P1 ; the decomposition

(1) shows that this bundle is trivial.
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An natural candidate for G0 : the Brieskorn lattice, the image in G of Ωn(U)[θ] (i.e the
forms that do not depend on θ−1). We have obviously

θ2∇∂θ
G0 ⊂ G0

By definition, we have also

G0/θG0 = Ωn(U)/df ∧ Ωn−1(U).

The main question : is G0 a free C[θ]-module ? Not always, yes if f is moreover tame (a
necessary, but not sufficient, condition is that µ := dimCΩn(U)/df ∧ Ωn−1(U) < +∞ ; in
particular, f must have at most isolated critical points). 10

A basic example : the ( Laurent) polynomials which are convenient and nondegenerate with
respect to their Newton polygons at infinity11, for which the freeness result is obtained using
a division theorem ”with weights”, allowing to shift suitably some basis of G0/θG0.

Step 2 : adding a connection with prescribed poles. We want more, a connection on
the trivial bundle G with poles of Poincaré rank less or equal to 1 at θ = 0 and logarithmic
poles at θ = ∞. In other words, we want that the matrix of this connection in the basis ω
takes the form

(
A0

θ
+ A∞)

dθ

θ
(2)

(a priori, this matrix is (A0

θ
+ A∞ +

∑r
i=1 Aiθ

i)dθ
θ
). This is the so-called Birkhoff problem for

G0, the most difficult piece (compare with [9]) : the main tool to solve this problem is Hodge
theory.12.
A major difficulty : two different solutions of the Birkhoff problem yield two different bundles
(and thus two different quantum differential systems) and this is why we have to define a
”canonical ” one. It is built with the (global version of the) solution of the Birkhoff problem
given by M. Saito’s method : the good opposite filtration is built with Deligne’s Ipq.

Step 3 : the metric. The Gauss-Manin system G of a tame, regular function, is self-dual
(microlocal Poincaré duality 13) : if

G∗ = HomC[θ,θ−1](G,C[θ, θ−1]) and G∗
0 = HomC[θ](G0,C[θ])

10Assume that U = C2 : then the rank of G is equal to the one of the (classical) Gauss-Manin system
which dimCH1(F,C) = µ + ν where F is the Milnor fiber, µ is the global Milnor number and ν the number
of ”vanishing cycles at ∞”. If G0 is free then ν = 0. The converse is true.

11Let f =
∑

α∈Zn aαuα and Γ be the convex hull of the aα’s. Then f is nondegenerate ”at infinity” if, for
every face ∆ of Γ, f|∆ =

∑
α∈∆ aαuα does not have critical points on (C∗)n. f is convenient if 0 is in the

interior of Γ.
12Here is the statement : The solutions of the Birkhoff problem are in one-to-one correspondance with

the opposite filtrations, stable under the action of the monodromy, to the Hodge filtration defined on the
nearby cycles. Roughly speaking, the oppositness gives decomposition (1) and the stability with respect to
the monodromy gives formula (2).

13Poincaré duality for the fibers of f extends to the classical Gauss-Manin system M : 0 → ker → M →
M! → coker → 0 where ker and coker are, thanks to the tameness assumption, two free C[t]-modules, of
finite rank.
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we have an isomorphism of connections G∗ → j∗G which sends G∗
0 onto θnj∗G0 or equiva-

lently
S : G× j∗G → C[θ, θ−1]

such that
S : G0 × j∗G0 → θnC[θ]

so that (on G0)
S = Snθn + Sn+1θ

n+1 + · · ·+
The pairings Sk are called higher residue pairings and Sn is precisely the Grothendieck residue
defined on G0/θG0. This gives the expected “metric” S.

Last, the form S extends to G if ω is adapted to S, i.e S(ωi, ωj) ∈ Cθn for all i, j.

Résumé of steps 1-3 : we get a (canonical) quantum differential system (∇, S, n) on a point.

Step 4 : adding parameters. A trivial bundle on P1 is not enough, we need a trivial bundle
on P1 × M : in other words, we have to extend the previous situation “with parameters”.
Several technics :

1. to mimic the previous construction, starting with an unfolding F of f (see for instance
[6]) : one has to take into account now the covariant derivative of the Gauss-Manin
connection with respect to the parameters. For instance, if

F (u, x) = f(u) +
r∑

i=1

xigi(u),

(x = (x1, · · · , xr) ∈ M) we have

∇∂xi
(ωθi) = L∂xi

(ω)θi − ∂F

∂xi

ωθi−1

(to get this formula take the derivative under
∫

) and, in a basis of GF
0 (the Brieskorn

lattice of F , it should be shown that it is free), the matrix of ∇∂xi
is a priori

C(i)(x)

θ
+ D(i)(x) +

p∑
r=1

D(i)
r (x)θr (3)

We want more precisely the formula14

D(i)(x) +
C(i)(x)

θ
(4)

If it happens to be the case, the expected trivial bundle is G = π∗E where E := G0/θG0.
In this setting, notice that one can solve the Birkhoff problem in family if one can solve

14And this is the key point : if we do not have formula (4), we loose for instance the flatness of the residual
connection.
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it for a special value of the prarameter. Even if it seems natural, this method is finally
’highly transcendental’, because of the ’critical points vanishing at infinity’, see [6].

2. use the fact that the expected bundle on P1×M is in fact uniquely determined by initial
data (Dubrovin, Malgrange, Hertling-Manin, see for instance [8] and the references
therein). If, for instance, R0 is regular (i.e its characteristic polynomial is equal to its
minimal polynomial), a universal unfolding of our quantum differential system (on a
point) exists, and gives a quantum differential system on M = (Cµ, 0)15

Résumé of steps 1-4 : summarizing, we get, see [6], [4]

Theorem 3.0.3 One can attach a canonical quantum differential system on M = (Cµ, 0)
to any regular, tame function on an affine manifold.

Step 5 : the period map In order to get a Frobenius structure, it remains to shift the
previous structures onto ΘM : this is done with the help of a period map, associated with a
primitive and homogeneous section ω,

ϕ : Θ → G0/θG0

defined by ϕω(ξ) := Φξ(ω)16 The main problem now is that we do not know if such a section
always exists (for instance if f is a polynomial function). However, one can find such a section
if f is a convenient and nondegenerate Laurent polynomial. The associated Euler vector field
is

E =

µ∑
i=1

(1− αi)ti∂ti +
∑

j

cj∂tj

where the αi’s run through the spectrum (at infinity) of f and the ci’s are determined by the
multiplication by f (on a graded module grV E).

4 Examples : MPWPS Laurent polynomials

4.1

A major source of examples, linked with mirror symmetry (see below) is the following :
let U = (C∗)n and

f(u1, · · · , un) = u1 + · · ·+ un +
1

uw1
1 · · · uwn

n

15Precisely : under the previous assumption, there exists a unique triple of matrices (A0(x), A∞, C(x)),
x ∈ M , satisfying the expected integrability relations. The trivial bundle on M is the one with basis 1⊗ ω.

16ω primitive means that ϕω is an isomorphism (and thus shifts objects from the right to the left) and
homogeneous means that it is an eigenvector of R∞. If R0 is regular, a primitive section is a cyclic vector of
R0.
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where w1, · · · , wn are integers, greater or equal to 1. We will call such functions MPWPS17

Laurent polynomials. Then µ = 1 + w1 + · · ·+ wn. The duality and the canonical basis

ω = (ω1, · · · , ωµ)

of Gf
0 are computed as in [7] 18. For instance, we have ω1 = du1

u1
∧· · ·∧ dun

un
, ω2 = 1

u
w1
1 ···uwn

n

du1

u1
∧

· · ·∧dun

un
, and, for i ≥ 2, ωi = u

a1(i)
1 · · · uan(i)

n ω2 (the class of, of course) for suitable (a1(i), · · · , an(i)) ∈
Nn. The matrix of ∇∂θ

in the basis ω is

(
Af

0

θ
+ A∞)

dθ

θ

where

Af
0 = µ




0 0 0 0 0 1/ww1
1 · · ·wwn

n

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 .. 0 0
0 0 0 0 1 0




and A∞ = diag(α1, · · · , αµ), the αi’s running through the spectrum at infinity of the function
f . The expected bilinear form (unique up to the multiplication of a non zero constant) is
given by

Sf (ωk, ω`) =





Sf (ω1, ωn+1) ∈ C∗θn if 1 ≤ k ≤ n + 1 and k + ` = n + 2,
1

ww Sf (ω1, ωn+1) if n + 2 ≤ k ≤ µ and k + ` = µ + n + 2,
0 otherwise

where ww = ww1
1 · · ·wwn

n .19 The matrix Af
0 is regular, so the previous results give a quantum

differential system on M = (Cµ, 0).

4.2

Consider now, for x ∈ C∗,
F (u1, · · · , un, x) = u1 + · · ·+ un +

x

uw1
1 · · · uwn

n

.

Its Brieskorn lattice GF
0 is free of rank µ over C[x, x−1, θ] and we get a basis of GF

0 in which
the matrix of the connection is

(
AF

0 (x)

θ
+ A∞)

dθ

θ
+ (R(x)− AF

0 (x)

µθ
)
dx

x

17for Mirror Partner of Weighted Projective Spaces
18The Laurent polynomial considered in loc. cit. is w1u1 + · · ·+ wnun + 1

u
w1
1 ···uwn

n
, but the computations

are analogous
19In order to stick with quantum cohomology, it is convenient to choose the normalization Sf (ω1, ωn+1) =

1/w1 · · ·wnθn.
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where

AF
0 (x) = µ




0 0 0 0 0 x/ww1
1 · · ·wwn

n

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 .. 0 0
0 0 0 0 1 0




and R(x) = diag(c1, · · · , cµ), ci ∈ [0, 1[. We have now

SF (ωk, ω`) =





Sf (ω1, ωn+1) ∈ C∗θn if 1 ≤ k ≤ n + 1 and k + ` = n + 2,
x

ww Sf (ω1, ωn+1) if n + 2 ≤ k ≤ µ and k + ` = µ + n + 2,
0 otherwise

The point is that we get a quantum differential system on the whole C∗ and not only, as
before, on a neighborhood of x = 1.

Problem. Perform this kind of computations with the B-models considered in [9] :

u0 + · · ·+ un restricted at u
w1

0
0 · · ·uw1

n
n = q1, · · · , u

wr
0

0 · · ·uw1
nr

n = qr

5 Mirror symmetry

5.1 Mirror symmetry via Frobenius manifolds

One can decide that two objects are mirror partners if they produce the same Frobenius
manifold. In this sense,

– the cohomology of the projective space Pn and the Laurent polynomial u1 + · · ·+ un +
1/u1 · · · un are mirror partners, see [1] : it is enough to show that the initial data on
both sides are equal ;

– the orbifold cohomology of the weighted projective spaces P(w0, · · · , wn) and the func-
tion u0 + · · ·+ un, restricted at uw0

0 · · ·uwn
n = 1 are mirror partners (same method, see

[11]).

5.2 Mirror symmetry via quantum differential systems

One can more generally say that two models are mirror partners if the associated quantum
differential systems are isomorphic20. For instance, it is the good way to proceed if we are
interested in the (small) quantum cohomology of weighted projective spaces : we have a
mirror theorem which is much more precise than the one given by Iritani in [9, proposition
4.8] :

20Two quantum differential systems (M1,H1,∇1, S1, n1) and (M2, H2,∇2, S2, n2) are isomorphic if there
exists an isomorphism (id, ν) : P1×M1 → P1×M2 and an isomorphism of vector bundles γ : H1 → (id, ν)∗H2

compatible with the connections and the metrics

9



Theorem 5.2.1 (See [5], compare with [9]) The quantum differential system associated with
F above is isomorphic to the one associated with the small orbifold quantum cohomology of
the weighted projective spaces P(1, w1, · · · , wn).

Correspondance. Let p = c1(O(1)) ∈ H2
orb(P(w),C) and

(p◦tp)i = p ◦tp · · · ◦tp p

(i times). Then

1. (p◦tp)i corresponds to ωi,

2. the matrix of the small quantum multiplication p◦tp in the basis ((p◦tp)i) is equal to
AF

0 (et) which is the matrix of multiplication by ω2 on GF
0 /θGF

0 (in the basis induced
by ω). This gives a correpondance of the products,

3. the αi’s correspond to half of the orbifold degrees.

The other advantage of this point of view is that we can then compute ’limits’ using classical
tools in the theory of meromorphic connections : V-filtration, nearby cycles ...This gives
a(nother) precise meaning/interpretation to the process ”put q = 0” in quantum cohomology.
More generally, it should be the natural way to produce logarithmic Frobenius manifolds in
the sense of [12].

5.3 The J-functions of a quantum differential system ( ?)

Let S = (M,G,∇, S, d) be a quantum differential system on M : we thus have a flat
connection

∇ = 5+
Φ

θ
+ (

R0

θ
+ R∞)

dθ

θ

on the trivial bundle G. Recall the (flat) Dubrovin connection 5τ := 5+ τΦ where τ = θ−1.
Let ω be a 5-flat basis of G. There exists a matrix P (x, τ), holomorphic in x and formal in
τ , such that the matrix of 5τ , in the basis e = ωP , is the zero matrix. We can normalize
P such that P (x, 0) = I, because ω is 5-flat. We will call P fundamental solution. We
will call it conformal if moreover the matrix ∇∂τ has the Levelt normal and symmetric
if in addition P ∗P = I where ∗ denotes the adjoint with respect to S. A fundamental
and conformal solution is convergent in τ . There always exist fundamental, conformal and
symmetric solutions (the two first points follow standard technics in the theory of differential
systems ; the last one is a little bit more involved). Let P be a fundamental, conformal and
symmetric solution, α be a primitive and homogeneous section of our quantum differential
system (in the previous examples, α is the volume form du1

u1
∧· · ·∧dun

un
). The function J = P−1α

is called a J- function of the quantum differential system. Notice that this function depends
on P . This J-function determines the product (the Higgs bundle) of the quantum differential
system. On the A-side, there is a kind of ”canonical” J-function (see for instance [3] and [9]
where the corresponding canonical P is denoted by L). Question : give an interpretation of
this canonical J-function on the B-side.
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