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ADDITIVE NUMBER THEORY SHEDS

EXTRA LIGHT ON THE HOPF-STIEFEL o FUNCTION

by Alain Plagne

ABSTRACT. The famous Hopf-Stiefel o function appears in several places in

mathematics (linear and bilinear algebra, topology, intercalate matrices, . . .
)• However,

although the object of much study, this function kept a part of mystery since no simple
formula was known for it. We shall dérive a simple and practical explicit formula
for o and more generally for (3

P (p arbitrary prime), a generalized function due to

Eliahou and Kervaire. The proof relies on a new resuit in combinatorial group theory
which follows from additive number theoretical arguments. It is shown that this last

resuit generalizes earlier ones by Eliahou and Kervaire and by Yuzvinsky.

1. Introduction

A composition formula of size [r, s, n] over some field F (that we assume
to be of characteristic différent from 2) is an identity of the form

where Z\,z 2 ,...,z n are n bilinear forms in the variables (jci . . , Jt r
) and

(y\
, . . . , y s

)
,

with coefficients in F
. For example, the law of moduli for complex

numbers provides the identity

which is a composition formula of size [2,2,2]. The law of moduli for

quaternions (respectively for octonions) provides a composition formula of
size [4,4,4] (respectively [8,8,8]) in a similar way. Conversely, Hurwitz's
theorem [7] (see also [8]) states that the only possible values of n for which
a composition formula of size [n,n,ri\ exists are 1,2,4 and 8.



In the late thirties, starting from the Hurwitz problem, Hopf [6] and Stiefel

[15] began to study real division algebras. They introduced a function of an

algebraic nature. The so-called Hopf-Stiefel function o (which dépends on

two positive intégral variables r and s) is defined by the formula

(1.1)

Hopf and Stiefel obtained a resuit which says that if a nonsingular bilinear

map from R r xRs onto R" exists over R, then n > ros (Hopf-Stiefel
theorem). The link between nonsingular bilinear maps and o is realized by

passing to projective spaces and their cohomology rings.

More generally, the o function appears in différent parts of mathematics.
It allows a nice mathematical trip: starting from bilinear algebra (Hurwitz 's

problem, Pfister's quadratic forms [10, 11]) and algebra (its basic définition

(1.1)), we pass through topology (Hopf-Stiefel theorem, real division algebras
and Yuzvinsky's theorem [17]), visit the theory of intercalate matrices

(Yuzvinsky's conjecture [17, 16]) and arrive at additive number theory ([s]
and the présent paper). The reader interested in the many applications of o

is mainly referred to the nice survey [13] by Shapiro, to his récent book [14,

Chapters 12-15] and to the book by Rajwade [12], especially Chapter 13.

With the algebraic viewpoint (1.1), it is fairly natural to generalize, with

Eliahou and Kervaire [s], the o function in the following way. For any given

prime p, we set

Evidently, /3 2 = o. It is a theorem of Eliahou and Kervaire [5] that this

extension of (1.1) is still relevant in the additive number theoretical context.

Although many properties of o and more generally of (3
P were known

(for instance recursion formulas or expression in terms of p-adic expansions),

describing thèse fonctions efficiently appeared difficult, so that it»is not rare

to see tables giving the flrst values of o.

In this paper, perhaps surprisingly, we shall dérive a simple and practical

explicit formula for o and more generally for (3
p (p arbitrary prime).

THEOREM 1
. Let pbe any prime number. The function (3

P
is given by

the formula

Notice that clearly, the minimum involved is attained for a value of t

satisfying 0 < t < [log(max(r, s))/ logp] .



In particular, this resuit élucidâtes, in some sensé, the Hopf-Stiefel function.

THEOREM 2. The Hopf-Stiefel function is

With this formula, a large number of properties of o follow immediately

or admit a simplified proof.

In fact Theorem 1 follows from an additive number theoretical theorem

(Theorem 3 below) which is of independent interest. Given a finite Abelian

group G, we derme (as in [s]) the function of two intégral variables r and s

(l<r,j<|G|)

where A + B is the usual Minkowski sum of sets, namely

Given an arbitrary Abelian group G, determining the function jic is not easy:
this is an open problem in gênerai for G finite and Abelian. However, Eliahou
and Kervaire [5] obtained such a resuit for finite groups of prime exponent,
thus generalizing Yuzvinsky's resuit [17] for binary spaces.

Using a différent approach (based on Kneser's theorem [9]), we shall obtain

a resuit valid for any cyclic group.

THEOREM 3. Let n be any integer. If 1< r,s <n, we hâve

Taking n = p, a prime, gives exactly the Cauchy-Davenport theorem

[2, 3, 4]. Moreover, as will be explained in Section 3, this resuit contains that

of Eliahou and Kervaire.

Since cyclic groups are characterized by the equality expG = |G|, this

theorem is a direct conséquence of the following more gênerai resuit.

THEOREM 4. Let G be any finite Abelian group. Then, if 1 < r,s <\G\,
we hâve



With thèse results, we know the behaviour of ijl g at the two endpoints
of the spectrum (cyclic groups and groups of prime exponent). What now
remains to be done is to fill the gap between the upper bound and the lower

bound for gênerai finite Abelian groups.

2. Proof of Theorem 4

Let G be any given finite Abelian group and let 1 < r,s < \G\.

2.1 The lower bound

If HG(r, s) > r+s-1, the resuit is immédiate (take d= 1). We may thus

assume that

(2.1)

Then, choosing two sets A and B in G with respective cardinalities r and

s, such that |^4 + £>| attains /j, G (r,s), we get

We are in a position to apply Kneser's theorem [9] on the structure of sets

with a small sumset. It follows that there exists a subgroup H of G (namely
the stabilizer of A + B) such that

Denoting by (A + H)/H (resp. (B + H)/H) the /7-cosets that A (resp. B)

intersects, we obtain

where / dénotes the cardinality of H . Since Lagrange's theorem shows that

/ divides \G\, we get

From this it follows that, in any case,

which is the desired lower bound.



2.2 The upper bound

Let Hbe any subgroup of G. Choose Ao and BQB
Q in G/ H with respective

cardinalities [>/|#|] and [s/ I^ll and sucn mat

Now choose of cardinality r and £> of cardinality smG such that the

image of A (resp. B) by the canonical projection on G/H is included in Ao

(resp. £>o). One has

This proves the first lemma we need.

LEMMA 1
. For any finite Abelian group G

The second useful point is synthesized in the next folkloric lemma.

LEMMA 2. Let G be a finite Abelian group. For any positive integer m,

the following two propositions are équivalent

(i) m divides expG,

(ii) there exists a subgroup HofG such that G/ H is isomorphic to X/niL.

In the case of a cyclic group X, trivial considérations (take two sets with

consécutive éléments), show that, for any u,v < \K\,

(2.2)

Using consecutively Lemma 1, inequality (2.2) and Lemma 2 yields the

following chain of inequalities :

The change of variable d — \G\/f yields a parameter d subject to the two

restrictions J|L |d an d j| \q\ ; m i s proves the upper bound in Theorem 4.



3. From Theorem 3 to Theorem 1

We first use the theorem of Eliahou and Kervaire (see Section 3 of [s]),
which states that if p is an arbitrary prime, r and s two integers, then

(3.1)

whenever p
d > r,s

Now, from Theorem 10 of [I], it follows that \iq coincides with \iqi as

soon as G and G are two Abelian p-groups of the same order. In other

words,

(3.2)

We would like to emphasize that from our method (more precisely, using

simply Lemma 1) together with an inductive argument (the quotient groups of

(Z/pZ) d hâve the same form), we are able to dérive a simple direct (that is,

without using [1]) alternative proof of (3.2). Indeed, the only thing to verify
is that if

(3.3)

for any k> 1 then we can construct sets A and B of respective cardinalities

r and s with |^4 + £>| = r+ s — l. This is achieved by taking for A

(resp. for B) the r (resp. the s) smallest possible éléments in the sensé

of the lexicographie order. Hypothesis (3.3) then ensures that, in this case,
\

t
A + B\=r + s-l.

We are now ready to prove Theorem 1
.

We put for instance d — r+s
(but any sufficiently large d will do). Using consecutively (3.1), (3.2) and

Theorem 3, we obtain

which proves Theorem 3.
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