Equirépartition dans des multi-ensembles de \mathbb{F}_p

Soit $\varepsilon > 0$. Un multi-ensemble $A \subset \mathbb{F}_p$ de cardinal |A| est dit ε -équiréparti modulo p si pour tout intervalle de \mathbb{F}_p $I = \{ax + b \bmod p \mid 0 \leqslant x \leqslant |I| - 1\}$, où $a \in \mathbb{F}_p^*$ et $b \in \mathbb{F}_p$, on a $\left| \frac{|A \cap I|}{|A|} - \frac{|I|}{p} \right| < \varepsilon$.

En pratique, on utilise plutôt un autre critère : soit $\varepsilon'>0$, un multi-ensemble est $S^1_{\varepsilon'}$ -équiréparti modulo p si $\max_{x\in\mathbb{F}_p^*}\left|\sum_{a\in A}\mathrm{e}^{\frac{2i\pi ax}{p}}\right|\leqslant \varepsilon'\,|A|.$

Cette notion a été étudiée par Bourgain Glibichuk et Konyagin (2006) dans le cas où A est un sous-groupe de \mathbb{F}_p^* , par Bourgain (2009) dans le cas où A est composé d'un intervalle de \mathbb{F}_p et d'un sous-groupe G de \mathbb{F}_p^* et par Hegyvári et Hennecart (2012), qui ont étendu le résultat de Bourgain dans le cas où $A = (f(I) \cdot G)$ avec $f \in \mathbb{F}_p[X]$, I un intervalle de \mathbb{F}_p et G une partie de \mathbb{F}_p^* et tel que $|G \cdot G| < 2|G|$. En plus de condition de structure, il faut imposer une condition sur la taille de G pour obtenir le résultat.

Nous présenterons ces conditions et deux résultats permettant d'étendre le résultat de Hegyvári et Hennecart.