Seminaire: Poincare-Hopf Theorem

WANG Hong

November 9, 2012

Poincare Hopf Theorem Let M be a compact manifold and w a smooth vector field on M with isolated zeros. If M has a boundary then w is required to point outward at all boundary points. The sum $\sum \iota$ of the indices at the zeros of such a vector field is equal to the Euler number

$$\chi(M) = \sum_{i=0}^{n} (-1)^i \text{rank} H_i(M).$$

In particular this index sum is a topological invariant of M: it does not depend on the particular choice of vector field.

1 Some definitions

Critical value A smooth map $f : M \to N$, M, N manifolds dimension m, n. Set of critical points $C = \{x \in M | df_x : TM_x \to TN_{f(x)}, \text{rank } df_x < n\}$. $f(C) := \text{set of critical values}$. $N - f(c) = \text{set of regular values}$.

Sard Theorem (admit) Let $f : U \to \mathbb{R}^n$ be a smooth map, defined on an open set $U \subset \mathbb{R}^m$, and let $C = \{x \subset U | \text{rank } df_x < n\}$. Then $f(c) \subset \mathbb{R}^n$ has Lebesgue measure zero.

If $f : M \to N$, and $\text{dim } M = \text{dim } N$. Regular values exist and dense.

Oriented manifolds An orientation on an n–dimensional manifold is given by a nowhere vanishing differential n–form. i.e. $\exists \{U, \psi_U\}$, a chart of manifold M, and $\forall U \cap V \neq 0$, $\psi_V \circ \psi_U^{-1} : \mathbb{R}^n \to \mathbb{R}^n, |d(\psi_V \circ \psi_U^{-1})| > 0$.

Orientation for boundary Each orientation for M determines an orientation for ∂M : For $\forall x \in \partial M$, $(v_1, ..., v_m)$ positively oriented basis for TM_x, s.t. $v_1, ..., v_m \in T\partial M_x$ and v_1 is an outward vector.

Let M, N be oriented n–dimensional manifolds without boundary and let $f : M \to N$ be a smooth map. M is compact and N is connected. For any regular value $y \in N$ define:

$$\text{deg}(f; y) = \sum_{x \in f^{-1}(y)} \text{sign } df_x.$$

$\text{deg}(f; y)$ is a locally constant function of y.

It is defined on a dense open subset of N.

1
2 Brower degree

Theorem A : The integer \(\deg(f; y) \) does not depend on the choice of regular value \(y \).

Theorem B : If \(y \) is smoothly homotopic to \(g \). Then \(\deg f = \deg g \).

Lemma 2.1 \(M = \partial X \), \(X \) compact oriented. \(M \) oriented as \(\partial \). If \(f : M \to N \) extends to a smooth map \(F : X \to N \), then \(\deg(f; y) = 0 \) for every regular value \(y \).

Proof: First suppose \(y \) is a regular value for \(F \). Then the compact 1-manifold \(F^{-1}(y) \) is a finite union of arcs and circles(Implicit function theorem), with only boundary points of the arcs lying on \(M = \partial X \). Let \(A \subset F^{-1}(y) \) be one of these arcs. \(\partial A = \{x\} \cup \{y\} \).

We will show that \(\text{sign } df_a + \text{sign } df_b = 0 \).

The idea is to show that orientations for \(X \) and \(N \) determine an orientation for \(A \) (while its two boundary points lie on \(M \)), then \(A \) goes inward at one boundary point, and outward at the other point. As \(M \) is oriented as boundary related to an outward vector, we have \(\text{sign } df_a + \text{sign } df_b = 0 \).

Here we define orientation for \(A \) as follows:

\(v_1(x) \) denote the positively oriented unit vector tangent to \(A \) at \(x \) if:

1). \(dF_x(v_1) = 0 \) (\(v_1 \) tangent to \(A \).

2). \(dF_x(v_2, ..., v_{m+1}) \) is a positively oriented basis for \(TN_y \) and \(v_1, v_2, ..., v_{m+1} \) is a positively oriented basis for \(TX_x \).

\(v_1(x) \) is a smooth function and points out at one boundary point (say \(b \)), and inward at the other boundary point (say \(a \)). Thus sign \(df_a = -1 \), sign \(df_b = 1 \). Adding up over all such arcs \(A \), we have \(\deg(f; y) = 0 \).

More generally suppose \(y_0 \) is a regular value for \(f \), but not for \(F \), as \(\deg(f; y) \) is constant within some neighborhood \(U \) of \(y_0 \), choose a regular value \(y \) for \(F \) within \(U \), then \(\deg(f; y_0) = \deg(f; y) = 0 \).\(\sharp \)

Lemma 2.2 The degree \(\deg(g; y) \) is equal to \(\deg(f; y) \) for any common regular value \(y \).

Proof Consider a smoothly homotopy: \(F = [0,1] \times M \to N \). \(f(x) = F(0, x) \), \(g(x) = F(1, x) \). \([0,1] \times M \) can be oriented as a product. \(1 \times M \) with the correct orientation, \(0 \times M \) with the wrong orientation. Then \(\deg(g; y) - \deg(f; y) = 0 \).\(\sharp \)

If \(y \) and \(z \) are both regular values for \(f : M \to N \). Choose a diffeomorphism(existence of \(h \) will be talked about later for those who have interest) \(h : N \to N \) that carries \(y \) to \(z \) and is isotopic(connected 'through homeomorphisms') to the identity. By definition, \(\deg(f; y) = \deg(h \circ f, h(y)) = \deg(h \circ f, z) \), and by isotopy and Lemma 2.2, \(\deg(h \circ f; z) = \deg(f; z) \). This completes the proof of Theorem A and Theorem B.\(\sharp \)

In order to proof the existence of \(h \), we need the following:

Homogeneity Lemma Let \(y \) and \(z \) be arbitrary interior points of the smooth, connected manifold \(N \). Then there exists a diffeomorphism \(h : M \to N \) that is smoothly isotopic to the identity and carries \(y \) into \(z \).
Proof As N is connected, we could consider locally, it is enough to proof this lemma for $N = \mathbb{R}^n$. The idea is to fix the area out of unit ball B^n, and construct a vector field whose flow sends 0 to an arbitrary point in B^n, and tends to zero near S^{n-1}.

$\psi : \mathbb{R}^n \rightarrow \mathbb{R}$ who satisfies

1) $\psi(x) > 0$ for $\|x\| < 1$.
2) $\psi(x) = 0$ for $\|x\| \geq 1$.

(ex: $\psi(x) = \exp(- (1 - \|x\|^2)^{-1})$).

For $\forall \bar{x} \in B^n$, $\exists! x(t), x(0) = \bar{x}, F_t(\bar{x}) := x(t)$.

1). $F_t(\bar{x})$ is defined for all t and \bar{x} in B^n, and depends smoothly on t and \bar{x}.
2). $F_0(\bar{x}) = \bar{x}$.
3). $F_{t+s} = F_s \circ F_t(\bar{x})$.

$\forall y \in B^n$, let $c = \frac{y}{\|y\|}$. As $\psi(x) > 0$ for $\|x\| < 1$, flow F_t travels by direction c with a nonzero speed in B, so for some time t, $F_t(0) = y$.

3 Vector fields and the Euler number

Index of a vector field

Consider an open set $U \subset \mathbb{R}^m$ and a smooth vector field $v : U \rightarrow \mathbb{R}^m$ with an isolated zero at the point $z \in U$. $\bar{v}(x) := \frac{v(x)}{\|v(x)\|}$ maps a small sphere centered at z into the unit sphere. The degree of this mapping is called the index τ of v at the zero z, note $\text{Ind}_z(v)$, and $\text{Ind}(v) = \sum_{z,v(z)=0} \text{Ind}_z(v)$.

Remark: Index of a vector field is counted only at its zeros, because at nonzero points, $\bar{v}(x)$ could extends to the whole ball, and Lemma 2.1 tells us $\deg(\bar{v}(x), z) = 0$.

To define the concept of index for a vector field w on an arbitrary manifold, we need the following lemma:

Lemma 3.1 Suppose that the vector field v on U corresponds to $v' = df \circ v \circ f^{-1}$ on U' under a diffeomorphism $f : U \rightarrow U'$. Then the index of v at an isolated zero z is equal to the index of v' at $f(z)$.

According to definition, index of a vector field at one zero is a local property. So it’s enough to consider the case in \mathbb{R}^m.

Lemma 3.2 Any orientation preserving diffeomorphism f of \mathbb{R}^m is smoothly isotopic to the identity.

Proof suppose $f(0) = 0$.

$f(x) = \sum x_i g_i(x)$ for $g_i(x) = \int_0^1 \frac{df}{dt}(tx) dt$.

Let $F(x,t) = f(xe^t)$, therefore $F(x,0) = df_0(x)$.

Thus $F(x,t)$ gives a isotopy between f and linear map $df_0(x)$, as $SL(R,m)$ is path connected, $df_0(x)$ is isotopic to id.
For \(|df_y| > 0\), use Lemma 3.2. If \(|df_y| < 0\), it’s enough to consider a reflection \(\rho\), and \(v' = \rho \circ \rho^{-1}\), and observe that \(\text{Ind}_{y}(v) = \text{Ind}_{\rho(y)}(v')\).

Let \(M\) be a compact manifold and \(w_0, w_1\) smooth vector fields on \(M\) with isolated zeros \((w_0 \neq \lambda w_1)\). If \(M\) has a boundary, then \(w_i\) is required to point outward at all boundary points.

Lemma 3.3 \(\text{Ind}(w_0) = \text{Ind}(w_1)\).

Consider smooth vector fields \(w_t = tw_0 + (1 - t)w_1, t \in [0,1]\). Let \(S = \{t| \text{Ind}(w_t = \text{Ind}(w_0)\},\) we will show that \(S\) is open and closed.

\(S\) is open: for \(w_{t_0}\) with finite isolated zeros \(z_i\), and for each \(z_i\) choose a sufficient small sphere \(S_i\) to calculate \(\text{Ind}_{z_i}(w_{t_0})\). \(\exists \epsilon \text{ s.t. } \forall t, |t - t_0| < \epsilon,\) the zeros of \(w_t\) (maybe more than zeros of \(w_{t_0}\) lie in \(S_i\). According to Lemma 2.1, \(\text{Ind}(w_{t_0}) = \text{Ind}(w_t)\).

\(S\) is closed: if \(\{t_k\} \subset S,\) and \(t\) is the limit, then the same argument shows that \(\text{Ind}(w_{t_k}) = \text{Ind}(w_t)\) for some \(k\) great.

Thus \(S = [0,1]\) and specially, \(\text{Ind}(v_0) = \text{Ind}(v_1)\).

Vector Bundle A real vector bundle consists of:

1) topological spaces \(X\) (base space and \(E\) total space
2) a continuous subjection \(\pi E \rightarrow X\) (bundle projection)
3) \(\forall x \in X, \pi^{-1}(x)\) has a finite-dimensional real vector space structure
 where the following compatibility condition is satisfied: \(\forall x \in X, \exists U \subset X, k\) a natural number, and a homeomorphism: \(\psi : U \times R^k \rightarrow \pi^{-1}(U)\) such that for all \(x \in U\).
 a) \((\pi \circ \psi)(x, v) = x\) for all vectors \(v\) in \(R^k\), and
 b) \(v \rightarrow \psi(x, v)\) is an isomorphism between \(R^k\) and \(\pi^{-1}(x)\).

\((U, \psi)\) is called local trivialisation of the vector bundle, and \(x \rightarrow k_x\) is a function locally constant, so if \(E\) is connected, \(k_x\) is equal to a constant \(k\), and \(E\) is said to be a vector bundle of rank \(k\).

Generalization on vector bundle A smooth vector field \(w\) on a compact manifold \(M\), could be seen as a section of its tangent bundle \(TM\). More generally, consider a rank \(n\) vector bundle over a compact oriented manifold without boundary \(M\), \(\text{dim} M = \text{rank} E\), and a smooth section \(s : M \rightarrow E\). In the same way, we could define index of a smooth section with isolated zeros, named \(\text{Ind}_{E}(s)\). Here \(\text{Ind}_{E}(s)\) is defined on zeros of \(s\), as \(T_{o_0}E \cong T_{o_0}M \oplus E_{o_0}\). And the same argument as in Lemma 3.3, we have \(\text{Ind}_{E}(s_1)=\text{Ind}_{E}(s_2), \forall s_1, s_2\) smooth sections with isolated zeros.

Property Given a smooth vector bundle \(F \rightarrow Y\), and a smooth map \(f : X \rightarrow Y, \text{dim} X = \text{dim} Y = \text{rank} F\), one could define a ”pullback” vector bundle \(f^*F\) on \(X\), that is the fiber over a point \(x \in X\) is essentially just the fiber over \(f(x) \in Y\). And for any smooth section \(s : Y \rightarrow F\), with isolated zeros, we have \(\text{Ind}_{f^*F}(s \circ f) = \text{deg}(f) * \text{Ind}_{F}(s)\).