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0 Introduction

This text is an expanded version of the Takagi lectures I gave at the RIMS, Kyoto,
in november 2006. Following my work of the last years around the Hodge conjecture
(see [38], [41], and [42]), I decided to insist in these lectures on the fact that, while
the Hodge conjecture can be considered as a conjecture either in complex analysis,
in differential topology, or in algebraic geometry, the evidences for it are all coming
from algebraic geometry.

In fact, the paper [38] shows that, if one extends the geometric setting and
consider the case of compact Kähler manifolds, one finds supplementary restrictions
for Hodge classes to come from constructions of complex analytic geometry.

On the other hand, in the context of algebraic geometry, one can ask questions
concerning the definition fields of the Hodge loci, as the Hodge conjecture predicts
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that they are algebraic and defined on Q (here we note that any complex projective
manifold is a member of a family defined over Q).

The best evidence for the Hodge conjecture is thus due to Cattani, Deligne and
Kaplan [11], who showed that the Hodge loci, and even the connected components
of the locus of Hodge classes, are algebraic. We provide in [42] an improvement of
their result by giving some criteria for the Hodge loci to be defined over Q. We also
relate this problem to the question whether the Hodge conjecture can be reduced to
the case of varieties defined over Q.

We included in the text a section devoted to the case of integral Hodge classes,
for which the original Hodge conjecture was disproved by Atiyah and Hirzebruch [4].
We discuss there the possibility of extracting interesting birational invariants from
this, using the groups of integral Hodge classes modulo those which are algebraic.
This is essentially taken from [41], but the discussion concerning the 4-dimensional
case here is new.

Thanks. I thank Yasuyuki Kawahigashi, Toshiyuki Kobayashi, Hiraku Naka-
jima, Kaoru Ono and Takeshi Saito, the organizers of the first Takagi lectures, for
inviting me to deliver these lectures and for giving me the opportunity to write these
notes.

0.1 Hodge theory

Let us start with the notion of cohomology class of type (p, q) on a complex manifold
X. On such an X, we have the notion of differential form of type (p, q): these are
the complex differential forms ω (say of class C∞), which can be written in local
holomorphic coordinates z1, . . . , zn, n = dimCX, and in the multiindex notation:

ω =
∑

I,J

ωI,JdzI ∧ dzJ , | I |= p, | J |= q,

where ωI,J are C∞ functions. Let us denote by Ap,q(X) the space of (p, q)-forms.
Thus Ap,q(X) ⊂ Ak(X), p + q = k, where Ak(X) is the space of C∞ complex differ-
ential k-forms on X. Recalling that the complex de Rham cohomology Hk(X,C) is
defined as

Hk(X,C) =
{closed complex k − forms on X}
{exact complex k − forms on X} ,

it is natural to define for a complex manifold X and for each (p, q) the space of
cohomology classes of type (p, q) by the formula

Hp,q(X) :=
{closed complex forms of type (p, q) on X}

{exact forms of type (p, q) on X} .

Each complex differential form of degree k decomposes canonically into its compo-
nents of type (p, q) because any complex differential form of degree 1 decomposes
canonically as a sum of a form of type (1, 0) (its C-linear part) and a form of type
(0, 1) (its C-antilinear part). Unfortunately, the differential d does not preserve this
decomposition: in fact, we have

d = ∂ + ∂,

where ∂ : Ap,q(X) → Ap+1,q(X), and ∂ : Ap,q(X) → Ap,q+1(X). For this reason,
the notion of class of type (p, q) is not very useful for general complex manifolds.
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First of all, there might be no non zero class of type (p, q), for any (p, q) such that
p+q = k, while Hk(X,C) 6= 0. The standard example is that of a Hopf surface, and
k = 1. Furthermore, it might be the case that a non zero cohomology class could be
both of type (p, q) and (p′, q′) with (p, q) 6= (p′, q′).

These pathologies do not appear in the compact Kähler case. This is a famous
result due to Hodge, which comes as a consequence of the theory of harmonic forms,
and of the so-called Kähler identities.

A Kähler metric is a Hermitian metric on the tangent bundle of a complex
manifold X (which has a natural structure of complex vector bundle), which fits
very nicely with the complex structure on X. The Hermitian metric h being locally
written in holomorphic coordinates as

∑
i,j hijdzi ⊗ dzj , there is the corresponding

real (1, 1)-form

ω =
i

2

∑

i,j

hijdzi ∧ dzj ,

(the Kähler form), and the Kähler condition is simply dω = 0.
One good way to see that these metrics fit nicely with the complex structure is

the following characterization:

Proposition 1 The metric h on X is Kähler if and only if the operator of complex
structure I (defining the complex structure of the tangent bundle of X) is parallel
with respect to the Levi-Civita connection associated to the underlying Riemannian
metric g.

From our point of view, the importance of the Kähler condition lies in the following
theorem, due to Hodge.

Theorem 2 If (X, ω) is Kähler, the Laplacian ∆g = dd∗ + d∗d associated to the
underlying metric g is bihomogeneous, namely satisfies

∆g(Ap,q(X)) ⊂ Ap,q(X).

Recall that a form α is said to be harmonic if ∆gα = 0, or equivalently in the
compact case, dα = d∗α = 0.

Corollary 3 A differential form α on a Kähler manifold X is harmonic if and only
if its components of type (p, q) are harmonic.

Note that, in the compact case, α and its components αp,q are closed, and this
provides a decomposition of the cohomology class of α into classes of type (p, q).

One other remarkable fact, which implies Theorem 2, is the fact that we have
the following relation between the three Laplacians ∆g, ∆∂ := ∂∂∗ + ∂∗∂, ∆∂ :=
∂∂

∗ + ∂
∗
∂:

∆g = 2∆∂ = 2∆∂ .

As a consequence of these facts, one gets the famous Hodge decomposition theorem:

Theorem 4 (The Hodge decomposition theorem) If a complex manifold X is com-
pact and Kähler (that is, admits a Kähler metric), then for any integer k, there is
a (natural) decomposition into a direct sum of complex subspaces

Hk(X,C) =
⊕

p+q=k

Hp,q(X),

where Hp,q(X) ⊂ Hk(X,C) was defined above.
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This theorem uses the representation of cohomology classes by harmonic forms,
together with the decomposition of harmonic forms. It is a remarkable fact that the
final decomposition on cohomology is in fact metric independent.

- Hodge symmetry. It is clear by definition that Hp,q(X) = Hq,p(X). This is
because the complex conjugate of a closed form of type (p, q) is a closed form of type
(q, p). Here the complex conjugation acts on Hk(X,C) which is the complexification
of the real cohomology space Hk(X,R).

In the sequel, we will rather consider the Hodge filtration defined by

F lHk(X,C) = ⊕p≥lH
p,k−p(X). (0.1)

This data is equivalent to the data of the Hodge decomposition, because by Hodge
symmetry, we recover Hp,q(X) as

Hp,q(X) = F pHp+q(X,C) ∩ F qHp+q(X,C),

but it has the great advantage over the Hodge decomposition that it varies holomor-
phically, and even algebraically (see section 3) with the complex structure.

- Hodge structures. The space Hk(X,C) is isomorphic to

Hk(X,Z)⊗ C,

(where we use here Betti cohomology, that is cohomogy with value in the constant
sheaves Z or C, instead of de Rham cohomology).

Thus inside complex cohomology, we have on one hand integral (mod. tor-
sion) or rational cohomology, which come from topology, and on the other hand
the Hodge decomposition (it would be better to speak of the Hodge filtration at
this point), which comes from complex geometry, and as we will see later on, from
algebraic geometry when X is complex projective, via the comparison theorems of
Grothendieck-Serre. All these data together define a Hodge structure of weight k.

0.2 Hodge classes and the Hodge conjecture

Let X be compact Kähler; we have the Hodge decomposition on H2k(X,C), and
make the following definitions:

Definition 5 An integral Hodge class of degree 2k on X is a class α ∈ H2k(X,Z)
whose image in H2k(X,C) is of type (k, k). We will denote the group of such classes
by Hdg2k(X,Z).

One defines similarly the space of rational Hodge classes by

Hdg2k(X) := H2k(X,Q) ∩Hk,k(X).

The simplest examples of Hodge classes are given by the cohomology classes of closed
analytic subspaces Z ⊂ X of codimension k. The singular locus Zsing of such a Z
is then a closed analytic subset of X which has codimension ≥ k + 1 and thus real
codimension ≥ 2k + 2. Thus one can define

[Z] ∈ H2k(X,Z)
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by taking the cohomology class [Z \Zsing] ∈ H2k(X \Zsing,Z) of the closed complex
submanifold

Z \ Zsing ⊂ X \ Zsing

and by observing that H2k(X \ Zsing,Z) ∼= H2k(X,Z).
The class [Z] is an integral Hodge class. This can be seen using Lelong’s theorem,

showing that the current of integration over Z \Zsing is well defined and closed, with
cohomology class equal to the image of [Z] in H2k(X,C). On the other hand, this
current anihilates all forms of type (p, q), p 6= q, p + q = 2n− 2k, n = dimX, and it
follows dually that its class is of type (k, k).

The Hodge conjecture asks the following:

Conjecture 6 Let X be a complex projective manifold. Then the space Hdg2k(X) of
degree 2k rational Hodge classes on X is generated over Q by classes [Z] constructed
above.

Remark 7 By a well-known theorem of Chow, later on generalized by Serre, closed
analytic subsets of a complex projective manifold are algebraic.

The conjecture in this form is the result of several corrections of the original
conjecture (see [23]). The original conjecture concerned integral cohomology classes,
and we will say something about this aspect in section 2. In that section, we will
explain further restrictions related to complex cobordism, and discovered by Atiyah
and Hirzebruch, on cohomology classes of complex analytic subsets.

Furthermore, it concerned more generally the so-called Hodge level of cohomol-
ogy classes, and in this generality, it was disproved by Grothendieck in [21]. Note
however that the argument of Grothendieck is in fact not trivial at all, as it uses a
deep result by Deligne [9] involving mixed Hodge structures and strictness of mor-
phisms between them.

The conclusion of the paper by Grothendieck is the formulation of the general-
ized Hodge-Grothendieck conjecture, involving sub-Hodge structures of non maximal
Hodge level, a particular case of which is conjecture 6 above.

0.3 Lefschetz theorem on (1, 1)-classes

This theorem proves conjecture 6 for k = 1, but as it proves much more, it is
somewhat not representative of the general situation. First of all, it proves the
Hodge conjecture also for integral Hodge classes of degree 2. Secondly, it proves a
version, that we shall explain in section 1, of the Hodge conjecture extended to the
compact Kähler situation, thus suggesting that an adequate generalization of the
Hodge conjecture to the Kähler setting could be true. This generalization involves
the most general construction of Hodge classes via analytic geometry, that is using
Chern classes of coherent sheaves. We shall show in that section that this extension
does not work, that is, there exist Hodge classes on compact Kähler manifolds that
we cannot construct by analytic geometry methods.

The modern proof of Lefschetz theorem on (1, 1)-classes involves the so-called
exponential exact sequence, together with the Serre GAGA principle [33], guaran-
teing that holomorphic line bundles are algebraic on projective complex manifolds,
hence admit non zero rational sections.
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0.4 Organisation of the paper

In the next section we will explain the impossibility to extend the Hodge conjec-
ture to the compact Kähler case, following [38]. The example we use is in fact
due to Weil in the algebraic geometry context, and we just consider his construc-
tion in the general Kähler case. The argument used here to show that the Weil
Hodge classes cannot be constructed by methods of analytic geometry, is based on
the Uhlenbeck-Yau theorem and its generalization by Bando and Siu, which pro-
vide further restrictions on Chern classes of coherent sheaves on compact Kähler
manifolds.

In section 2, we will explain several interesting counterexamples to the Hodge
conjecture for integral Hodge classes, due to Atiyah-Hirzebruch [4], Totaro [36],
(topological), and Kollár [28] (non topological). The example by Kollár shows that
the pathology here is very serious.

We will also discuss for particular X (namely rationally connected varieties)
the Hodge conjecture for integral Hodge classes and its interest with respect to the
rationality problem [41].

The last section considers the problem from a much more algebro-geometric point
of view. We will explain the best evidence found up to now for the Hodge conjecture,
namely the algebraicity of Hodge loci due to Cattani, Deligne and Kaplan [11], and
some refinements obtained in [42] of their results, exploring the question whether
Hodge loci are defined over the algebraic closure of Q, a necessary condition for the
Hodge conjecture to hold true, and answering partially the following question, asked
to us by V. Maillot and C. Soulé:

Question. Can the Hodge conjecture be reduced to the case of varieties defined
over Q?

1 The analytic side : Hodge classes and coherent sheaves
on Kähler manifolds

1.1 Several constructions of Hodge classes

- Chern classes of holomorphic vector bundles. If E is a complex vector
bundle on a topological manifold X, we have the rational Chern classes ci(E) ∈
H2i(X,Q). (Note that the Chern classes are usually defined as integral cohomolgy
classes, ci ∈ H2i(X,Z), but in this text, the notation ci will be used for the rational
ones.) If E is now a holomorphic vector bundle on a complex manifold X, the Chern
classes of E are Hodge classes.

This follows indeed from Chern-Weil theory, which provides de Rham represen-
tatives of ci(E) as follows : If ∇ is a complex connection on E, with curvature
operator R∇ ∈ A2

X ⊗ End E, then a representative of ck(E) is given by the degree
2k closed form

σk(
i

2π
R∇),

where σk is the polynomial invariant under conjugation on the space of matrices,
which to a matrix associates the k-th symmetric function of its eigenvalues.

Now, if E is a holomorphic vector bundle on X, there exists a complex connection
∇ on E such that R∇ is of type (1, 1), that is R∇ ∈ A1,1

X ⊗End E. (Given a Hermitian
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metric h on E, one can take the so-called Chern connection, which is compatible
with h, and has the property that its (0, 1)-part is equal to the ∂-operator of E.)
This implies that σk( i

2πR∇) ∈ Ak,k(X), and shows that ck(E) is Hodge.

- Chern classes of coherent sheaves. Coherent sheaves F on a complex
manifold X are sheaves of OX -modules which are locally presented as quotients

Or
X

φ→ Os
X → F → 0,

where φ is a matrix of holomorphic functions. A holomorphic vector bundle gives a
coherent sheaf defined as the sheaf of its local holomorphic sections. As the two data
are equivalent, the vector bundle and the corresponding sheaf are often identified.
Coherent sheaves associated to holomorphic vector bundles have the particularity
that they are locally free, that is locally isomorphic to Os

X , as one sees by taking
local trivializations of the considered vector bundle. A locally free analytic coherent
sheaf F on X being the sheaf of sections of a holomorphic vector bundle F on X,
we can define its Chern classes by ci(F) := ci(F ).

If X is a smooth projective complex manifold of dimension n, it is known (cf
[33], [34]) that coherent sheaves on X admit finite locally free resolutions

0 → Fn → . . . → F0 → F → 0,

where the Fi are locally free. We can thus define the Chern classes of F by the
Whitney formula :

c(F) := Πlc(Fl)εl . (1.2)

In this formula, εl := (−1)l, the total Chern class c(F) determines the Chern classes
ci(F) by the formula

c(F) = 1 + c1(F) + . . . + cn(F),

and the series can be inverted because the cohomology ring is nilpotent in degree
> 0. The Whitney formula and the case of holomorphic vector bundles imply that
the right hand side of (1.2) is independent of the choice of locally free resolution and
that the Chern classes ci(F) so defined are Hodge classes.

On a general compact complex manifold (and even Kähler), such a finite locally
free resolution does not exist in general (see section 1.4), except in dimension 2 (cf
[32]). In order to define the ci(F), one can use a finite locally free resolution

0 → Fn → . . . → F0 → F ⊗HX → 0,

of F ⊗ HX by sheaves of locally free HX -modules, where HX is the sheaf of real
analytic complex functions. The Fl are then the sheaves of real analytic sections
of some complex vector bundles Fl of real analytic class, and one can then define
(using again the definition c(Fl) = c(Fl))

c(F) = c(F ⊗HX), c(F ⊗HX)) = Πlc(Fl)εl .

This defines unambiguously the Chern classes of F , and some further work allows
to show that these classes are Hodge classes.
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The construction of rational Hodge classes as rational combinations of Chern
classes of coherent sheaves is more general than the two previously given construc-
tions. Namely, it is obvious that it generalizes Chern classes of holomorphic vector
bundles, as a coherent sheaf is a more general object than a holomorphic vector bun-
dle, but it is also true that it also generalizes the construction of classes of analytic
subsets, for the following reason:

If Z ⊂ X is a closed analytic subset of codimension k, then its ideal sheaf IZ is
a coherent sheaf, and one has:

ck(IZ) = (−1)k(k − 1)![Z]. (1.3)

In the projective case, it is known that the three constructions generate over Q
the same space of Hodge classes (cf [33] and [8]).

In the general compact Kähler case, it is a classical fact that the first and second
constructions do not generate over Q the same space of Hodge classes. The simplest
example is provided by a complex torus T admitting a holomorphic line bundle L
of indefinite curvature. This means that a de Rham representative of c1(L) is given
by a real (1, 1)-form with constant coefficients on T , such that the corresponding
Hermitian form is indefinite. If the torus T satisfying this condition is chosen general
enough, its space Hdg2(T ) will be generated by c1(L), as one shows by a deformation
argument. It follows that T will not contain any analytic hypersurface, hence no
non zero degree 2 Hodge class can be constructed as the class of a codimension 1
closed analytic subset; indeed, the cohomology class [Z] of an analytic hypersurface
in a torus can be represented by a non zero (1, 1)-form with constant coefficients,
whose associated Hermitian form is semi-positive. Thus the class [Z] could not be a
multiple of c1(L). Thus we are in a situation where a Hodge classe can be constructed
as the Chern class of a holomorphic vector bundle, but not as a combination with
rational coefficients of classes of closed analytic subsets.

The fact that Chern classes of coherent sheaves allow to construct strictly more
Hodge classes than Chern classes of holomorphic vector bundles was proved in [38]
and will be discussed in section 1.4. This is something which cannot be detected in
degree 2, as the exponential exact sequence

0 → Z→OX
exp 2iπ→ O∗X → 0

induces:
. . . H1(X,O∗X) c1→ H2(X,Z) → H2(X,OX) . . .

The group H1(X,O∗X) is isomorphic to the group of isomorphism classes of holo-
morphic line bundles. The kernel Ker (H2(X,Z) → H2(X,OX)) identifies to the
space of integral Hodge classes of degree 2. Hence in degree 2, Chern classes of
holomorphic line bundles generate all integral Hodge classes, a fact which is known
as the Lefschetz theorem on (1, 1)-classes.

Remark 8 We could also consider products ci(F)ck−i(G) of Chern classes of coher-
ent sheaves. However, the Whitney formula applied to sums of copies of F and G
shows that they can be expressed as rational combinations of Chern classes ck(H)
of coherent sheaves H on X.
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We just saw that the most general way to construct via analytic geometry Hodge
classes on Kähler manifolds is via Chern classes of coherent sheaves, since the two
other methods do not provide enough Hodge classes.

If we want to extend the Hodge conjecture to the Kähler case, we therefore are
led to consider the following question:

Question 9 Are Hodge classes on compact Kähler manifolds generated over Q by
Chern classes of coherent sheaves?

The answer to this question is “no”, as we proved in [38]. The two next subsec-
tions will be devoted to explaining why.

1.2 Weil tori and Weil classes

The Hodge classes described below have been constructed by Weil in the case of
algebraic tori, as a potential counterexample to the Hodge conjecture for algebraic
varieties. In the case of a general complex torus, the construction is still simpler.
These complex tori have been also considered in [43] by Zucker. In the application,
it will suffice to consider 4-dimensional Weil tori, but the general construction is not
more complicated.

We start with a Z[I]-action on Γ := Z4n, where I2 = −1, which makes

ΓQ := Γ⊗Q

into a K-vector space, where K is the quadratic field Q[I].
Let

ΓC = Γ⊗ C = C2n
i ⊕ C2n

−i

be the associated decomposition into eigenspaces for I. A 2n-dimensional complex
torus X with underlying lattice Γ and inheriting the I-action is determined by a 2n
dimensional complex subspace W of ΓC, which has to be stable under I, hence has
to be the direct sum

W = Wi ⊕W−i

of its intersections with C2n
i and C2n

−i. It has furthermore to satisfy the condition
that

W ∩ ΓR = {0}. (1.4)

Given W , X is given by the formula

X = ΓC/(W ⊕ Γ).

We will choose W so that

dimWi = dimW−i = n. (1.5)

Then W , hence X is determined by the choice of the n-dimensional subspaces

Wi ⊂ C2n
i , W−i ⊂ C2n

−i,

which have to be general enough so that the condition (1.4) is satisfied.
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We have isomorphisms

H2n(X,Q) ∼= H2n(X,Q) ∼=
2n∧

ΓQ. (1.6)

Consider the subspace
2n∧

K

ΓQ ⊂
2n∧

ΓQ.

Since ΓQ is a 2n-dimensional K-vector space,
∧2n

K ΓQ is a one dimensional K-vector
space, and its image under this inclusion is thus a 2 dimensional Q-vector space. The
claim is that, under the assumption (1.5),

∧2n
K ΓQ is made of Hodge classes, that

is, is contained in the subspace Hn,n(X) of the Hodge decomposition. Notice that
under the isomorphisms (1.6), tensored by C, Hn,n(X) identifies with the image of

n∧
W ⊗

n∧
W

in
∧2n ΓC.
To prove this claim, note that we have the decomposition

ΓK := ΓQ ⊗K = ΓK,i ⊕ ΓK,−i

into eigenspaces for the I action. Then
∧2n

K ΓQ ⊂
∧2n ΓQ is defined as the image of∧2n

K ΓK,i ⊂
∧2n

K ΓK via the trace map

2n∧

K

ΓK =
2n∧

Q
ΓQ ⊗K →

2n∧
ΓQ.

Now we have the inclusion
ΓK ⊂ ΓC,

with ΓC = ΓK ⊗Q R, (because C ∼= K ⊗Q R,) and the equality

ΓK,i = ΓK ∩ C2n
i .

The space ΓK,i is a 2n dimensional K-vector space which generates over R the space
C2n

i . It follows that the image of
∧2n

K ΓK,i in
∧2n ΓC generates over C the line∧2nC2n

i .
But we know that C2n

i is the direct sum of the two spaces Wi and W−i which
are n-dimensional. Hence

2n∧
C2n

i =
n∧

Wi ⊗
n∧

W−i

is contained in
∧n W ⊗∧n W , that is in Hn,n(X).
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1.3 The main result

We proved in [38] that the Weil Hodge classes on general Weil tori provide a coun-
terexample to question 9, thus showing that the projectivity assumption is crucial
in the statement of the Hodge conjecture.

Theorem 10 Let T be a general Weil torus of dimension 4. Then any coherent
sheaf F on T satisfies :

c2(F) = 0.

Thus the Weil Hodge classes constructed in the previous sections are not in the space
generated by Chern classes of coherent sheaves.

The proof uses the Uhlenbeck-Yau theorem [37], and can be even shortened by
using the Bando-Siu theorem [5], which extends Uhlenbeck-Yau theorem to the case
of reflexive coherent sheaves. It will prove in fact that a minimal reflexive sheaf
F on such a torus T is a flat holomorphic vector bundle (by minimal, we mean
“not containing any non trivial subsheaf of smaller rank”). The Uhlenbeck-Yau
theorem states the existence of Hermite-Einstein metric (relative to a Kähler metric
ω on a compact Kähler manifold X) on the ω-stable vector bundles on X. In the
coherent case, Bando and Siu work with singular such metrics with L2-integrability
conditions.

The stability condition for a torsion free coherent sheaf F on X is the condition
that for any subsheaf G ⊂ F , with the property that 0 < rk G < rkF , we have

c1(G) · [ω]n−1

rk G <
c1(F) · [ω]n−1

rkF ,

where n = dimX and the intersection is the intersection pairing on cohomology
between H2(X,R) and H2n−2(X,R).

In particular, it follows from this definition that any coherent torsion free sheaf
which admits no non zero subsheaf of smaller rank is stable.

Let us recall what the Hermite-Einstein condition is, at least for a non singular
Hermitian metric h on a holomorphic vector bundle E on X. The Hermitian metric
h determines a unique complex connection ∇h : C∞(E) → A1

X(E) on E, (where
A1

X(E) denotes the space of C∞ 1-forms on X with values in E,) which has the
properties that its (0, 1)-part ∇0,1

h is equal to the ∂-operator of E, and that h is flat
with respect to∇h. The Hermite-Einstein condition concerns the curvature operator
R∇h

of this connection. It says that

R∇h
= µωIdE + R0

∇h
, (1.7)

where ω is the Kähler form on X, µ is a complex coefficient which depends only
on c1(E), and R0

∇h
, which is seen as an endomorphism of E whose coefficients are

2-forms on X, has primitive coefficients. We recall here that a 2-form α on X is
primitive (with respect to the given Kähler form ω) if it satisfies:

α ∧ ωn−1 = 0.

If furthermore the form α is of type (1, 1), the primitivity implies that

∗α = −α ∧ ωn−2

(n− 2)!
, (1.8)
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where ∗ is the Hodge operator of the underlying Riemannian metric (see [40], I, 5.1).
We refer to [5] for the extension of this definition to the case of a reflexive

coherent sheaf, where the metric h has singularities.
Now the key point is the fact that in the examples constructed in the previ-

ous section, namely the general Weil tori T of dimension 4, we have the following
properties:

1. Hdg2(T ) = 0.

It follows that any coherent sheaf F on T satisfies c1(F) = 0. Thus, if F is
ω-stable and reflexive, in the definition (1.7) of a Hermite-Einstein metric on
F , we have µ = 0, and then the curvature operator satisfies by (1.8):

∗R∇h
= −R∇h

∧ ω2

2
.

Combined with the fact that h is parallel with respect to ∇h, we get:

| R∇h
|2 V ol = (Tr R2

∇h
) ∧ ω2

2
. (1.9)

2. T does not contain positive dimensional proper analytic subsets.

Recall that we want to prove c2(F) = 0 for any coherent sheaf F on T . Property
2 tells us that we can always reduce to the case of reflexive sheaves. Indeed any
sheaf differs from its reflexive hull by torsion sheaves, and torsion sheaves must be
supported on points, which cannot contribute to H4 (they have Chern classes only
in degree 8 = dimRT ).

Next, property 1 and the Whitney formula imply that c2 is additive under exact
sequences of coherent sheaves on such tori.

Putting together both arguments, and reasoning by induction on the rank, we
only have to consider the case of a reflexive coherent sheaf F which does not contain
any non trivial proper subsheaf of smaller rank.

We can apply Bando-Siu theorem, because this F is ω-stable with respect to any
Kähler metric ω on X. It turns out that we can choose ω satisfying the property
that

[ω]2 · α = 0,

for any Weil Hodge class α on T . Note that all the Hodge classes of degree 4 on T
are in fact of Weil type because the complex structure on T is generically chosen
among the Weil complex structures. Thus we in fact have the equality

[ω]2 · α = 0, (1.10)

for any Hodge class α on T .
We use now the computation above, leading to (a particular case of) the famous

Bogomolov-Miyaoka-Yau inequality for stable bundles. Namely, integrating (1.9)
over T , we conclude that for an Hermite-Einstein metric on a reflexive coherent
sheaf F satisfying c1(F) = 0, with associated Chern connection ∇h, we can express
the L2-norm

| R∇h
|2L2 :=

∫

T
| R∇h

|2 V ol

12



of the associated curvature operator as an adequate multiple of

c2(F) · [ω]2.

Here we use the fact that by Chern-Weil theory, an adequate linear combination of
c2
1 and c2 admits as a de Rham representative the trace of the square of the curvature

operator.
But we already mentioned that, in our situation

[ω]2 · c2(F) = 0.

Thus it follows that | R∇h
|2L2 vanishes, and thus that R∇h

vanishes. Hence we
conclude that F is locally free and that c2(F) = 0 (and in fact ci(F) = 0 for i > 0).

Remark 11 We used in this sketch of proof the theorem of Bando-Siu, which is a
rather hard extension of the Uhlenbeck-Yau theorem to the case of reflexive sheaves.
It is possible (this is done in [38]) to avoid this in our case by working over a
desingularization T̃ of T (at the finitely many points where F is not locally free) on
which F extends as a vector bundle. Assuming as above that F does not contain
any non trivial subsheaf of smaller rank, its locally free extension to T̃ will be stable
with respect to any Kähler metric and we can apply the Uhlenbeck-Yau theorem to
it. This line of reasoning gives the vanishing c2(F) = 0 but no other information
like the fact that F is locally free and admits a flat connection.

1.4 Further comments on the K-theory of compact Kähler mani-
folds

Working a little more with the arguments described above also allows us to prove
the following :

Theorem 12 [38] Let T be a compact Kähler manifold of dimension n satisfying
the assumptions 1., 2. of the previous section and the following analogue of (1.10):

α · [ω]n−2 = 0

for all Hodge classes α of degree 4 on T (for example T may be a general complex
torus of dimension n ≥ 3). Then any holomorphic vector bundle E on T satisfies:

ci(E) = 0, ∀i > 0.

Remark 13 The proof gives in fact a stronger result stated in [38]. Namely, any
reflexive sheaf on T is in fact a flat holomorphic vector bundle, that is comes from
a representation of π1(T ).

As a corollary, we conclude that there exist coherent sheaves F on such a compact
Kähler manifold which do not admit a finite locally free resolution

0 → Fn → . . . → F0 → F → 0.

(Note that it is well known that if a finite locally free resolution exists, then a finite
locally free resolution of length n exists.)
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Indeed, consider the ideal sheaf Ix of a point x ∈ T . If such a resolution

0 → Fn → . . . → F i → F i−1 → . . . → F0 → Ix → 0

would exist, then we would get the equality

c(Ix) = Πic(Fi)εi

with εi = (−1)i. But the left hand side is non zero in positive degrees since its
term of degree 2n, n = codimx = dimT is a non zero multiple of the class of x, by
formula (1.3). On the other hand the right hand side vanishes in positive degrees
by Theorem 12.

This result shows that the K0 group of the category of coherent sheaves on gen-
eral compact Kähler manifolds may differ from the one generated by the subcategory
of locally free coherent sheaves, which is not the case for smooth projective varieties
(see [8]).

2 The topological side: integral Hodge classes

2.1 Atiyah-Hirzebruch-Totaro topological obstruction.

Atiyah and Hirzebruch [4] found counterexamples to the Hodge conjecture stated
for degree 2k integral Hodge classes (as opposed to rational Hodge classes), when
k ≥ 2 . (We already mentioned that in degree 2, the most optimistic statements are
true, due to Lefschetz theorem.)

Recently, Totaro [36] revisited these examples of Atiyah and Hirzebruch and re-
formulated the obstructions they had found more directly using the complex cobor-
dism graded ring MU∗(X) of X. Let us first describe this ring which is defined for
all differentiable compact manifolds : given X, we consider first of all the objects
which are triples (V, f, ε), where V is a differentiable compact manifold, f : V → X
is a differentiable map, and ε is a class of a stable complex structure on the virtual
normal bundle f∗TX − TV . Here f∗TX − TV is an element of the K0-group of real
vector bundles on V , and choosing a stable complex structure on it means we choose
an element of the K0-group of complex vector bundles on V which sends (via the
natural forgetful map) to f∗TX − TV + T , where T is the trivial real vector bundle
of rank 1 or 0.)

One now makes the following construction, which is a slight variant of the con-
struction of the absolute complex cobordism ring MU∗ = MU∗(point) (see [22]): let
us consider the free abelian group generated by such triples, and take its quotient by
the complex cobordism relations: namely, for each differentiable compact manifold
with boundary M , differentiable map φ : M → X, and stable complex structure ε
on the virtual normal bundle f∗TX − TM , we observe that the restriction of TM to
the boundary of M is naturally isomorphic to T∂M ⊕ T where T is trivial of rank
1. Thus the stable complex structure ε on the virtual normal bundle f∗TX − TM

induces a stable complex structure ε0 on the virtual normal bundle f∗0 TX − T∂M ,
where f0 is the restriction of f to ∂M .

We take the quotient of the free abelian group by the relations generated by

(∂M, f0, ε0) = 0,
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(V1 t V2, f1 t f2, ε1 t ε2) = (V1, f1, ε1) + (V2, f2, ε2).

The result will be denoted by MU∗(X). Here the grading is given by ∗ =
dimX − dimV . The product structure is given by fibered product over X.

Note that MU∗(X) is naturally a MU∗-module, since elements of MU∗ is gen-
erated by data (W, ε0) where W is differentiable compact and ε0 is a stable complex
structure on TW (here the map to a point is necessarily constant). Then for (V, f, ε)
and (W, ε0) as above, we can consider the product (V ×W, f ◦ pr1, ε + ε0).

Denote by MU∗(X) ⊗
MU∗

Z its tensor product with Z over MU∗ (which maps

by the degree to Z = H0(point,Z)). Thus, in MU∗(X) ⊗
MU∗

Z, one kills all the

products (V ×W, f ◦ pr1, ε1 + ε2) where ε2 is a stable complex structure on W , with
dimW > 0. As we have for such products

(f ◦ pr1)∗(1V×W ) = 0,

there is a natural map:

MU∗(X) ⊗
MU∗

Z→ H∗(X,Z),

(V, f, ε) 7→ f∗1V .

(Here we note that, as we have a stable complex structure on the virtual normal
bundle of f , the Gysin image f∗1V is well defined. If X is oriented, V is also
naturally oriented because the virtual normal bundle of f has a stable complex
structure, and then f∗(1V ) is the Poincaré dual cohomology class of the homology
class f∗([V ]fund).)

Coming back to the case where X is a complex projective (or more generally
compact complex) manifold, Totaro [36] observed that the cycle map

Zk(X) → H2k(X,Z), Z 7→ [Z],

where the left hand side is the free abelian group generated by subvarieties (or
irreducible closed analytic subsets) of codimension k of X, is the composite of two
maps

Zk(X) → (MU∗(X) ⊗
MU∗

Z)2k → H2k(X,Z). (2.11)

Here the second map was introduced above, and the first map is defined using the
construction of the complex cobordism ring; indeed, for any inclusion of a (maybe
singular) codimension k closed algebraic subset Z ⊂ X, there is a desingularization

τ : Z̃ → X,

and we have
[Z] = τ∗1Z̃

.

On the other hand, the virtual normal bundle of τ has an obvious stable complex
structure.

By the factorization (2.11), a torsion class in H2k(X,Z) which is not in the image
of

(MU∗(X) ⊗
MU∗

Z)2k → H2k(X,Z)
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cannot be algebraic. On the other hand, as it sends to 0 in H2k(X,C), it is obviously
an integral Hodge class.

This is a supplementary topological obstruction for an integral Hodge class to
be algebraic. These obstructions are of torsion, as the map (MU∗(X) ⊗

MU∗
Z)2k →

H2k(X,Z) becomes an isomorphism when tensored by Q. In fact they essentially
concern torsion classes, as explained by Totaro, as the map

(MU∗(X) ⊗
MU∗

Z)2k → H2k(X,Z)

is an isomorphism if H∗(X,Z) has no torsion. The Atiyah-Hirzebruch example [4]
shows that these obstructions are effective.

2.2 Kollár’s example

We start this section by describing a method due to Kollár [28], which produces
examples of smooth projective complex varieties X, together with an even degree
integral cohomology class α, which is not algebraic, that is, which is not the coho-
mology class of an algebraic cycle of X, while a non-zero multiple of α is algebraic.
This is another sort of counterexample to the Hodge conjecture over the integers,
since the class α is of course a Hodge class.

The examples are as follows : consider a smooth hypersurface X ⊂ Pn+1 of
degree d. For l < n, the Lefschetz theorem on hyperplane sections says that the
restriction map

H l(Pn+1,Z) → H l(X,Z)

is an isomorphism. Since the left-hand side is isomorphic to ZHk for l = 2k < n,
where H is the cohomology class of a hyperplane, and is 0 for l odd or l > n, we
conclude by Poincaré duality on X that for 2k > n, we have H2k(X,Z) = Zα, where
α is determined by the condition < α, hn−k >= 1, with the notation h = H|X =
c1(OX(1)). Note that the class d · α is equal to hk, (both have intersection number
d with hn−k), hence is algebraic.

In the sequel, we consider for simplicity the case where n = 3, k = 2. Then d ·α
is the class of a plane section of X.

Theorem 14 (Kollár, [28]) Assume that for some integer p coprime to 6, p3 divides
d. Then for general X, any curve C ⊂ X has degree divisible by p. Hence the class
α is not algebraic.

Recall that “general” means that the defining equation for X has to be chosen
away from a specified union of countably many Zariski closed proper subsets of the
parameter space.

Proof. Let d = p3s, and let Y ⊂ P4 be a degree s smooth hypersurface. Let
φ0, . . . , φ4 be sections of OP4(p) without common zeroes. They provide a map

φ : Y → P4,

which for a generic choice of the φi’s satisfies the following properties :

1. φ is generically of degree 1 onto its image, which is a hypersurface X0 ⊂ P4 of
degree p3s = d.
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2. φ is two-to-one generically over a surface in X0, three-to-one generically over a
curve in X0, at most finitely many points of X0 have more than 3 preimages,
and no point has more than 4 preimages.

Let now X ⊂ P4 be a smooth hypersurface which is general in moduli. Let
C ⊂ X be a reduced curve. The idea is to degenerate the pair (X, C), C ⊂ X, to
a pair (X0, C0), C0 ⊂ X0, where X0 was defined above. This is possible because
the point parameterizing X is general, and because there are only countably many
relative Hilbert schemes over the moduli space of X, parameterizing curves in the
fibers Xt. Thus a curve C ⊂ X, with X general in moduli, must correspond to a
point of a relative Hilbert scheme which dominates the moduli space of X.

By flatness, the curve C0 has the same degree as C. Recall the normalization
map

φ : Y → X0.

By property 2 above, there exists a 1-cycle z̃0 in Y such that φ∗(z̃0) = 6z0, where
z0 is the cycle associated to C0. It follows that

6deg z0 = deg φ∗(z̃0).

On the other hand, the right-hand side is equal to the degree of the line bundle
φ∗OX0(1) computed on the cycle z̃0. Since φ∗OX0(1) is equal to OY (p), it follows
that this degree is divisible by p. Hence we found that 6deg C = 6deg C0 = 6deg z0

is divisible by p, and since p is coprime to 6, it follows that deg C is also divisible
by p.

As remarked in [35], Kollár’s example, which is not topological, exhibits the
following phenomenon which illustrates the complexity of the Hodge conjecture :
we can have a family X → B of smooth projective complex manifolds, and a locally
constant integral Hodge class αt ∈ H4(Xt,Z), with the property that on a dense
subset Balg ⊂ B, which is a countable union of closed proper algebraic subsets, the
class αt is algebraic, that is, is an integral combination [Zt] =

∑
i ni[Zi,t] of classes

of codimension 2 subvarieties, but on its complementary set, which is a countable
intersection of dense open subsets, the class αt is not algebraic.

Indeed, one can show that there exists a countable union of proper algebraic
subsets, which is dense for the usual topology in the parameter space of all smooth
hypersurfaces of degree d in P4, consisting of points parameterizing hypersurfaces
X for which the class α is algebraic. It suffices for this to prove that the set of
smooth surfaces of degree d in P3 carrying an algebraic class λ ∈ H2(S,Z)∩H1,1(S)
satisfying the property that < λ, c1(OS(1)) >S is coprime to d, is dense in the space
of all surfaces of degree d in P3. Indeed, for any X containing such a surface, the
class α is algebraic on X.

Now this fact follows from the density criterion for the Noether-Lefschetz locus
explained in [40] II, 5.3.4, and from the fact that rational classes ν ∈ H2(S,Q) such
that a multiple bν is integral, and satisfies < bν, c1(OS(1)) >S= a with a coprime
to d, are dense in H2(S,Q).

2.3 Rationally connected varieties and the rationality problem

A longstanding problem in algebraic geometry is the characterization of rational
varieties, namely those smooth projective X which are birationally equivalent to
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Pn, n = dimX.
Beautiful obstructions to rationality, very efficient in dimension three, even for

unirational varieties, (for which there exists a surjective rational map φ : Pn 99K X,)
have been found in the papers [12], [3], [24].

In higher dimensions, the criteria above, and especially those of [12], [3] are less
useful. In [35], [41], we observed that if X is a smooth projective variety which is
birational to Pn, then the Hodge conjecture holds for integral Hodge classes on X
of degree 2n− 2 and 4. This is optimal, because in other degrees, we can blow-up a
copy of Kollár’s example imbedded in some projective space to get counterexamples.
More generally, we have the following lemma :

Lemma 15 The groups

Hdg4(X,Z)/Hdg4(X,Z)alg, Hdg2n−2(X,Z)/Hdg2n−2(X,Z)alg,

where the lower index “alg” means that we consider the group of integral Hodge
classes which are algebraic, are both birational invariants of the complex projective
variety X.

Proof. This follows from the resolution of singularities and the invariance under
blow-ups, which is a consequence of the computation of the cohomology and the
Chow groups of a blown-up variety (cf [30], or [40], I, 7.3.3, II, 9.3.3). For the
degree 4 case, the new degree 4 integral Hodge classes appearing under blow-up
come from degree 2 integral Hodge classes on the center of the blow-up. Hence they
are algebraic by the Lefschetz theorem on (1, 1)-classes. For the other case, the new
degree 2n−2 integral Hodge classes appearing under blow-up of a connected smooth
subvariety are multiples of the class of a line in a fiber of the blowing-down map,
hence they are also algebraic.

Note the following two facts concerning rational Hodge classes of degree 4 and
2n− 2:

1. The Hodge conjecture (for projective varieties) is always true for rational
Hodge classes of degree 2n− 2. This is a consequence of Lefschetz theorem on
(1, 1) classes, and of the hard Lefschetz theorem.

2. The Hodge conjecture (for projective varieties) is true for rational Hodge
classes of degree 4 on varieties which are swept out by rational curves (called
uniruled varieties). This is a result which is due to Conte and Murre [14] in
dimension 4, and which has been generalized by Bloch and Srinivas in [7].

Thus it seems natural to consider in these situations the problem for integral
Hodge classes. Starting from Kollár’s example (X,α) in dimension 3, we can consider
the product X ×P1 and either of the classes pr∗1α, pr∗1α∪ pr∗2([point]. None of these
classes is algebraic, and they are of degree 4 and 2n− 2 = 6 respectively. Thus the
uniruledness is not a sufficient assumption.

Rationally connected varieties, for which there passes a rational curve through
any two points, have been the object of intensive work since the seminal paper by
Kollár, Miyaoka and Mori [29]. Still they remain very mysterious from several points
of view. They are as close as possible to unirational varieties (no example is known
to be not unirational), and this is a birationally invariant class. In view of the
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birational invariance explained above, it is thus natural to consider the problem of
integral Hodge classes for them:

Question 16 Let X be a smooth rationally connected variety of dimension n. Is
the Hodge conjecture true for integral Hodge classes of degree 4 or 2n− 2 on X?

It is tempting to believe that the answer should be “yes” for degree 2n− 2 but
“no” for degree 4, in the range n ≥ 4.

For n = 3, we will have the equality 4 = 2n− 2, hence there is only one degree
to consider. In [41], we solved this question in dimension 3:

Theorem 17 Let X be a uniruled threefold, or a regular threefold with trivial canon-
ical bundle. Then the Hodge conjecture is satisfied by integral Hodge classes of degree
4 on X, that is, integral Hodge classes of degree 4 are generated by classes of curves
in X.

The proof goes as follows : We know the Hodge conjecture for integral Hodge classes
of degree 2. This is the Lefschetz theorem on (1, 1)-classes. Let α ∈ H4(X,Z) and
let j : Σ ↪→ X be the inclusion of a smooth ample surface into X. The Lefschetz
theorem on hyperplane restriction says that the Gysin map

j∗ : H2(Σ,Z) → H4(X,Z)

is surjective. Assume for simplicity that H2(X,OX) = 0 and that X is uniruled.
Then there is no H3,1-part in the Hodge decomposition of H4(X,C) and thus we
want to show that any integral degree 4 cohomology class is algebraic, that is, is a
combination with integral coefficients of classes of curves in X. Now the idea is to
show that if Σ is chosen ample enough and with the condition that

Σ2.c1(KX) < 0,

then H2(Σ,Z) is generated over Z by classes which become algebraic under a small
deformation of Σ in X. If now α ∈ H2(Σ,Z) becomes algebraic under a small
deformation of Σ in X, this means that for a deformation jt : Σt ↪→ X, the class
αt deduced from α by flat transport satisfies αt =

∑
i ni[Ct,i] ∈ H2(Σt,Z), for some

curves Ci,t ⊂ Σt and thus

jt∗αt = j∗α =
∑

i

ni[Ct,i] ∈ H4(X,Z),

where the curves Ci,t are now seen as curves in X. Thus it follows from the surjec-
tivity of j∗ that H4(X,Z) is generated by classes of curves.

The proof that H2(Σ,Z) is generated over Z by classes which become algebraic
under a small deformation of Σ in X uses the study of infinitesimal variations of
Hodge structures. Using the Lefschetz theorem on (1, 1)-classes, one has equivalently
to prove that H2(Σ,Z) is generated over Z by classes which become of type (1, 1)
under a small deformation of Σ in X. Thus, this is mainly a question of showing
that the spaces

H1,1(Σ)R := H1,1(Σ) ∩H2(Σ,R)

“move enough” with Σ ⊂ X inside H2(Σ,R), so as to fill-in an open subset. As
this open subset is a cone, it will then be clear that integral points in this cone will
generate over Z the whole lattice H2(Σ,Z).
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The study of the deformations of the subspace H1,1(Σ)R ⊂ H2(Σ,R) is done
using Griffiths machinery of infinitesimal variations of Hodge structures for hyper-
surfaces [19], [40], II, 6.2.

Coming back to the question 16, which is particularly interesting in dimension
4, let us sketch the proof of the following result:

Theorem 18 Let X be a cubic fourfold. Then any integral Hodge class on X is
algebraic.

Proof. The cohomology group H6(X,Z) is isomorphic to Z and is generated by
the class of a line contained in X. Thus only the case of an integral Hodge class α
of degree 4 on X is to be considered. We use Zucker’s method in [43], and we first
recall how it works to give the result for rational Hodge classes. Thus we consider a
Lefschetz pencil (Yt)t∈P1 of hyperplane sections of X, giving rise to a morphism

Y → P1, τ : Y → X

where Y is the blow-up of X along the base-locus Σ of the pencil. Note that the
surface Σ is a cubic surface in P3, and thus, there is a line l ⊂ Σ such that for any
t ∈ P1, there is an equality

α|Yt
= β[l],

where β is an integral coefficient which does not depend on t. The exceptional
divisor of τ is isomorphic to Σ× P1. Replacing the pull-back τ∗α ∈ H4(Y,Z) by

α′ := τ∗α− β[l × P1],

the class α′ satisfies now the assumption that

α′|Yt
= 0.

Consider the family of intermediate jacobians J → P1 with fiber

J(Yt) := H3(Yt,C)/(F 2H3(Yt,C) + H3(Yt,Z)).

This group identifies naturally to the kernel of the map

H4
D(Yt,Z(2)) → H4(Yt,Z). (2.12)

Here the left hand side here is a Deligne cohomology group, which can be defined
as the hypercohomology

H4(Yt,ZD(2)),

where the Deligne complex ZD(2) is the complex

0 → Z→ OYt → ΩYt → 0,

with Z put in degree 0.
The Hodge class α′ ∈ H4(Y,Z) provides as well a class α′D ∈ H4

D(Y,Z(2)),
because H3(Y,Z) = 0. Indeed, the Deligne complex ZD(2) of Y fits into an exact
sequence:

0 → K → ZD(2) → Z→ 0
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where K is the complex 0 → OY → ΩY → 0 with OY put in degree 1. Hence we get
an exact sequence (see [40], I, 12.3)

H3(Y,Z) → H4(Y,K) → H4
D(Y,Z(2)) → H4(Y,Z).

Hodge theory tells us that the image of the last map precisely consists of Hodge
classes on Y and that H4(Y,K) = H3(Y,C)/F 2H3(Y,C). Thus if H3(Y,C) = 0,
then H4(Y,K) = 0 and the last map is injective. This exact sequence also explains
why we recover J(Yt) as the kernel of the map (2.12).

By restriction to the smooth fibers Yt, we thus get a section

α̃′D(t) = α′D|Yt
∈ Ker (H4

D(Yt,Z(2)) → H4(Yt,Z)) = J(Yt)

of the family of intermediate jacobians. An essential point is the fact that this
section is algebraic, for an adequate algebraic structure on J , compatible with the
Abel-Jacobi map (cf [43]). This section is called the normal function associated to
α′.

We know by the results of Clemens and Griffiths [12] that via the Abel-Jacobi
map ΦYt , this fibration identifies, at least over the regular locus U ⊂ P1 to the
fibration whose fiber over t consists in rational equivalence classes of 1-cycles z in
Yt of class (or degree) [z] = 0.

The conclusion of the paper of [43] is then obtained by saying that we can find
an explicit algebraic relative family of curves Cs,t ⊂ Yt, s ∈ Mt, such that for a
generic point t ∈ P1, the map

Mt → J(Yt), s 7→ ΦYt(Cs,t − γl), γ = deg Cs,t

is finite. Considering the fiber (which is finite of degree N) of this map over each
α̃′D(t), it follows that we can find an algebraic family of curves

Zt ⊂ Yt

such that deg Zt = Nγ, and

ΦYt(Zt −Nγl) = Nα̃′D(t).

Then the theory of the Hodge class of a normal function (see [40], II, 8.2.2) tells us
that the surface Z ⊂ X swept out by the curves τ(Zt) has its class equal to Nα,
modulo [Σ]. This concludes the argument of Zucker.

Unfortunately, because of this coefficient N which appeared, we see that this
does not solve the problem for integral Hodge classes. However, we can now use
the results of Markushevitch and Tikhomirov [31], later on completed by Druel [16],
which provide a generically 1-to-1 parameterization of the intermediate jacobian of
Yt by algebraic cycles. Their result is the following

Theorem 19 Via the Abel-Jacobi map ΦYt, the moduli space Mt of semi-stable rank
2 torsion free sheaves with c1 = 0, c2 = 2l, is birational to J(Yt).

Here the map considered is well defined up to translation, depending on the choice
of a line l in Yt, and associates to E ∈ Mt the Abel-Jacobi invariant of c2(E) − 2l,
where c2(E) is now the refined second Chern class of E with value in the Chow group
CH2(Yt) of 1-cycles on Yt modulo rational equivalence.
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Druel makes precise the form of this birational transformation. It is the blow-up
of the surface of lines of Yt, imbedded in J(Yt) by the Abel-Jacobi map.

To make the above argument work, we cannot directly use the relative family
M = ∪t∈P1Mt because it does not parametrize actual curves in Yt but only isomor-
phism classes of vector bundles on Yt. Furthermore, it is not clear if there exists an
universal object over M. However, what we can do is to build a projective bundle
over M which parametrizes curves in Yt.

Namely, for k large enough, we consider the projective bundle over M whose
fiber over Es on Yt is the projective space

P(H0(Yt, Es(k))).

This projective bundle P exists over M, even if there is no universal object over M,
and furthermore it (or more precisely a Zariski dense open subset of it) parametrizes
curves in the fibers Yt, because for Es ∈ Mt, a generic section σ ∈ H0(Yt, Es(l)) is
transverse, so that its zero locus provides a curve Cs,σ ⊂ Yt. This curve Cs,σ has for
rational equivalence class c2(Es(k)), which is also equal to c2(Es) modulo a multiple
of h2, h = c1(OYt(1)).

The proof of theorem 18 is now complete. Indeed, by theorem 19, our section
α̃′D of J lifts to a section of M. As the Brauer group of a curve is trivial, this section
further lifts to a section of P, which provides a family of curves

Ct ⊂ Yt

such that
ΦYt(Ct − βl) = α̃′D(t), β = deg Ct.

To conclude we consider, as in Zucker’s proof, the surface swept out by the Ct’s.

3 The algebraic side : absolute Hodge classes and Hodge
loci

3.1 Absolute Hodge classes

Here we enter one of the most fascinating aspects of the Hodge conjecture, which
seriously involves the fact that the complex manifolds we are considering are alge-
braic. This is related to the deep notion of Motives invented by Grothendieck, but
we will focus on explaining the following essential result:

The Betti cohomology with complex coefficients of a smooth complex projective
variety X, which a priori is of topological nature, can be computed as an algebraic
invariant of X seen as an algebraic variety.

Note that this is not at all true if we change the field of coefficients. Even with
R instead of C, and even if the variety X is defined over R, the cohomology of X
with real coefficients cannot be computed by algebraic means.

The meaning and the importance of this statement due to Grothendieck will
be made apparent when we will explain the notion of absolute Hodge class. The
key point leading to this conclusion is Serre’s “GAGA principle”, which says the
following:
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Let X ⊂ PN (C) be a closed algebraic subset, or more precisely a closed sub-
scheme, and let F be an algebraic coherent sheaf on X. Sheaves here are sheaves
with respect to the Zariski topology, which is much weaker than the usual topol-
ogy. The typical algebraic coherent sheaves are the sheaf OX of algebraic functions
(restrictions of rational functions on PN (C) with no pole on the considered open
set), or ideal sheaves IZ , which are sheaves of defining equations for subschemes Z
of X. We can also consider sheaves of algebraic functions on such a Z, namely the
quotient OZ = OX/IZ which is considered as a sheaf of OX -modules.

Of crucial importance for us will be the sheaves of Kähler differentials Ωl
X/C =∧l ΩX/C, especially when X is smooth. These sheaves have a purely algebraic def-

inition which turns calculus into algebra (this is not surprising as we are working
with polynomials). The exterior differential d is naturally defined as a consequence
of their construction.

Now these sheaves have analytic counterparts Fan, which are analytic coherent
sheaves on the corresponding analytic subscheme Xan of CPn. The space of sections
of the sheaf Fan over an (usual) open set U is essentially the space of sections of
the sheaf F defined over a Zariski neighbourhood of U , tensored by the space of
holomorphic functions on U . Thus morally, it is the sheaf of holomorphic sections
of F , considered in the usual topology.

The GAGA comparison theorem [33] says the following:

Theorem 20 (Serre) For any algebraic coherent sheaf F on X, one has a canonical
isomorphism

H l(X,F) → H l(Xan,Fan),

induced by the morphism of ringed spaces

φ : (Xan,OXan) → (X,OX),

which satisfies : φ∗F = Fan.

The only application we will consider concerns the sheaves Ωl
X/C of Kähler dif-

ferentials. It is easy to prove that the corresponding analytic coherent sheaves are
nothing but the sheaves of holomorphic differentials Ωl

Xan . We thus conclude that
for X smooth and algebraic, and for any p, q, we have

Hq(X, Ωp
X/C) ∼= Hq(Xan, Ωp

Xan),

where on the right we have the Dolbeault cohomology of Xan. A spectral sequence
argument then allows to conclude that we have a canonical isomorphism of hyper-
cohomology groups:

Hk(X, Ω•X/C) ∼= Hk(Xan,Ω•Xan). (3.13)

But we have the holomorphic de Rham resolution

0 → C→OXan
d→ ΩXan → ... → Ωn

Xan → 0, n = dim X

of the constant sheaf C on Xan, which makes the constant sheaf C on Xan quasiiso-
morphic to the holomorphic de Rham complex Ω•Xan . This implies that (3.13) can
be written as

Hk(X, Ω•X/C) ∼= Hk(Xan,C). (3.14)
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The right hand side in (3.14) is a purely topological object built from the usual
topology on Xan. On the other hand, the left hand side is a purely algebraic object
computed from the abstract algebraic variety X!

Let us recall the notion of (de Rham) absolute Hodge class (cf [13]). First of all,
let us make a change of definition: a Hodge class of degree 2k on X will be in this
section a class α ∈ (2iπ)kH2k(X,Q) ∩Hk,k(X). The reason for this shift is the fact
that we want to use the algebraic cycle class [Z]alg, which takes value in algebraic de
Rham cohomology, and which equals (2iπ)k[Z] via the comparison Betti-de Rham
of (3.14), where [Z] is the topological cycle class described in the previous section.

Let Xan be a complex projective manifold and α ∈ Hdg2k(Xan) be a Hodge
class. Thus α ∈ (2iπ)kH2k(X,Q) and

α ∈ F kH2k(Xan,C) ∼= H2k(Xan,Ω•≥k
Xan). (3.15)

Here, the left hand side is given by the Hodge filtration (0.1) on the Betti cohomol-
ogy of the complex manifold Xan and the isomorphism of (3.15) is induced by the
holomorphic de Rham resolution.

As before, the right hand side in (3.15) can be computed, by GAGA principle
(Theorem 20), as the hypercohomology of the algebraic variety X with value in the
complex of algebraic differentials:

H2k(Xan,Ω•≥k
Xan) ∼= H2k(X,Ω•≥k

X/C). (3.16)

Let us denote by E the set of fields embeddings of C in C. For each element σ of
E , we get a new algebraic variety Xσ defined over C, obtained from X by applying σ
to the coefficients of the defining equations of X, and we have a similar isomorphism
for Xσ. Note that σ acts on points of CPn and induces a natural maps from X to
Xσ, but that this map is not continuous in general (the only non trivial continuous
automorphism of C is complex conjugation).

But as an algebraic variety, Xσ is deduced from X by applying σ, and it follows
that there is a natural (only τ(C)-linear) map between algebraic de Rham cohomol-
ogy spaces:

H2k(X, Ω•≥k
X/C) → H2k(Xσ, Ω•≥k

Xσ/C).

Applying the comparison isomorphism (3.16) in the reverse way, the class α provides
a (de Rham or Betti) complex cohomology class

ασ ∈ H2k(Xσ, Ω•≥k
Xσ

) = F kH2k(Xan
σ ,C)

for each σ ∈ E .

Definition 21 (cf [13]) The class α is said to be (de Rham) absolute Hodge if ασ

is a Hodge class for each σ, that is ασ = (2iπ)kβσ, for some rational cohomology
class βσ ∈ H2k(Xan

σ ,Q).

The main reason for introducing this definition is the following:

Proposition 22 If Z ⊂ X is a complex subvariety of codimension k, then (2iπ)k[Z] ∈
(2iπ)kH2k(X,Q) is an absolute Hodge class.
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The reason for this statement is the fact that the image of (2iπ)k[Z] inH2k(Xan, Ω·X)
identifies (via GAGA) to the algebraic cycle class [Z]alg of Z, an element ofH2k(X, Ω·X/C)
which is defined algebraically using Serre duality. Thus it follows that under the map
described above

H2k(Xan,C) → H2k(Xan
σ ,C),

the class (2iπ)k[Z] = [Z]alg is sent to [Zσ]alg = (2iπ)k[Zσ]. Here Zσ ⊂ Xσ is deduced
from Z by applying the field embedding σ to the defining equations of Z.

Proposition 22 shows that the Hodge conjecture splits naturally into two sub-
conjectures, namely:

Conjecture 23 Hodge classes on smooth complex projective varieties are absolute
Hodge.

Conjecture 24 Absolute Hodge classes on smooth complex projective varieties are
algebraic.

In the next section, we give a geometric description of the notion of absolute
Hodge classes involving the locus of Hodge classes introduced in [11]. This essentially
reduces Conjecture 23 to the question whether the connected components of the
locus of Hodge classes are defined over Q. This geometric description will be used
to answer partially the following question, asked by Soulé and Maillot :

Question 25 Can the Hodge conjecture be reduced to the case of varieties defined
over Q?

This question is quite natural, for the following reason : We already mentioned
that any smooth complex projective variety X is a fiber of a smooth projective
morphism π : X → T defined over Q, where T is quasi-projective defined over Q.
There are countably many relative Hilbert schemes defined over Q parameterizing
subschemes of given Hilbert polynomial in the fibers of π. Of course, if one wants to
work with geometrically connected varieties, one has to replace T and the relative
Hilbert schemes by their connected components, which are only defined over Q. It
follows from this that any subvariety Z ⊂ X is the fiber of a family of cycles Z ⊂ X ′,
where π′ : X ′ → T ′ is deduced from the original family by base change from a
component of a relative Hilbert scheme. In particular T ′ and thus X ′ are quasi-
projective defined over Q. We can desingularize X ′ and complete it into a smooth
projective variety X ′′ defined over Q, and we can consider the closure Z ′ ⊂ X ′′ of
Z. This is a cycle in a smooth projective variety X ′′ defined over Q containing X,
and the cycle class [Z] ∈ H2k(X,Z) is the restriction to X of

[Z ′] ∈ H2k(X ′′,Z).

In other words, any cycle class is the restriction of a cycle class on a big ambient
variety defined over Q. This makes Question 25 quite natural.

Concerning this question, we prove for example the following result:

Proposition 26 [42] If the Hodge conjecture is true for absolute Hodge classes on
varieties defined over Q, then it is true for absolute Hodge classes on any complex
projective variety.
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Note that this proposition can be rephrased by saying that Conjecture 24 concerns
in fact absolute Hodge classes on varieties defined over Q.

As mentioned above, the proof necessitates the rewriting of the arithmetic notion
of absolute Hodge class in terms of something more familiar to people working in
the theory of variations of Hodge structures, namely the notion of Hodge loci which
we will describe in next section.

In that section, we will also give partial answers to Conjecture 23 and to question
25 above.

Proposition 26 reduces the Hodge conjecture for absolute Hodge classes, that is
Conjecture 24, to the countably many algebraic varieties defined over Q, and to the
countably many Hodge classes on them. On the other hand, there are a number of
crucial instances of the Hodge conjecture which are not known to hold and which
concern absolute Hodge classes:

1. Hodge classes on abelian varieties (by Deligne [13], they are absolute).

2. Künneth components of the diagonal of X × X. (The class of the diagonal
of X is algebraic, but its Künneth components obtained using the Künneth
decomposition of H∗(X × X) are absolute Hodge classes, not known to be
algebraic in general.)

3. The inverses of the Lefschetz isomorphisms give rise to Hodge classes in X×X
which are absolute, but not known to be Hodge classes.

The Hodge conjecture applied to examples 2 and 3 are the so-called Lefschetz con-
jectures, which are parts of the standard conjectures (see [25]).

3.2 Locus of Hodge classes

The key point in which algebraic geometry differs from Kähler geometry is the fact
that a smooth complex projective variety X does not come alone, but accompanied
by a full family of deformations π : X → T , where π is smooth and projective (that
is X ⊂ T ×Pn over T ), and where the basis T is quasi-projective smooth and defined
over Q. (Here T is not supposed to be geometrically connected). Indeed, one can
take for T a desingularization of a Zariski open set of the reduced Hilbert scheme
parameterizing subschemes of Pn with same Hilbert polynomial as X. The existence
of this family of deformations is reflected in the transformations X 7→ Xσ considered
above. Namely, the variety T being defined over Q, σ acts on its complex points,
and if X is the fiber over some complex point 0 ∈ T , then Xσ is the fiber over the
complex point σ(0) of T .

The total space X is thus an algebraic variety defined over Q (and in fact we
may even complete it to a smooth projective variety defined over Q), but for the
moment, let us consider it as a family of smooth complex varieties, that is, let us
work with π : X an → T an.

Associated to this family are the Hodge bundles

F lHk := Rkπ∗(Ω•≥l
Xan/T an) ⊂ Hk := Rkπ∗(Ω•Xan/T an) = Rkπ∗C⊗OT an , (3.17)

which are coherent analytic locally free sheaves with respective fibers over t ∈ T

F lHk(Xt,C) ⊂ Hk(Xt,C).
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In (3.17), the last isomorphism

Rkπ∗(Ω•Xan/T an) = Rkπ∗C⊗OT an

is induced by the resolution of the sheaf π−1OT an by the relative holomorphic de
Rham complex.

We shall denote by F lHk the total space of the corresponding vector bundles.

Definition 27 (cf [11]) The locus of Hodge classes for the family X → T and in
degree 2k is the subset

Z ⊂ F kH2k

consisting of classes αt ∈ F kH2k(Xt,C) ∩ (2iπ)kH2k(Xt,Q).

This locus is thus the set of all Hodge classes in fibers of π.
For α ∈ Z we shall denote by Zα the connected component of Z passing through

α and by Tα the projection of Zα to T . Tα is the Hodge locus of α, that is the locus
of deformations of X where α deforms as a Hodge class.

Let us give a description of the locus of Hodge classes from a local point of view:
we want to describe all the pairs (t, α), t ∈ T, α ∈ (2iπ)kH2k(Xt,Q), such that
α ∈ F kH2k(Xt,C). Let us choose a connected and simply connected neighbourhood
of 0 in T . Then all the fibers Xt, t ∈ U , are canonically homeomorphic to X0, so that
each α ∈ (2iπ)kH2k(X0,Q) provides a constant section α̃t ∈ (2iπ)kH2k(Xt,Q), t ∈
U .

Thus, over any connected simply connected open neighborhood U ⊂ T of 0, the
locus of Hodge classes splits as the countable union over all α ∈ (2iπ)kH2k(X0,Q)
of the sets Zα := {t ∈ U, α̃t ∈ F kH2k(Xt,C)}. But each Zα (seen inside F kH2k

|U ) is
a closed analytic subset, because α̃ is a constant, hence holomorphic, section of the
bundle H2k with fiber H2k(Xt,C) over U , that is α̃ ∈ H2k, and t ∈ Zα if and only
if the projection of α̃ in the holomorphic quotient H2k/F kH2k vanishes.

The above description is highly transcendental, as it makes use of the locally
defined constant section α̃ which is definitely not algebraic. Note now the fact that
the complex (maybe reducible) manifold F kH2k is in fact algebraic and defined over
Q. Indeed, using GAGA principle, the coherent sheaf F kH2k is simply the analytic
coherent sheaf associated to the algebraic sheaf R2kπ∗(Ω•≥k

X/T ) which is defined over
Q on T . (Here the R2kπ∗ is the algebraic derived functor.)

Thinking a little more, we see that if σ : C→ C is a field embedding, then σ acts
on the points of the complex manifold F kH2k (because it is defined over Q), and
that if (t, αt) ∈ F kH2k is a complex point of this complex manifold, then σ(t, αt) is
nothing but the class αt,σ ∈ F kH2k(Xan

t,σ) we considered in the previous section.
In conclusion, we find the following interpretation of the notion of absolute Hodge

class.

Lemma 28 To say that Hodge classes of degree 2k on fibers of the family X → T
are absolute Hodge is equivalent to say that the locus Z is a countable union of closed
algebraic subsets of F kH2k defined over Q. To say that α is an absolute Hodge class
is equivalent to say that Zα is a closed algebraic subset of F kH2k defined over Q
and that its images under Gal (Q : Q) are again components of the locus of Hodge
classes.
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Indeed, if we have an algebraic variety Y which is defined over Q, and consider
a complex point y ∈ Y , then the points yσ, for all fields embeddings σ : C → C
fill-in a subset of the Q-Zariski closure of y, which is the countable intersection of
Zariski dense open sets in this Q-Zariski closure. Hence this subset is dense (for the
usual topology) in this Q-Zariski closure. Thus if ασ is absolute, we conclude that
a countable intersection of Zariski dense open sets of the Q-Zariski closure of α is
contained in Z. It follows then from the local analytic description of Z, which shows
that it is locally a countable union of closed analytic subsets, that the Q-Zariski
closure of α is contained in Z. Finally, an easy countability argument shows that
for countably many adequately chosen points in Z, Z is equal to the union of their
Q-Zariski closure.

Let us now state the following beautiful theorem, due to Cattani, Deligne and
Kaplan:

Theorem 29 [11] The connected components Zα of Z are closed algebraic subsets
of F kH2k. As a consequence, the Hodge loci Tα are closed algebraic subsets of T .

This theorem is very deep. It is very much expected if one believes in the Hodge
conjecture, because then the Zα will be the images by the algebraic cycle class of
universal relative cycles parameterized by components of the relative Hilbert scheme
of X → T .

On the other hand, the local description of the components of the locus of Hodge
classes given above is completely transcendental, which makes this theorem striking.

Let us now give an idea of the proof of Proposition 26. The key ingredient is the
global invariant cycle theorem (Theorem 30 below) due to Deligne [9]. Let Y be a
smooth complex algebraic variety, and U ⊂ Y a Zariski open set. Let φ : U → B be
a smooth proper algebraic morphism, where B is quasi-projective. Thus the fibers
of φ are smooth complex projective varieties and there is a monodromy action:

ρ : π1(B, 0) → AutH l(Y0,Q), 0 ∈ B.

Theorem 30 The space of invariant classes

H l(Y0,Q)ρ := {α ∈ H l(Y0,Q), ρ(γ)(α) = α, ∀γ ∈ π1(B, 0)}

is equal to the image of the restriction map (which is a morphism of Hodge struc-
tures) :

H l(Y,Q) → H l(Y0,Q).

In particular it is a sub-Hodge structure of H l(Y0,Q).

Let us now put everything together: let X be complex projective and α ∈
(2iπ)kH2k(X,Q) be an absolute Hodge class. There is a smooth projective map

π : X → T

defined over Q, with X and T smooth quasi-projective, and such that X is the fiber
of π over a complex point of T (the smooth locus of π).

As we explained above, the fact that α is absolute Hodge implies that the com-
ponent of the Hodge locus containing α, say Zα, is defined over Q. We consider the
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reduced subscheme underlying Zα, say Rα, which we may assume by shrinking to
be smooth and connected. Then we make the base change Rα → T , which gives

πα : Xα → Rα,

where both varieties are smooth quasi-projective and defined over Q, and πα is
smooth projective.

Tautologically, over Rα we have a holomorphic section α̃ of F kH2k. By definition
of Rα, this holomorphic section has the particularity that at any point t ∈ Rα,
αt ∈ (2iπ)kH2k(Xt,Q). But then, by countability, we conclude that α̃ is a locally
constant section of H2k, which is everywhere of type (k, k). Hence our class α
extends to a locally constant section of the local system R2kπα∗Q, which means
equivalently that it is invariant under the monodromy action.

Now we introduce a smooth compactification Xα defined over Q. The global
invariant cycles theorem tells us that there is a Hodge class

β ∈ (2iπ)kH2k(Xα,Q) ∩ F kH2k(Xα)

which restricts to α on X. With some more work, one can show that β can be chosen
absolute Hodge. Now, if the Hodge conjecture is true for β, it is true for α.

In fact the global invariant cycles theorem and the same proof as above show as
well the following statement :

Proposition 31 ([42]) Let α ∈ F kH2k be a Hodge class, such that the Hodge locus
Tα is defined over Q. Then the Hodge conjecture is true for α if it is true for Hodge
classes on varieties defined over Q.

The conclusion is that, to answer question 25, we only have to investigate the
question whether the Hodge loci Tα are defined over Q, which as explained above is
weaker than the question whether Hodge class are absolute.

Concerning this last problem, we conclude with the following criterion, also
proved in [42]:

Theorem 32 Let α ∈ F kH2k(X,C) be a Hodge class. Suppose that all the constant
sub-Hodge structures L ⊂ H2k(Xt,Q), t ∈ Tα, are purely of type (k, k). Then Tα is
defined over Q, and its translates under Gal(Q/Q) are again of the form Tβ.

As a corollary, one gets the following :

Corollary 33 Suppose that the only proper sub-Hodge structures of H2k(X,Q) are
purely of type (k, k) and that the infinitesimal Torelli theorem holds for the variation
of Hodge structure on H2k(Xt,Q) on T . Then if the Hodge locus of α has positive
dimension, it is defined over Q.

The assumptions in the theorem or its corollary are reasonably easy to check in
practice, for example by infinitesimal methods. On the other hand, they are clearly
not satisfied in a case where the component Tα of the Hodge locus consists of one
isolated point, if the Hodge structure on H2k(X) is not trivial. In this case, what
predicts the Hodge conjecture is that this point should be defined over Q. But our
criterion does not give this: in fact our criterion applies only when we actually have
a non trivial variation of Hodge structure along Tα.
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Note that Theorem 32 also addresses partially Conjecture 23, in view of Lemma
28. Indeed, we know by Theorem 29 that the Zα’s are algebraic, and thus by
Lemma 28, Conjecture 23 is a question about the definition field of the Zα’s and
their translates under Gal(Q/Q). Theorem 32 addresses the same question for the
Tα’s instead of Zα.
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