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A Generalization of the Kuga-Satake Construction
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0. Introduction

The Kuga-Satake construction [3] associates to a polarized (effective) Hodge
structure H of weight 2 with h2,0 = 1 an abelian variety A which satisfies
the property that H is a sub-Hodge structure of the weight 2 Hodge structure
Hom (H1(A),H1(A))(1). The construction is very tricky and intriguing geomet-
rically: one first associates to the lattice (H, <,>) its Clifford algebra C(H),
which is again a lattice. Then one constructs a complex structure on C(H)⊗R,
using the rank 1 subspace H2,0 ⊂ H ⊗ C defining the Hodge structure on H.
Thus the quotient

C(H)⊗ R
C(H)

is endowed with the structure of a complex torus, and with some more work,
on can show that it is in fact an abelian variety. This abelian variety A has by
definition H1(A,Z) = C(H) and the morphism of weight 2 Hodge structures

H → End (H1(A,Z))(1)

is given by Clifford multiplication on the left acting on C(H): H → End (C(H)).

In [2], Deligne proved that a general weight 2 polarized Hodge structure coming
from geometry, is not a quotient of a Hodge structure of the form K ⊗ L, where
K and L are weight 1 polarized Hodge structures. His argument is that the
Mumford-Tate group [7] of a Hodge structure K ⊗ L has a very restricted form,
while the Mumford-Tate group for general weight 2 Hodge structures coming from
geometry is very large, as it contains a subgroup of finite index in the monodromy
group, and thus can be in some cases the whole orthogonal group (cf [1]).
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In the papers [6], [10], [8], some constructions are given, which realize geomet-
rically for K3-surfaces with large Picard number the Kuga-Satake construction,
as expected from the Hodge conjecture: the inclusion

H ⊂ Hom (H1(A),H1(A))(1) ∼= H1(A)⊗H1(A)

of weight 2 rational Hodge structures, where we used the isomorphism of weight
1 Hodge structures

H1(A)(1) ∼= H1(A) = H1(A)∗

given by the polarization, can be understood as a degree 4 Hodge class in H2(S)⊗
H2(A×A), and thus should correspond to a codimension 2 cycle

Z ⊂ S ×A×A

with rational coefficients, such that the inclusion above is given by

[Z]∗ : H2(S) → H2(A×A).

Morrison [5] proves that if S is a Kummer surface, that is the minimal desingu-
larization of the quotient of an abelian surface by the −Id involution:

S = T̃/± 1,

then its Kuga-Satake variety A is a sum of copies of T . Paranjape [6] solves the
problem for the members of a certain family of K3-surfaces with Picard number
16, by proving that such a K3 surface S is dominated by the self-product of
curve C, such that the Kuga-Satake variety of S is a sum of copies of an abelian
subvariety of J(C). Other families of examples are studied in [10].

For general K3 surfaces, there is however no geometric understanding of the
Kuga-Satake construction, while combined with the Hodge conjecture and the
Bloch conjecture, it predicts a lot concerning the geometry of algebraic K3-
surfaces : first of all, as mentioned above, the Hodge conjecture predicts the
existence of a codimension 2-cycle Γ in some product S × Σ, where Σ ⊂ B is a
surface in an abelian variety, such that the induced map

[Γ]∗ : H2(S,Z) → H2(Σ,Z)

is injective and takes value in Im (H2(A,Z) → H2(Σ,Z)). Equivalently, the map

[Γ]∗ : H2(Σ,Q) → H2(S,Q)

should be surjective when restricted to Im (
∧2 H1(Σ,Q) → H2(Σ,Q)). If Bloch’s

conjecture ([11] II, chapter 11) is true, this implies that the map induced by Γ at
the level of 0-cycles of degree 0 :

Γ∗ : CH0(Σ)0 → CH0(S)0

is surjective when restricted to products of 1-cycles homologous to 0 on Σ. None
of these statements seems to have any natural approach for general K3-surfaces.
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In [10], we observed that the key property needed in order to construct the
Kuga-Satake variety of S, namely the fact that h2,0(S) = 1, is also reflected by
the fact that the weight 2i Hodge structures on the exterior powers

∧i H2(S,Z)
have Hodge level 2. We then started to investigate geometrically the properties
concerning the geometry of the self-products Si, predicted as a consequence of
this last fact, by the Hodge-Grothendieck conjecture and the Bloch conjecture.

In this paper, we show indeed that the weight 2 Hodge structure on the exterior
algebra

∧∗H2(S,Z) is actually the crucial ingredient to construct the Kuga-
Satake variety of S, when combined with the Clifford algebra structure (rather
than the exterior algebra structure) on

∧∗H2(S,Z). Both algebra structures are
compatible with the Hodge structure (cf Remark 2), but the Clifford algebra has
furthermore the property that it is stable under adjunction with respect to the
pairing.

Our goal in this paper is to investigate this second aspect, and to present the
Kuga-Satake construction from a more general point of view, namely that of
weight 2 polarized Hodge structures endowed with an associative algebra struc-
ture, compatible with the Hodge structure and the pairing in the way described
in 1, 2 below.

Let H2 = (H, HC = H2,0 ⊕ H1,1 ⊕ H0,2) be a non trivial polarized integral
Hodge structure of weight 2. (In the sequel, we shall use the superscripts to
denote the weights of the considered Hodge structures. This is needed as we will
have a lattice endowed with a weight 2 and a weight 1 Hodge structure.)

Assume there is a (associative, unitary) ring structure on the underlying lattice
H, satisfying the following conditions (*):

(1) The product H ⊗H → H is a morphism of Hodge structures H2⊗H2 →
H2(1).

(2) There is an (involutive) endomorphism t : H → H such that for any a ∈
H, multiplication (on left and right) by t(a) is adjoint to multiplication
(on left and right) by a with respect to the intersection form <,> which
gives the polarization.

(3) The t-invariant part of the center of H is Z.

We then prove:

Theorem 1. Under these assumptions, there exists a unique weight 1 Hodge
structure H1 = (H, HC = H1,0⊕H0,1) on H which is polarizable, (or equivalently
an abelian variety A with H = H1(A,Z)(1),) such that multiplication on the left

H → Hom (H, H)

is a morphism of Hodge structures

H2 → Hom (H1,H1)(1).
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We explain this construction in section 1. In section 2, we show that under the
assumptions above, any simple abelian variety B such that there is an inclusion
of weight 2 Hodge structures, which is also the inclusion of a subring stable under
some Rosati involution,

H2 ⊂ Hom (H1(B),H1(B))(1)

must be a quotient of the abelian variety A associated to H2 by Theorem 1. We
also compare this construction with the Kuga-Satake construction.

In the final section, we turn to the problem of removing the assumption on the
center. Passing to rational coefficients, we analyse the structure of the center K
of an algebra satisfying properties 1, 2 above. We show that it is a product of
number fields Ki which are either totally real fields or a quadratic extension of
totally real fields, and that unless some corresponding factor Hi of H is a simple
central algebra over Ki the same conclusion as in Theorem 1 holds. We finally
study the last case. We then show that we always have existence of an abelian
variety A as in Theorem 1 but not uniqueness.

This result leads to the question of understanding geometrically or motivically
our construction. Indeed, we could assume that the data of the weight 2 Hodge
structure together with its algebra structure are geometric, namely, one is given
a surface Σ (or more generally a motive (Σ, p)), and a 3-cycle Γ ∈ Σ × Σ × Σ
inducing our associative product

Γ∗ : H2(Σ,Z)⊗H2(Σ,Z) → H2(Σ,Z).

We could even assume that the associativity property is realized geometrically,
as follows: the associativity property can be seen as an equality of cohomology
classes

γ ◦ (Id⊗ γ) = γ ◦ (γ ⊗ Id),
(where γ = [Γ] and we see γ as an element of Hom (H2(Σ,Z)⊗H2(Σ,Z),H2(Σ,Z)),)
in

Hom (H6(Σ× Σ× Σ,Z),H2(Σ,Z)) ⊂ H8(Σ× Σ× Σ× Σ,Z).
Then we could assume it is given as a consequence of an equality of cycles modulo
rational equivalence

Γ ◦ (∆× Γ) = Γ ◦ (Γ×∆),
in CH4(Σ× Σ× Σ× Σ), where ∆ is the diagonal of Σ.

The question would be now to understand starting from such a Γ the abelian
variety constructed in this paper in terms of cycles or may be higher cycles on Σ
and its self-products.

Thanks. This work was completed at ETH, which I wish to thank for its hos-
pitality. I also would like to thank the organizers of the Armand Borel memorial
conference in Hangzhou for allowing me to present these results, and especially
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Lizhen Ji for his encouragements to write them up for this volume in memory of
A. Borel.

1. The case of trivial center

We start with a polarized integral Hodge structure H2 of weight 2, with H2,0 6=
0. Thus we have a lattice H, endowed with a decomposition

HC := H ⊗ C = H2,0 ⊕H1,1 ⊕H0,2,

H0,2 = H2,0, H1,1 = H1,1,

and an integral symmetric bilinear form <,> satisfying the following properties
(Hodge-Riemann bilinear relations):

i) The Hodge decomposition is orthogonal with respect to the Hermitian in-
tersection pairing h(α, β) =< α, β > on H ⊗ C.

ii) The Hermitian form h is positive definite on H2,0 and H0,2, negative definite
on H1,1.

The first condition just says that the morphism

H → H∗

given by < , > is a morphism of Hodge structures

H2 → (H2)∗(2).

We assume furthermore that H has the structure of an unitary associative ring,
and that conditions 1, 2 of (*) are satisfied as in Theorem 1. For K, L two vector
subspaces of HC, KL will be the subspace generated by products kl of elements
of K and L. Condition 1 means concretely that

H2,0H2,0 = 0, H2,0H1,1 ⊂ H2,0, H1,1H2,0 ⊂ H2,0, H1,1H1,1 ⊂ H1,1,

H0,2H0,2 = 0, H1,1H0,2 ⊂ H0,2, H0,2H1,1 ⊂ H0,2.

Condition 2 means that the intersection form <,> can be written as

< a, b >=< at(b), 1 >=< t(b)a, 1 >, ∀a, b ∈ H.

We observe first of all that the map t (which is a morphism of rings H → Hop)
has to be also a morphism of Hodge structures t : H2 → H2, that is

t(Hp,q) ⊂ Hp,q.

Indeed, this follows immediately from the fact that the product map and the
polarization are compatible with the Hodge decomposition.

We consider the subspace

W = H2,0HC ⊂ HC.

We have the following Proposition.
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Proposition 1. i) We have W ∩W = 0.

ii) The sum W ⊕W is a two-sided ideal of HC which is stable under the Hodge
decomposition and under t.

Proof. i) Note first that W ⊂ F 1H2
C := H2,0 ⊕ H1,1 and similarly W ⊂

H1,1 ⊕H0,2. Thus
W ∩W ⊂ H1,1.

Let x ∈ W ∩W . By definition, this x can be written as

x =
∑

i

αiβi,

with αi ∈ H2,0 and βi ∈ H0,2, and as

x =
∑

j

γjδj ,

with γj ∈ H0,2 and δj ∈ H2,0. Applying t(·) to the second expression, we get

t(x) =
∑

j

t(δj)t(γj),

with t(δj) ∈ H0,2, t(γj) ∈ H2,0. Thus, as H2,0H2,0 = 0, we conclude that

t(x)x = 0.

It follows that
< t(x)x, 1 >= 0 =< x, x >,

and as x ∈ H1,1, this implies x = 0 by the condition ii) above satisfied by the
polarization.

ii) By definition, W and W are stable under right multiplication. Next, if
a ∈ H and b = ηw ∈ W , with η ∈ H2,0, then we can write a = a1 + a2, where

a1 ∈ F 1H2
C, a2 ∈ H0,2.

We then have
ab = a1ηw + a2b,

and as F 1H2
C H2,0 ⊂ H2,0, we have a1η ∈ H2,0. Thus the first term belongs to W

and the second belongs to W = H0,2HC. This shows that W ⊕W is a two-sided
ideal.

Finally, note that, because H is an unitary ring, W contains H2,0, and thus
can be written as

W = H2,0 ⊕H2,0H0,2,
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because the second space is contained in H1,1. This shows that W and hence
also W ⊕W , are stable under Hodge decomposition. As the space H2,0 is stable
under t, we have

t(H2,0H0,2) = H0,2H2,0 = H2,0 H0,2 ⊂ W,

hence we get t(W ) ⊂ W ⊕W , and thus t(W ⊕W ) ⊂ W ⊕W .

Corollary 1. We have a decomposition of the C-algebra HC as a direct sum

HC = (W ⊕W )⊕M,

where M is defined as the orthogonal of W ⊕W with respect to <,>.

Proof. Indeed, we know that W ⊕W is stable under the Hodge decomposition
and under complex conjugation. It follows that the intersection form <,> is non
degenerate on W ⊕W , because the Hermitian form h is non degenerate on each
of its (p, q)-pieces and the Hodge decomposition is orthogonal for h. Thus we
have a orthogonal decomposition

HC = (W ⊕W )⊕M.(1.1)

As W ⊕W is a two-sided ideal which is stable under t, it follows that the same is
true for its orthogonal M . Thus we must have wm = 0 for w ∈ (W⊕W ), m ∈ M ,
which shows that (1.1) is a decomposition of the algebra as a direct sum.

Corollary 2. If the t-invariant part of the center of H is equal to Z, then M = 0.
Thus

HC = W ⊕W(1.2)

which defines a weight 1 Hodge structure H1 on H, with H1,0 = W .

Proof. Indeed, under this assumption, we also get that the t-invariant part of
the center of the C-algebra HC is C. But as the decomposition (1.1) is orthogonal
and is a decomposition into t-invariant subspaces, the associated idempotents
eW⊕W and eM are t-invariant and of course they are central. Thus, under the
assumption of Corollary 2, we have either eW⊕W = 0 or eM = 0. As H2,0 6= 0,
we have W 6= 0 and thus eW⊕W 6= 0, hence eM = 0 and M = 0.

With the definition of H1 as in Corollary 2, it is clear, by construction and
using the compatibility of the Hodge structure on H2 with the product on H,
that multiplication on the left H → End H is a morphism of Hodge structures

H2 → Hom (H1,H1)(1).
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Thus Corollary 2 proves a good part of the existence statement of Theorem 1. In
order to have the complete proof of existence, we need to show that the Hodge
structure H1 of weight 1 on H defined by the decomposition 1.2, that is

W = H1,0, W = H0,1,

is polarizable (or equivalently, that the corresponding complex torus

A = HC/(W ⊕H)

is an abelian variety). This is done as follows: Let a ∈ H be such that t(a) = −a.
Consider the skew pairing

ωa(w, w′) =< w, w′a >

on H and denote in the same way its C-linear extension to HC.

Lemma 1. The subspace W ⊂ HC (that is H1,0 ⊂ H1
C) is totally isotropic with

respect to ωa.

Proof. let w = ηm, w′ = η′m′ ∈ W , with η ∈ H2,0, η′ ∈ H2,0. Then

ωa(w, w′) =< w, w′a >=< t(a)t(w′)w, 1 >=< t(a)t(m′)t(η′)ηm, 1 >,

and this is 0 because t(η′)η = 0.

Let us now show the following

Proposition 2. For an adequate choice of a, ωa polarizes the weight 1 Hodge
structure H1.

Proof. By lemma 1, in order that ωa defines a polarization, it only needs to
satisfy the property that the Hermitian form ha defined by

ha(w, w′) = iωa(w, w′)

is positive definite on W = H1,0. As rational elements a ∈ HQ are dense in HR,
it suffices to show that for some a ∈ HR, this property is satisfied. Let us take a
to be a sum of terms of the following form:

a− = −i(ηη − ηη),

where η ∈ H2,0 satisfies t(η) = −η and

a+ = i(ηη − ηη),

where η ∈ H2,0 satisfies t(η) = η. Then a is real and t(a) = −a.

We have to compute the sign of the Hermitian form ha on W = H2,0⊕H2,0H0,2.
Note that for µ ∈ H2,0 and ν ∈ H2,0H0,2, we have

ha+(µ, ν) = i < µ, νa+ >= − < µ, ν(ηη − ηη) >

=< µ, ν ηη >
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because νη = 0, ∀η ∈ H2,0. The last term is equal to

< µt(η), ν η >

which is also 0 because µt(η) = 0, ∀η ∈ H2,0.

The same computation works with ha− and it thus follows that H2,0 and
H2,0H0,2 are perpendicular with respect to ha. Hence it suffices to compute
the signs of ha on each term H2,0 and H2,0H0,2.

If now µ ∈ H2,0, we have

ha±(µ, µ) = i < µ, µa± >= −± < µ, µ(ηη − ηη) >

= −± < µ, µηη >,

because µ η = 0, for all η ∈ H2,0, and this is equal to

−± < µt(η), µη > .(1.3)

In the case of a+ where t(η) = η, and in the case of a− where t(η) = −η, we get

− < µη, µη > .

But µη ∈ H1,1 and the Hermitian form < α, β > is negative on H1,1. Thus (1.3)
is ≥ 0.

Let us now consider the case of ν ∈ H2,0H0,2. In this case we have

ha±(ν, ν) = i < ν, νa± >= −± < ν, ν(ηη − ηη) >

= ± < ν, ν ηη >,

because νη = 0, ∀η ∈ H2,0. This is also equal to

± < νt(η), ν η > .(1.4)

In the case of a+ where t(η) = η, and in the case of a− where t(η) = −η, we get

< νη, νη > .

But νη ∈ H2,0 and the Hermitian form < α, β > is positive on H2,0. Thus (1.4)
is also ≥ 0.

To conclude, it remains to show that for a a generic sum of terms a+, a− as
above, ha is non degenerate, or equivalently does not vanish on W \ {0}. But the
computation above shows that a null-vector µ of a generic sum

∑
ha± in H2,0

has to satisfy
µη = 0, ∀η ∈ H2,0

and that a null-vector ν of a generic sum of ha± in H2,0H0,2 has to satisfy

νη = 0, ∀η ∈ H2,0.

In the first case, we get µt(µ) = 0, which implies that

< µt(µ), 1 >=< µ, µ >= 0.



424 Claire Voisin

As µ ∈ H2,0, this implies by the second Hodge-Riemann bilinear relations that
µ = 0.

In the second case, as t(ν) ∈ H2,0H0,2, we conclude that νt(ν) = 0, which
implies that

< νt(ν), 1 >=< ν, ν >= 0.

As ν ∈ H1,1, this implies by the second Hodge-Riemann bilinear relations that
ν = 0.

In order to conclude the proof of Theorem 1, it suffices to prove the uniqueness
statement. But this is clear, because if a weight 1 Hodge structure H1 on H given
by a decomposition

HC = W ′ ⊕W ′(1.5)

satisfies the property that left multiplication

H → Hom (H, H)

is a morphism of weight 2 Hodge structures

H2 → Hom (H1,H1)(1),

then we must have
H2,0HC ⊂ W ′.

Indeed, the (2, 0)-piece of Hom (H1,H1)(1) for the weight 1 Hodge structure on H
given by (1.5) is equal to Hom (W ′,W ′) and thus is contained in HomC (HC,W ′).

Thus by definition of W , we must have W ⊂ W ′, and then equality for dimen-
sion reasons.

2. General properties, examples

2.1. General properties. We first start with the proof of the following:

Proposition 3. Let B be a simple abelian variety, and let

H ⊂ End (H1(B,Z))

be a subring which is also a sub-Hodge structure, satisfying the conditions of
Theorem 1. Then B is a quotient of the abelian variety A constructed in Theorem
1.
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(Actually, only conditions 2 and 3 are to be verified. 2 means that H has to
be stable under one Rosatti involution.)

Proof. We want to show equivalently that there exists a non trivial morphism
of Hodge structure

α : H1 → H1(B,Z)(1)

where on the left, H1 is H endowed with the weight 1 Hodge structure given in
Theorem 1. Indeed, as B is simple, the induced non trivial morphism of abelian
varieties

α : A → B

has to be surjective.

Let β ∈ H1(B,Z) and consider the map

eβ : H → H1(B,Z),

h 7→ h(β).

Certainly this map is non zero for at least one β.

We claim that this is a morphism of weight 1 Hodge structures

H1 → H1(B,Z)(1).

Indeed, we only have to show that eβ(W ) ⊂ H1,0(B). But, as H2 is a sub-Hodge
structure of End H1(B)(1),

H2,0 ⊂ H2,0(EndC (H1(B,C)(1)) ⊂ HomC (H1(B,C),H1,0(B)).

Thus W = H2,0HC ⊂ HomC (H1(B,C),H1,0(B)), which proves the claim.

Remark 1. Without the assumption that B is simple, we still get the following
statement : if the map H ⊗H1(B,Q) → H1(B,Q), h ⊗ β 7→ h(β), is surjective,
then B is a quotient of a sum of copies of A.

Indeed, choosing a basis βi, i = 1, . . . , n of H1(B,Z), the morphism
∑

i

eβi
: An → B

is then surjective.

Finally, observe that the argument above can be reversed to show the following:

Proposition 4. Let B be an abelian variety, and let

H ⊂ End (H1(B,Z))
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be a subring which is also a sub-Hodge structure, satisfying the conditions of
Theorem 1. Then the associated abelian variety A is isogenous to an abelian
subvariety of a sum of copies of B.

Indeed, we use the morphisms of Hodge structures eβ, which give morphisms of
abelian varieties A → B. As H ⊂ End (H1(B,Z)), for βi, i = 1, . . . , n, running
over a basis of H1(B,Z), this gives a morphism of abelian varieties

(eβi
) : A → Bn

which has a finite kernel.

2.2. The Kuga-Satake construction. We start from a polarized Hodge struc-
ture (H, <, >) of weight 2 with h2,0 = 1. Consider the Clifford algebra C(H)
which is the quotient of the tensor algebra

⊗
H by the ideal generated by the

relations
h⊗ h = − < h, h > 1.

For sign reasons, it is better to work with the even part C+(H) generated by
products of an even number of elements of H, but we won’t do this, as it makes
computations more complicated. As a lattice, C(H) is canonically isomorphic
to the exterior algebra

∧
H. Furthermore, C(H) has a natural intersection form

induced by <,>, also denoted by <,>, and possesses the involution

t : C(H) → C(H),

h1 . . . hk 7→ hk . . . h1, hi ∈ H.

For v ∈ C(H), t(v) is the adjoint of the multiplication on the left or on the right
by v. Consider now HC, with its Hodge decomposition

HC = H2,0 ⊕H1,1 ⊕H0,1.

Since the rank of H2,0 is 1, the dimension over R of the real vector space

(H2,0 ⊕H0,2) ∩HR

is 2. By the second Hodge-Riemann bilinear relations, the intersection form
<,> is positive definite on this 2-plane. Furthermore this 2-plane is canonically
oriented because it is canonically isomorphic to the complex line H2,0 via the
map Re. Choose an oriented orthonormal basis e1, e2 of this 2-plane. Then

e := e2e1 ∈ C(HR)

does not depend on the choice of the basis. Furthermore we have

e2 = e2e1e2e1,

with
e1e2 + e2e1 = 0, e2

1 = −1, e2
2 = −1.
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Thus e2 = −1 and left multiplication by e defines a complex structure on C(HR).
This provides a complex torus

K(H) = C(HR)/C(H),

which is the Kuga-Satake variety of H.

We want now to present this construction from our point of view of weight 2
Hodge structures endowed with a compatible ring structure.

We noticed already that as vector spaces, we have a canonical identification

C(HC) =
∧

HC.

The right hand side is a direct sum

⊕

k

k∧
HC.

On
∧k HC, there is a weight 2k Hodge decomposition induced by the weight 2

Hodge decomposition on HC, with Hp,q term given by

⊕

(r,s,t),2r+s=p,2t+s=q

r∧
H2,0 ⊗

s∧
H1,1 ⊗

t∧
H0,2.

As rk H2,0 = 1, this decomposition has in fact only three terms, according to the
value 0 or 1 given to r and s, noticing that for (r, s) = (1, 1) and (r, s) = (0, 0),
we are in Hk,k. In other words, the induced Hodge structure on

∧k H has Hodge
level 2, that is, the weight 2 Hodge structure

∧k H(−k + 1) is effective. By
definition, in the weight 2 Hodge structure

∧k H(−k + 1), H2,0 ∧ ∧k−1 H1,1 is
assigned type (2, 0), H0,2 ∧∧k−1 H1,1 is assigned type (0, 2), while

∧k H1,1 and
H2,0 ∧H0,2 ∧∧k−2 H1,1 are assigned type (1, 1).

Taking the direct sum over integers k, we get a weight 2 Hodge structure on
C(H) =

∧
H.

Lemma 2. This Hodge structure is compatible with the product on C(H), that
is satisfies condition 1 of Theorem 1.

Proof. We have the Clifford multiplication

H ⊗ C(H) → C(H).

If we show that this map is a morphism of Hodge structures of bidegree (−1,−1),
then the same will be true by iteration (because H generates C(H)) for the
multiplication map

C(H)⊗ C(H) → C(H).
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But it is well-known (see [4], p. 25) that the Clifford multiplication by h ∈ H
acting on C(H) ∼= ∧

H identifies to

h ∧ −hy,

where hy acts on
∧

H via the element of H∗ given by < h, · >.

Now, let h ∈ H2,0 = ηC ⊂ HC. Then h∧ annihilates the (2, 0)-part of
∧k HC

which is equal to η ∧∧k−1 H1,1 and hy also annihilates the (2, 0)-part of
∧k HC

because < H2,0, F 1HC >= 0.

Next, the (1, 1)-part of
∧k HC is equal to

η ∧ η ∧
k−2∧

H1,1 ⊕
k∧

H1,1.

The map h∧ annihilates the first term, and sends the second one in

η ∧
k−2∧

H1,1

that is, in the (2, 0)-part of C(H). Furthermore, the map hy annihilates the
second term, and sends the first one in

η ∧
k−2∧

H1,1

that is, in the (2, 0)-part of C(H).

Finally, the (0, 2)-part of
∧k HC is equal to η ∧∧k−1 H1,1, and h∧ sends it to

η ∧ η ∧
k−1∧

H1,1

which is contained in the (1, 1)-part of C(H), while hy sends it to
∧k−1 H1,1

which is contained in the (1, 1)-part of C(H).

In other words, we proved that Clifford multiplication by h ∈ H2,0 shifts the
Hodge decomposition on C(HC) by (1,−1). One shows similarly that Clifford
multiplication by h ∈ H1,1 preserves the Hodge decomposition on C(H), which
proves the claim.

It turns out that the assumption on the center used in the previous section
is not always satisfied by the Clifford algebra. However, it is quite easy to see
directly in this case that our definition of an associated weight 1 Hodge structure
on C(H) still works in this case, that is, the factor M in the decomposition (1.1)
is 0. Thus we have the weight 1 Hodge decomposition

C(HC) = W ⊕W

as in the previous section.

To conclude, we show the following:
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Proposition 5. The Kuga-Satake construction of a complex structure on C(HR)
coincides with our construction of a weight 1 decomposition on C(HC) (or equiv-
alently a complex structure on C(HR)) above.

Proof. Recall that our weight 1 decomposition on C(HC) is given by

C(HC) = W ⊕W,

with W = C(H)2,0C(HC). Observe now that, still denoting by η a generator of
H2,0, we have

C(H)2,0C(HC) = ηC(HC).
Indeed, as η ∈ C(H)2,0, the inclusion ⊃ is clear. The reverse inclusion comes
from

C(H)2,0 = η ∧
∧

H1,1 = η ·
∧

H1,1,

where on the right, the · stands for Clifford multiplication rather than exterior
multiplication.

Next, consider the Kuga-Satake construction: the complex structure I on
C(HR) is given here by multiplication by e = −e1e2, where e1, e2 is an ori-
ented orthonormal basis of the real part of H2,0 ⊕ H0,2. Choosing η in such a
way that < η, η >= 2, we may assume (because < η, η >= 0 =< e1, e1 > − <
e2, e2 > +2i < e1, e2 >) that

e1 = Re η, e2 = Im η.

Furthermore, the weight 1 decomposition on C(HC) associated to the Kuga-
Satake complex structure is determined by the complex subspace W ′ ⊂ C(HC)

C(HC) = W ′ ⊕W ′,

where W ′ is by definition the i-eigenspace of the complex structure operator I in
C(HC), that is the subspace generated by the

w − iI(w), w ∈ C(HC).

As I is Clifford multiplication on the left by e, W ′ is also the subspace generated
by the

(1− ie)w, w ∈ C(HC).
On the other hand, we have

η = e1 + ie2

and thus
ηη = (e1 + ie2)(e1 − ie2) = −2− 2ie1e2 = −2(1− ie).

Hence we conclude that

W = Im η ⊂ Im ηη = Im (1− ie) = W ′.

By the equality of dimensions, we now conclude that we have equality.
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In conclusion, we have split the Kuga-Satake construction into two parts:

i) The observation (studied from the point of view of its cycle-theoretic impli-
cations in [10]) that for a K3-type Hodge structure, the induced Hodge structures
on the exterior powers of H have level 2.

ii) The construction of Theorem 1, which works for much more general com-
patible ring structures on polarized weight 2 Hodge structures.

Remark 2. Lemma 2 is also true for the exterior algebra structure on
∧

H.
From our point of view, the key reason for which we need the Clifford algebra,
is the existence of the adjunction map t, which is not satisfied by the exterior
algebra.

3. The general case

We pass now to rational coefficients. We consider as in the previous section a
polarized rational Hodge structure H2 of weight 2 on a Q-vector space H, which
is also a Q-algebra, such that the product

H ⊗H → H

is a morphism of Hodge structures

H2 ⊗H2 → H2(1),

and such that there exists an adjunction map

t : H → H

such that (left or right) multiplication by t(h) is adjoint to (left or right) multi-
plication by h, with respect to the polarization form <,>. Our first goal is to
study the possible centers of such an algebra.

Lemma 3. The center K is a trivial sub-Hodge structure of H.

Proof. It is obvious that K is a sub-Hodge structure of H, because it is defined
as the kernel of the map

H → Hom (H, H),
h 7→ (a 7→ ha− ah),

and this map is a morphism of Hodge structures of bidegree (−1,−1).

To see that it is a trivial Hodge structure, let 0 6= α ∈ K2,0 ⊂ K ⊗ C. Then
we have

u := αt(α) ∈ H1,1,

and u 6= 0 because < u, 1 >=< α,α >> 0 by the Hodge-Riemann bilinear
relations. Thus we have, again by the Hodge-Riemann bilinear relations:

< u, u >=< ut(u), 1 >6= 0.



A Generalization of the Kuga-Satake Construction 431

Hence
ut(u) = αt(α)αt(α) 6= 0.

But as α is central, this is 0 because α2 = 0, which is a contradiction.

Lemma 4. The center K of H is a product of number fields. The set K+ of t-
invariant elements of K is a product of totally real number fields K+

i . Denote by
ei the idempotent of K+ corresponding to K+

i , and let Ki := eiK. If K+
i 6= Ki,

then Ki is a field which becomes isomorphic to C under any embedding of K+
i

into R.

Proof. K is a commutative Q-algebra, which is by the previous Lemma con-
tained in H1,1

R . Thus the pairing <,> restricts to a negative definite pairing on
K. Note also that K is clearly stable under t, as t is a morphism of Q-algebras
H → Hop. On the other hand we know that this pairing is of the form

< α, β >=< αt(β), 1 > .

We want to show that K does not contain nilpotent elements. If αn = 0, then
(αt(α))n = 0, and if αt(α) = 0, then also α = 0, because < α, α >=< αt(α), 1 >.

Thus it suffices to show that αn = 0 implies α = 0, when t(α) = α. But if
αn = 0, with α = t(α) and n = 2m, then also < αm, αm >= 0 which implies that
αm = 0. Thus the order n of nilpotency of α cannot be even, and if it is odd,
n = 2m + 1, we have n ≤ m + 1, that is m = 0.

Thus K is a product of number fields. Note that the intersection form on K
must be of the form

< α, β >= trK/Q(yαt(β))
for some y ∈ K. (Here y ∈ K is defined by the condition that

< α, 1 >= TrK/Q(yα), ∀α ∈ K.)

Thus, as < α, 1 >=< t(α), 1 >, we must have y ∈ K+.

We show now that K+ is a product of totally real number fields. But we know
that the intersection form < αβ, 1 > on K+ is negative definite, and that it is of
the form

< α, β >= 2trK+/Q(yαβ)

for some y ∈ K+.

The algebra K+ ⊗ R splits as a product of quadratic extensions of R, and we
want to show that none of these extensions can be C. But for any non-zero y ∈ C,
the quadratic form

< α, β >= TrC/R(yαβ)
has signature (1, 1), which contradicts the fact that <,> should be negative
definite on any factor of K+ ⊗ R.
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To conclude, consider a component K+
i of K+, given by an idempotent ei ∈

K+. Let Ki := eiK. Choose an imbedding σ of K+
i into R. As Ki is a quadratic

extension of K+
i , Ki⊗σ(K+

i )R is a quadratic extension E of R, which is contained

in K ⊗Q R ⊂ H1,1
R . Let this extension be given by X2 = λ. The involution t of

this quadratic extension generates its Galois group, and we have the condition
that the quadratic form

< α, β >= TrE/R(yαt(β))

for some y ∈ R, is definite negative. But as t(X) = −X, the matrix of this
quadratic form in the base (1, X) is

(
y 0
0−yλ

)

and thus we must have λ < 0.

From now on, we assume that K is a number field. This is possible because
the idempotents ei which give the decomposition of K into a product of number
fields Ki are t-invariant Hodge classes in H by Lemmas 3 and 4. Thus replacing
H by eiH, we still have a polarized Hodge structure, an adjunction map t, and
the compatibility of the product with the Hodge decomposition.

We define as in the previous section

W := H2,0H.

Then we have the decomposition (1.1)

HC = (W ⊕W )⊕M,

which is a orthogonal decomposition and an algebra decomposition. M is defined
over R, M = MR ⊗ C. Note also that M ⊂ H1,1, because H2,0 ⊂ W, H0,2 ⊂ W
and (H2,0 ⊕H0,2)⊥ = H1,1. Furthermore, M is stable under t and the decompo-
sition above is given by a central idempotent e ∈ K+⊗R. Thus, as K+ is totally
real, MR must be a sum

MR = ⊕σ∈ΣM
Hσ, Hσ := H ⊗σ(K+) R,

where ΣM is a certain set of imbeddings of K+ into R. (Here we see H ⊗σ(K+)R
as the sub-algebra of HR defined as the image of the idempotent eσ of K+ ⊗Q R
given by σ.)

Proposition 6. If M 6= 0, then the algebra H is a simple central K-algebra.

Proof. We want to show that if ΣM is not empty, then H has no non trivial
two-sided ideal. As ΣM 6= ∅, it clearly suffices to show that the algebra Hσ has



A Generalization of the Kuga-Satake Construction 433

no non trivial two-sided ideal for σ ∈ ΣM . But the σ ∈ ΣM are characterized by
the fact that Hσ ⊂ M , which implies

Hσ ⊂ H1,1.

Note that each Hσ is invariant under t. Furthermore the t-invariant part of the
center of Hσ is equal to R.

Let thus I ⊂ Hσ be a two-sided ideal. I ∩ t(I) is also a two-sided ideal which
is t-invariant. Furthermore, if I ∩ t(I) = 0, then I = 0. Indeed, if x ∈ I,
xt(x) ∈ I ∩ t(I). Thus, if I ∩ t(I) = 0, xt(x) = 0. On the other hand, we have
< x, x >=< xt(x), 1 > which is then also 0. But as x is real of type (1, 1), this
implies that x = 0 by the second Hodge-Riemann bilinear relations.

Thus, replacing I by I ∩ t(I), we may assume that I is t-invariant. The
orthogonal complement J := I⊥ of I in Hσ with respect to <,> is then also a
t-invariant two-sided ideal of Hσ.

On the other hand, the intersection form <,> restricted to I is non degenerate,
because for I ⊂ Hσ ⊂ H1,1, and <,> is negative definite on H1,1. Hence we get
an orthogonal decomposition of Hσ into the sum of two two-sided ideals, or
equivalently a decomposition

Hσ = I ⊕ J,

as the direct sum of two sub-algebras. But then, as I and J are t-invariant, the
idempotents associated to I and J are central and t-invariant. As the center of
Hσ is R, it follows that either I or J is 0.

Corollary 3. The conclusion of Theorem 1 holds without the hypothesis 3 on
the center, unless possibly when H has a direct summand which is a simple cen-
tral algebra Hi over a number field Ki, where the decomposition is also a Hodge
structure decomposition, and an orthogonal decomposition.

Example 1. We give here an example of a rational polarized weight 2 Hodge
structure, which admits a Q-algebra structure, satisfying conditions 1 and 2 of
Theorem 1, with center a number field K, and for which we have both

M 6= 0, W 6= 0,

where W and M are defined as in section 1.

We start from a rank 2 vector space V over the number field K := Q(
√

2, i),
that is, K = Q[x, y]/(x2 = 2, y2 = −1). Let K+ := Q(x) = Q(

√
2) ⊂ K. On K,

there is a unique K+-bilinear skew-symmetric form Ω which satisfies the property
that

Ω(1, y) = 1.

On V = K ⊕K, consider the rational skew-symmetric bilinear form :

ω := trK+/QΩ1 + trK+/QxΩ2,
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where Ωi is Ω on the i-th factor.

We want now to put a weight 1 Hodge structure on V , polarized by ω and
admitting K as an endomorphism algebra. This is done as follows:

The space V ⊗Q R splits as the direct sum

V√2 ⊕ V−√2

corresponding to the two embeddings of K+ in R sending x to
√

2 or to −√2
respectively. Each term of this decomposition admits the action of y, with y2 =
−1.

We want to put a complex structure on VR, given by an operator of complex
structure I, which leaves invariant ω, and is such that ω(x, Ix) > 0 for 0 6= x ∈ VR.
We define for this I = y on V√2, while on the factor V−√2, the operator I is defined
as follows:

The space
KR := K ⊗ R

is equal to the quadratic extension of K+
R := K+ ⊗ R given by y2 = −1. The

algebra K+
R splits as a sum of two copies of R, K+√

2
and K+

−√2
, where x acts

by multiplication by
√

2 and −√2 respectively. The first copy is canonically
isomorphic to R generated by the idempotent 1+ := x+

√
2

2
√

2
and the second copy

is similarly generated by the idempotent 1− := x−√2
−2
√

2
.

This makes (via the choice y = i) the algebra KR canonically isomorphic to
the sum of two copies K√

2, K−√2 of C, and thus VR ∼= K2
R is a direct sum of four

copies of C. It is not hard to compute that the extended form ω in the canonical
coordinates z1, . . . , z4 on C4 is equal to

i

2
(dz1 ∧ dz1 + dz2 ∧ dz2 +

√
2dz3 ∧ dz3 −

√
2dz4 ∧ dz4).(3.6)

Thus it is of type (1, 1) for the complex structure given by y, but not positive.

We will define our I to be equal to i on the first three factors and to −i on
the last factor. This has the effect of exchanging the coordinates z4 and z4,
and then by formula (3.6), ω becomes positive of type (1, 1) with respect to
I. By construction, I commutes with x and y, as it preserves their eigenspace
decomposition.

Having this, we will now consider as polarized Hodge structure

H := EndK(V ).

This is a sub-Hodge structure of End (V ), because K acts as endomorphisms of
the weight 1 Hodge structure on V .
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This is stable under adjunction with respect to ω, because the action of K
on V is such that multiplication by x is self-adjoint with respect to ω, while
multiplication by y is anti-self-adjoint.

On the other hand, consider the decomposition

HR = H√
2 ⊕H−√2.

Then H√
2 = EndC(V√2) and H−√2 = EndC(V−√2), where the C-structures are

given by the action of iy on both terms. As I = y on V√2, the term H√
2 is

made of endomorphisms commuting with I, thus of type (1, 1), while as I 6= y
on V−√2, the term H−√2 is not of type (1, 1). Thus in this case both M = H√

2

and W ⊕W = H−√2 are non zero.

We now come back to the general case of a weight 2 rational Hodge structure
H2 on H, polarized by an intersection form <,>, and endowed with a Q-algebra
structure, satisfying conditions 1 and 2 of Theorem 1. We also assume that the
t-invariant part of the center is a number field K+.

Our goal is to show the following:

Theorem 2. There exists a polarized weight 1 Hodge structure H1 on H, such
that the multiplication on the left

H → Hom (H, H)

is a morphism of weight 2 Hodge structures

H2 → Hom (H1,H1)(1).

Remark 3. The main defect of this construction is the fact that it is not unique,
and does not satisfy the universal property of Proposition 3.

Proof. Here we will see a (effective) weight 1 Hodge structure on H as a
complex structure on HR.

Recall that we have the decomposition of Corollary 1

HR = (W ⊕W )R ⊕MR,

which is a orthogonal decomposition, an algebra decomposition, and is compatible
with Hodge decomposition. M is a sum of factors

M = ⊕σ∈ΣM
Hσ,

where Hσ := H ⊗σ(K+) R is a subalgebra of HR. There is already a complex
structure on the first term, given by the isomorphism of real vector spaces

Re : W ∼= (W ⊕W )R,

and we simply have to put a complex structure Iσ on each component Hσ for
σ ∈ ΣM .
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Note that we want the left multiplication map

H → Hom (H, H)

to be a morphism of weight 2 Hodge structures H2 → Hom (H1,H1)(1). This
implies that

Hσ → Hom (Hσ,Hσ)
has to be a morphism of real Hodge structures. But, for σ ∈ ΣM , we know that
Hσ is of type (1, 1). Thus multiplication on the left on Hσ by any h ∈ Hσ has to
be of type (1, 1) for the Hodge decomposition on Hom (H1,H1)(1), which means
that it commutes with the complex structure operator Iσ. But as our algebra has
an unit, this implies in turn that Iσ has to be the multiplication on the right by
some element mσ ∈ Hσ, satisfying the condition that m2

σ = −1.

Furthermore, we want that our weight 1 Hodge structure is polarized, with a
polarization of the form

ωa(x, y) =< x, ya >,

for some a ∈ H satisfying t(a) = −a. (This was the form chosen for the polariza-
tion on the W -term, and since the polarization must be rational, we do not have
another choice here.)

The first condition for ωa to polarize the real Hodge structure on Hσ is the
fact that ωa is of type (1, 1) for the complex structure Iσ. Equivalently, for any
x, y ∈ Hσ,

< x, ya >=< Iσ(x), Iσ(y)a >=< xmσ, ymσa >=< x, ymσat(mσ) > .

This implies that

mσat(mσ) = a.(3.7)

Let us now distinguish the cases where K = K+, K 6= K+.

a) Case K 6= K+. In this case, we proved in Lemma 4 that Kσ
∼= C. Choosing

such an isomorphism gives iσ ∈ Kσ, with i2σ = −1. Thus we have the operator of
complex structure acting on Hσ by multiplication by iσ.

As iσ is in the center of Hσ, and satisfies t(iσ) = −iσ, the relation (3.7) for
mσ = iσ is certainly satisfied for all a.

It remains to see that with this operator of complex structure Iσ, the corre-
sponding real weight 1 Hodge structure on Hσ is polarized by ωa for an adequate
a ∈ H satisfying t(a) = −a. As we know already that ωa is of type (1, 1) for Iσ,
we have only to verify that

ωa(x, Iσx) > 0,

for 0 6= x ∈ Hσ. By definition, this is equal to

< x, xiσa > .
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For a = iσ ∈ Hσ ⊂ HR, this is equal to − < x, x > which is positive by the
second Hodge-Riemann bilinear relations, because Hσ ⊂ H1,1

R .

Thus it follows that it remains positive for any a in a neighbourhood of iσ in
HR satisfying t(a) = −a, and in particular for a rational such a ∈ H ⊂ HR.

b) Case K = K+. Here the a will be a fixed rational element of H such that ωa

satisfies the positivity conditions on the W -components (the existence of which
was shown in the previous section), and on the components Hσ of the previous
type a). Note that the multiplication (on the right or on the left) by a on H is
an isomorphism, because it is K-linear and for any imbedding τ : K ↪→ R such
that τ 6∈ ΣM , it induces an automorphism of Hτ , because ωa is non-degenerate
on Hτ .

(The existence of imbeddings τ 6∈ ΣM follows from the fact that W 6= 0 by
assumption.)

We consider the commutative K-subalgebra of H generated by a:

Ka := K[a] ⊂ H.

This subalgebra is invariant under t, because t(a) = −a. Next, the subalgebra
Ka,σ := Ka ⊗σ(K) R of Hσ is contained in H1,1, and thus satisfies the property
that the intersection form

< x, y >=< xt(y), 1 >

is negative definite on Ka,σ.

This implies as in the proof of Proposition 4 that the t-invariant part K+
a,σ of

Ka,σ is a sum of copies Rρ of R, and that the corresponding decomposition of
Ka,σ (given by the action of the idempotents of K+

a,σ) is a decomposition as a sum
of copies Cρ of C, where t acts as complex conjugation on each Cρ. Furthermore,
as t(a) = −a and multiplication by a is an isomorphism on Ka, each aρ can be
written uniquely as λρiρ, where λρ is a positive real number, and iρ ∈ Cρ satisfies
i2ρ = −1ρ.

Let us define mσ by
mσ =

∑
ρ

iρ.

We have m2
σ = −∑

ρ 1ρ = −1. Furthermore t(mσ) = −mσ, as t(iρ) = −iρ, for
all ρ.

Finally, as mσ ∈ Ka,σ, one has mσa = amσ, and combining these three facts,
we conclude that (3.7) is satisfied.

Thus the multiplication on the right by mσ defines a complex structure Iσ

on Hσ, which satisfies the property that ωa is of type (1, 1) for Iσ. In order to
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conclude that we have a real weight 1 polarized Hodge structure on Hσ, we have
to check the positivity property

ωa(x, Iσ(x)) > 0, ∀0 6= x ∈ Hσ.

But as the numbers λρ are positive, one has

aρ = n2
ρmρ,

for some nρ ∈ R. Thus, letting

n :=
∑

ρ

nρ,

we have
aσ = n2mσ,

with n ∈ Ka,σ, t(n) = n. But then we have

ωa(x, Iσ(x)) =< x, Iσ(x)a >=< x, xmσa >

=< x, xn2m2
σ >= − < nx, nx >,

where the last inequality holds because m2
σ = −1 and t(n) = n. As n is non-

degenerate, the second Hodge bilinear relations show that < nx, nx > is negative
for all 0 6= x ∈ Hσ, which is what we wanted.

Remark 4. Assume that either ΣM is empty, or that the center K of H satisfies
K 6= K+. In the first case, we constructed the weight 1 Hodge structure by
defining its H1,0-part to be H2,0HC, which is a right ideal. Thus multiplication
on the right by elements of H are morphisms of weight 1 Hodge structure.

In the second case, the same is true if we choose for complex structure operator
on the Hσ, σ ∈ Hσ, the multiplication by iσ ∈ K ⊗σ(K+) R. Indeed, as iσ is
central, this multiplication commutes with right multiplication with elements of
H.

Thus, in both cases, as in the Kuga-Satake case, we can construct an abelian
variety, which admits H as a sub-Hodge structure of weight 2, and also Hop as a
ring of endomorphisms.
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