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Cohomology algebras in symplectic,

Kähler and algebraic geometry

Claire Voisin ∗

Abstract

We show a number of applications to geometry of the study of coho-
mology algebras of various kinds of manifolds. The main tool is Hodge
theory, and we use it to show that projective complex manifolds are
more restricted topologically than compact Kähler manifolds. We also
make explicit numerous constraints satisfied by cohomology algebras of
compact Kähler manifolds, making them very non generic amongst co-
homology algebras of symplectic manifolds satisfying the hard Lefschetz
property.
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1. Introduction

We survey in this paper results obtained recently via the systematic
study of cohomology algebras. All of our manifolds will be connected
and orientable. Thus their cohomology algebras have 1-dimensional 0
and top degree term and satisfy Poincaré duality. We will be mainly
interested in complex projective manifolds, compact Kähler manifolds,
and compact symplectic manifolds.

Complex projective manifolds are complex submanifolds of some
CPN . It is known that they are defined by homogeneous polynomial
equations (Chow’s theorem), so that they correspond to smooth complex
projective varieties, (although it is in general crucial from the point of
view of topology to distinguish between the abstract algebraic variety
and the complex manifold, see [18], [7]).

∗CNRS and IHÉS, E-mail: voisin@ihes.fr



2 C. Voisin

Kähler manifolds are complex manifolds admitting a Kähler metric,
that is a Hermitian metric

h =
∑
i,j

hijdzidzj , hji = hij

for which the corresponding 2- form

ω =
i

2

∑
i,j

hijdzi ∧ dzj ,

which is a real form of type (1, 1) independent of the choice of local
holomorphic coordinates z1, . . . , zn, is closed : dω = 0. The form ω is
called the Kähler form of the metric.

As CPN is Kähler, due to the presence of the Fubini-Study Kähler
form, (which is the Chern form of the natural metric on the dual of the
Hopf line bundle, induced by the standard Hermitian metric on CN+1),
any complex projective manifold is Kähler.

The third kind of manifolds we will consider are symplectic compact
manifolds, that is manifolds admitting a closed non degenerate 2-form.
A Kähler manifold is in particular symplectic, because Kähler forms are
symplectic forms. Notice that the set of Kähler forms is path-connected
because it is a convex cone. So on a Kähler manifold there is in fact a
well defined deformation class of symplectic forms, given by the set of
Kähler forms.

Our results are of two kinds. The first one concerns the so-called
Kodaira problem, which was solved negatively in [21]. We proved there
that although compact Kähler manifolds are well known to be very re-
stricted topologically, the projective complex manifolds are still more
restricted topologically. More precisely, we show in that paper :

Theorem 1.1 Starting from dimension 4, there are compact Kähler
manifolds which do not have the cohomology algebra of a complex pro-
jective manifold.

The second type of questions we shall consider is the following:
How restricted are the cohomology algebras of compact Kähler

manifolds?
Note that this question is complementary to the formality theorem

[8] which tells that the rational homotopy type of these manifolds (in
the simply connected case) is determined by their rational cohomology
algebra.

The only classical explicit constraints are the fact that the odd Betti
numbers should be even, due to the Hodge decomposition (see subsection
1.1. below) and a stronger constraint due to the so-called hard Lefschetz
property (see subsection 1.3.).
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Examples of symplectic manifolds which are topologically non Kähler
were constructed by Thurston [20], and McDuff [16] using the classical
restriction on odd Betti numbers mentioned above. Later on, further
examples were constructed by Bouyakoub [3], and Gompf [11] with even
b2i+1 and thus satisfying the classical restriction, but not satisfying the
hard Lefschetz property.

We shall construct here further examples of compact symplectic
manifolds whith no odd degree cohomology, and satisfying the hard Lef-
schetz property, but not having the cohomology algebra of a compact
Kähler manifold. In fact, all our examples are built starting from com-
pact Kähler manifolds and performing standard operations like taking
projective bundles on them or blowing-up symplectic submanifolds (see
Theorem 3.1 and Proposition 3.4).

Our results show that there are many further constraints satisfied
by the cohomology algebras of compact Kähler manifolds, deduced from
the existence of a polarizable Hodge structure on their cohomology algebra
(see subsection 1.2. below). Furthermore, we shall prove the following
result (cf [23]), which also strongly restricts the cohomology algebra of
topological direct summands of compact Kähler manifolds :

Theorem 1.2 Let Z be a compact Kähler manifold, and assume Z
is homeomorphic to a product : Z ∼= X × Y , where b1(X) = 0. Then
the cohomology algebras of X and Y carry polarizable Hodge structures
inducing that of Z. Thus their cohomology algebras also satisfy the con-
straints mentioned above.

The rest of this section is devoted to the description of the main
tools used: Hodge structures, polarization on them and compatibility
with cup-product.

1.1. Hodge structures

The complex valued de Rham algebra A∗(X) of a complex manifold
splits as a direct sum

Ak(X) =
⊕

p+q=k

Ap,q(X),

where Ap,q(X) is the set of differential forms of type (p, q). The Hodge
decomposition theorem says that, when X is compact Kähler, this de-
composition descends to the cohomology groups with complex coeffi-
cients. Namely, defining

Hp,q(X) =
{closed forms of type (p, q)}
{exact forms of type (p, q)}

,
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one has for X compact Kähler

Hk(X,C) =
⊕

p+q=k

Hp,q(X).

From the definition above of Hp,q(X), which is naturally a subspace of
Hk(X,C), it is obvious that

Hp,q(X) = Hq,p(X),

where complex conjugation acts on Hk(X,C). This property of the
Hodge decomposition is called “Hodge symmetry”. It has as an immedi-
ate consequence the following classical statement (which in the surface
case characterizes Kähler surfaces among compact complex ones) :

Corollary 1.4. The odd Betti numbers b2i+1(X) of a compact
Kähler manifold are even.

Definition 1.5 A rational Hodge structure of weight k is the data
of a Q-vector space H and a decomposition

HC := H ⊗ C =
⊕

p+q=k

Hp,q

satisfying the Hodge symmetry property.
Taking for H the cohomology with rational coefficients Hk(X,Q),

one gets a rational Hodge structure of weight k on the degree k coho-
mology of a compact Kähler manifold X.

There is another way to look at the Hodge decomposition. Namely,
we can see it as the eigenspace decomposition for the following C∗-action
on HC: z ∈ C∗ acts by multiplication by zpzq on Hp,q. The Hodge
symmetry then simply says that C∗ acts on HR.

1.2. Hodge structures on cohomology algebras

The main property of the Hodge decomposition that we shall ex-
ploit is the following :

Lemma 1.6 Let X be compact Kähler and let

µ : Hk(X,C)⊗H l(X,C) → Hk+l(X,C)

be the cup-product map. Then

µ(Hp,q(X)⊗Hp′,q′(X)) ⊂ Hp+p′,q+q′(X). (1.1)

Proof. Indeed, the wedge product of a closed form of type (p, q)
and a closed form of type (p′, q′) is a closed form of type (p+ p′, q+ q′).
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This tells us that the Hodge decompositions make the cohomology
algebra H∗(X,C) a bigraded algebra.

Another way to express this property is to say that the map µ is
equivariant with respect to the C∗-actions.

From this follows the following very useful lemma due to Deligne.
Consider a cohomology algebra A∗ with rational coefficients. Assume
there is a weight k Hodge structure on each Ak satisfying the compati-
bility condition (1.1). (We will then say that there is a Hodge structure
on A∗.)

Let Z ⊂ Ak
C be a closed algebraic subset defined by homogeneous

equations depending only on the product in A∗. (For example Z := {a ∈
Ak

C, a
l = 0} for a given l.) Let Z ′ be an irreducible component of Z,

and let < Z ′ >⊂ Ak
C be the complex vector subspace generated by Z ′.

Lemma 1.7 < Z ′ > is stable under the Hodge decomposition of Ak
C.

Thus if < Z ′ > is defined over R, resp. Q, that is

< Z ′ >= B ⊗ C

for some B ⊂ Ak
R (resp. B ⊂ Ak), then B is a real (resp. rational)

sub-Hodge structure of Ak
R, (resp. Ak).

Proof. Indeed, the definition of Z and the equivariance of the
product with respect to the C∗-action show that Z is stable under the
C∗-action. Thus Z ′ is also stable under this action, and so is < Z ′ >.
But this is equivalent to saying that < Z ′ > has an induced Hodge
decomposition.

In practice, this lemma can be used to show that some even degree
rational cohomology class α ∈ A2i must be a Hodge class (that is a
rational class of type (i, i) for any Hodge structure on the cohomology
algebra A∗. It suffices for this to show that the line < α > can be
determined algebraically as above, because a Hodge structure of weight
2i and rank 1 is necessarily of type (i, i). In odd degree, one can apply
the lemma to conclude that under the assumptions of Lemma 1.7, if k
is odd and < Z ′ > is defined over R, it must have even rank.

1.3. Polarization

Let X be a compact Kähler manifold, and ω ∈ H2(X,R) be a
Kähler class. Then (X,ω) satisfies the hard Lefschetz property : for
n := dimCX and for any integer k ≤ n, the cup-product by ωn−k

∪ωn−k : Hk(X,R) → H2n−k(X,R)

is an isomorphism. Note that both sides have the same dimension by
Poincaré duality.
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The hard Lefschetz property implies the Lefschetz decomposition
(1.1) below (cf [24], 6.2.3): Let ω be a class satisfying the Lefschetz
property above, and define for k ≤ n the primitive part Hk(X,R)prim

by

Hk(X,R)prim := Ker (∪ωn+1−k : Hk(X,R) → H2n−k+2(X,R)).

Then we have for k ≤ n

⊕
k−2i≥0

Hk−2i(X,R)prim

P
i ∪ωi

∼= Hk(X,R). (1.1)

Observe that the ωi ∪Hk−2i(X,R)prim are real sub-Hodge structures of
Hk(X,R), which means that the corresponding complex vector spaces

ωi ∪Hk−2i(X,C)prim ⊂ Hk(X,C)

are stable under the Hodge decomposition. This follows from the fact
that ω is of type (1, 1). If furthermore we can choose ω to be rational,
then Hk(X,R)prim is in fact defined over Q and thus provides a sub-
Hodge structure of Hk(X,Q).

To conclude, let us mention the Riemann bilinear relations, which
will play an important role in the following sections.

X,ω being as above, we can construct for each k ≤ n a non degen-
erate Hermitian intersection pairing hω on Hk(X,C), defined by :

hω(α, β) = ιk
∫

X

ωn−k ∪ α ∪ β.

For bidegree reasons, we find that the Lefschetz and Hodge decomposi-
tion are orthogonal with respect to the pairing hω.

Finally the second Riemann bilinear relations (see [24], Theorem
6.32) are restrictions on the signs of the Hermitian pairing hω restricted
to the part

Hp,q(X)prim ⊂ Hp,q(X), p+ q = k

defined as Hp,q(X)prim = Hp,q(X) ∩Hk(X,C)prim.
Theorem 1.8 Let X be a compact Kähler manifold with Kähler

class ω. Then the Hermitian form hω is definite of sign (−1)
k(k−1)

2 ιp−q−k

on the component
Hp,q(X,C)prim, p+ q = k

of Hk(X,C).
This is summarized by saying that the primitive pieces of the Lef-

schetz decomposition are real sub-Hodge structures, which are polarized
by ω.
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A point which will be crucial in section 2. is the following:
If ω can be chosen to be a rational cohomology class, then the

pieces of the Lefschetz decomposition are rational sub-Hodge structures
(namely, they are subspaces of Hk(X,R) which are defined over Q).
Furthermore the Hermitian form hω as above is also rational in the sense
that the corresponding bilinear form

qω(α, β) :=
∫

X

ωn−k ∪ α ∪ β

on Hk(X,R) (which is symmetric for k even and skew-symmetric for k
odd) is in fact rational on Hk(X,Q).

We will speak in this case of rational Hodge structure which admits
a rational polarization.

2. The Kodaira problem

Let X be a Kähler compact manifold. Kodaira’s embedding theo-
rem says the following.

Theorem 2.1 (Kodaira, [13]) X is projective if and only if X
carries a Kähler form whose cohomology class ω is rational, that is ω ∈
H2(X,Q).

Note that, in particular, if X is Kähler and H2,0(X) = 0, then X is
projective. Indeed in that case H1,1

R (X) = H2(X,R), where H1,1
R (X) is

the set of cohomology classes which can be represented by a real closed
form of type (1, 1). Since the cone of Kähler classes is open in H1,1

R (X),
it is then open in H2(X,R), and thus contains rational classes, since
they are dense in H2(X,R).

Starting with a Kähler manifold X, one can deform the complex
structure. It is known that the small deformations preserve the Kähler
property and that the spaces Hp,q vary differentiably inside the fixed
space Hp+q(X,C), which does not depend on the complex structure (see
eg [24], 9.3.2). Given a family (Xt)t∈B of deformations of the complex
structure on X, one can consider the set

∪t∈BH
1,1
R (Xt) ⊂ H2(X,R),

inside which sits as an open set the union of the Kähler cones Kt ⊂
H1,1

R (Xt). Assuming the union of theKt contains an open set ofH2(X,R),
then by the same density argument as above, it must contain a rational
class, which means by Kodaira’s theorem 2.1 that some Xt is projective.

It turns out that this is precisely what happens in the case of Kähler
surfaces.

Theorem 2.2 (Kodaira, [14]) A compact Kähler surface admits a
(arbitrarily small) deformation which is projective.
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Kodaira’s proof was obtained as a consequence of his classification
of surfaces. A more direct proof, which consists in checking infinitesi-
mally that the Kähler cones move with the complex structure so as to
fill-in an open set, was given recently by Buchdahl [4], [5].

In higher dimension, the Kodaira theorem left open the question
whether a compact Kähler manifold can be deformed to a projective one,
a problem known as the Kodaira problem (see [9]), although it is not
clear whether the question was asked by Kodaira himself.

Here we are considering more generally large deformations, that is,
we say that X is a deformation of X ′ if there exist connected analytic
spaces

X , B,

a smooth proper holomorphic map

φ : X → B,

and two points t, t′ ∈ B such that Xt
∼= X, Xt′

∼= X ′. Clearly, if X and
X ′ are deformations of each other, they are diffeomorphic, (although the
diffeomorphism between them may not be canonically determined up to
isotopy, because of the monodromy group of the fibration given by φ).
Indeed, this fibration can be trivialized way in a C∞ way over paths in
B, and B is path connected.

So, a fortiori, X and X ′ are homeomorphic and in particular have
the same homotopy type or cohomology algebra. Hence a weakening of
the Kodaira problem asks the following :

Question. Does any compact Kähler manifold have the homotopy
type of a projective complex manifold?

Note that there are no symplectic obstructions, by the work of
either Gromov [12], Donaldson [10], Munoz et al [17], which show that
any symplectic manifold can be realized as a symplectic submanifold of
projective space.

We proved that the answer to this question is negative starting
from dimension 4.

Theorem 2.3 (Voisin [21]) In any dimension ≥ 4, there exist com-
pact Kähler manifolds which do not have the homotopy type of complex
projective manifolds.

In any dimension ≥ 6 there exist simply connected such examples.

The method we sketch below to construct such examples plays on
blowing-up certain complex tori along complex submanifolds, in such a
way that the cohomology algebra of the blown-up manifold prevents it
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to be projective. So these examples are in fact birationally equivalent to
complex tori, which themselves deform to projective manifolds. However,
later on in [22], we also proved the existence, starting from dimension
10, of compact Kähler manifolds, no birational model of which has the
homotopy type of a complex projective manifold.

The examples constructed in [21] have the following shape (at least
in the non simply-connected case). One considers complex tori T ad-
mitting an endomorphism φT . Later on, we will make an assumption
on φT , but for the moment we just assume that the eigenvalues of φT ∗
acting on the tangent space of T at 0 are all different from 0 or 1.

It follows that inside T × T the four subtori

T1 := T × 0, T2 = 0× T,

T3 = Tdiag = {(x, x), x ∈ T}, T4 = Tgraph = {(x, φT (x)), x ∈ T}

meet pairwise transversally at finitely many points.
We first blow-up the finitely many pairwise intersection points of

these tori ; then the proper transforms T̃i of the Ti’s are smooth and
do not meet anymore. So we can blow-up their union. The resulting
compact complex manifold is Kähler because the Kähler property is
stable under blow-ups.

We prove next that for adequate choice of (T, φT ), the manifold X
so constructed does not have the homotopy type of a complex projective
manifold. More precisely, let us make the following assumptions on
(T, φT ) :

(*) the dimension n of T is ≥ 2 and the endomorphism φ := φT∗
of H1(T,Q) satisfies the properties that all of its eigenvalues are dis-
tinct, and the Galois group of its characteristic polynomial acts as the
symmetric group of 2n elements on the set of eigenvalues.

The precise statement is then the following :
Theorem 2.4 Assume the assumptions (*). If X ′ is a Kähler

compact manifold such that there exists a graded algebra isomorphism

γ : H∗(X ′,Q) ∼= H∗(X,Q),

then X ′ is not projective.
The key point is the notion of polarized Hodge structure (see section

1.3.). Note that in degree 1, the primitive cohomology H1(X,R)prim is
the full cohomology space H1(X,R).

The proof of Theorem 2.4 consists in showing that if we have X ′,
X and γ as above, the Hodge structure on H1(X ′,Q) (which has to
be compatible via the cup-product with the Hodge structures on higher
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degree cohomology groups) cannot be polarized. ThusX ′ does not admit
any rational Kähler class and is not projective.

The first step is the following:
Proposition 2.5 Let L, LC = L1,0

⊕
L1,0 be a weight 1 rational

Hodge structure which admits an endomorphism ψ (of Hodge structure)
satisfying the Galois group assumption of (*). Suppose that rk L ≥ 4.
Then this Hodge structure on L cannot be polarized, that is, there is no
element η ∈

∧2
L∗, such that

η(α, β) = 0, iη(α, α) > 0, ∀α, β ∈ L1,0.

Proof. Indeed, the first condition tells that η is of type (1, 1) for the
induced weight 2 Hodge structure on

∧2
L∗, while the second condition

guarantees that η 6= 0. One looks then at the action ∧2ψ∗ induced by
ψ on

∧2
L∗. The assumption on the Galois group then implies that this

action is irreducible.
On the other hand, this action preserves the subspaceHdg2(

∧2
L∗),

consisting of rational elements of
∧2

L∗ which are also of type (1, 1). This
subspace must then be either 0 or the whole of

∧2
L∗. As rkL ≥ 4, we

have
∧2

L∗1,0 6= 0, so that
∧2

L∗ is not completely of type (1, 1). Thus
Hdg2(

∧2
L∗) = 0.

The second step will then be to show that if we have X ′, X and γ
as above, there must be a splitting of the Hodge structure on H1(X ′,Q)

H1(X ′,Q) = L⊕ L,

and an automorphism ψ of the sub-Hodge structure L which satisfies the
Galois group assumption of (*).

More precisely, note that tφ acts on H1(T,Q) = H1(T,Q)∗, that
this action satisfies the Galois group assumption of (*), and that

H1(X,Q) ∼= H1(T,Q)⊕H1(T,Q).

We now show the following proposition, which together with Proposition
2.5 completes the proof of Theorem 2.4 :

Proposition 2.6 Let X ′, X and γ as above. Then the induced
decomposition

H1(X ′,Q) = L⊕ L′,

with
L := γ−1(H1(T,Q)× 0), L′ := γ−1(0×H1(T,Q))

is a decomposition of H1(X ′,Q) into two isomorphic sub-Hodge struc-
tures. Furthermore, the endomorphism tφ acting on H1(T,Q) ∼= L acts
as an endomorphism of Hodge structure on L (or L′).
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Proof. We use Deligne’s lemma 1.7. Recall thatX was constructed
from T×T by blowing-up complex submanifolds. Let us ignore the blow-
ups of points, which is insignificant here, and consider the exceptional
divisors E1, . . . , E4 over the proper transforms T̃i. Their cohomology
classes are rational cohomology classes ei on X, which are of type (1, 1)
for the Hodge structure on H2(X,Q).

One then shows using Deligne’s lemma that the e′i := γ−1(ei) are
also of type (1, 1) for the Hodge structure on H2(X ′,Q).

Finally, one notices that H1(T,Q)× 0 ⊂ H1(X,Q) is recovered as
Ker ∪ e2, 0×H1(T,Q) ⊂ H1(X,Q) is recovered as Ker ∪ e1, and that
the antidiagonal of H1(T,Q) and the antigraph of tφ are recovered inside
H1(T,Q)×H1(T,Q) = H1(X,Q) as Ker e3 and Ker e4 respectively.

It follows that one recovers similarly L and L′ as the kernels of ∪e′2
and ∪e′1 respectively, and as the e′i are Hodge classes, it follows that
L and L′ are sub-Hodge structures. Finally Ker ∪ e′3 ⊂ L ⊕ L′ and
Ker ∪e′4 ⊂ L⊕L′ must be sub-Hodge structures of L⊕L′ = H1(X ′,Q).
The first of them provides an isomorphism of Hodge structures L ∼= L′,
while the second one shows that the endomorphism induced via γ by tφ
acts as an endomorphism of Hodge structures on L.

3. Symplectic and Kähler manifolds

A compact Kähler manifold (X,ω) can be seen, forgetting the com-
plex structure, as a compact symplectic manifold. (Here we will not dis-
tinguish between the Kähler or symplectic form ω and its cohomology
class.)

These symplectic manifolds are special because they satisfy the
hard Lefschetz property (see section 1.3.). This implies among other
things that their odd Betti numbers are even, because the isomorphism
of cup-product with ω

ωn−k : Hk(X,R) → H2n−k(X,R), 2n = dimRX

is skew with respect to Poincaré duality.
In [23], we exhibit many more restrictions on the cohomology alge-

bras of compact Kähler manifolds, leading to new examples of symplectic
manifolds satisfying the hard Lefschetz property but topologically non
Kähler. These restrictions come from the existence of polarizable Hodge
structure on their cohomology algebras (see section 1.2. and 1.3.), that
is a Hodge structure of weight k on the degree k cohomology, compatible
with cup-product, and a real class of type (1, 1) which satisfies the hard
Lefschetz property and the polarization condition of Theorem 1.8).

To give a sample of such results, we prove :
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Theorem 3.1 Let X be a compact connected oriented manifold
such that the algebra H∗(X,Q) is generated in degree ≤ 2. Let E be a
complex vector bundle on X, such that c1(E) = 0. Assume the cohomol-
ogy algebra H∗(P(E),R) admits a Hodge structure. Then the cohomology
algebra

H∗(X,Q) ⊂ H∗(P(E),Q)

has an induced Hodge structure, for which the Chern classes ci(E), i ≥ 2
are Hodge classes, that is, are of type (i, i).

This leads to examples of compact symplectic manifolds satisfying
the hard Lefschetz property, but topologically non Kähler, which are
constructed as follows.

We start with a compact Kähler manifold X together with a degree
4 rational cohomology class α which have the property that for no Hodge
structure on H∗(X,Q), the class α is of type (2, 2). The methods of the
previous section easily lead to such examples.

Then we choose a complex vector bundle E onX which has c1(E) =
0, c2(E) = Nα for some integer N . Theorem 3.1 above shows that the
symplectic manifold P(E) does not have the cohomology algebra of a
compact Kähler manifold.

Sketch of proof of Theorem 3.1. Notice that

H1(X,Q) ∼= H1(P(E),Q).

As we know that the cohomology algebra ofX is generated in degree 2, in
order to show that H∗(X,Q) ⊂ H∗(P(E),Q) is a sub-Hodge structure, it
suffices to prove it for the degree 2 part. Note that the real dimension of
X is even, dimRX = 2d, because the real dimension of P(E) is even (the
top degree cohomology group has rank 1, hence its Hodge structure is of
even weight). We claim that there exists β ∈ H2(X,Q) such that βd 6= 0.
This is clear because the dimension is even and the cohomology algebra
is generated in degree ≤ 2. It follows that we can recover algebraically

H2(X,C) ⊂ H2(P(E),C)

as a connected component of the set of α ∈ H2(P(E),C), αd+1 = 0. By
Deligne’s lemma 1.7, it follows that H2(X,Q) is a sub-Hodge structure
of H2(P(E),Q).

As for the statement that the Chern classes of E are Hodge classes
for this Hodge structures on H∗(X,Q), we observe that by the definition
of Chern classes, it suffices to show that

β = c1(H) ∈ H2(P(E,Q)

is a Hodge class for the given Hodge structure on H2(P(E,Q), where
H is the dual of the relative Hopf line bundle on P(E) (cf [24], 11.2.1).
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By Deligne’s lemma 1.7, it suffices to give an algebraic recipe defining
the line < β >. Recalling that c1(E) = 0, one recovers < β > as a
component of the set

{α ∈ H2(P(E,C), τ∗αr = 0 in H2(X,C)},

where r = rk E, and the Gysin map τ∗ is recovered as the Poincaré dual
of the pull-back map τ∗ (we already know the inclusion H∗(X,C) ⊂
H∗(P(E),C)). This concludes the proof.

In the paper [23], we exhibit further explicit restrictions on the co-
homology algebras of compact Kähler manifolds, based on similar ideas.
For example, the criterion that the odd Betti numbers should be even
can be refined using Deligne’s Lemma as follows:

Proposition 3.2 If a cohomology algebra H∗(X,Q) admits a Hodge
structure, then for each algebraic subset Z ′ ⊂ H2k+1(X,C) as in section
1.2., if the complex vector space < Z ′ >⊂ H2k+1(X,C) is defined over
R, it must be of even rank.

This is another source of construction of symplectic manifolds which
are topologically non Kähler while satisfying the hard Lefschetz property.

The above results show that there are rather strong restrictions on
the cohomology algebras of compact Kähler manifolds, deduced from
the existence of polarizable Hodge structures on them. The following
theorem shows that these topological restrictions are also inherited by
their direct topological factors.

Theorem 3.3 Let M∗ be the cohomology algebra of a connected
orientable manifold, which is equipped with a Hodge structure which can
be polarized. Assume that

M∗ ∼= A∗ ⊗B∗,

where A1 = 0. Then there are (polarizable) Hodge structures on A∗ and
B∗ which induce the Hodge structure on M∗.

Theorem 1.2 of the introduction immediately follows, writing

M∗ = H∗(Z,Q), A∗ = H∗(X,Q), B∗ = H∗(Y,Q).

Note that the assumption that A1 = 0 (that is b1(X) = 0 in The-
orem 1.2) is necessary, as shows the case of a one-dimensional complex
torus T ∼= S1 × S1.

Sketch of proof of Theorem 3.3. The key point is the fact that,
as A1 = 0, one has

M2 = A2
⊕

B2.

We will content ourselves proving that A2 and B2 are sub-Hodge struc-
tures of M2. Let ω ∈ M2

R be a polarizing class. If 2n = dimRM , one
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has ωn 6= 0 in M2n. Writing ω = α + β, α ∈ AR, β ∈ BR, one deduces
from this that the dimensions of A and B should be even, say 2a and 2b
respectively, and that

αa 6= 0 in A2a, βb 6= 0 in B2b.

It then follows easily that
A2

C ⊂M2
C

is an irreducible component of the set {m ∈ M2
C, m

a+1 = 0}. Deligne’s
lemma 1.7 then tells us that A2 ⊂ M2 is a sub-Hodge structure. One
argues similarly for B2.

As a consequence of this, in the decomposition ω = α+β, one finds
that α and β are of type (1, 1) in M2. Thus the fundamental classes (or
top degree generators) αa and βb of A∗ and B∗ respectively are also
of type (a, a) and (b, b). One then proves by induction on i that each
Ai ⊂ M i, Bi ⊂ M i is a sub-Hodge structure. This last step uses the
Künneth decomposition, and the fact that the hard Lefschetz property
is satisfied by α on A∗ and β on B∗.

To conclude this section, we would like to show an example where
the polarization conditions of Theorem 1.8 play a crucial role (actually,
even in the previous section, we used only the hard Lefschetz property).
In fact, when an oriented manifold X has only even degree cohomology,
one can always put the trivial Hodge structure on eachH2i(X), declaring
that it is of type (i, i). This trivially satisfies the compatibility conditions
(1.1). We shall now construct a compact symplectic manifold satisfying
the hard Lefschetz property, having only even degree cohomology, but
not having the cohomology algebra of a compact Kähler manifold.

Let us consider a K3 surface S. It is a compact Kähler surface
with b1 = 0, b2 = 22 and the signature of the intersection on H2(S,R)
is (3, 19).

Let us choose a basis α1, . . . , α22 of H2(S,Q) consisting of classes
close enough to a Kähler class. More precisely, we want that the αi are
classes of symplectic forms α̃i close to a Kähler form, so that

∑
i α̃i is

still a symplectic form.
For an adequate choice of M ∈ N, Mαi is an integral cohomology

class for all i’s. It then follows by Gromov embedding theorem [12], 3.4,
that there exist symplectic embeddings

φi : S ↪→ CPN

such that φ∗i Ω = Mα̃i, where Ω is the Fubini-Study symplectic form on
CPN .
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Thus, the diagonal map

Φ = (φ1, . . . , φ22) : S → (PN )22

is symplectic, because Φ∗(
∑

i pr
∗
i Ω) = M(

∑
i α̃i) is symplectic.

Let X be the symplectic blow-up of (PN )22 along Φ(S). X is a
compact symplectic manifold with only even cohomology and satisfying
the hard Lefschetz property. We conclude by proving:

Proposition 3.4 X does not have the cohomology algebra of a
compact Kähler manifold.

Proof. As the map Φ∗ is a surjection

H∗((PN )22,Q) → H∗(S,Q)

and the cohomology algebra of (PN )22 is generated in degree 2, it fol-
lows that the cohomology algebra of X is generated in degree 2. Note
that H2(X,Q) has for generators the classes ωi of the differential forms
τ∗pr∗i Ω, where τ is the blow-down map, and the class e of the exceptional
divisor.

One checks easily that the lines < ωi > are irreducible components
of the algebraic subset

Z = {a ∈ H2(X,C), aN+1 = 0}.

By Deligne’s lemma 1.7, it follows that for any compatible Hodge struc-
ture on H∗(X,Q), the classes ωi are of type (1, 1). As there is only one
remaining generator e of H2(X,Q), it must also be of type (1, 1) for such
Hodge structure. As the cohomology algebra is generated in degree 2, it
follows that all the Hodge structures on H2i(X,Q) should be trivial.

This contradicts now the possibility of having a polarizable Hodge
structure on H∗(X,Q). Indeed, as a consequence of Lefschetz decompo-
sition and of Theorem 1.8, one has the Hodge index formula (see [24],
6.3.2), which gives the signature sign(Y ) of the middle intersection form
of a compact oriented manifold Y of real dimension 4n, which admits a
polarizable Hodge structure on its cohomology algebra:

sign(Y ) =
∑

a

(−1)aha,b(Y ).

In our case, we know that the Hodge numbers ha,b(X) should be 0 for
a 6= b and this equality would thus provide:

sign(X) = ±
∑

a

b2a(X).

(Here the sign ± is due to the fact that the signature depends on the
orientation. Here on the left we compute sign(X) for the natural orien-
tation of X.) It is now easy to check that this formula is not satisfied.
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